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We look at hexagons whose vertex triangles have equal area, and identify neces-
sary conditions for these hexagons to also have vertex quadrilaterals with equal
area. We discover a method for creating a hexagon whose vertex quadrilaterals
have equal area without necessarily having vertex triangles of equal area. Finally,
we generalize the process to build any polygon with an even number of sides to
have certain vertex polygons with equal area.

1. Introduction

In the article “Polygons whose vertex triangles have equal area,” Harel and Rabin
[2003] discuss the properties of polygons with the very special characteristic
described in the title. To clarify, the authors offer the following definitions:

Definition 1. A triangle formed using three adjacent vertices of any polygon is
called a vertex triangle.

Definition 2. A polygon V1V2 · · · Vn for which all vertex triangles have the same
nonzero area is called an equal-area polygon.

Harel and Rabin take an algebraic approach, assigning direction and magnitude
to each side of the polygon. In this article, we take a geometric approach, using
area formulas and triangle congruencies to identify properties of certain polygons.

To extend from triangles, we offer the following definitions:

Definition 3. A polygon of n sides, formed using n adjacent vertices of any m-sided
polygon (with m ≥ n), is called a vertex n-gon.

Definition 4. A polygon V1V2 · · · Vm for which all vertex n-gons have the same
nonzero area is called an equal-n-gon polygon.

It is clear that every equal-area quadrilateral is also an equal-quadrilateral polygon,
since any vertex quadrilateral is the whole quadrilateral. Furthermore, every equal-
area pentagon is an equal-quadrilateral polygon because, for P equal to the area of
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Figure 1. 4BCD and 4DEF are vertex triangles of hexagon
ABCDEF, but 4BEA is not.

Figure 2. An equal-area pentagon is always an equal-quadrilateral pentagon.

the pentagon, and T equal to the area of any vertex triangle, the area of every vertex
quadrilateral is equal to P − T (Figure 2). This means every equal-quadrilateral
pentagon is also an equal-area pentagon. For this reason, we begin with hexagons.

2. Equal-area hexagons

The first nontrivial case of the equal-area and equal-quadrilateral polygon is the
hexagon. The first task is to construct an equal-area hexagon. We can show that, for
any equal-area polygon V1V2 · · · Vn , the line Vi Vi+1 is parallel to the line Vi−1Vi+2.
In other words, each side is parallel to the line formed by the surrounding two
vertices.

Proof. Let V1V2 · · · Vn be an equal-area polygon. Then Area(4Vi−1Vi Vi+1) =

Area(4ViVi+1Vi+2). Let b= Vi Vi+1, h1 = d(Vi−1, Vi Vi+1), h2 = d(Vi+2, Vi Vi+1).
So Area(4Vi−1Vi Vi+1)=

1
2 bh1=

1
2 bh2=Area(4ViVi+1Vi+2). Therefore, h1= h2

and Vi−1Vi+2 is parallel to Vi Vi+1. �



VERTEX POLYGONS 363

Figure 3. Every equal-area hexagon enjoys parallelism
betweenopposite sides and corresponding main diagonals.

With this property, an equal-area hexagon can be uniquely determined by any
trapezoid. As we build an equal-area hexagon, it is important to note that the
diagonals of the hexagon need not intersect at a single point. This is a key observation
as we transform the equal-area hexagon into an equal-quadrilateral hexagon.

Using the hexagon CDEFGH in Figure 3, certain geometric properties arise.
First, the sides of the hexagon, along with the diagonals, divide the hexagon into
four triangles and three trapezoids. Let us define these as follows:

Definition 5. Let ABCDEF be any hexagon, with AD ∩ BE = J , BE ∩ CF = L ,
CF∩AD= K . The triangle4JKL is called the center triangle. The triangles4ABJ,
4CKD, and 4ELF are called interior triangles, and BCKJ, DELK, and FAJL are
called interior trapezoids (see Figure 4).

Figure 4. Equal-area hexagon ABCDEF and two of the associated trapezoids.
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Figure 5. Equal-area, equal-quadrilateral hexagon ABCDEF.

Lemma. For an equal-area hexagon, each interior trapezoid has the same nonzero
area and each interior triangle has the same nonzero area.

Proof. Let ABCDEF be an equal-area hexagon, with AD∩BE = J , BE∩CF = L ,
CF ∩ AD = K (see Figure 5). From the previous proof, AF ‖ BE and AB ‖ FL,
so ABLF is a parallelogram. Likewise, AK ‖ BC and AB ‖ CK, so ABCK is a
parallelogram, and the parallelograms share a base, AB. Let b1 = AB, h1 =

height(ABLF)= height(4BAF), and h2 = height(ABCK)= height(4ABC). Then
Area(ABLF)= b1h1 = 2Area(4BAF) and Area(ABCK)= b1h2 = 2Area(4ABC).
Since ABCDEF is an equal-area hexagon, we have Area(4BAF)= Area(4ABC),
so Area(ABLF) = Area(ABCK). Let A1 = Area(AJLF), A2 = Area(4ABJ), and
A3 = Area(BCKJ). Then Area(ABLF) = A1 + A2 and Area(ABCK) = A2 + A3.
This implies that A1 = A3. Similar argument supports that all interior trapezoids
have the same nonzero area, as do all interior triangles. �

Definition 6. For any integer n > 1 and any polygon having n sides with vertices
V1, V2, . . . , V2n , a true diagonal has endpoints Vi and Vi+n , where i ∈ {1, 2, . . . , n}.

Theorem 1. An equal-area hexagon is equal-quadrilateral if and only if all its true
diagonals intersect at a single point.

Proof. Let ABCDEF be an equal-area, equal-quadrilateral hexagon, with the follow-
ing properties: AD∩BE= J , BE∩CF= L , CF∩AD= K . Suppose, for the sake of
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Figure 6. Equal-area hexagon ABCDEF with main diagonals intersecting.

contradiction, that J , K , and L are three distinct points. Let A1 be the area of the in-
terior triangles, A2 be the area of the interior trapezoids, and Ac be the area of the cen-
ter triangle. Consider the vertex quadrilaterals ABCD and BCDE. Since ABCDEF
is an equal-quadrilateral hexagon, the areas of the vertex quadrilaterals are equal to
each other. Thus, Area(ABC D)= 2A1+ A2 = A1+ 2A2+ Ac = Area(BC DE).

Let b1 = DE , and let h1 equal the height of trapezoid ELKD, which is equal to
the height of vertex triangle EDC.

Let b2 = L K , and let h2 equal the height of center triangle J K L .
Let b3 = AB and let h3 equal the height of vertex triangle ABC , so the height

of interior triangle AB J is h3− h2. Then 2A1+ A2 = A1+ 2A2+ Ac implies

2
( 1

2 b3(h3− h2)
)
+

1
2(b1+ b2)h1 =

1
2 b3(h3− h2)+ 2

( 1
2(b1+ b2)h1

)
+

1
2 b2h2

This simplifies to

b2h2+ b1h1+ b2h1 = b3h3− b3h2. (1)

Since ABCDEF is equal-area, the vertex triangles have the same area, and 1
2 b1h1 =

1
2 b3h3, so b1h1 = b3h3 and (1) becomes

b2h2+ b2h1 =−b3h2. (2)

Since b2h2, b2h1, b3h2 are all positive values, this is a contradiction. Therefore,
J = K = L , and the diagonals of ABCDEF intersect at a single point.

For the other direction, let ABCDEF be an equal-area hexagon, satisfying
AD∩BE∩CF = X .

Without loss of generality, consider 4ABX. Since the height of 4ABX is equal
to the height of 4ABC, their areas are equal. Thus, the area of each interior triangle
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is the area of a vertex triangle. Since all vertex triangles share an equal area, so
do the interior triangles. Each vertex quadrilateral is made up of three interior
triangles, so each vertex quadrilateral shares an equal area. Therefore, ABCDEF is
an equal-quadrilateral hexagon. �

3. Equal-quadrilateral hexagons

While constructing an equal-quadrilateral hexagon out of an equal-area hexagon
is helpful, the question arose: if a hexagon is equal-quadrilateral, is it necessarily
equal-area? We are able to observe, through interior triangle congruencies, that the
intersection of the three diagonals is the midpoint of each diagonal. Since the three
diagonals are diameters of three concentric circles, we have a new way to construct
the equal-quadrilateral hexagon.

Theorem 2. A hexagon whose true diagonals are diameters of concentric circles is
an equal-quadrilateral hexagon.

Proof. Let AD, BE, CF be diameters of three concentric circles with center X and
also be diagonals of hexagon ABCDEF (see Figure 7). Without loss of generality,
consider ABCD and BCDE. We have ABCD ∩ BCDE = BCDX. We also have
EX = XB and AX = XD because they are radii of the same respective circles.
Furthermore, 6 EXD∼= 6 BXA because they are vertical angles. Thus, by the side-
angle-side condition, 4EXD∼=4BXA. Since BCDX is congruent to itself, ABCD
and BCDE are congruent, and therefore share an equal, nonzero area. With this
argument, every vertex quadrilateral of ABCDEF shares the same, nonzero area.
Thus, ABCDEF is an equal-quadrilateral hexagon. �

Figure 7. Equal-quadrilateral hexagon ABCDEF.
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Figure 8. ABCDEF is an equal-quadrilateral hexagon, but it is
not an equal-area hexagon: Area(4ABC), Area(4BCD), and
Area(4CDE) are all different (and each is equal to the area of
the symmetrically placed triangle).

To answer the question posed at the beginning of this section, Figure 8 offers
a counterexample. All vertex quadrilaterals share an equal area, while the vertex
triangles have varying areas.

4. Equal-(n+1)-gon polygons

Corollary. For any integer n > 1, a polygon with 2n sides is an equal-(n+1)-gon
polygon if its true diagonals are diameters of n concentric circles (see Figure 9).

Proof. Let n ∈ Z , with n > 1. Let P0 be a 2n-sided polygon constructed using the
endpoints of diameters of n concentric circles. Call the center of the circles B, and
denote the vertices of P0 by V1, V2, V3, . . . , V2n .

Let P1 be a polygon with vertices Vi , Vi+1, . . . , Vi+n , and let Area(P1) = A1.
Let P2 be the polygon with vertices Vi+1, Vi+2, . . . , Vi+n+1 and let Area(P2)= A2.
We have P1 ∩ P2 = polygon(Vi+1, Vi+2, . . . , Vi+n)∪4Vi+1Vn+1 B, which we will
call Q0. Note that Area(Q0) is equal to itself, so we need only to prove that
Area(P1 − Q0) = Area(P2 − Q0). Since BVi+n and BVi are radii of the same
circle, they are congruent, and likewise for BVi+1 and BVi+n+1. Angles Vi BVi+1

and Vi+n BVi+n+1 are congruent because they are vertical angles. Thus, by the
side-angle-side formula, the triangles are congruent and therefore have equal area.
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Figure 9. P1 constructed from diameters of concentric circles.

So Area(P1− Q0)= Area(P2− Q0), and we finally have

Area(P1)= Area(Q0)+Area(P1− Q0)

= Area(P2− Q0)+Area(Q0)= Area(P2).

Therefore, the areas of all vertex (n+1)-gons are equal to each other. �

5. Results and open questions

Using known properties of equal-area polygons, we discovered properties of the
equal-quadrilateral hexagon. We stated and proved a result that gives necessary
conditions for an equal-area hexagon to also be equal-quadrilateral. Finally, we
were able to generalize the process of constructing an equal-quadrilateral hexagon
to allow construction of any equal-(n+1)-gon polygon.

An additional observation on the equal-area hexagon, whether convex or non-
convex, is that the area of the hexagon is equal to the sum of the areas of the vertex
triangles. Likewise, the area of any equal-quadrilateral hexagon is twice the area
of the vertex quadrilaterals. While this is immediately clear for a convex hexagon,
it is not so when the hexagon is nonconvex. Since it is likely the proofs for these
observations are simple, they were omitted from this article.

Some questions to consider in extending the idea of equal-n-gon polygons are:

(1) Given an equal-area heptagon, what are the necessary conditions to imply an
equal-quadrilateral heptagon? Does equal-quadrilateral imply equal-area in
heptagons? If not, how can we construct an equal-quadrilateral heptagon?
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(2) Our corollary applies only to polygons with an even number of sides. Given a
polygon with an odd number of sides, are there sufficient conditions to ensure
vertex polygons of equal area?
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