
inv lve
a journal of mathematics

mathematical sciences publishers

On three questions concerning groups with perfect order
subsets

Lenny Jones and Kelly Toppin

2011 vol. 4, no. 3



msp
INVOLVE 4:3(2011)

On three questions concerning groups with perfect
order subsets

Lenny Jones and Kelly Toppin

(Communicated by Kenneth S. Berenhaut)

In a finite group, an order subset is a maximal set of elements of the same order.
We discuss three questions about finite groups G having the property that the
cardinalities of all order subsets of G divide the order of G. We provide a new
proof to one of these questions and evidence to support answers to the other two
questions.

1. Introduction

Let G be a finite group. Carrie E. Finch and the first author [Finch and Jones 2002;
2003] defined the order subset of G determined by x 2G to be the set of elements
in G with the same order as x. They defined G to have perfect order subsets —
in short, to be a POS group — if the number of elements in each order subset of
G divides the order jGj. It is easy to see that any nontrivial POS group has even
order.

The next three theorems, whose proofs are given in [Finch and Jones 2002],
allow us to refine the search for abelian POS groups to a particular class of groups.

Theorem 1.1. Let G' .Zpa/t�M and yG' .ZpaC1/t�M , where M is an abelian
group and p is a prime not dividing jM j. If G is a POS group, then so is yG.

Theorem 1.2. Suppose G ' Zpa1 �Zpa2 � � � ��Zpas�1 � .Zpas /t �M , where M

is an abelian group, p is a prime not dividing jM j, and a1� a2� : : :� as�1 < as .
If G is a POS group, then so is yG ' .Zpas /t �M .

Theorem 1.3. If G is a POS group with G ' .Zpa/t �M , where M is an abelian
group and p is a prime not dividing jM j, then yG' .Zp/t�M is also a POS group.

The previous theorems provide motivation for the following definition.

Definition 1.4. Let G ' .Z2/t �M , where jM j is odd, be a POS group. We say
that G is minimal if .Z2/t � yM is not a POS group for any subgroup yM of M .
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Theorem 1.5 [Finch and Jones 2002]. Let G Š .Z2/t �M , where t � 1 and M is
a cyclic group of odd square-free order. If G is a POS group and G Š .Z2/t � yM

is not a POS group for any subgroup yM of M , then G is isomorphic to one of

Z2;

.Z2/2
�Z3;

.Z2/3
�Z3 �Z7;

.Z2/4
�Z3 �Z5;

.Z2/5
�Z3 �Z5 �Z31;

.Z2/8
�Z3 �Z5 �Z17;

.Z2/16
�Z3 �Z5 �Z17 �Z257;

.Z2/17
�Z3 �Z5 �Z17 �Z257 �Z131071;

.Z2/32
�Z3 �Z5 �Z17 �Z257 �Z65537:

Various authors have investigated nonabelian groups in search of POS groups.
For example, certain special linear groups were considered in [Finch and Jones
2003], the dihedral groups in [Libera and Tlucek 2003], and certain semidirect
products and the alternating groups in [Das 2009]. In this article, our focus will be
on the symmetric groups and on certain abelian groups, and specifically on three
questions posed in [Finch and Jones 2002]:

Question 1.6. Is S3 the only symmetric group that is a POS group?

Question 1.7. If G is a POS group and jGj is not a power of 2, then must jGj be
divisible by 3?

Question 1.8. Are there only finitely many minimal POS groups that contain non-
cyclic Sylow p-subgroups of odd order?

Tuan and Hai [2010] answered Question 1.6 in the affirmative. We provide
here an alternative proof that is shorter and more direct. The techniques used in
our proof are similar to those of Tuan and Hai, but whereas they use a theorem of
Chebyshev [1852], we resort to a more refined version of that result [Nagura 1952].

Walter Feit (personal communication; see also [Finch and Jones 2003]) an-
swered Question 1.7 in the negative, by providing counterexamples: if p is a
Fermat prime, the Frobenius group of order p.p�1/, with Frobenius complement
Zp�1 and Frobenius kernel Zp, is a POS group but its order is not divisible by 3.
Other counterexamples to Question 1.7 were constructed in [Das 2009].

All these counterexamples are nonabelian. This leads to a modified version of
the question, for which we will show evidence of an affirmative answer:

Question 1.9 (modified Question 1.7). If G is an abelian POS group and jGj is
not a power of 2, then must jGj be divisible by 3?
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Concerning Question 1.8, the only known abelian POS group with a noncyclic
Sylow p-subgroup is

.Z2/11
�Z3 �Z5 � .Z11/2

�Z23 �Z89; (1-1)

found in [Finch and Jones 2002]. Theorem 4.3 below shows that this is, in fact, the
only such POS group whose order has exactly 5 distinct odd prime divisors and
exactly one odd square prime factor.

To summarize, these are the main results of this paper:

Theorem 1.10. The symmetric group Sn is a POS group if and only if n� 3.

Theorem 1.11. Suppose that G is an abelian POS group and jGj is not a power
of 2. If jGj is not divisible by 3, then jGj > 4:48 � 10457008, and jGj has at least
57097 distinct prime factors.

Theorem 1.12. Let G be a minimal abelian POS group such that

G ' .Z2/t
�Zp1

� � � � �Zpk�1
� .Zpk

/2
�ZpkC1

� � � � �Zpm
;

where p1 < p2 < � � �< pm are odd primes. If 1�m� 5, then

G ' .Z2/11
�Z3 �Z5 � .Z11/2

�Z23 �Z89:

2. The proof of Theorem 1.10

The proof is based on a result of Nagura, which refines a theorem of Chebyshev
[1852] (also known as Bertrand’s postulate) to the effect that for every integer
x � 4, there exists a prime p such that x < p < 2x� 2.

Theorem 2.1 [Nagura 1952]. If x � 25, then there exists a prime p such that

x < p < 6
5
x:

Proof of Theorem 1.10. It is easy to verify that Sn is a POS group when n � 3.
Suppose that n� 60. By Theorem 2.1, there exists a prime p such that 5

12
n < p <

1
2
n. Note that n� 60 and p > 5

12
n imply that p� 29. Also, since 5

12
n < p < 1

2
n, it

follows that 2p < n < 3p, so an element of order p in Sn is either a p-cycle or the
product of 2 disjoint p-cycles. Thus, the number of elements of order p in Sn is

C WD

n.n�1/.n�2/ � � � .n�pC1/

p
C

n.n�1/.n�2/���.n�pC1/
p

�
.n�p/.n�p�1/���.n�2pC1/

p

2
:

Then
n!

C
D

2p2.n�p/!

2pC .n�p/ � � � .n� 2pC 1/
:
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Define

A WD 2p2.n�p/! and B WD 2pC .n�p/ � � � .n� 2pC 1/:

We show that B does not divide A. Let q be a prime divisor of B. We consider
four ranges for q:

Case 1: q�p. Since B�2p is a product of p� q consecutive integers, at least one
of its factors is divisible by q. Thus, q divides B�.B�2p/D2p, so that qD2 or p.

Case 2: p < q < n�2pC1. Impossible, since n < 3p implies .n�2pC1/�p < 1.

Case 3: n� 2pC 1� q � n�p. Then q appears as a factor in B � 2p. So again,
q D 2 or p.

Case 4: n�p < q. Clearly q does not divide AD 2p2.n�p/! . Thus, B D 2kpm.
Observe that B is divisible by 2, but not by 4. Also, since p < n� p < 2p, we
have that p3 is the exact power of p that divides A. Hence, k D 1 and m � 3.
Therefore, B � 2p3. It follows that

2p.p� 1/.pC 1/D 2p3
� 2p � B � 2p D .n�p/.n�p� 1/ � � � .n� 2pC 1/

> p.p� 1/.p� 2/.p� 3/ � � � 3 � 2;

since n > 2p. But this is impossible since p � 29.

Finally, to complete the proof, we need the number an of elements of order 2 in
Sn, for 4 � n � 59. By a result of Chowla, Herstein and Moore [Chowla et al.
1951], this number satisfies (for any n) the recurrence relation

an D an�1C .an�2C 1/.n� 1/:

All that remains is to verify with a computer that n! is never divisible by an for
these values of n. �

3. The Proof of Theorem 1.11

In light of Theorems 1.2 and 1.3, it is enough to focus on groups all of whose
Sylow subgroups are elementary abelian. Thus, throughout this section, we let

G ' .Z2/t
� .Zp1

/t1 � � � � � .Zpm
/tm ;

where p1 < p2 < � � �< pm are odd primes, and m� 1. Let

nD jGj D 2t
mY

iD1

p
ti

i and f .n/D .2t
� 1/

mY
iD1

.p
ti

i � 1/:

The following lemma is a direct consequence of the definition of a POS group.

Lemma 3.1. The group G is a POS group if and only if n=f .n/ is an integer.
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Lemma 3.2. If mD 1 and G is a POS group then p1 D 3.

Proof. Since mD 1, we have that nD 2tp
t1

1
and f .n/D .2t � 1/.p

t1

1
� 1/. Then,

since G is a POS group, n=f .n/ is an integer by Lemma 3.1. Thus, there exist
positive integers a and b such that

a.2t
� 1/D p

t1

1
and b.p

t1

1
� 1/D 2t : (3-1)

Hence,
p

t1

1
� 2� 2t

� 1� p
t1

1
:

Thus, there are two cases to consider:

Case 1: 2t � 1D p
t1

1
� 2. Then p

t1

1
D 2t C 1, and so from (3-1) we conclude that

aD 1C2=.2t �1/. Hence, t D 1, since a is an integer, which implies that p1D 3.

Case 2: 2t � 1D p
t1

1
. We deduce from (3-1) that p

t1

1
C 1D 2t and p

t1

1
� 1D 2c ,

for some c < t . Subtracting one equation from the other gives 2c.2t�c � 1/ D 2,
which implies that c D 1 and p1 D 3. �
Proof of Theorem 1.11. By way of contradiction, assume p1 > 3. By Lemma 3.2,
we may assume that m � 2. Let q be an arbitrary prime divisor of n. Since all
prime divisors of q�1 divide n, we have that q� 2 .mod 3/ and all prime divisors
of q � 1 are congruent to 2 modulo 3. Thus, we can recursively construct the list
S of viable prime divisors of n as follows. Let S1 D Œ2; 5� and q1 D 5. For i � 2,
let qi be the smallest prime such that qi > qi�1 and all prime divisors of qi �1 are
contained in the list Si�1. Define Si WD Œ2; 5; : : : ; qi�1; qi �: Then

S2 D Œ2; 5; 11�; q2 D 11;

S3 D Œ2; 5; 11; 17�; q3 D 17;

S4 D Œ2; 5; 11; 17; 23�; q4 D 23;

S5 D Œ2; 5; 11; 17; 23; 41�; q5 D 41;

S6 D Œ2; 5; 11; 17; 23; 41; 47�; q6 D 47;

and so on. Define S WD limi!1 Si . Then

n

f .n/
D

2t

2t � 1
�

mY
iD1

p
ti

i

p
ti

i � 1
�

2m

2m� 1
�

mY
iD1

pi

pi � 1
�

2m

2m� 1
�

mY
iD1

qi

qi � 1
:

Using a computer, we have verified for 2�m� 57096 that

2m

2m� 1

mY
iD1

qi

qi � 1
< 2 and

257096

257096� 1

57096Y
iD1

qi > 4:48 � 10457008:

Clearly, n=f .n/ > 1, and since n=f .n/ must be an integer by Lemma 3.1, the
theorem follows. �
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Remark 3.3. Whether or not the list S constructed in the proof of Theorem 1.11
is finite, sieve methods [Halberstam and Richert 1974] can be used to show that
the product

2m

2m� 1

mY
iD1

qi

qi � 1
(3-2)

is bounded above. We conjecture that (3-2) is less than 2 for all m� 2, but we are
unable to provide a proof since a tight explicit bound is both tedious and difficult
to compute using sieve methods. The truth of this conjecture would imply that the
answer to Question 1.9 is affirmative.

4. The proof of Theorem 1.12

Definition 4.1. Let t be a positive integer, and let q be a prime divisor of 2t � 1.
We say that q is a primitive divisor of 2t � 1 if q does not divide 2s � 1 for any
positive integer s < t .

Theorem 4.2 [Bang 1886]. Let t � 2 be an integer. Then 2t � 1 has a primitive
divisor except when t D 6.

Theorem 4.3. Let G be a minimal abelian POS group, such that

G ' .Z2/t
�Zp1

� � � � �Zpk�1
� .Zpk

/2
�ZpkC1

� � � � �Zpm
;

where p1 <p2 < � � �<pm are odd primes. Then p1D3 and 2t�1D2pk�1Dpipj ,
for some i ¤ j .

Proof. As before, let

nD jGj D 2tp2
k

mY
iD1
i¤k

pi and f .n/D .2t
� 1/.p2

k � 1/

mY
iD1
i¤k

.pi � 1/:

Since G is a POS group, n=f .n/ is an integer by Lemma 3.1.
Next, note that n� 0 .mod 3/. For if not, then pk > 3 and p2

k
�1� 0 .mod 3/.

Then, since f .n/� 0 .mod p2
k
� 1/, we have that f .n/� 0 .mod 3/, which con-

tradicts the fact that n=f .n/ is an integer. This proves that p1 D 3.
Now, suppose that p is an odd prime divisor of t . Then 2p � 1 divides 2t � 1,

and so 2p � 1 divides n. Consequently, every prime divisor of 2p � 1 is pi for
some i , and then pi �1� 0 .mod p/. Also, for each such pi , we have that pi �1

divides n. Thus, since n is not divisible by the cube of any odd prime, it follows
that 2p � 1 has at most two distinct odd prime divisors. Therefore, we are led to
consider the following five cases:

(1) 2p � 1D p2
k

for some odd prime divisor p of t .
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(2) 2p � 1D pip
2
k

for some i , and some odd prime divisor p of t .

(3) There exists an odd prime that divides t , and for every odd prime p that divides
t , we have that 2p � 1D pi for some i .

(4) There exists at least one odd prime p that divides t such that 2p � 1D pipj

for some i ¤ j .

(5) No odd prime divides t ; that is t D 2a.

Ljunggren [1943] proved that Case (1) is impossible.
In Case (2), we have that pi � 1 � 0 .mod p/ and pk � 1 � 0 .mod p/. Then

.pi�1/.p2
k
�1/� 0 .mod p2/, which says that p2 divides n. Hence, pDpk . But

this contradicts the fact that pk � 1 � 0 .mod p/. Hence, Case (2) is impossible
as well.

For Case (3), we show first that t has exactly one odd prime divisor. Suppose
that p and q are odd prime divisors of t . Then 2p�1Dpi and 2q�1Dpj for some
i and j . Then pi�1� 0 .mod p/ and pj �1� 0 .mod q/. By Theorem 4.2, there
exists an odd prime r ¤pi ; pj such that 2pq�1�0 .mod r/. Since 2pq�1 divides
2t � 1, we have that f .n/� 0 .mod r/, and so r D pv for some v. Since pv is a
primitive divisor, it follows that pv�1� 0 .mod pq/. But then .pi�1/.pv�1/�

0 .mod p2/, and .pj � 1/.pv � 1/� 0 .mod q2/, which implies that p D q.
Thus, t has at most one odd prime divisor. Suppose t D 2apb . Let 2p � 1 D

pi . Then pi � 1 � 0 .mod p/. If b � 2, we can use Theorem 4.2 to produce
a prime divisor pj ¤ pi of 2p2

� 1 such that pj � 1 � 0 .mod p2/. But then
.pi � 1/.pj � 1/� 0 .mod p3/, which contradicts the fact that n=2t is cube-free.
Therefore, we only need to consider here the two possibilities t D 2ap and t D p,
since the possibility that t D 2a is handled separately below as Case (5).

Suppose first that t D 2ap. As before, let 2p�1Dpi . Then pi�1� 0 .mod 3/

and pi � 1 � 0 .mod p/. Suppose that a � 1. Then 2t � 1 � 0 .mod 3/, so that
.2t � 1/.pi � 1/ � 0 .mod 9/, which implies that pk D 3. If p D 3, then 26 � 1

divides 2t �1, and so .2t �1/.pi �1/� 0 .mod 27/, which is a contradiction. On
the other hand, if p ¤ 3, then by Theorem 4.2, there exists a prime q ¤ pi such
that q � 1 � 0 .mod 2ap/. Hence, .pi � 1/.q � 1/ � 0 .mod p2/, which implies
that p D pk D 3, again a contradiction. Therefore, aD 0 and t D p, which is the
second possibility above. Again, let 2p�1Dpi . Then pi�1� 0 .mod p/, so that
p¤ pi . Also, pi �1� 0 .mod 3/. If pk ¤ 3, then .p2

k
�1/.pi �1/� 0 .mod 9/,

which is impossible since the only square that divides n is p2
k
¤ 9. Hence, pk D 3.

If p D 3 D pk , then n � 0 .mod 8/, but n 6� 0 .mod 16/. However, if p D 3,
then n would be divisible by .2pk � 1/.p2

k
� 1/D .7� 1/.32 � 1/, which implies

that n � 0 .mod 16/. This contradiction shows that p ¤ 3. Also, since p is odd,
we have that pi ¤ 3. Thus, all three primes p, pi and pk D 3 are distinct. If
p � 1 .mod 3/, then 26 � 1 divides 2p�1 � 1 D pi � 1, and so the number of
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elements of order ppi is

.p� 1/.pi � 1/D 2.p� 1/.2p�1
� 1/� 0 .mod 27/;

which does not divide n. Thus, p� 2 .mod 3/. Now, let q be an odd prime divisor
of p � 1. Then 2q � 1 and 22q � 1 divide 2p�1 � 1, and so both divide n. Let r

be a primitive divisor of 2q � 1, and let s be a primitive divisor of 22q � 1. Since
p � 2 .mod 3/, we have that q ¤ 3, and therefore the existence of s is guaranteed
by Theorem 4.2. Then

r � 1� 0� s� 1 .mod q/:

Since r ¤ s, it follows that either r ¤ p or s ¤ p. Suppose, without loss of
generality, that r ¤ p. Note that r ¤ 3 so that the number of elements of order pr

is .p� 1/.r � 1/. But

.p� 1/.r � 1/� 0 .mod q2/;

which implies that q D 3, a contradiction. Hence, we conclude that no odd primes
divide p� 1. Write p� 1D 2a. Then the number of elements of order pi is

pi � 1D 2p
� 2D 2.22a

� 1/� 0 .mod 3/:

If a� 7, then 6700417 and 274177 divide 22a

� 1, and the number of elements of
order pi � 6700417 � 274177 is

2.22a

� 1/.6700416/.274176/� 0 .mod 27/;

which does not divide n. Hence, a� 6, and it is easy to check that 2aC1 is prime
exactly when a D 1, 2 or 4. Since p � 2 .mod 3/, then a D 2 or 4. If a D 2,
then p D 5, and 31D 25� 1 divides n. But then, the number of elements of order
32 �5 �31, which is .32�1/.5�1/.31�1/D 26 �3 �5, does not divide n. Similarly, if
aD 4, then pD 17, and the power of 2 that divides f .n/ is greater than the power
of 2 that divides n. Therefore, Case (3) is impossible.

We proceed now to Case (4). Suppose that p is an odd prime dividing t such that
2p�1Dpipj , for some i¤j . Then pi�1�pj�1�0 .mod p/, so that p2 divides
the number of elements of order pipj , and thus p2 divides n. Hence, p D pk . If
there exists a prime q ¤ p that divides t , then 2pq �1 divides n. By Theorem 4.2,
there is a primitive divisor ps of 2pq � 1 with s 62 fi; j g. Then p divides ps � 1,
and hence p3 divides .pi � 1/.pj � 1/.ps � 1/, the number of elements of order
pipj ps . This contradiction shows that p D pk is the only odd prime that divides
t . An argument similar to the one used in Case (3) shows that p2 does not divide
t . Then, as in Case (3), we only have to consider the two possibilities: t D 2ap

and t D p. Suppose that t D 2ap, with a � 1. Since 2p � 1D pipj , with i ¤ j ,
it follows that p ¤ 3. Then, by Theorem 4.2, there exists a primitive divisor ps
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of 22p � 1. Thus, s 62 fi; j g and ps � 1 � 0 .mod p/. But then we have that the
number of elements in G of order pipj ps is

.pi � 1/.pj � 1/.ps � 1/� 0 .mod p3/:

Hence, aD 0 and t D p D pk .
This brings us to Case (5). Assume now that tD2a. As in Case (3), if a�7, then

6700417 and 274177 divide 22a

� 1, and n is divisible by the number of elements
in G of order 2 � 6700417 � 274177, which is .22a

� 1/.6700416/.274176/. But
.22a

� 1/.6700416/.274176/ cannot divide n since

.22a

� 1/.6700416/.274176/� 0 .mod 27/;

and n=2t is cube-free. Thus, a� 6. It is straightforward to check that each of these
cases, in some way, violates the hypotheses of the theorem. For example, if aD 6,
then n is divisible by

264
� 1D 3 � 5 � 17 � 257 � 641 � 65537 � 6700417:

Hence, .264 � 1/ � 640 and .264 � 1/ � 6700416 must also divide n. However,
.264�1/�640�0 .mod 25/ and .264�1/�6700416�0 .mod 9/, which contradicts
the fact that n is divisible by exactly one odd square. Checking the remaining cases
completes the proof of the theorem. �
Remark 4.4. Without loss of generality, we can assume that pi < pj in the state-
ment of the conclusion of Theorem 4.3. Also, this conclusion implies that 3 D

p1 < pk < pi < pj , with pk � 11. Thus, m� 4.

Proof of Theorem 1.12. Let G be a minimal abelian POS group such that

G ' .Z2/t
�Zp1

� � � � �Zpk�1
� .Zpk

/2
�ZpkC1

� � � � �Zpm
;

where p1 < p2 < � � � < pm are odd primes, with 1�m� 5. By Theorem 4.3, we
have that p1 D 3 and 2t � 1 D 2pk � 1 D pipj for some i ¤ j . By Remark 4.4,
we can also assume that pk � 11 and that mD 4 or mD 5.

Consider first the case when mD 4. In this case, we have

n

f .n/
D

2pk �3 �p2
k
�pi �pj

.2pk �1/ �2 �.p2
k
�1/ �.pi�1/ �.pj �1/

D
2pk�1 �3 �p2

k

.p2
k
�1/ �.pi�1/ �.pj �1/

:

Since pi � 1� pj � 1� 0 .mod pk/, it follows that either

(1) pk � 1D 2a � 3 and pk C 1D 2b or

(2) pk � 1D 2a and pk C 1D 2b � 3.

In (1), we get that
2D 2b

� 2a
� 3D 2a.2b�a

� 3/;
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which implies that a D 1 and b D 3. Hence, pk D 7, which contradicts the fact
that pk � 11. In (2), we get two possibilities. The first possibility gives

2D 2a.2b�a
� 3� 1/;

which implies that a D b D 0. Thus pk D 2, which is impossible. The second
possibility yields

2D 2b.3� 2a�b/;

which implies that either a D 2 and b D 1, in which case pk D 5; or a D b D 0,
in which case pk D 2. Both situations are impossible. Hence, there are no POS
groups satisfying the conditions of the theorem with mD 4.

Now suppose that mD 5. Then

n

f .n/
D

2pk � 3 �p �p2
k
�pi �pj

.2pk � 1/ � 2 � .p� 1/ � .p2
k
� 1/ � .pi � 1/ � .pj � 1/

:

Since pk < pi < pj , we have
pj

pj�1
<

pi

pi�1
<

pk

pk�1
. Thus,

n

f .n/
�

2pk � 3 � 5 �p4
k

.2pk � 1/ � 2 � 4 � .p2
k
� 1/ � .pk � 1/2

:

It is straightforward to show that

g.x/D
15 � 2x �x4

8 � .2x � 1/.x2� 1/.x� 1/2

is a decreasing function for x � 2, and that g.x/ < 2 when x � 32. It follows that
n=f .n/ < 2 when pk � 37. Clearly, n=f .n/ > 1, and since we are assuming that
n=f .n/ is an integer, we only have to check pk with 11 � pk � 31. The fact that
2pk�1 must be the product of two distinct primes rules out all primes in this range
except pk D 11 and pk D 23. If pk D 23, then 223 � 1 D 47 � 178481 divides n.
But then 178481�1D 24 �5 �23 �97 also divides n, which contradicts the fact that
m D 5. Verifying that the case pk D 11 gives the POS group in the statement of
the theorem completes the proof. �
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