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The arithmetic of the natural numbers N can be extended to arithmetic oper-
ations on planar binary trees. This gives rise to a noncommutative arithmetic
theory. In this exposition, we describe this arithmetree, first defined by Loday,
and investigate prime trees.

1. Introduction

J.-L. Loday [2002] published a paper Arithmetree, in which he defines arithmetic
operations on the set Y of groves of planar binary trees. These operations extend
the usual addition and multiplication on the natural numbers N in the sense that
there is an embedding N ↪→ Y, and the multiplication and addition he defines
become the usual ones when restricted to N. Loday’s reasons for introducing these
notions have to do with intricate algebraic structures known as dendriform algebras
[Loday et al. 2001].

Since the arithmetic extends the usual operations on N, one can ask many of the
same questions that arise in the natural numbers. In this exposition, we examine
notions of primality, specifically studying prime trees. We will see that all trees of
prime degree must be prime, but many trees of composite degree are also prime.
One should not be misled by the idea that arithmetree is an extension of the usual
arithmetic on N. Indeed, away from the image of N in Y, the arithmetic operations
+ and × are noncommutative. Both operations are associative, but multiplication
is only distributive on the left with respect to+. In the end it is somewhat surprising
that there is a very natural copy of N inside Y.

The paper is organized as follows. Sections 2–6 summarize without proofs the
results that we need from [Loday 2002]. Specifically, basic definitions are given
in Section 2 to set notation. The embedding N ↪→ Y is given in Section 3, and
Section 4 discusses the basic operations on groves. Sections 5 and 6 define the
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arithmetic on Y. Finally, Section 8 discusses some new results and Section 9 gives
a few final remarks.

2. Background

In this section, we give the basic definitions and set notation.

Definition 2.1. A planar binary tree is an oriented planar graph drawn in the plane
with one root, n+ 1 leaves, and n interior vertices, all of which are trivalent.

Henceforth, by tree, we will mean a planar binary tree. We consider trees to
be the same if they can be moved in the plane to each other. Thus we can always
represent a tree by drawing a root and then having it “grow” upward. The degree
is the number of internal vertices. Here is an example of a tree of degree four, with
five leaves:

Let Yn be the set of trees of degree n. For example,

Y0 = { }, Y1 = {!}, Y2 = {",#}, Y3 = {$,%,&,',)}.

One can show that the cardinality of Yn is given by the n-th Catalan number,

cn =
1

n+ 1

(
2n
n

)
=

(2n)!
(n+ 1)!n!

.

The Catalan numbers arise in a variety of combinatorial problems [Stanley 2007].1

Definition 2.2. A nonempty subset of Yn is called a grove. The set of all groves
of degree n is denoted by Yn .

For example,

Y0 = { }, Y1 = {!}, Y2 = {",#,"∪#}.

Notice that we are omitting the braces around the sets in Yn and use instead ∪ to
denote the subsets. For example we write "∪# as opposed to {",#} to denote
the grove in Y2 consisting of both trees of degree 2. Let Y =

⋃
n∈N Yn denote the

set of all groves. By definition groves consist of trees of the same degree; hence
we get a well-defined notion of degree

deg : Y→ N. (1)

1He currently gives 161 combinatorial interpretations of cn .
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n #Yn #Yn

1 1 1
2 2 3
3 5 31
4 14 16383
5 42 4398046511103
6 132 5444517870735015415413993718908291383295
7 429 ∼ 1.386× 10129

Table 1. Number of trees and groves of degree n ≤ 7.

The Catalan numbers cn grow rapidly. Since Yn is the set of subsets of Yn , we
see that the cardinality #Yn = 2cn−1 grows extremely fast (Table 1), necessitating
the use of computers even for computations on trees of fairly small degree.

3. The natural numbers

In this section we give an embedding of N into Y. There is a distinguished grove
for each degree given by set of all trees of degree n.

Definition 3.1. The total grove of degree n is defined by n =
⋃

x∈Yn
x .

For example,

0= , 1=!, 2=#∪", 3=$∪'∪)∪%∪&.

This gives an embedding N ↪→ Y. It is clear that the degree map is a one-sided
inverse in the sense that deg(n) = n for all n ∈ N. We will see in Section 7 that
under this embedding, arithmetree can be viewed as an extension of arithmetic on
N.

4. Basic operations

In this section we define a few operations that will be used to define the arithmetic
on Y.

4.1. Grafting.

Definition 4.1. We say that a tree z is obtain as the graft of x and y (notation:
z = x ∨ y) if z is gotten by attaching the root of x to the left leaf and the root of y
to the right leaf of !.

For example, "=!∨ and &=!∨!. It is clear that every tree x of degree
greater than 1 can be obtained as the graft of trees x l and xr of degree less than n.
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Specifically, we have that x = x l
∨ xr . We refer to these subtrees as the left and

right parts of x .
Given a tree x of degree n, then one can create a tree of degree n+1 that carries

much of the structure of x by grafting on 0= . Indeed, there are two such trees,
x ∨ 0 and 0∨ x . We will say that such trees are inherited.

Definition 4.2. A tree x is said to be left-inherited if xr
= 0 and right-inherited if

x l
= 0. A grove is left-inherited (resp. right-inherited) if each of its member trees

is left-inherited (resp. right-inherited).

We single out two special sequences of trees Ln and Rn .

Definition 4.3. Let L1= R1= 1. For n> 1, set Ln = Ln−1∨0 and Rn = 0∨ Rn−1.
We will call such trees primitive.

Notice that Ln is the left-inherited tree such that L l
n = Ln−1. Similarly, Rn is

the right-inherited tree such that Rr
n = Rn−1.

4.2. Over and under.

Definition 4.4. For x ∈ Yp and y ∈ Yq the tree x/y (read x over y) in Yp+q is
obtained by identifying the root of x with the leftmost leaf of y. Similarly, the tree
x\y (read x under y) in Yp+q is obtained by identifying the rightmost leaf of x
with the root of y.

For example, #/!=' and "\!=&.

4.3. Involution. The symmetry around the axis passing through the root defines
an involution σ on Y . For example, σ(&)=& and σ(")=#. The involution can
be extended to an involution on Y, by letting σ act on each tree in the grove. One
can easily check that for trees x, y:

(i) σ(x ∨ y)= σ(y)∨ σ(x),

(ii) σ(x/y)= σ(y)\σ(x),

(iii) σ(x\y)= σ(y)/σ (x).

We will see that this involution also respects the arithmetic of groves.

5. Addition

Before we define addition, we first put a partial ordering on Yn .

5.1. Partial ordering. We say that the inequality x < y holds if y is obtained from
x by moving edges of x from left to right over a vertex. This induces a partial
ordering on Yn by imposing:

(i) (x ∨ y)∨ z ≤ x ∨ (y ∨ z).
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(ii) If x < y then x ∨ z < y ∨ z and z ∨ x < z ∨ y for all z ∈ Yn .

For example, $<'<)<%. Note that the primitive trees are extremal elements
with respect to this ordering.

5.2. Sum.

Definition 5.1. The sum of two trees x and y is the following disjoint union of
trees

x + y :=
⋃

x/y≤z≤x\y

z .

All the elements in the sum have the same degree, namely deg(x) + deg(y).
The definition of addition extends to groves by distributing. Namely, for groves
x =

⋃
i xi and y =

⋃
j yi ,

x + y :=
⋃
i j

(xi + y j ). (2)

We remark that it is not immediate that the result of the sum is a grove since it
is not obvious that the trees arising in the union are all distinct. Loday shows that
this is indeed the case for total groves

n+m = n+m,

and deduces the general case from this as every grove is a subset of some total
grove.

Proposition 5.2 (Recursive property of addition). Let x = x l
∨ xr and y = yl

∨ yr

be nonzero trees. Then

x + y = x l
∨ (xr

+ y) ∪ (x + yl)∨ yr .

The recursive property of addition says that the sum of two trees x and y is
naturally a union of two sets, which we call the left and right sum of x and y:

x a y = x l
∨ (xr

+ y) and x ` y = (x + yl)∨ yr .2 (3)

Note that x+y= x a y∪x ` y. You can think about this as splitting the plus sign
+ into two signs a and `. From (2) and the definition, we see that the definition
for left sum and right sum can also be extended to groves by distributing.

With the definition of inherited trees/groves and (3), one can easily check that
left (respectively right) inheritance is passed along via right (respectively left)
sums. More precisely,

Lemma 5.3. Let y be a left-inherited tree. Then x ` y is left-inherited. Similarly,
if x is right-inherited, then x a y is right-inherited.

2We set x ` 0= 0 a y = 0.
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5.3. Universal expression. It turns out that every tree can expressed as a combi-
nation of left and right sums of !. This expression is unique modulo the failure of
left and right sum to be associative. More precisely,

Proposition 5.4. Every tree x of degree n can be written in as an iterated Left and
Right sum of n copies of !. This is called the universal expression of x , and we
denote it by wx(!). This expression is unique modulo:

(i) (x a y) a z = x a (y+ z),

(ii) (x ` y) a z = x ` (y a z),

(iii) (x + y) ` z = x ` (y ` z).

For example,
"=! `! and &=! `! a!.

Loday gives a algorithm for computing the universal expression of a tree x .

Proposition 5.5 (Recursive property for universal expression). Let x be a tree of
degree greater than 1. The algorithm for determining wx(!) is given through the
recursive relation

wx(!)= wx l (!) `! a wxr (!).

6. Multiplication

Essentially, we define the multiplication to distribute on the left over the universal
expression.

Definition 6.1. The product x × y is defined by

x × y = wx(y).

This means to compute the product x× y, first compute the universal expression
for x , then replace each occurrence of ! by the tree y, then compute the resulting
Left and Right sums. For example, one can easily check that " = ! ` !. This
means for any tree y, "× y = y ` y. In particular,

"×#=# `#

is the tree shown in the figure on page 2.
Note that the definition of x × y as stated still makes sense if y is a grove. We

can further extend the definition of multiplication to the case when x is a grove by
declaring multiplication to be distributive on the left over disjoint unions:

(x ∪ x ′)× y = x × y ∪ x ′× y = wx(y)∪wx ′(y).
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7. Properties

We list a few properties of arithmetree.

• The addition + : Y×Y→ Y is associative, but not commutative.

• The multiplication × : Y×Y→ Y is associative, but not commutative. It is
distributive on the left with respect to +, but it is not right distributive.

• There is an injective map N ↪→ Y, n 7→ n (defined in Section 3) that respects
the arithmetic. Namely,

m+ n = m+ n and mn = m× n for all m, n ∈ N.

• Degree gives a surjective map deg :Y→N that respects the arithmetic and is
a one-sided inverse to the injection above . For every x, y ∈ Y,

deg(x + y)= deg(x)+ deg(y) and deg(x × y)= deg(x) deg(y).

• deg(n)= n for all n ∈ N.

• The neutral element for + is 0= .

• The neutral element for × is 1=!.

• The involution σ satisfies

σ(x + y)= σ(y)+ σ(x) and σ(x × y)= σ(x)× σ(y).

8. Results

The recursive properties of addition and multiplication allowed us to implement
arithmetree on a computer using PARI/GP [2005]. The computational experimen-
tation was done using Loday’s [2002] naming convention for trees.

8.1. Counting trees. Since each grove x ∈ Y is just a subset of trees, there is
another measure of the “size” of x other than degree.

Definition 8.1. Let x ∈ Y be a grove. The count of x , denoted C(x) is defined as
the cardinality of x .

It turns out that count function gives a coarse measure of how complicated a
grove x is in terms of arithmetree. Namely, if x is the sum (resp. product) of other
groves, then the count of x is at least as large as the count of any of the summands
(resp. factors).

Lemma 8.2. Let x, y ∈ Y be two nonzero groves. Then

(i) C(x a y)≥ C(x)C(y), with equality if and only if x is a left-inherited grove.

(ii) C(x ` y)≥C(x)C(y), with equality if and only if y is a right-inherited grove.
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Proof. We first consider Lemma 8.2(i). Since a is distributive over unions, it
suffices to prove the case when x and y are trees. Namely, we must show that
for all nonzero trees x and y, C(x a y) ≥ 1, with equality if and only if x is a
left-inherited tree. It is immediate that C(x a y) ≥ 1; it remains to show that
equality is only attained when x is left-inherited. From the definition of left sum,
x a y = x l

∨ (xr
+ y). If x is not left-inherited, then xr

6= 0 and

C(x a y)= C(x l
∨ (xr

+ y))= C(xr
+ y)

= C(xr
a y ∪ xr

` y)= C(xr
a y)+C(xr

` y)

> 1.

On the other hand, if x is left-inherited, then xr
= 0 and

C(x a y)= C(x l
∨ (xr

+ y))= C(x l
∨ y)= 1.

Item (ii) follows similarly. �

Proposition 8.3. Let x, y ∈ Y be two nonzero groves. Then

(i) C(x + y)≥ 2C(x)C(y), with equality if and only if x is a left-inherited and y
is right-inherited.

(ii) C(x × y)≥ C(x)C(y)deg(x).

Proof. Since x + y = x a y ∪ x ` y, Proposition 8.3(i) follows immediately from
Lemma 8.2. For Proposition 8.3(ii), we note that multiplication is left distributive
over unions, and so it suffices to prove the case when x is a tree. Namely we must
show that for a tree x and a grove y, C(x × y)≥ C(y)deg(x).

Let wx be the universal expression of the tree x . Then x × y = wx(y) is some
combination of left and right sums of y. By distributivity of left and right sum over
unions and repeated usage of Lemma 8.2, the result follows. �

8.2. Primes.

Definition 8.4. A grove x is said to be prime if x is not the product of two groves
different from 1.

Since deg(x × y) = deg(x) deg(y) for all groves x, y, it is immediate that any
grove of prime degree is prime. However, there are also prime groves of composite
degree. For example, by taking all possible products of elements of Y2, one can
check by hand that the primitive tree L4 is a prime grove of degree 4.

We turn our focus to prime trees, which are prime groves with count 1. It turns
out that composite trees have a nice description in terms of inherited trees. Namely,
a composite tree must have an inherited tree as a right factor and a primitive tree
as a left factor.
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Theorem 8.5. Let z be a composite tree of degree n. Then there exists a proper
divisor d 6= 1 of n and a tree T ∈ Yd−1 such that

z = Ln/d × (0∨ T ) or z = Rn/d × (T ∨ 0).

Proof. Let z = x × y be a composite tree of degree n. By Proposition 8.3, x and y
must also be trees. Since n = deg(z)= deg(x) deg(y), it follows that there exists a
proper divisor d 6= 1 of n such that deg(y)= d and deg(x)= n/d .

We proceed by induction on the degree of x . Suppose x is a tree of degree 2.
Then x =! a! or x =! `!. If x =! `!, then x = L2 is primitive and

1= C(x × y)= C(y ` y).

From Proposition 8.3, it follows that y is right-inherited. Similarly, if x = a ,
then x = R2 and y is left-inherited.

Now suppose x is a tree of degree k such that x × y is a tree of degree n. From
Proposition 5.5 and the definition of multiplication, it follows that

x × y = wx(y)

= wx l (y) ` y a wxr (y)

= (x l
× y) ` y a (xr

× y).

Suppose xr
6= 0. Then xr

× y 6= 0 and C(y a (xr
× y)) = 1. Then by

Proposition 8.3, y is left-inherited. Let T = y a (xr
× y). By Lemma 5.3, T

is also left-inherited. Since C((x l
× y) ` T ) = 1 and T 6= 0, we must have that

either T is also right-inherited, or (x l
× y)= 0. The only tree that is both left and

right-inherited is the tree 1= . It follows that (x l
× y)= 0, and hence x l

= 0. By
the inductive hypothesis, xr is a right-primitive tree, and hence x = Rk .

Now suppose xr
= 0. Then x l

6= 0, and an analogous argument shows that y is
left-inherited and x = Lk . �

From this theorem, we get a nice picture of the possible shapes of composite
trees:

T · · · T T T T T T · · · T

Indeed, one computes that the product Lk×(0∨T ) has the form shown on the left,
and and Rk × (T ∨ 0) the form on the right.

It follows that the primitive trees (Lk and Rk) and the inherited trees (0∨T and
T ∨ 0) are prime. More precisely:
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Proposition 8.6. A nonzero tree is either !, prime, or the product of exactly two
prime trees. Furthermore, the factors are exactly the ones given in Theorem 8.5,
and can be read off from the shape of the tree.

The following combinatorial formula is a consequence of Proposition 8.6:

Corollary 8.7. Let an denote the number of composite trees of degree n. Then
an

2
=−c1− cn +

∑
d|n

cd , where cd is the d-th Catalan number.

9. Final remarks

9.1. Unique factorization. Loday [2002] conjectures that arithmetree possesses
unique factorization. Namely, when a grove x is written as a product of prime
groves, the ordered sequence of factors is unique. Very narrowly interpreted, this
statement is false. For example since multiplication in N is commutative and mul-
tiplication in Y extends arithmetic on N, we see that for n ∈N, if n = p1 p2 · · · pk ,
then

n = pσ(1)× pσ(2)× · · ·× pσ(k),

for any permutation σ . However, away from the image of N in Y, it appears that this
narrow interpretation is true. Specifically, computer experimentation on groves of
degree up to 12 yielded a unique ordered sequence of prime factors for each grove
outside of the image of N in Y.

If we interpret the image of N in Y in terms of the count function, we see that
it is precisely the set of groves with maximal count:

Ymax
=

⋃
n∈N

{x ∈ Yn | C(x)= cn}.

This subset Ymax possesses unique factorization up to permutation of the factors.
On the other extreme, the trees are precisely the set of groves with minimal count;

Ymin
=

⋃
n∈N

{x ∈ Yn | C(x)= 1}.

It follows from Proposition 8.6 that Ymin possesses unique factorization in the
narrow sense. The question of unique factorization for all of Y is open.

9.2. Additively irreducible. From Proposition 8.3 we see that not every grove can
be written as a sum of groves. In fact it is easy to see that every tree is additively
irreducible in the sense that it cannot be written as the sum of two groves. It would
be interesting to study additively irreducible groves. In an analogue to the question
of unique factorization, one could ask if arithmetree possesses unique partitioning.
Namely, when a grove is written as a sum of additively irreducible elements, is the
ordered sequence of summands unique?
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