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We continue the investigation of A. B. Kempe’s flawed proof of the Four Color
Theorem from a computational and historical point of view. Kempe’s “proof”
gives rise to an algorithmic method of coloring plane graphs that sometimes
yields a proper vertex coloring requiring four or fewer colors. We investigate a
recursive version of Kempe’s method and a modified version based on the work
of I. Kittell. Then we empirically analyze the performance of the implementa-
tions on a variety of historically motivated benchmark graphs and explore the
usefulness of simple randomization in four-coloring small plane graphs. We end
with a list of open questions and future work.

1. Introduction

The Four Color Theorem for plane graphs states that, given a plane graph 0, the
vertices of 0 can be properly colored with at most four colors. While the Four
Color Theorem was proven in 1977 through the use of a computer and irreducible
sets [Appel and Haken 1976/77; 1977; Appel et al. 1977; Robertson et al. 1996;
1997], no proof has been found that can be verified by a human without the use
of a computer. Alfred Kempe seemingly came close to accomplishing this in 1879
when he presented a proof of the Four Color Theorem in [Kempe 1879]; however,
his proof contained a flaw, discovered by Heawood [1890] and independently by de
la Vallée Poussin in 1896 [Wilson 2002b]. Although Kempe was unable to repair
the flaw, his innovation of Kempe chains and Kempe chain switches remain useful
to graph theorists, and it is interesting to explore the boundaries of his technique
[Gethner and Springer 2003]. In particular, we focus our attention on the work of
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Errera, who was the first person to study the importance of the order in which the
vertices are labeled [Errera 1921]. For a comprehensive history of the Four Color
Theorem, see [Wilson 2002a; 2002b; Ore 1967; Fritsch and Fritsch 1998; Biggs
et al. 1986].

Following [Errera 1921; Hutchinson and Wagon 1998; Gethner and Springer
2003; Wagon 2009], we implemented Kempe’s method of proof as a recursive
algorithm (Algorithm Kempe) on different vertex labelings for some well known
graphs of nine vertices or more. For labelings resulting in the algorithm’s inabil-
ity to properly four-color the graphs, we identify vertices that cause irrevocable
Kempe chain failures (the source of the flaw in Kempe’s proof), and quantify the
graphs’ failure rates. In acknowledgement that Algorithm Kempe sometimes cor-
rectly four-colors the vertices of a plane graph, we explore some improvements to
Algorithm Kempe including random selection among all Kempe chain choices and
using random Kempe–Kittell chain switches to overcome irrevocable Kempe chain
tangles, following [Kittell 1935; Hutchinson and Wagon 1998; Wagon 2002; 2009;
Archuleta and Shapiro 1986; Morgenstern and Shapiro 1991]. While there may be
different flaws that also result in failure to four-color a plane graph, our improve-
ments focus solely on circumventing the flaw identified by Heawood and Poussin,
since that is the flaw addressed by our implementation of Kittell’s approach. Where
Kempe–Kittell chain switches allow Algorithm Kempe to continue, we correlate
the identified vertex with the number of Kempe–Kittell chain switches required to
overcome the tangle.

2. Definitions and algorithm

It is important to understand Kempe’s alleged proof and the flaw that led to our
investigations. For completeness and ease of reference, the following definitions
and algorithm are taken directly from [Gethner and Springer 2003]. In all of the
following, R, G, B, Y refer to the four possible colors, and Ci is an element of
{R,G, B, Y }.

Definition 1 (C1C2-Kempe chain). Let 0 be a plane graph whose vertices have
been properly colored and suppose v ∈ V (0) is colored C1. The C1C2-Kempe
chain containing v is the maximal connected component of 0 that contains v and
contains only vertices colored C1 or C2.

Importantly, the maximality of the set of colored vertices in a C1C2-Kempe
chain guarantees that interchanging all occurrences of C1 and C2 preserves the
proper coloring of 0.

Definition 2 (C1C2-Kempe chain switch). Let K be a C1C2-Kempe chain. A
C1C2-Kempe chain switch interchanges all values of C1 and C2 in K .
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Figure 1. Setup for the faulty case in Kempe’s proof.

We need one more notion to illustrate the potential flaw in Kempe’s method. To
help visualize the setup, see Figure 1.

Definition 3 (Irrevocable Kempe chain tangle). Let 0 be a plane graph, all of
whose vertices, with the exception of one vertex v of degree 5, have been properly
colored with four colors. Denote the five neighbors of v in cyclic counterclockwise
order by v1, v2, v3, v4, v5, and assume they are colored G, R, G, B, Y respectively.
Moreover, assume that the RB-Kempe chain of v2 contains v4, and that the RY-
Kempe chain of v2 contains v5.

Denote the GB-Kempe chain containing v1 by K1 and the GY-Kempe chain
containing v3 by K2. We say that Algorithm Kempe causes an irrevocable Kempe
chain tangle on vertex v if either

• following a GB-Kempe chain switch on K1 by a GY-Kempe chain switch on
K2 causes v5 to be recolored G, or

• following a GY-Kempe chain switch on K2 by a GB-Kempe chain switch on
K1 causes v4 to be recolored G.

In particular, at least one of the original barriers afforded by either the RB-
Kempe chain containing v2 and v4, or the RY-Kempe chain containing v2 and v5

has been broken by two successive GX-Kempe chain switches, where X ∈ {Y, B}.
Moreover, the second GX-Kempe chain contains two vertices in the neighborhood
of v, which reintroduces a vertex colored G as a neighbor of v; thus the procedure
has not made G available for vertex v.

We use the adjective irrevocable in Definition 3 because under the initial hy-
potheses, a Kempe chain tangle might occur: that is, one of either the RB-Kempe
chain or the RY-Kempe chain may be “broken” by the two successive GX-Kempe
chain switches, but the procedure need not force any of the neighbors of v to be
recolored with G. In that case, v will be properly colored with G.

With these definitions, we can now describe Algorithm Kempe.
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Algorithm Kempe.
INPUT:

• A connected plane graph 0 with n vertices, labeled (in some order) with dis-
tinct elements from {1, . . . , n}.

• An ordering (C1,C2,C3,C4) of the set of permissible colors6={R,G, B,Y }.

OUTPUT:

• Either a proper vertex coloring of 0 with colors from 6, or

• the message “Kempe’s algorithm has encountered an irrevocable Kempe chain
tangle at vertex v and hence has failed to properly four-color 0.”

Gadget relabel (relabel the vertices):

• Search 00 := 0 for the first occurrence of a vertex of degree five or less;
the existence of such a vertex is guaranteed by Euler’s formula. The first
occurrence is dictated by the given ordering of the vertices. Call this vertex v1.

• Recursively label the other n− 1 vertices of 0, choosing for vi+1 (0≤ i < n)
the first occurrence of a vertex of degree five or less in 0i := 0 \ vi .

Gadget greed (color greedily whenever possible):

• Color vn in 0n−1 with the available color of lowest index from C . In this case,
since no colors have been used, vn will be colored C1.

• Color vn−1 in 0n−2 with the available color of lowest index in C ; if vn−1 is not
adjacent to vn , then vn−1 is colored C1. On the other hand, if vn−1 is adjacent
to vn , color vn−1 is colored C2.

• In general (if possible) color vi in 0i−1 with the available color of lowest index
from C .

Gadget 4 (perform Kempe chain switches on degree four vertices):

• We encounter a vertex vi of degree four that cannot be greed-
ily colored. That is, suppose degree vi = 4 and the neighbors
are colored R, G, B, Y (say) in counterclockwise order, as
on the right.

viB R

G

Y

• If there is an RB-Kempe chain containing both the R and B neighbors of vi ,
there cannot be a YG-Kempe chain that contains both of the Y and G neighbors
of vi . In that case a YG-Kempe chain switch leaves a color available for vi .

• Otherwise, if there is no RB-Kempe chain containing both the R and B neigh-
bors of vi , perform an RB-Kempe chain switch to make a color available for vi .
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Gadgets 51 and 52 (Kempe chain switches on degree-five vertices): Suppose we
encounter a vertex vi of degree five that cannot be greedily colored; a priori, one
color is used exactly twice and the other three are used exactly once on the five
neighbors of vi . Without loss of generality, suppose the twice-used color is G. Up
to rotation and reflection, only two configurations can occur, illustrated in the two
diagrams below.

Gadget 51 (degree vi = 5; two G neighbors next to each other):

• In Configuration 1, a gadget much like Gadget 4 will suc-
ceed in coloring vi . Suppose the five neighbors of vi are
colored, in counterclockwise order, by GGYBR.

• If there is no RY-Kempe chain containing both Y and R
neighbors of vi , then a RY-Kempe chain switch will leave
a color available for vi .

G

G
Y

B
R

vi

• Therefore, assume there is an RY-Kempe chain containing both Y and R
neighbors of vi . Thus a GB-Kempe chain containing the B neighbor of vi

contains neither of the G neighbors of vi .

• In that case, a GB-Kempe chain switch makes B available for vi .

• In all cases, vi can be properly colored.

Gadget 52 (degree vi = 5; two G neighbors are separated by
another neighbor of vi ):

• This is the case in which an irrevocable Kempe chain tan-
gle might occur, causing Algorithm Kempe to halt before
completing a proper four-coloring of the graph. Suppose
the neighbors of vi are colored in counterclockwise order

Ga

R
Gb

B
Y

vi

by Ga RGb BY (at this point, it is helpful to distinguish between the two G
vertices).

• If there is an RB-Kempe chain that does not contain both the R and B neigh-
bors of vi then an RB-Kempe chain switch leaves a color available for vi .

• If there is an RY-Kempe chain that does not contain both R and Y neighbors
of vi then an RY-Kempe chain switch makes a color available for vi .

• Otherwise, we must attempt both a Ga B-Kempe chain switch followed by a
GbY Kempe chain switch (or vice versa).

• If no irrevocable Kempe chain tangle occurs, then we successfully color vi

with G and move on to vertex vi−1.

• Otherwise, halt and return an error message that the offending vertex is vi .
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BEGIN

Step 1: Use Gadget relabel to label the vertices of 0.

Step 2: For i = n down to 1, attempt to color vi in graph 0i−1 as follows:

(a) if vi can be greedily colored in graph 0i−1 by Gadget greed then do so, else

(b) if degree vi = 4 in 0i then color vi using Gadget 4 else

(c) if degree vi = 5 in 0i−1 in configuration 1 then color vi using Gadget 51 else

(d) if degree vi = 5 in 0i−1 in configuration 2 then try to color vi using Gadget
52 employing two Kempe chain switches: try both orders if necessary.

END

Thus, it is obvious that it is possible to color vertices of degree three or less
with no more than a fourth color, and it has been shown that it is always possible
to color vertices of degree four through the use of Kempe chain switches [Heawood
1890]. Algorithm Kempe only encounters difficulties upon vertices of degree five
or more, but it has been shown that Algorithm Kempe will always succeed in
properly four-coloring any graph containing eight or fewer vertices (which may
contain vertices of degree five or more) [Gethner and Springer 2003]. In light of
the fact that Kempe’s method of proof works in some, but not all cases, we were
interested in identifying patterns of when the algorithm halts without producing
a proper four-coloring on our benchmark graphs. In particular, we explore the
usefulness of simple randomization when used with Kempe–Kittell chain switches
to improve its success on small plane graphs.

3. Results

Identification of vertex failures. We first implemented Algorithm Kempe and ex-
plored its success in nine well known, properly four-colored graphs. The first five,
shown in Figure 2 (ignore the coloring of vertices for the moment), were introduced
in [Heawood 1890], [Fritsch and Fritsch 1998], [Soifer 1997], [Errera 1921] (see
also [Hutchinson and Wagon 1998; Wagon 2009]), and Poussin’s writings (see
[Wilson 2002a]); they are all known counterexamples for Algorithm Kempe with
at least one labeling [Gethner and Springer 2003]. The remaining four are the edge
graphs of the icosahedron, dodecahedron, octahedron, and cube; since these last
three have vertices of degree at most four, Algorithm Kempe must always success-
fully color them, and they served as benchmarks for our implementations. Further,
although the Icosahedron graph is five-regular, we did not expect Kempe’s method
to fail on any labeling of vertices, and thus that graph served as a benchmark graph
as well. See also Open Question 5 in Section 4.
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Five groups worked independently to implement Algorithm Kempe and test it
on these graphs. For the graphs containing nine vertices or fewer, each group
explored Algorithm Kempe’s results for all n! labelings. For the graphs containing
more than nine vertices, each group independently tested a random subset of at
least 9! labelings.

While we expected different failure rates for the graphs with more than nine
vertices due to the use of different labeling subsets among the groups, we expected
the failure rates for Fritsch, Soifer, and the four benchmark graphs to be the same.
Instead, while the benchmark graphs produced no failures, as expected, failure rates
did vary for Fritsch and Soifer due to differences in the individual implementations
or failure rate calculations. In the case of Group 2, when Gadget 52 is required
the implementation only tests one of the two possible Kempe chain switch orders,
resulting in a higher failure rate. This difference in implementation, however, gives
us an idea of how many Kempe chain tangles can be “fixed” by changing the order
in which the switches are performed (see Table 1 on the next page).

We initially compared the vertices that caused irrevocable Kempe chain tangles
for each implementation on all graphs. Because each group tested all 9! labelings
for the two nine-vertex graphs (Fritsch and Soifer), each implementation agreed on
the vertices that caused failures for Fritsch and Soifer, as expected. An interesting
and unpredicted discovery, however, was that despite the differences in the labeling
subsets tested by each group for the graphs containing more than nine vertices,
there was considerable consensus among the groups on the vertices that cause
failures.

In Figure 2, vertices shown in red are those vertices that all groups found to
result in an irrevocable Kempe chain tangle for at least one labeling. Vertices

Fritsch

Soifer

Heawood

Poussin

Errera

Figure 2. Graph vertex failures.
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shown in yellow are those vertices that at least one group, but not all, found to
fail. Vertices shown in white were not found by any groups to cause a failure
on the labelings tested. As one can see, the failure patterns of the vertices are
highly symmetrical for all graphs except the Poussin graph, which itself is a fairly
asymmetrical graph. For the Fritsch and Soifer graphs, since all n! labelings were
tested, we know that the vertices shown in white will never cause Kempe chain
tangles for any labeling. For the remaining graphs, we predict that the vertices
shown in yellow would eventually become red as more labelings are explored. We
cannot predict anything for the vertices shown in white of degree five or more —
they may eventually fail, or they may not. Nevertheless, these results lead us to ask
the question: are there commonalities among these vertices that can be exploited
to improve Algorithm Kempe? We leave this as an open question.

The next step was to add randomization, studied in [Kittell 1935; Hutchinson
and Wagon 1998; Wagon 2002; 2009; Archuleta and Shapiro 1986; Morgenstern
and Shapiro 1991], through the application of Kempe–Kittell chain switches [Kit-
tell 1935] and the use of randomization of the choice of Kempe or Kempe–Kittell
chain switches, rather than heuristics, at various stages of the algorithm. In contrast
to the study of randomization for large graphs in [Archuleta and Shapiro 1986;

Group F S O C I D P E H

min 13.947 1.692 0.000 0.000 0.000 0.000 0.610 9.730 7.089
1 avg 13.947 1.692 0.000 0.000 0.000 0.000 0.620 9.755 7.124

max 13.947 1.692 0.000 0.000 0.000 0.000 0.627 9.772 7.153

min 14.031 1.783 0.000 0.000 0.000 0.000 0.149 3.350 0.372
2 avg 14.083 1.832 0.000 0.000 0.000 0.000 0.153 3.383 0.382

max 14.131 1.859 0.000 0.000 0.000 0.000 0.156 3.402 0.390

min 3.598 0.520 0.000 0.000 0.000 0.000 0.014 8.140 1.089
3 avg 3.599 0.523 0.000 0.000 0.000 0.000 0.017 8.168 1.097

max 3.600 0.525 0.000 0.000 0.000 0.000 0.019 8.186 1.111

min 13.687 1.635 0.000 0.000 0.000 0.000 0.165 7.302 0.387
4 avg 13.687 1.635 0.000 0.000 0.000 0.000 0.165 7.302 0.387

max 13.687 1.635 0.000 0.000 0.000 0.000 0.165 7.302 0.387

min 13.630 1.620 0.000 0.000 0.000 0.000 0.180 10.680 3.199
5 avg 13.635 1.620 0.000 0.000 0.000 0.000 0.186 10.798 3.203

max 13.637 1.620 0.000 0.000 0.000 0.000 0.190 10.866 3.210

Table 1. Kempe method failure rates by graph. The column heads
stand for Fritsch, Soifer, Octahedron, Cube, Icosahedron, Dodeca-
hedron, Poussin, Errera, Heawood.
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Morgenstern and Shapiro 1991], we continue to investigate small, historically sig-
nificant benchmark graphs.

Randomization implementation. In our recursive implementation of the Kempe
method, there are several points at which we must choose one among multiple
Kempe chains upon which to perform a switch. In both Gadget 4 and Gadget 51,
in the case where the vertex cannot be greedily colored, there will be up to four
Kempe chains from which to choose; our implementation randomly chooses one
that results in a successful coloring. In Gadget 52, two Kempe chain switches
must be performed, but the order of the switches is not specified in the algorithm.
Theorem 4 shows that the order in which the switches are performed can influence
the success of the operation. In light of this knowledge, we randomize the choice
of which Kempe chain switch to perform first, and perform the alternative order
only if the first order fails.

Theorem 4 (Gadget 52 is order-dependent). In Algorithm Kempe, Gadget 52 is
sometimes noncommutative. That is, the order in which one chooses to execute
the Kempe chain switches on K1 and K2 may matter; in one order an irrevocable
Kempe chain tangle can occur, whereas in the other no Kempe chain tangle occurs.

Proof. It suffices to exhibit a plane graph 0 and a labeling of the vertices of 0
that cause Algorithm Kempe to execute Gadget 52 in the following way: upon
that execution, one of the two choices of Kempe chain switch orders causes an
irrevocable Kempe chain tangle while the other does not. To this end, we call upon
the Fritsch graph, which we denote by F . In Figure 3, the labeling of the vertices
in F (the uppermost graph) leads to a successful four-coloring with the exception
of vertex 1, whereupon Gadget 52 must be invoked. Following the arrows marked
A, one choice of Kempe chain switch order has been executed successfully, and
vertex 1 is colored G. Following the arrows marked B, the other Kempe chain
switch order has been followed, leading to an irrevocable Kempe chain tangle. �

In the case that both orders fail, we encounter the previously defined irrevoca-
ble Kempe chain tangle and turn to Kempe–Kittell chain switches in an attempt
to solve the impasse. Kempe–Kittell chains present yet another opportunity for
randomization of choices. To better understand these choices, we first define the
eight Kempe–Kittell chains identified by Kittell [1935].

We use exactly the notation and Kempe chain switches as suggested by Kittell
[1935]. The new gadget, called Gadget Kittell, is invoked only when Gadget 52 is
called upon in Algorithm Kempe and fails. For reference, see Figure 1.

Definition 5 (Gadget Kittell). (1) Chain α: perform an RB-Kempe Chain switch
beginning either on v2 or v4.

(2) Chain β: perform an RY-Kempe Chain switch beginning either on v2 or v5.
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Figure 3. Gadget 52 in Algorithm Kempe does not commute. The
thick purple lines highlight the current Kempe chain switch.

(3) Chain γ : perform a GY-Kempe Chain switch beginning either on v1 or v5.

(4) Chain δ: perform a GB-Kempe Chain switch beginning either on v3 or v4.

(5) Chain ε: perform a BY-Kempe Chain switch beginning either on v4 or v5.

(6) Chain ζ : perform a GB-Kempe Chain switch beginning either on v1 or v4.

(7) Chain η: perform a GY-Kempe Chain switch beginning either on v3 or v5.

(8) Chain θ : perform an RG-Kempe Chain switch beginning on any of v2 or v1.

Upon encountering an irrevocable Kempe chain tangle, we randomly choose
one of the eight Kempe–Kittell chains in Gadget Kittell and continue to randomly
execute switches from that list until we reach a coloration of the graph that allows
us to successfully color the vertex causing the impasse or until a fixed number of
Kempe–Kittell chain switches have failed (we chose an upper limit of 100 Kempe–
Kittell chain switches).

Thus Algorithm Kempe is modified as follows:

Algorithm Kempe–Kittell. BEGIN

Step 1: Use Gadget relabel to label the vertices of 0.

Step 2: For i = n down to 1, attempt to color vi in graph 0i−1 as follows:
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(a) if vi can be greedily colored in graph 0i−1 by Gadget greed then do so; else

(b) if degree vi = 4 in 0i then color vi using Gadget 4 on a randomly selected
viable Kempe chain; else

(c) if degree vi = 5 in 0i−1 in configuration 1 then color vi using Gadget 51 on a
randomly selected viable Kempe chain; else

(d) if degree vi = 5 in 0i−1 in configuration 2 then try to color vi using Gadget
52 employing two Kempe chain switches (randomly select an order in which
to perform the switches, and try both orders if necessary);

(e) if an irrevocable Kempe chain tangle is reached then select a random Kempe–
Kittell chain using Gadget Kittell until vi successfully colored or 100 attempts
have failed.

END

The fixed limit on the number of failures is required because it is unknown if
there is always a series of Kempe–Kittell chain switches that will result in suc-
cessful resolution of the impasse. The set of possible Kempe–Kittell chain switch
combinations that can affect the five vertices adjacent to vi , called the impasse
group, is known to have a lower bound of 120 [Kittell 1935], but it is impractical
to determine and check the upper bound for even a small arbitrary graph. The use of
heuristics to guide the search of the impasse group has been studied for large graphs
[Morgenstern and Shapiro 1991], but our interest was in determining algorithm
performance when executing a purely random sequence of Kempe–Kittell chain
switches to color a small graph, as this could provide an easy way to improve the
performance of Algorithm Kempe for those cases.

Our randomized recursive implementation of Kempe’s method
always succeeded in four-coloring the graphs we tested. We
ran the algorithm 500 times for each of the nine graphs
tested in the original implementation and, additionally,
the Kittell graph [1935], shown on the right.

We kept track of the number of times a Kempe–
Kittell chain switch was required to solve an impasse (Table 2) and the vertices
causing the impasse (see Table 3 on the next two pages).

F S O C I D P E H K
Kempe–Kittell switches (max) 9 7 0 0 0 0 6 73 6 11

Table 2. Maximum number of Kempe–Kittell chain switches re-
quired for any vertex. For the letters on the top row, see Table 1
(plus K = Kittell).
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G
raph

Node Chain switches Kittell Kittel

label required colored use
min max avg nodes (%)

F a 3 8 4.52 1088000 0.5996
F b, f 3 8 4.46 1088000 0.5996
F c 3 8 4.44 1088000 0.5996
F d, e, h 0 0 0.00 0 0.0
F g 3 7 4.49 1088000 0.5996
F i 3 9 4.50 1088000 0.5996

S a-b, d-i 0 0 0.00 0 0.0
S c 3 7 4.45 988089 0.5446

O a-f 0 0 0.00 0 0.0

C a-h 0 0 0.00 0 0.0

I a-l 0 0 0.00 0 0.0

D a-t 0 0 0.00 0 0.0

P a, b, g, i-o 0 0 0.00 0 0.0
P c 1 4 2.26 526486 0.2902
P d 2 6 2.58 399678 0.2203
P e 2 5 2.69 323390 0.1782
P f 2 5 2.82 339534 0.1871
P h 2 5 2.81 474890 0.2617

E a 35 73 47.01 4937929 2.7215
E b 3 8 4.14 463228 0.2553
E c 3 7 4.11 463000 0.2552
E d 3 7 4.05 463086 0.2552
E e 3 7 4.03 464390 0.2559
E f 2 5 2.83 440437 0.2427
E g 2 5 2.82 440226 0.2426
E h 2 5 2.80 440679 0.2429
E i 3 6 4.05 464517 0.2560
E j 2 6 2.85 439756 0.2424
E k 2 5 2.84 440513 0.2428
E l 3 7 4.07 462705 0.2550
E m 3 7 4.07 462517 0.2549
E n 3 7 4.10 463978 0.2557
E o 35 71 46.29 4938719 2.7220
E p 3 7 4.07 463436 0.2554
E q 3 8 4.06 461792 0.2545
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G
raph

Node Chain switches Kittell Kittel

label required colored use
min max avg nodes (%)

H a 2 6 3.22 775216 0.4273
H b 2 6 3.29 1217733 0.6711
H c 2 5 3.13 847294 0.4670
H d-f, h-i, q-s, v-y 0 0 0.00 0 0.0
H g 2 5 2.78 690371 0.3805
H j 1 1 1.00 6058 0.0033
H k 1 2 1.56 6037 0.0033
H l 2 6 3.36 907479 0.5002
H m 3 8 4.60 1405876 0.7748
H n 3 7 3.75 828677 0.4567
H o 2 5 3.15 813156 0.4482
H p 2 5 3.19 1032339 0.5690
H t 2 6 3.29 92157 0.0508
H u 2 6 3.27 91564 0.0505

K a 2 4 2.79 636989 0.3511
K b 2 5 2.75 478186 0.2636
K c,g 0 0 0.00 0 0.0
K d 2 6 3.33 675394 0.3722
K e 3 8 4.76 475928 0.2623
K f 5 9 6.57 792681 0.4369
K h 2 6 3.25 82375 0.0454
K i 5 9 6.32 782074 0.4310
K j 2 5 2.95 457668 0.2522
K k 4 7 4.92 400408 0.2207
K l 2 5 2.84 473726 0.2611
K m 3 6 3.99 386798 0.2132
K n 5 11 6.48 537869 0.2964
K o 5 8 5.93 496916 0.2739
K p 5 9 6.35 691822 0.3812
K q 0 1 0.98 1676 0.0009
K r 5 11 6.44 667972 0.3682
K s 2 6 3.16 660014 0.3638
K t 2 5 2.83 489486 0.2698
K u 2 6 3.51 209896 0.1157
K v 2 5 2.81 551059 0.3037
K w 0 1 0.98 1966 0.0011

Table 3. Algorithm Kempe–Kittell results (see also top of next page).
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In Table 3, the last column gives the percentage of Kittel colored nodes relative
to the total number of colored nodes, which is 50 times the numbering of labelings
per trial. The latter number, as already explained, was 9! = 362880 for all graphs
except those with less than 9 vertices (O with 6! = 720 and C with 8! = 40320).

Our fixed upper limit of 100 for Kempe–Kittell chain switches was more than
sufficient since, for most impasses encountered in our tests, eleven or fewer ran-
domly chosen Kempe–Kittell chain switches were sufficient to achieve a successful
four-coloring. The exception to this was the Errera graph, which contained two ver-
tices that required over 70 randomly chosen Kempe–Kittell chain switches on the
regions marked A and B in Figure 4 to achieve successful four-coloring. These two
vertices are the only two vertices in the Errera graph that do not have any neighbors
of degree greater than five, and they are the polar regions of Errera’s 17-country
counterexample when described as a spherical map as shown in [Hutchinson and
Wagon 1998, Figure 2; Wagon 2009] and as a fullerene, of molecular formula C30,
in our Figure 4.

A

B

B

A

Figure 4. Errera map: planar representation and coordinatized as
a fullerene (C30) in R3.

Comparison of original and randomized implementations. We achieve proper
four-coloring of all of our graphs on 100% of our runs through the inclusion of ran-
domly selected Kempe–Kittell chain switches. In addition to this, the percentage
of times that Gadget Kittell was required in our algorithm indicates the percentage
of irrevocable Kempe chain tangles encountered by our randomized algorithm,
which we compare in Table 4 to the failure rates from the original five groups’
implementations (see also Table 3).

When we make this comparison to the average failure rate of the original five
implementations, we see that our algorithm outperforms the average original al-
gorithm’s performance on the two graphs for which all n! labelings were tested
(Fritsch and Soifer graphs). In fact, our randomized implementation nearly matches
the lowest failure rates observed among the original six implementations: 3.60%
and 0.52% for Fritsch and Soifer, respectively (Table 1 and Table 4).

On the Errera and Heawood graphs, randomization results in a higher rate of
irrevocable Kempe chain tangles than the average rate of the original algorithm,
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Original algorithm Randomized

Graph Min % Max % Avg % algorithm
Failure Failure Failure % Failure

Fritsch 3.598 14.131 11.790 3.60
Soifer 0.520 1.859 1.461 0.55
Poussin 0.014 0.627 0.228 1.18
Errera 3.350 10.866 7.881 9.28
Heawood 0.372 7.153 2.439 4.83

Table 4. Comparison of original Algorithm Kempe to randomized
version with Kempe–Kittell chains.

but it is still within the range of the minimum and maximum failure rates of the
original implementations. On the asymmetrical Poussin graph, our algorithm re-
sults in significantly more Kempe chain tangles than the average (Table 4), but this
is mitigated by the success of the Kempe–Kittell chain switches in coloring the
graph. We exclude the graphs of the platonic solids, as they cause no failures for
either algorithm.

4. Conclusions

We evaluated the performance of the version of Algorithm Kempe in [Gethner
and Springer 2003] and its performance after the addition of Kempe–Kittell chain
switches, which successfully overcame all irrevocable Kempe chain tangles in our
benchmark graphs. We have proven that the order in which Kempe chain switches
are performed affects the outcome of the algorithm and have shown that the applica-
tion of randomization to the selection of Kempe and Kempe–Kittell chain switches
in this algorithm is a useful method for making the choice of which switch to per-
form first. In 500 test runs on each of ten benchmark graphs, the use of randomized
chain choices resulted in successful four-coloring of the graphs with fewer than 12
random choices for any vertex most of the time. When compared to the original
algorithm, there appears to be a performance trade-off in that randomization causes
the use of Gadget Kittell in the Poussin graph more often than would have been
required by the nonrandomized version. Finally, we discovered that some vertices
appear to be more likely to cause irrevocable Kempe chain tangles than others, and
we identify those vertices in the hopes of being able to characterize them.

Open questions for future work.

1. Given a plane graph 0 with e edges and n vertices, what is the minimum value
of e for which Kempe’s method is probably guaranteed to succeed in properly
coloring 0?
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2. What percentage of all plane graphs on nine vertices serve as counterexamples
to Kempe’s method?

3. Do the vertices that cause irrevocable Kempe chain tangles or require high
numbers of Kempe–Kittell chain switches share properties which can be ex-
ploited to improve Algorithm Kempe–Kittell?

4. Let 0 be a plane graph on n vertices. It follows from [West 2001, Exercise
6.1.9] that, when n ≤ 11, there is some labeling for which Algorithm Kempe
succeeds in properly four-coloring 0. What is the smallest value of n > 11
for which Algorithm Kempe–Kittell is provably guaranteed to succeed?

5. It is not difficult to show that the Icosahedral graph will be properly four-
colored by Kempe’s algorithm regardless of the labeling of the vertices (and
this is confirmed by Table 3). Characterize all plane graphs that will be prop-
erly four-colored by Kempe’s algorithm under all possible orderings of the
vertices. Short of that potentially difficult goal, find interesting families of
plane graphs (with at least 11 vertices and whose average vertex degree is at
least 5) for which Kempe’s algorithm will always succeed.

5. Addendum

Stan Wagon (personal communication, 2008) reports the discovery that the plane
graph corresponding to the contiguous 48 United States plus Lake Michigan and
the oceanic waters admits a labeling that leads to a Kempe impasse at the great
state of Illinois. Details will appear in [Wagon 2009].
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