Innovations in Incidence Geometry

Algebraic, Topological and Combinatorial

Groups of compact 8-dimensional planes: conditions implying the Lie property

Helmut R. Salzmann

Vol. 17

No. 3

2019

Innovations in Incidence Geometry Algebraic, Topological and Combinatorial

Groups of compact 8-dimensional planes: conditions implying the Lie property

Helmut R. Salzmann

The automorphism group Σ of a compact topological projective plane with an 8-dimensional point space is a locally compact group. If the dimension of Σ is at least 12, then Σ is known to be a Lie group. For the connected component Δ of Σ it is shown that dim $\Delta \geq 10$ suffices, if Δ is semisimple or does not fix exactly a nonincident point-line pair or a double-flag. Δ is also a Lie group, if Δ has a compact connected 1-dimensional normal subgroup and dim $\Delta \geq 11$.

1. Introduction

A systematic study of compact 8-dimensional projective planes began with [Salzmann 1979]. Many of the results obtained in the following 15 years are presented in Chapter 8 of the treatise *Compact projective planes* [Salzmann et al. 1995]. An up-to-date account of more recent contributions to the theme can be found in [Salzmann 2014]. The *classical* model, the projective plane over the quaternion field \mathbb{H} , has the automorphism group PSL₃ \mathbb{H} of dimension 35. If $\mathcal{P} = (P, \mathfrak{L})$ is any other compact 8-dimensional plane, then its automorphism group $\Sigma = \operatorname{Aut} \mathcal{P}$, taken with the compact-open topology, is a locally compact transformation group of the point space P as well as of the line space \mathfrak{L} , and dim $\Sigma < 18$. All planes \mathcal{P} such that dim $\Sigma \ge 17$ have been described explicitly [Hähl 1986; Salzmann 2014]. The goal is to extend these results and to determine all pairs (\mathcal{P}, Δ) , where Δ is a suitable *connected* subgroup of Aut \mathcal{P} . As in the cases of finite projective planes or compact connected planes of smaller dimension, such a classification is possible only if the group—in our case its dimension—is not too small. An important step is to show that Δ is a Lie group. In all known examples, lines are homeomorphic to the 4-sphere S_4 , each closed proper subplane is connected and has a point space of dimension 2 or 4, and Σ is even a Lie group. In general, however, it is only known that lines are homotopy equivalent to S_4 ; it is conceivable that some planes

MSC2010: 22D05, 51H10.

Keywords: topological plane, Lie group.

have compact 0-dimensional subplanes; and it is an open problem whether or not Σ is always a Lie group. According to [Priwitzer 1994], the following theorem holds: *if* dim $\Sigma \ge 12$, *then* Σ *is a Lie group*. Depending on the structure of a connected subgroup Δ and the configuration \mathcal{F}_{Δ} of its fixed elements (points and lines), sharper bounds will be obtained here.

2. Preliminaries and background

This section contains a collection of basic facts. $\mathcal{P} = (P, \mathfrak{L})$ will always be a compact 8-dimensional projective plane if not stated otherwise; Δ denotes a connected closed subgroup of Aut \mathcal{P} .

Notation. The notation is more or less standard and agrees with that in the book [Salzmann et al. 1995]. A *flag* is an incident point-line pair; a *double flag* consists of two points, say u, v, their join uv, and a second line in the *pencil* \mathcal{L}_v . Homeomorphism is indicated by \approx . As customary, $Cs_{\Delta} \Gamma$ or just $Cs \Gamma$ is the centralizer of Γ in Δ . Distinguish between the commutator subgroup Γ' and the connected component Γ^1 of the topological group Γ . The coset space $\Delta / \Gamma = {\Gamma \delta \mid \delta \in \Delta}$ has the (covering) dimension $\Delta : \Gamma = \dim \Delta - \dim \Gamma$. The group $\Delta_{[c,A]}$ consists of the axial collineations in Δ with axis A and center c. A collineation group Γ is said to be *straight* if each orbit x^{Γ} is contained in some line. In this case a theorem of Baer [1946] asserts that either $\Gamma = \Gamma_{[c,A]}$ is a group of axial collineations or the fixed configuration \mathcal{F}_{Γ} is a Baer subplane.

2.1. *Baer subplanes.* It is known that *each* 4-*dimensional closed subplane* \mathcal{B} *of a compact* 8-*dimensional plane* \mathcal{P} *is a Baer subplane*; i.e., each point of \mathcal{P} is incident with a line of \mathcal{B} (and dually, each line of \mathcal{P} contains a point of \mathcal{B}); see [Salzmann 2003, §3] or [Salzmann et al. 1995, 55.5] for details. Lines of a Baer subplane are homeomorphic to \mathbb{S}_2 . If \mathcal{P} contains a closed Baer subplane \mathcal{B} , it follows easily that the pencil of lines through a point outside \mathcal{B} is a manifold, and hence, the lines of \mathcal{P} are homeomorphic to \mathbb{S}_4 ; see [Salzmann et al. 1995, 53.10] or [Salzmann 2003, 3.7]. By a result of Löwen [1999], any two closed Baer subplanes of \mathcal{P} have a point and a line in common. Generally, $\langle \mathcal{M} \rangle$ will denote the smallest *closed* subplane of \mathcal{P} containing the set \mathcal{M} of points and lines. We write $\mathcal{B} \leq \mathcal{P}$ if \mathcal{B} is a Baer subplane.

2.2. Stiffness. In the classical plane \mathcal{H} , the stabilizer $\Lambda = \Sigma_{\mathfrak{e}}$ of any frame \mathfrak{e} (= nondegenerate quadrangle) is isomorphic to SO₃ \mathbb{R} ; in particular, Λ is compact and dim $\Lambda = 3$. In any plane, Λ can be identified with the automorphism group of the ternary field H_{τ} defined with respect to \mathfrak{e} . The fixed elements of Λ form a closed subplane $\mathcal{E} = \mathcal{F}_{\Lambda}$. It is not known if \mathcal{E} is always connected or if Λ is compact in general. Therefore, the following *stiffness* results play an important role:

- (1) dim $\Lambda \le 4$ [Bödi 1994].
- (2) If \mathcal{F}_{Λ} is connected or if Λ is compact, then dim $\Lambda \leq 3$ [Salzmann et al. 1995, 83.12–13].
- (3) If F_Λ is contained in a Baer subplane B, then F_Λ is connected and the connected component Λ¹ of Λ is compact ([Salzmann et al. 1995, 55.4 and 83.9] or [Salzmann 1979, (*)]).
- (4) If, moreover, \mathcal{B} is Λ -invariant, then dim $\Lambda \leq 1$ [Salzmann et al. 1995, 83.11],
- (Å) if \mathcal{F}_{Λ} itself is a Baer subplane, then Λ is compact [Salzmann et al. 1995, 83.6].
- (5) If Λ is compact, then Λ is commutative or $\Lambda^1 \cong SO_3 \mathbb{R}$ [Salzmann 1979, 2(1)].
- (6) The stabilizer Ω of a degenerate quadrangle has dimension at most 7 [Salzmann et al. 1995, 83.17].
- (7) If dim $\Omega = 7$, then $\Omega^1 \cong e^{\mathbb{R}} \cdot SO_4 \mathbb{R}$ and lines are 4-spheres [Salzmann 1979, (**)].
- (8) If a subgroup Φ ≅ SO₃ ℝ of Δ fixes a line W, then each involution in Φ is planar. Either Φ has no fixed point on W or F_Φ is a 2-dimensional subplane [Salzmann 2010, Observation].

2.3. *Fixed elements. The Lefschetz fixed-point theorem implies that each homeo-morphism* $\varphi : P \rightarrow P$ *has a fixed point.*

- (a) By duality, each automorphism of P fixes a point and a line [Salzmann et al. 1995, 55.19].
- (b) The solvable radical $P = \sqrt{\Delta}$ of Δ fixes some element of \mathcal{P} .
- (c) If $\mathcal{F}_{\Delta} = \emptyset$, then Δ is semisimple with trivial center, or Δ induces a simple group on some connected closed Δ -invariant subplane.

Proof. Argument (A) If Θ is a commutative connected normal subgroup of Δ and if $\mathbb{1} \neq \zeta \in Cs \Theta$, then $p^{\zeta} = p$ for some point p, and either $p^{\Theta} = p$, or p^{Θ} is contained in a fixed line of Θ , or p^{Θ} generates a connected (closed) subplane $S = \langle p^{\Theta} \rangle$ and $\zeta |_{S} = \mathbb{1}$. In the latter case, $\overline{\Theta} = \Theta |_{S} \neq \mathbb{1}$, and S is a proper subplane of \mathcal{P} .

(b) The claim will be proved by induction over the solvable length. Suppose that Δ itself is solvable and that the normal subgroup Θ has no fixed element. Let S be a proper subplane as given by (A). If dim S = 2, then S has no proper closed subplane [Salzmann et al. 1995, 32.7], and Θ has a fixed element in S. If S is a Baer subplane, then (A) can be applied to $\overline{\Theta}$; again $\mathcal{F}_{\Theta} \neq \emptyset$, say $p^{\Theta} = p$. Then $\Theta|_{p^{\Delta}} = \mathbb{1}$. Either Δ fixed some element or $\mathcal{D} = \langle p^{\Delta} \rangle$ is a proper subplane. In the latter case, $\Delta|_{\mathcal{D}} = (\Delta/\Theta)|_{\mathcal{D}}$ has a fixed element by induction.

(c) This will be proved successively for planes \mathcal{R} of dimension 2, 4, and 8. If Δ is not semisimple, then $P = \sqrt{\Delta} \neq \mathbb{1}$ by definition, and P fixes some element by step (b), say $p^P = p$. Assume also that $\mathcal{F}_{\Delta} = \emptyset$. Then p^{Δ} is not contained in a line and $\langle p^{\Delta} \rangle = S \leq \mathcal{R}$ is a closed subplane; normality of P implies $P|_S = \mathbb{1}$. If $\zeta \neq \mathbb{1}$ is a central element of Δ , then (A) yields a common fixed element p of ζ and P, and $\zeta|_S = P|_S = \mathbb{1}$.

If dim $\mathcal{R} = 2$, there is no proper closed subplane, $P|_{\mathcal{R}} = \mathbb{1} = \zeta|_{\mathcal{R}}$, and Δ is semisimple with trivial center, and hence Δ is strictly simple; see [Salzmann et al. 1995, 33.7] or [Salzmann 1967, 5.2]. If dim $\mathcal{R} = 4$, then $P \neq \mathbb{1}$ or $\zeta \neq \mathbb{1}$ implies $S \neq \mathcal{R}$, dim S = 2, and $\overline{\Delta} = \Delta|_S \neq \mathbb{1}$ is simple. Finally, let dim $\mathcal{R} = 8$. Then $S = \langle p^{\Delta} \rangle < \mathcal{R}$, dim $S \leq 4$, and $\mathcal{F}_{\overline{\Delta}} = \emptyset$. Either dim S = 2 and $\Delta|_S$ is simple by what has just been proved, or dim S = 4 and $\overline{\Delta}$ is semisimple with trivial center. In the latter case $\overline{\Delta}$ is simple by [Salzmann et al. 1995, 71.8].

2.4. *Dimension formula.* By [Halder 1971] or [Salzmann et al. 1995, 96.10], the following holds for the action of Δ on *P* or on any closed Δ -invariant subset *M* of *P*, and for any point $a \in M$:

 $\dim \Delta = \dim \Delta_a + \dim a^{\Delta} \quad \text{or} \quad \dim a^{\Delta} = \Delta : \Delta_a.$

2.5. Approximation theorem, see [Salzmann et al. 1995, 93.8].

- (a) Every locally compact group Γ has an open subgroup Δ which is an extension of its connected component Δ^1 by a compact group.
- (b) If Δ is locally compact and Δ/Δ¹ is compact, then Δ has arbitrarily small compact normal subgroups N such that Δ/N is a Lie group.
- (c) If, moreover, dim Δ is finite, then dim N = 0 for each sufficiently small subgroup N ≤ Δ.

2.6. Groups with open orbits. Let L be a line of the 8-dimensional plane \mathcal{P} , and let Δ be a closed subgroup of Aut \mathcal{P} with $L^{\Delta} = L$. If $U \subseteq L$ is a Δ -orbit which is open or, equivalently, satisfies dim $U = \dim L$, then L is a manifold and Δ induces a Lie group on U. It follows that all lines are manifolds homeomorphic to \mathbb{S}_4 (adapted from [Salzmann et al. 1995, 53.2]).

2.7. Compact groups on S_4 (Richardson). If a compact connected group Φ acts effectively on the 4-sphere S, and if Φ has an orbit of dimension > 1, then Φ is a Lie group and (Φ, S) is equivalent to the obvious standard action of a subgroup of $SO_5 \mathbb{R}$ on S_4 or $\Phi \cong SO_3 \mathbb{R}$ has no fixed point on S [Salzmann et al. 1995, 96.34].

2.8. Theorem (Löwen). If the connected subgroup Δ of Aut \mathcal{P} fixes the line W and if Δ_x is a Lie group for each $x \notin W$, then Δ itself is a Lie group.

Proof. The following has been shown in [Löwen 1976]. Let (Γ, M) be a locally compact connected transformation group of finite dimension, where $X = M \cup \infty$ is a Peano continuum, all cohomology groups $H^q(X, \mathbb{Q})$ are finite-dimensional, and $H^q(X, \mathbb{Q}) = 0$ for some *n* and all $q \ge n$; moreover, the Euler characteristic $\chi(X, \mathbb{Q}) \ne 0, 1$. If all stabilizers Γ_x with $x \in M$ are Lie groups, then Γ is a Lie group. This result applies to $(\Delta, P \setminus W)$: by [Salzmann et al. 1995, 51.6, 51.8, 52.12], the one-point compactification *X* of $P \setminus W$ is homeomorphic to the quotient space P/W, and *X* is a Peano continuum (i.e., a continuous image of the unit interval); moreover, *X* is homotopy equivalent to S_8 , and *X* has Euler characteristic $\chi(X) = 2$.

2.9. Compact groups. Each compact connected group is of the form $(A \times \Lambda)/N$, where A is the connected component of the center and Λ is a direct product of compact simply connected almost simple Lie groups; the kernel N is a compact central subgroup of dimension dim N = 0. A compact connected commutative normal subgroup Θ of a connected group Δ is contained in the center of Δ [Salzmann et al. 1995, 93.11, 93.19].

2.10. *Groups of subplanes. The automorphism group of every proper connected closed subplane is a Lie group by* [Salzmann et al. 1995, 32.21, 71.2].

2.11. Lemma. Suppose that Φ is a compact connected Lie group and that the compact connected 1-dimensional group Θ is not a Lie group. If $\Gamma = \Phi\Theta$ acts effectively on a subspace M of the plane, if $H = \Phi \cap \Theta$ is finite, and if $\Theta_a = \mathbb{1}$ and Φ_a is finite for some $a \in M$, then dim $a^{\Gamma} > \dim a^{\Phi}$.

Proof. First, let H = 1, so that $\Gamma = \Phi \times \Theta$. If dim $a^{\Gamma} = \dim a^{\Phi}$, then the connected component Ξ of $(\Phi \Theta)_a$ satisfies dim $\Xi = 1$. Consider the restrictions of the projection maps $\pi : \Xi \to \Phi$ and $\varrho : \Xi \to \Theta$. Both maps are continuous homomorphisms. The kernel ker π is contained in $\Theta_a = 1$ and π is injective. Compactness of Φ implies that Ξ is isomorphic to a closed subgroup of Φ ; hence, Ξ is a Lie group. From ker $\varrho \leq \Phi_a$ we infer that ker ϱ is finite, and [Salzmann et al. 1995, 93.12] shows that ϱ is surjective, but then Θ would be a Lie group contrary to the assumption. In the general case analogous arguments apply to the natural maps $\pi : \Xi \to \Phi/H$ and $\varrho : \Xi \to \Theta/H$.

2.12. *Definition.* For the remainder of this article, we shall call a compact, connected 1-dimensional subgroup of Δ a *serpentine* subgroup. The letter Θ will be reserved for such subgroups. They are 1-tori or, more frequently, solenoids; the latter are not Lie groups.

3. No fixed elements

Suppose in this section that $\mathcal{F}_{\Delta} = \emptyset$.

3.1. *Theorem.* If dim $\Delta \ge 10$, or if Δ is semisimple and dim $\Delta \ge 9$, then Δ is a *Lie group.*

Proof. By the approximation theorem, there is a compact 0-dimensional central subgroup N such that Δ/N is a Lie group. Suppose that $1 \neq \zeta \in N$, and let $p^{\zeta} = p$ be a fixed point of ζ . A slight variation of argument (A) in the proof of 2.3 shows that $\mathcal{E} = \langle p^{\Delta} \rangle$ is a connected proper subplane.

(a) If dim $\mathcal{E} = 2$, then Δ induces on \mathcal{E} a group $\Delta^* = \Delta/K$ of dimension at most 8, and stiffness yields dim K \leq 3. Hence, dim K \geq 1 and Δ : K \geq 6. In particular, \mathcal{E} is isomorphic to the classical real projective plane [Salzmann et al. 1995, 33.6], and Δ^* is a subgroup of SL₃ \mathbb{R} . As Δ^* has no fixed element, Δ^* is simple by [Salzmann 1967, 5.2] or [Salzmann et al. 1995, 33.1] (see also 2.3 above), and then dim $\Delta^* = 8$, $\Delta^* \cong SL_3 \mathbb{R}$. If Δ is semisimple, the kernel K is also simple, and dim K = 3. In any case, dim $\Delta \ge 10$ and dim K ≥ 2 . Because N induces a Lie group on \mathcal{E} (see 2.10 or [Salzmann et al. 1995, 32.21]), we may assume that N < K. Either $\mathcal{F}_{\zeta} \leq \mathcal{P}$ for some $\zeta \in \mathbb{N} \setminus \{1\}$, or N acts freely on the set of *exterior* points (points not belonging to \mathcal{E}). In the first case, the stiffness result (4) would imply dim K \leq 1. Hence, N_z = 1 for each exterior point z on an *interior* line L (a line of \mathcal{E}). If dim Δ_L – dim Δ_z = 4, then Δ_L induces a Lie group on the orbit z^{Δ_L} by 2.6. Therefore, N is finite, and Δ would be a Lie group. Consequently $\Delta : \Delta_z \le 2+3$. Choose two interior points $a, b \notin L$ and consider the stabilizer $\Omega = \Delta_{z,a,b}$; it fixes also the point $L \cap ab$ and hence 3 collinear points of \mathcal{E} . Linear algebra shows that Ω fixes all interior points of *ab*; moreover, dim $\Omega \ge 1$ and $\Omega|_{Z^N} = \mathbb{1}$. Thus, \mathcal{F}_{Ω} is a connected proper subplane of dimension 2 or 4, and N acts effectively on \mathcal{F}_{Ω} . From 2.10 it follows that N is a Lie group, and so is Δ .

(b) Finally, let $\mathcal{E} < \mathcal{P}$ and note that $\Delta^* = \Delta|_{\mathcal{E}}$ has no fixed element. According to [Salzmann et al. 1995, 71.4, 71.8], the group $\Delta^* = \Delta/K$ is strictly simple. Stiffness shows dim $K \le 1$ and $\Delta : K > 8$ (since dim $\Delta \ge 10$ or dim K = 0). All possibilities for Δ^* are listed in [Salzmann et al. 1995, 71.8]; only PSL₃ \mathbb{C} has dimension > 8. Hence, dim $\Delta \ge 16$, and Δ is a Lie group by [Priwitzer 1994].

Remark. Previously 3.1 was only known for dim $\Delta \ge 11$; see [Salzmann 2010, Theorem 1.1] or [Salzmann 2014, 2.1].

3.2. Compact normal subgroup. If Δ has a serpentine normal subgroup Θ and if dim $\Delta \geq 9$, then Δ is a Lie group or, conceivably, $\Delta \cong SL_3 \mathbb{R} \times \Theta$ induces the full collineation group on some invariant 2-dimensional desarguesian subplane.

Proof. The proof follows the scheme of the previous one, and the same notation will be used. If Δ is not a Lie group, then dim $\Delta = 9$ by 3.1.

(a) Let $\mathcal{E} = \langle p^{\Delta} \rangle$ be a 2-dimensional subplane. Again \mathcal{E} is the classical real plane and $\Delta^* = \Delta/K \cong SL_3 \mathbb{R}$ is simple. Hence, $\Theta N \leq K$. Either $\Delta' \cong \Delta^*$ or Δ' is a twofold covering of $SL_3 \mathbb{R}$. In the *first case*, each involution in Δ' is a reflection of \mathcal{P} (if $\mathcal{F}_{\beta} \leq \mathcal{P}$ for some involution β , then N induces a Lie group on \mathcal{F}_{β} by 2.10, the induced map $\beta|_{\mathcal{E}}$ is a reflection, $\langle \mathcal{E}, \mathcal{F}_{\beta} \rangle = \mathcal{P}$, and Δ would be a Lie group). Consequently, there is a translation group $\Delta_{[L,L]} \cong \mathbb{R}^2$ for each *interior* axis L. It remains an open problem whether or not Θ must be a Lie group in this situation.

In the *second case*, the center of Δ' contains an involution ι such that $\mathcal{F}_{\iota} < \mathcal{P}$, and the lines of \mathcal{P} are homeomorphic to \mathbb{S}_4 (see 2.1). Moreover, $\Theta|_{\mathcal{F}_{\iota}} = \mathbb{1}$ by the stiffness property [Salzmann et al. 1995, 71.7(a)] or by [Grundhöfer and Salzmann 1990, XI.9.3] (recall that $\Theta|_{\mathcal{E}} = \mathbb{1}$). Hence, Θ acts freely on the set of points not belonging to \mathcal{F}_{ι} . Let L be a line of \mathcal{E} and put $L' = L \setminus \mathcal{F}_{\iota}$. The group Δ' has a subgroup $\Upsilon \cong SU_2\mathbb{C}$, and the connected component Φ of Υ_L is a torus. As L' is dense in L, it follows that Φ acts effectively on L' (note that \mathcal{E} is classical). Let $p \in L'$ such that $p^{\Phi} \neq p$, dim $\Phi_p = 0$, and Φ_p is finite. We have $\Phi \cap \Theta = \langle \iota \rangle$. Therefore, Lemma 2.11 applies and shows that $1 = \dim p^{\Phi} < \dim p^{\Phi\Theta} = 2$. By [Salzmann et al. 1995, 96.24] or 2.7 above Δ is a Lie group.

(b) If $\langle p^{\Delta} \rangle = C < \mathcal{P}$, the lines of \mathcal{P} are 4-spheres. From 2.3 and 2.9 it follows that $\Theta|_{\mathcal{C}} = \mathbb{1}$ and that $\Delta|_{\mathcal{C}}$ is semisimple of dimension 8. By 2.3(c) and [Salzmann et al. 1995, 71.8], the group $\Delta^* = \Delta|_{\mathcal{C}}$ is isomorphic to $SL_3\mathbb{R}$ or to $PSU_3(\mathbb{C}, r)$, $r \leq 1$. For each of the unitary groups, there is an interior line L such that $SU_2\mathbb{C}$ acts nontrivially on the set L' of exterior points of L. In particular, a maximal compact subgroup of Δ_L has an orbit of dimension > 1 on L'. Recall that N acts freely on the set of exterior points. By Richardson's theorem, Δ_L induces a Lie group on L'. Hence, N and Δ are Lie groups. If $\Delta^* \cong SL_3\mathbb{R}$, then there exists a Δ -invariant 2-dimensional subplane of \mathcal{C} [Salzmann et al. 1995, 72.3], and dim $L^{\Delta} = 2$ for a suitable line L. Hence, $\Delta'|_{L'}$ contains a circle group Φ . Again Φ acts effectively on L'. The proof can now be completed exactly as at the end of step (a).

3.3. Normal vector group. If $\mathcal{F}_{\Delta} = \emptyset$, if Δ has a minimal normal vector subgroup Ξ , and if dim $\Delta \ge 7$, then Δ is a Lie group.

Proof. From 2.3 it follows that $\mathcal{F} = \mathcal{F}_{\Xi}$ is a proper connected Δ -invariant subplane. There is a compact group $N \triangleleft \Delta$ such that Δ/N is a Lie group. We may assume that dim N = 0, that N is not a Lie group, and that $N|_{\mathcal{F}} = \mathbb{1}$. Note that dim $\Delta \leq 9$ by 3.1. If $\mathcal{F} \leq \mathcal{P}$, then $\Xi|_{\mathcal{F}} = \mathbb{1}$ by definition, and Ξ would be compact by stiffness. Hence, \mathcal{F} is a 2-dimensional subplane.

(a) First, let dim $\Delta = 9$. Then the induced group $\Delta|_{\mathcal{F}} = \Delta/K$ is simple by 2.3; in fact, $\Delta/K \cong SL_3 \mathbb{R}$. A maximal compact subgroup Φ of Δ is connected by the Malcev–Iwasawa theorem, and N < Φ . Consequently, dim $\Phi = 4$ (or $\Phi \cong SO_3 \mathbb{R}$ by [Salzmann et al. 1995, 93.12]), Φ is a product of Φ' and a compact group $\Theta = K^1$, $\Xi \cap \Theta = \mathbb{1}$, and Ξ would be contained in Δ/K^1 , which is locally isomorphic to $SL_3 \mathbb{R}$.

(b) In the cases dim $\Delta \in \{7, 8\}$ the induced group Δ/K is simple by 2.3, and then $\Delta : K = 3$ [Salzmann et al. 1995, 33.6,7], but dim $K \le 3$ by stiffness.

Remark. If \mathcal{F}_{Δ} is not empty, Ξ can be a group of axial collineations, and in the case $\Xi \triangleleft \Delta$ there are no sharper results than in general.

4. Exactly one fixed element

Up to duality, we may assume that \mathcal{F}_{Δ} consists of a line W.

4.1. Semisimple groups. If the semisimple group Δ fixes exactly one line and possibly some points on this line, and if dim $\Delta > 3$, then Δ is a Lie group [Salzmann 2010, Theorem 1.3].

4.2. *Theorem.* If $\mathcal{F}_{\Delta} = \{W\}$ and if dim $\Delta \ge 9$, then Δ is a Lie group.

Proof. (a) Again there exist arbitrarily small compact central subgroups $N \le \Delta$ of dimension 0 such that Δ/N is a Lie group; see 2.5. If N acts freely on $P \setminus W$, then each stabilizer Δ_x with $x \notin W$ is a Lie group because $\Delta_x \cap N = 1$, and Δ is a Lie group by 2.8.

(b) If $x^{\zeta} = x \notin W$ for some $\zeta \in \mathbb{N} \setminus \{1\}$, then x^{Δ} is not contained in a line, $\zeta|_{x^{\Delta}} = 1$, and $\mathcal{E} = \langle x^{\Delta}, W \rangle$ is a proper connected subplane. Assume in this step that \mathcal{E} is 2dimensional. In this case the claim follows by similar arguments as in 3.1(a): let $\Delta^* = \Delta|_{\mathcal{E}} = \Delta/K$. Then $\Delta : K \leq 6$ by [Salzmann 1967, 3.19] or [Salzmann et al. 1995, 33.6] together with the dimension formula 2.4, and dim $K \leq 3$ by stiffness. It follows that dim K = 3, $\Delta : K = 6$, and $\mathcal{E} \setminus W$ is the classical real affine plane [Salzmann 1967, 4.3]. As Δ^* is a Lie group, we may assume that $\mathbb{N} < K$. Again \mathbb{N} acts freely on the set of exterior points. The remainder of the proof is as in 3.1(a) with W instead of L.

(c) If Δ is not a Lie group, the case $\mathcal{E} \ll \mathcal{P}$ will lead to a contradiction. Write again $\Delta^* = \Delta|_{\mathcal{E}} = \Delta/K$. Note that K is compact and acts freely on the set of points not in \mathcal{E} . If Δ is transitive on $W \cap \mathcal{E} \approx \mathbb{S}_2$, then a maximal compact subgroup of Δ induces a Lie group on W by 2.7. Hence, K and Δ are Lie groups. Therefore, Δ has a 1-dimensional orbit $V \subset W \cap \mathcal{E}$. Brouwer's theorem [Salzmann et al. 1995, 96.30] (see also [Hofmann 1965]) shows that $\Delta|_V = \Delta/\Gamma$ has dimension at most 3. Consequently dim $\Gamma \geq 6$. Choose a point $v \in V$, a line L in \mathcal{E} with $v \in L$, and an

exterior point $z \in L$. By 2.6 we have dim $z^{\Gamma_L} < 4$. Note that $\Lambda = (\Gamma_{L,z})^1$ fixes V pointwise and that dim $\Lambda > 0$. Because N acts freely on $L \setminus \mathcal{E}$ and $N \leq Cs \Delta$, it follows that \mathcal{F}_{Λ} is a proper connected subplane. Now N is a Lie group by 2.10. \Box

5. Collinear fixed points

Suppose in this section that Δ fixes a unique line W and one or more points on W.

5.1. *Theorem.* Let $\mathcal{F}_{\Delta} = \{v, W\}$ be a flag. If dim $\Delta \ge 10$, then Δ is a Lie group.

Proof. By the approximation theorem, there is a compact 0-dimensional normal subgroup N such that Δ/N is a Lie group. Because of 2.8 we may assume that $x^{\zeta} = x$ for some $\zeta \in N \setminus \{1\}$ and some $x \notin W$. As x^{Δ} is not contained in a line and $\zeta|_{x^{\Delta}} = 1$, it follows that $C = \langle x^{\Delta}, v, W \rangle$ is a proper connected subplane. If C is 2-dimensional, then dim $\Delta|_C \leq 5$ and dim $\Delta \leq 8$ by stiffness. Therefore, C is a Δ -invariant Baer subplane. The induced group $\Delta|_C = \Delta/K$ is a Lie group by 2.10. Hence, it may be supposed that $N \leq K$. Obviously, K acts freely on the set of *exterior* points (points not in C), and dim $K \leq 1$ by stiffness. Thus, $\Delta : K \geq 9$, and C is isomorphic to the classical complex plane [Salzmann et al. 1995, 72.8]. Choose *interior* points $u, w \in W$, an interior line L in the pencil \mathcal{L}_v , and an *exterior* point $z \in L$. If N is not a Lie group, then the connected component Λ of $\Delta_{u,w,z}$ has positive dimension by 2.6, because $\Delta : \Delta_{u,w,L} \leq 6$. Note that $z^N \subset \mathcal{F}_{\Lambda}$ and that Λ fixes all interior points of W, so that \mathcal{F}_{Λ} is a connected proper subplane. Now N is a Lie group by 2.10.

5.2. *Theorem.* If $\mathcal{F}_{\Delta} = \langle u, v \rangle$ and if dim $\Delta \geq 8$, then Δ is a Lie group.

For a proof see [Salzmann 2017, Lemma 6.0'].

5.3. *Proposition.* If Δ fixes at least 3 distinct points and exactly 1 line, and if dim $\Delta \ge 8$, then Δ is a Lie group.

Remark. This follows from 5.2. An easy proof is given in [Salzmann 2017, 7.0'].

5.4. Compact normal subgroup. Suppose that \mathcal{F}_{Δ} is a flag and that Δ has a serpentine normal subgroup Θ . If dim $\Delta \geq 9$, then Δ is a Lie group.

Proof. This can be proved in a similar way as 5.1 and the first arguments are the same. Again there is a Δ -invariant Baer subplane C and $\Delta|_{C} = \Delta/K$ is a Lie group. Note that $\Theta \leq Cs \Delta$ by 2.9 and that $\Theta|_{C}$ is a Lie group.

(a) $\Theta^* = \Theta|_{\mathcal{C}}$ does not contain any involution: as \mathcal{F}_{Δ} is a flag, there is no reflection in Θ^* . If ι is a planar involution in Θ^* , then $\mathcal{C} \cap \mathcal{F}_{\iota}$ is a Δ -invariant 2-dimensional subplane and stiffness implies dim $\Delta \leq 5 + 1$. Hence, $\Theta^* = 1$ and $\Theta \leq K$. (b) Choose an *interior* line $L \in \mathfrak{L}_v$, and *exterior* points $x \in L$ and $z \in W$. The kernel K acts freely on the set of all exterior points. Result 2.6 implies that $1 \leq \dim x^K$, $\dim z^K \leq 3$, so that $\Lambda = (\Delta_{x,z})^1$ has positive dimension. Recall that $N \leq K$. Put $\Gamma = \Theta N$ and $\mathcal{E} = \langle x^{\Gamma}, z^{\Gamma} \rangle$. Then $\mathcal{E} \leq \mathcal{F}_{\Lambda}$ is a proper connected subplane, Γ acts faithfully on \mathcal{E} , and Γ , N, and Δ are Lie groups (2.10).

5.5. Compact normal subgroup. Assume that $\mathcal{F}_{\Delta} = \langle u, v, w \rangle$. If dim $\Delta \geq 7$, and if Δ has a serpentine normal subgroup Θ , then Δ is a Lie group.

Proof. If Δ is not a Lie group, there exists a point $p \notin W = uv$ such that $\mathcal{E} = \langle p^{\Delta}, u, v, w \rangle$ is a 2- or 4-dimensional subplane; see steps (a) and (b) in the proof of 4.2. Put $\Delta|_{\mathcal{E}} = \Delta/K$. In the first case, $\Delta : K \leq 3$ and dim $K \leq 3$ by the dimension formula and stiffness. Therefore, $\mathcal{E} \ll \mathcal{P}$ and lines are homeomorphic to \mathbb{S}_4 . Recall that $\Theta \leq Cs \Delta$ and that $\Theta|_{\mathcal{E}}$ is a Lie group, either a torus or trivial. A torus would contain a reflection [Salzmann et al. 1995, 55.21(c)], and Δ would fix some point $c \notin W$. Hence, $\mathcal{E} = \mathcal{F}_{\Theta}$ and $\Theta \leq K$. There is a compact central subgroup N $< \Delta$ such that Δ/N is a Lie group and N $\leq K$. As \mathcal{E} is maximal in \mathcal{P} , the kernel K acts freely on the set of points outside \mathcal{E} (the exterior points). Let x be an exterior point on an *interior* line L in the pencil \mathfrak{L}_v . Because of 2.6, we have $\Delta_L : \Delta_x < 4$. Hence, $\Lambda = (\Delta_x)^1$ satisfies dim $\Lambda \geq 2$. Stiffness implies that \mathcal{F}_{Λ} is 2-dimensional. KN acts freely on \mathcal{F}_{Λ} , and N is a Lie group by 2.10, but then Δ is also a Lie group. \Box

Arguments a little more intricate show that even the following is true:

5.6. Compact normal subgroup. Assume that $\mathcal{F}_{\Delta} = \langle u, v \rangle$. If dim $\Delta \geq 7$, and if Δ has a serpentine normal subgroup Θ , then Δ is a Lie group.

Proof. Suppose that Δ is not a Lie group. Again there is a point $p \notin W = uv$ such that $\mathcal{E} = \langle p^{\Delta}, u, v \rangle$ is a proper connected subplane; see steps (a) and (b) in the proof of 4.2. Put $\Delta|_{\mathcal{E}} = \Delta/K$. There is a compact central subgroup N < Δ of dimension dim N = 0 such that Δ/N is a Lie group and N $\leq K$.

(a) If \mathcal{E} is 2-dimensional, then dim K = 3 and Δ : K = 4. From [Salzmann et al. 1995, 33.9] it follows that \mathcal{E} is the classical real plane; moreover, each compact subgroup of $\Delta|_{\mathcal{E}}$ is trivial, and $\Theta|_{\mathcal{E}} = \mathbb{1}$. Let *L* be a line of \mathcal{E} in the pencil \mathcal{L}_v and consider a point $x \in L \setminus \mathcal{E}$ and a third point $w \in uv \cap \mathcal{E}$. Then $\Lambda = \Delta_{x,w}$ has positive dimension and fixes each point of $uv \cap \mathcal{E}$. Hence, \mathcal{F}_{Λ} is a proper connected subplane, and N| $_{\mathcal{F}_{\Lambda}}$ is a Lie group by 2.10. This is true for each choice of *x*. As \mathcal{P} is generated by \mathcal{E} and at most two of such subplanes, N itself is a Lie group, and so is Δ .

(b) Thus, $\mathcal{E} \leq \mathcal{P}$ and lines are homeomorphic to \mathbb{S}_4 by 2.1. Recall that $\Theta \leq C_S \Delta$. Again $\Theta|_{\mathcal{E}}$ is a compact Lie group by 2.10, and $\Theta|_{\mathcal{E}}$ is either a torus or trivial. In the first case, the involution in $\Theta|_{\mathcal{E}}$ is a reflection by [Salzmann et al. 1995, 55.21(c)],

and Δ would fix its center and axis. Hence, $\Theta|_{\mathcal{E}} = \mathbb{1}$ and $\mathcal{F}_{\Theta} = \mathcal{E}$. Choose L, x, and w as in step (a). Because of 2.6, we have dim $\Delta_x \ge 2$. Put $\Lambda = \Delta_{x,w}$ and note that ΘN acts freely on $L \setminus \mathcal{E}$. It follows that \mathcal{F}_{Λ} is connected and that N acts effectively on \mathcal{F}_{Λ} . Hence, $\mathcal{F}_{\Lambda} = \mathcal{P}$ and $\Delta_{x,w} = \mathbb{1}$ for each admissible w. Therefore, Δ_x is sharply transitive on a cylinder and Δ_x has a torus subgroup Ψ . If the involution $\iota \in \Psi$ is planar, then ΘN acts effectively on \mathcal{F}_{ι} , and N would be a Lie group. Thus, ι is a reflection, its axis is L and its center is u. Interchanging the roles of u and v, we find also a torus subgroup $\Phi < \Delta$ such that the involution $\sigma \in \Phi$ has the center v. We have $\Delta_{w,L} : \Delta_{w,x} \leq \dim x^{\Delta} \leq 3$ and $\dim L^{\Delta_w} = \Delta_w :$ $\Delta_{w,L} \ge 5-3$. Consequently Δ is transitive on the set of admissible lines *L*, which is homeomorphic to \mathbb{R}^2 . Therefore, Φ fixes one of the lines L. This follows, e.g., from the much more general result [Poncet 1959, Théorème a]. The axis of σ is an interior line in \mathfrak{L}_u and $\sigma \notin \Phi_x$ so that Φ_x is finite. As $L^{\Delta} \approx \mathbb{R}^2$ is simply connected, a maximal compact subgroup X of Δ_L is connected [Salzmann et al. 1995, 93.10], and X induces a connected group \overline{X} on $L \setminus \mathcal{E}$. The group Φ yields a torus $\overline{\Phi} \leq \overline{X}$. If dim $\overline{X} = 2$, then $\overline{X} = \overline{\Phi}\Theta$ by [Salzmann et al. 1995, 93.12], and N < Θ . Moreover, $\overline{\Phi} \cap \Theta = \mathbb{1}$ because Φ acts effectively on \mathcal{E} , and dim $x^{\Phi\Theta} > 1$ by 2.11. If dim $\overline{X} > 2$, then dim $x^X \ge 2$ because $X_x \le \Delta_x$ and X_x is a torus. In both cases, X is a Lie group by [Salzmann et al. 1995, 96.24], and then Δ is also a Lie group.

6. Nonincident fixed elements

If Δ fixes a nonincident point-line pair (and possibly further elements), then Löwen's criterion 2.8 does not apply.

6.1. *Proposition.* If Δ fixes a line W and if Δ is transitive on W, then Δ is a Lie group [Priwitzer 1994, 2.1].

Alternative proof. By [Hofmann and Kramer 2015, Corollary 5.5], the induced group $\Delta|_W$ is a Lie group and W is a manifold; in fact, $W \approx S_4$ [Salzmann et al. 1995, 52.3]. From [Salzmann et al. 1995, 96.19–22] it follows that $\Delta|_W$ has a transitive subgroup SO₅ \mathbb{R} . The Malcev–Iwasawa theorem [Salzmann et al. 1995, 93.10] implies that a maximal compact subgroup Φ of Δ is connected. The result [Salzmann et al. 1995, 55.40] shows that Φ has a subgroup $\Upsilon \cong \text{Spin}_5 \mathbb{R}$. The central involution in Υ is a reflection with some center $a \notin W$. It suffices to show that Φ is a Lie group. By the approximation theorem, there is an arbitrarily small central subgroup N < Φ such that Φ/N is a Lie group. As N centralizes each stabilizer Υ_z with $z \in W$, we conclude that $N|_W = \mathbb{1}$, i.e., N consists of homologies with axis W and center a. Select a point $v \in W$ and consider the action of Φ_v on the line av. Note that $\Upsilon_v \cong \text{Spin}_4 \mathbb{R}$ fixes a second point $u \in W$, and that Υ_v has no subgroup of dimension 5. Put $\Upsilon_v|_{av} = \Upsilon_v/K$. The homology group K has dimension at most 3. Hence, Υ_v has an orbit on av of dimension > 1, and

Richardson's theorem applies to $\Phi_v|_{av}$. In particular, Φ_v induces a Lie group on av, and then N is a Lie group.

6.2. Semisimple groups. Suppose that \mathcal{F}_{Δ} is a nonincident point-line pair $\{a, W\}$, Δ is semisimple, and dim $\Delta \geq 10$. Then Δ is a Lie group.

Proof. By [Priwitzer 1994] we may assume that dim $\Delta < 12$.

<u>Case 1</u> (dim $\Delta = 11$). Then $\Delta = \Gamma \Psi$ is a product of two almost simple factors, where dim $\Gamma = 3$.

(a) Suppose that Δ is not a Lie group, and denote the center of Δ by Z. If $\Gamma Z|_W \neq 1$, then there is a point *p* such that $\mathcal{G} = \langle p^{\Gamma Z}, a, W \rangle$ is a connected subplane (note that $\Gamma|_W = 1$ implies $p^{\Gamma} \neq p$). If dim $p^{\Psi} = 8$, then Δ would be a Lie group by [Salzmann et al. 1995, 53.2]. Therefore, $\Psi_p \neq 1$ and $\Psi_p|_{\mathcal{G}} = 1$, so that \mathcal{G} is a proper subplane (in fact a Baer subplane) and $\Gamma Z|_{\mathcal{G}}$ is a Lie group (see 2.10). Thus, $\mathcal{G} = \mathcal{F}_{\zeta}$ for some $\zeta \in Z$. Consequently $\mathcal{G}^{\Delta} = \mathcal{G}$, but Δ cannot act on the 4-dimensional plane \mathcal{G} [Salzmann et al. 1995, 71.8].

(b) Hence, $\Gamma Z \leq \Delta_{[a, W]}$. From [Salzmann et al. 1995, 61.2] it follows that the almost simple group Γ is compact. By [Salzmann et al. 1995, 55.32(ii)], the homology group Γ does not contain a pair of commuting involutions. Hence, $\Gamma \cong SU_2\mathbb{C}$. Moreover, Γ has 3-dimensional orbits on any line $av, v \in W$. The group Ψ acts almost effectively on W and Ψ is not a Lie group. Therefore, $\Psi|_W \cong PSU_3(\mathbb{C}, 1)$. In fact, $\Psi|_W$ is strictly simple because $Z|_W = 1$, and $\Psi|_W$ is different from PSL₃ \mathbb{R} and from the compact group $PSU_3(\mathbb{C}, 0)$ because these groups admit only finite coverings and Ψ is not a Lie group. The kernel K of the canonical map $\kappa: \Psi \to \Psi|_W$ is contained in Z. Let Φ be a maximal compact subgroup of Ψ . Then Φ is connected, $\Phi^{\kappa} \cong U_2 \mathbb{C}$, and dim $\Phi = 4$. As Ψ is not a Lie group, it follows that K is compact. If lines are manifolds, then Richardson's theorem as stated in [Salzmann et al. 1995, 96.34] applies and shows that Φ has two fixed points on W. Let $v^{\Phi} = v \in W$. Then a maximal compact subgroup Ω of Δ fixes v, and Ω is connected by the Malcev– Iwasawa theorem [Salzmann et al. 1995, 93.10]. Now $\Omega|_{av}$ is a Lie group by 2.7, and so are $Z \leq \Omega$ and Δ . Thus, lines are not manifolds, and 2.6 implies that all orbits of Δ on W have dimension < 4.

(c) The structure theorem 2.9 shows that Φ' is a Lie group. In fact, $\Phi' \cong SU_2\mathbb{C}$ because $\Phi'^{\kappa} \ncong SO_3\mathbb{R}$. The restriction of κ to Φ' is an isomorphism, the involution $\omega \in \Phi'$ is in the center of Φ , and ω is not planar (or lines would be manifolds); moreover, ω is not a reflection with axis W. Hence, $\omega \in \Delta_{[u,av]}$ for suitable points $u, v \in W$. Choose a maximal compact subgroup Ω of Δ such that $\Phi \leq \Omega$, so that Ω fixes u and v. Both Φ' and Γ act effectively on au; the product of their involutions is a reflection in $\Delta_{[v,au]}$. Hence, $\Phi'\Gamma|_{au} \cong SO_4\mathbb{R}$. From dim $\Phi = 4$ it follows that dim $\Omega = 7$. The structure theorem of compact groups [Salzmann et al. 1995,

93.11] shows that Ω is a product of the connected component Θ of its center and the groups Φ' and Γ . Let U be some nontrivial orbit of Ω on au and note that dim U < 4; in fact, dim U = 3 because Γ acts freely on U. By [Salzmann et al. 1995, 96.13] we have dim $\Omega|_U \le 6$. Consequently Ω has a 1-dimensional normal subgroup acting trivially on U. The only possible kernel contains Θ , but $\Theta|_U \ne 1$ since Z acts freely on U. This contradiction proves that dim $\Delta \ne 11$.

<u>Case 2</u> (dim $\Delta = 10$). Then $\Delta/Z \cong PSp_4 \mathbb{R} \cong O'_5(\mathbb{R}, 2)$; note that the other two 10-dimensional simple groups have simply connected double coverings [Salzmann et al. 1995, 94.33] and hence cannot be images of non-Lie groups.

(a) The center Z acts freely on $C = \{x \in P \setminus W \mid x \neq a\}$: suppose that $p^{\zeta} = p$ for some $p \in C$ and $\zeta \in Z \setminus \{1\}$. Then $\zeta|_{p^{\Delta}} = 1$, by assumption p^{Δ} is not contained in a line, and $\mathcal{D} = \langle a, p^{\Delta}, W \rangle$ is a proper connected subplane. The induced group $\Delta|_{\mathcal{D}}$ is locally isomorphic to $\operatorname{Sp}_4 \mathbb{R}$, and \mathcal{D} is a Baer subplane, but then dim $\Delta|_{\mathcal{D}} \leq 8$ because Δ fixes $a, W \in \mathcal{D}$. (According to [Salzmann et al. 1995, 72.8] a 4-dimensional plane with a group of dimension > 8 is classical, and $\Delta|_{\mathcal{D}}$ would be contained in $\operatorname{GL}_2 \mathbb{C}$; see also [Salzmann 1971, 8.1].)

(b) If Δ contains a planar involution β , then Z induces a Lie group on \mathcal{F}_{β} , $\mathcal{F}_{\beta} = \mathcal{F}_{\zeta}$ for some $\zeta \in \mathbb{Z}$, and \mathcal{F}_{ζ} would be a Δ -invariant Baer subplane. This is impossible for the same reasons as in step (a).

(c) As Δ/Z has a subgroup SO₃ \mathbb{R} , the structure theorem 2.9 shows that Δ has a subgroup $\Phi \cong SU_2\mathbb{C}$: in the case $\Phi \cong SO_3\mathbb{R}$ one of 3 pairwise commuting reflections of Φ would have the axis W [Salzmann et al. 1995, 55.35], but SO₃ \mathbb{R} is simple.

(d) Suppose that lines are manifolds. Then $W \approx \mathbb{S}_4$ by [Salzmann et al. 1995, 52.3]. Some orbit of Φ on W has dimension at least 2. Consequently Δ induces a Lie group Δ/K on W (use Richardson's theorem 2.7). The structure of Δ shows that a maximal compact subgroup Ω of Δ is 4-dimensional. As $K \leq Z$ and dim Z = 0, it follows that dim $\Omega/K = 4$. Note that $\Omega' = \Phi \cong SU_2 \mathbb{C}$. Richardson's theorem as stated in [Salzmann et al. 1995, 96.34] shows that either $\Phi|_W \cong \Phi$ has exactly two fixed points $u, v \in W$, where v is the center of the involution $\iota \in \Phi$, or $\Phi|_W \cong SO_3 \mathbb{R}$ has a circle of fixed points and the central involution $\iota \in \Phi$ is a reflection with axis W. In any case, there is a point $v \in W$ such that $v^{\Phi} = v$ and $\Phi|_{av} \cong \Phi$. By 2.7 each orbit c^{Φ} with $a, v \neq c \in av$ is a 3-sphere. It follows that the orbit space av/Φ is a closed interval J. The compact group $K \leq \Delta_{[a,W]}$ induces a group of orderpreserving homeomorphisms on J. Each endpoint $b = c^{\Phi}$ of an orbit $x^K \subset J$ is a fixed element of K. Hence, K maps c^{Φ} onto itself. As K is central, $c^{\kappa} = c^{\varphi(\kappa)}$ defines an injective continuous homomorphism $K \to \Phi$. Consequently K is finite and Ω would be a Lie group. (e) Thus, lines are not manifolds, and by 2.6 each orbit of (a subgroup of) Δ on a line has dimension at most 3. The group Ω is a product $\Theta \Phi$, where Θ is the connected component of the center of Ω , $\Theta \cap \Phi \leq \langle \sigma \rangle$ is trivial or generated by the involution $\sigma \in \Phi$, and Θ is not a Lie group.

(f) Suppose that σ is not a reflection with axis *W*. Step (b) shows that σ has some center $u \in W$ and an axis av with $v \in W$. Consider an arbitrary point $z \in Y := W \setminus \{u, v\}$. We have dim $\Phi_z = 0$, and Φ_z is finite. With [Salzmann et al. 1995, 93.6] it follows that dim $\Delta_z = 7$ and dim $\Delta_z \Phi = 10$. Therefore, $\Delta = \Delta_z \Phi$ and $z^{\Delta} = z^{\Phi}$. Thus, $Y^{\Delta} = Y$ and $\{u, v\}$ would be Δ -invariant, but $\mathcal{F}_{\Delta} = \{a, W\}$.

(g) Hence, $\sigma \in \Delta_{[a,W]}$. Recall that a maximal compact subgroup $\Omega = \Theta \Phi$ of Δ has dimension dim $\Omega = 4$. If $z^{\Delta} \subseteq W$ is a nontrivial orbit, and if $\Delta|_{z^{\Delta}} = \Delta/K$, then the kernel K is contained in Z (because Δ is almost simple). Therefore, Ω acts almost effectively on z^{Δ} . By [Salzmann et al. 1995, 96.13(a)] either $z^{\Omega} = z$ or dim $z^{\Omega} = 3$. Consequently, dim $z^{\Delta} = 3$ for each $z \in W$. (Note that $z^{\Delta} \neq z$. If dim $z^{\Delta} < 3$, then $\Omega^{\delta}|_{z^{\Delta}} = 1$ for all $\delta \in \Delta$. As Δ is generated by all conjugates of Ω , this is impossible.)

(h) Θ has (at least) 2 fixed points $u, v \in W$. This follows from [Löwen 1976, Lemma 1 or 2]; see also 2.8 above.

(i) By 2.5, there is a sufficiently small compact central subgroup Ξ of Δ such that Δ/Ξ is a Lie group. Put $N = \Theta \cap \Xi$. Then Θ/N is a Lie group, and so is Ω/N . Hence, Δ/N is also a Lie group. Denote the canonical map $\Delta \to \Delta/N$ by λ . The quotient space $M = \Delta^{\lambda}/(\Delta_v)^{\lambda}$ is a manifold, and *M* can be written in the form

$$\{\{N\gamma \mid \gamma \in \Delta_v\}N\delta \mid \delta \in \Delta\} = \{\Delta_v\delta \mid \delta \in \Delta\} = \Delta/\Delta_v \approx v^{\Delta},\$$

since $N < \Theta < \Delta_v$. Therefore, v^{Δ} is a 3-manifold. If $v^{\Omega} \neq v$, then [Salzmann et al. 1995, 96.11(a)] implies $v^{\Omega} = v^{\Delta}$. As $\Theta \leq Cs \Omega$, we have $\Theta|_{v^{\Omega}} = 1$ and hence $\Theta|_{v^{\Delta}} = 1$, i.e., Θ is in the kernel of the action of Δ on M. This kernel is contained in Z because Δ is almost simple. Consequently dim $\Theta = 0$, a contradiction showing that $v^{\Omega} = v$.

(j) Consider the action of Ω and of Φ on $K := av \setminus \{a, v\}$. The only involution in Φ is the reflection σ with axis W. Therefore, dim $\Phi_c = 0$ for each $c \in K$, and the compact group Φ_c is finite. Let $\Gamma = (\Delta_v)^1$ and note that dim $\Gamma = 7$, dim $c^{\Gamma} = \dim c^{\Phi} = 3$, dim $\Gamma_c = 4$, dim $\Gamma_c \Phi = 7$, and hence $\Gamma = \Gamma_c \Phi$, $c^{\Theta} \subseteq c^{\Gamma} = c^{\Phi}$. As Δ/Z is a Lie group and $Z_c = 1$ by step (a), it follows that the stabilizer $\Pi = \Theta_c$ is a Lie group. The condition $c^{\vartheta} = c^{\varphi(\vartheta)}$ defines a continuous injective isomorphism of the compact group Θ/Π onto a closed subgroup of Φ . Hence, Θ/Π is a Lie group, and so are Θ and Δ . **6.3.** Compact normal subgroup. Suppose that $\mathcal{F}_{\Delta} = \{a, W\}$ is a nonincident pointline pair. If Δ has a serpentine normal subgroup Θ and if dim $\Delta \ge 11$, then Δ is a Lie group.

Proof. (a) Θ is contained in the center $Z = Cs \Delta$ (see 2.9), and Δ/Z is a Lie group. Assume that Z is not a Lie group. If $Z|_W \neq \mathbb{1}$, there is some point $p \notin W$ such that $p^Z \not\subseteq ap$, and $\Delta_p|_{\langle p^Z \rangle} = \mathbb{1}$. From [Salzmann et al. 1995, 53.2] it follows that dim $\Delta_p \geq 4$. Thus, $\mathcal{E} = \langle p^Z \rangle$ is a proper connected subplane, and $Z|_{\mathcal{E}}$ is a Lie group by 2.10. Therefore, $\zeta|_{\mathcal{E}} = \mathbb{1}$ for some $\zeta \in Z \setminus \{\mathbb{1}\}$. In particular, $p^{\zeta} = p, \zeta|_{p^{\Delta}} = \mathbb{1}$, dim $p^{\Delta} \leq 4$, and dim $\Delta_p \geq 7$. This contradicts stiffness and proves that $Z \leq \Delta_{[a,W]}$. (b) By assumption, Δ has no fixed point on W, and 6.1 shows that Δ is not transitive on W. Hence, there is some orbit $V = v^{\Delta} \subset W$ such that $0 < \dim V < 4$. Choose points $u, w \in V$ and $c \in av \setminus \{a, v\}$ and note that dim $c^{\Delta_v} < 4$ by 2.6. If $\Lambda = \Delta_{c,u,w} \neq \mathbb{1}$, then \mathcal{F}_{Λ} is a proper connected subplane, Z acts freely on \mathcal{F}_{Λ} , and Z would be a Lie group by 2.10. We have dim $\Delta_c \geq 5$ and dim $u^{\Delta_c} = 3$ for each $u \in V \setminus \{v\}$. Consequently Δ is doubly transitive on V.

(c) By [Salzmann et al. 1995, 96.16–17], either V is compact and the induced group $\Delta^* = \Delta|_V$ is isomorphic to one of the simple groups $\text{PSL}_4\mathbb{R}$, $O'_5(\mathbb{R}, 1)$, or $\text{PSU}_3(\mathbb{C}, 1)$, or Δ^* is an extension of $\mathbb{R}^3 \approx V$ by a transitive linear group. In the first case dim $\Delta > 15$ and Δ is a Lie group. In the last case, dim $w^{\Delta_{u,v}} \leq 1$, $\Lambda \neq 1$, and Δ is also a Lie group. Only two possibilities remain: Δ^* is a simple group of dimension 10 or 8.

(d) If dim $\Delta^* = 10$, then a maximal semisimple subgroup Ψ of Δ is isomorphic to the simple group $O'_5(\mathbb{R}, 1)$ or to its double cover $U_2(\mathbb{H}, 1)$; a maximal compact subgroup Φ of Ψ is isomorphic to $SO_4 \mathbb{R}$ or to $Spin_4 \mathbb{R}$. Accordingly $\Phi_v \cong SO_3 \mathbb{R}$ or $\Phi_v \cong \text{Spin}_3 \mathbb{R}$. In the first case, Φ_v would contain a reflection with axis W, but SO₃ \mathbb{R} is simple. Hence, $\Upsilon = \Phi_v$ is simply connected. The involution $\omega \in \Upsilon$ is contained in $\Delta_{[a,W]}$, and each orbit c^{Υ} , $c \in av \setminus \{a, v\}$, is 3-dimensional. Hence, $\omega \notin \Upsilon_c$ and Υ_c is finite. Moreover, $\Theta_c = \mathbb{1}$ and $\Upsilon \cap \Theta \leq \langle \omega \rangle$. Lemma 2.11, applied to $\Upsilon\Theta$, shows that dim $c^{\Upsilon\Theta} = 4$. By 2.7 the group Θ is a Lie group and so is Δ . (e) Finally, let $\Delta^* = \Delta/K \cong PSU_3(\mathbb{C}, 1)$. Note that the central group Θ is contained in K. There exists an 8-dimensional semisimple subgroup Ψ of Δ (see [Salzmann et al. 1995, 94.27] or apply Levi's theorem [Salzmann et al. 1995, 94.28] to a Lie approximation of Δ). Consequently $K = \sqrt{\Delta}$ is the radical, $\Delta = \Psi K$, and $K \leq Cs_{\Delta} \Psi$. Suppose that $z^{K} \neq z \in W$, let $c \in az \setminus \{a, z\}$, and put $\Lambda = \Psi_{c}$. If dim $\Lambda = 0$, then dim $c^{\Delta} = 8$, and Δ would be a Lie group by [Salzmann et al. 1995, 53.2]. As Λ fixes a connected set of points on W, it follows that $\mathcal{E} = \mathcal{F}_{\Lambda}$ is a connected proper subplane, and $\mathcal{E}^{\Theta} = \mathcal{E}$ because $\Theta \leq Cs \Lambda$. The fact that $\Theta|_V = \mathbb{1}$ implies that Θ acts effectively on \mathcal{E} , so that Θ would be a Lie group by 2.10 above. Therefore, $K \leq \Delta_{[a,W]}$, and K contains a compact connected subgroup

of dimension at least 2 by [Salzmann et al. 1995, 61.2]. If lines are manifolds, the claim follows from Richardson's theorem 2.7. In the other case, 2.6 shows dim $z^{\Delta} < 4$ for each $z \in W$. In fact, Δ is doubly transitive on each orbit $z^{\Delta} \subseteq W$; see step (b) of the present proof. Moreover, all transformation groups (Δ/K , U), where U is an orbit of Δ on W, are equivalent to (PSU₃ (\mathbb{C} , 1), \mathbb{S}_3) by [Salzmann et al. 1995, 96.17(b)]. Consequently, Δ_v has a fixed point in each of these orbits. Let again $c \in av \setminus \{a, v\}$. Then dim $c^{\Delta_v} < 4$, $\Lambda = \Delta_c$ fixes a quadrangle, and dim $\Lambda \geq 5$. This contradicts stiffness and completes the proof.

7. Fixed double flag

Throughout this section, let $\mathcal{F}_{\Delta} = \langle u, v, av \rangle$ be a *double flag*.

7.0. *Fact.* If a semisimple group Δ fixes a double flag, then dim $\Delta \leq 10$ [Salzmann 2014, 6.1].

7.1. Semisimple groups. Suppose that \mathcal{F}_{Δ} is a double flag. If Δ is semisimple and if dim $\Delta \geq 10$, then Δ is a Lie group.

Proof. (a) We have dim $\Delta = 10$ by 7.0, and Δ is almost simple. Let Φ be a maximal compact subgroup of Δ . If Δ is not a Lie group, then Δ maps onto $PSp_4\mathbb{R}$ (or else Φ is locally isomorphic to $SO_k\mathbb{R}$, $k \in \{4, 5\}$, and Δ would be a Lie group). Hence, Φ' is locally isomorphic to $SU_2\mathbb{C}$. The center Z of Δ is an infinite compact 0-dimensional subgroup, and Z acts freely on $P \setminus (uv \cup av)$: if $x^{\zeta} = x$ for some x not on a fixed line and $\zeta \in Z \setminus \{1\}$, then $\zeta|_{\langle x^{\Delta} \rangle} = 1$ and $\langle x^{\Delta} \rangle$ is a proper connected subplane, but the almost simple group Δ cannot act on this subplane [Salzmann et al. 1995, 71.8]. By the Malcev–Iwasawa theorem $Z \leq \Phi$.

(b) Any involution $\sigma \in \Phi$ is a reflection with axis av; in particular, $\Phi' \cong SU_2\mathbb{C}$ and $\Phi'|_{av} \cong SO_3\mathbb{R}$. In fact, σ is not planar (or else Z would induce a Lie group on \mathcal{F}_{σ} and the kernel of the induced action would not act freely on $P \setminus (uv \cup av)$). If $\sigma \in \Delta_{[a,uv]}$, then $\sigma^{\Delta}\sigma$ would be a normal subgroup of translations of dimension $\Delta : \Delta_a$. Hence, $\sigma \in \Delta_{[u,av]}$.

(c) Z consists of homologies with axis av. Suppose that $a^{\mathbb{Z}} \neq a$. Then dim $\Delta_a \leq 7$ by [Salzmann 1979, (*)] or [Salzmann et al. 1995, 83.17], and $d = \dim a^{\Delta} \geq 3$. It follows that $av \approx \mathbb{S}_4$: in the case d = 3, dim $\Delta_a = 7$ [Salzmann 1979, (**)]; otherwise apply 2.6. Moreover, 2.6 implies that $\Phi|_{av}$ is a Lie group, since Φ' has an orbit of dimension > 1 on av. More precisely, $\Phi|_{av} \cong SO_3 \mathbb{R}$ and $\Theta = \sqrt{\Phi}$ acts trivially on av; see the explicit form of Richardson's theorem in [Salzmann et al. 1995, 96.34].

(d) Δ acts faithfully on uv, in particular, $\Phi_{[uv]} = \mathbb{1}$: this holds since Δ is almost simple and $\Delta_{[uv]} \leq Z \leq \Delta_{[av]}$.

(e) Recall that $\Phi' \cong SU_2 \mathbb{C}$ and that $\Phi = \Phi' \Theta$ is not a Lie group. If dim $z^{\Phi'} = 2$ for some $z \in uv \setminus \{u, v\}$, then Φ'_z would contain an involution σ , but σ is a reflection in $\Phi_{[u,av]}$. Hence, dim $z^{\Phi'} = 3 \le \dim z^{\Phi}$. Note that all the assumptions of Lemma 2.11 are satisfied by Φ instead of Γ ; in fact, $\Phi' \cap \Theta \le \langle \sigma \rangle$, $\Theta \le \Delta_{[u,av]}$, and $\Theta_z = 1$; moreover, dim $\Phi'_z = 0$ and Φ'_z is finite. Consequently dim $z^{\Phi} = 4$ and 2.6 implies that Δ is a Lie group.

7.2. Compact normal subgroup. If Δ has a serpentine normal subgroup Θ , and if dim $\Delta \ge 11$, then Δ is a Lie group.

Proof. Assume that Δ is not a Lie group. By the approximation theorem, there is a compact subgroup N $\triangleleft \Delta$ such that Δ/N is a Lie group and dim N = 0. From 2.9 it follows that $\Gamma := \Theta N \leq Cs \Delta$.

(a) If Γ is straight, then $\mathcal{F}_{\Gamma} \leq \mathcal{P}$ or Γ is a group of axial collineations with fixed center and axis in \mathcal{F}_{Δ} [Baer 1946]. In the first case, Δ induces on \mathcal{F}_{Γ} a group of dimension at most 6, and dim $\Delta \leq 7$ by stiffness. Letting $a \in \mathcal{F}_{\Gamma}$, we get dim $\Delta_a \leq 5$.

(b) If Γ has the center v, then the axis passes through u and is fixed by Δ , i.e., $\Gamma \leq \Delta_{[v,uv]}$ and $\Gamma_a = \mathbb{1}$. From 2.6 it follows that there is a suitable point a such that dim $a^{\Delta} < 4$. Let $z \in uv \setminus \{u, v\}$. The group Γ acts effectively on the *connected* subplane $\mathcal{D} = \langle a^{\Gamma}, z, u \rangle$ and $\Delta_{a,z}|_{\mathcal{D}} = \mathbb{1}$. In the cases $\mathcal{D} < \mathcal{P}$ both Γ and Δ would be Lie groups by 2.10. Therefore, $\Delta_{a,z} = \mathbb{1}$, dim $\Delta \leq 7$, and dim $\Delta_a \leq 4$.

(c) If Γ has the center u, then the axis of Γ is av. For a given point a there are points $z \in uv$ and $b \in au$ such that dim z^{Δ} , dim $b^{\Delta} < 4$. As Γ is not a Lie group, the connected subplane $\mathcal{D} = \langle a, b, v, z^{\Gamma} \rangle$ coincides with \mathcal{P} . Consequently $\Delta_{a,b,z} = \mathbb{1}$, so that dim $\Delta_a \leq 6$ and dim $\Delta \leq 10$.

(d) If Γ is not straight, there is a point *x* such that $\mathcal{E} = \langle x^{\Gamma}, u, v, av \rangle$ is a connected subplane and $\Delta_x|_{\mathcal{E}} = \mathbb{1}$. In particular, $\Gamma_x|_{\mathcal{E}} = \mathbb{1}$ and Γ acts effectively on \mathcal{E} . Again $\mathcal{E} = \mathcal{P}$, and then dim $\Delta \leq 7$ by 2.6. Similarly, dim $\Delta_a \leq 6$.

Remark. In any case, dim $\Delta_a \leq 6$. This proves 8.2.

8. Fixed triangle

Let $\mathcal{F}_{\Delta} = \{a, u, v\}$ be a triangle.

8.0. *Theorem.* If dim $\Delta \ge 10$, then Δ is a Lie group.

Proof. If Δ is not a Lie group, then 2.6 implies that Δ has only orbits of dimension at most 3 on two sides of the fixed triangle, say on uv and av. Hence, dim $\Delta_z = 7$ for $z \in uv \setminus \{u, v\}$, and [Salzmann 1979, (**)] applies to Δ_z . Choose $c \in av \setminus \{a, v\}$ and put $x = az \cap cu$. Then dim $\Delta_{c,z} \ge 4$, but 2.2(7) or [Salzmann 1979, (**)] asserts that $\Delta_x \cong SO_3 \mathbb{R}$, a contradiction. **8.1.** Semisimple groups. If \mathcal{F}_{Δ} is a triangle, if Δ is semisimple, and if dim $\Delta \geq 9$, then Δ is a Lie group.

Proof. Suppose that Δ is not a Lie group. Only the case dim $\Delta = 9$ has to be considered. Then Δ has a 3-dimensional factor Γ which is not a Lie group. Either the complement Ψ of Γ is locally isomorphic to $SL_2\mathbb{C}$, or Ψ is a product of two 3-dimensional factors. Let $D = P \setminus (au \cup av \cup uv)$.

(a) The center Z of Δ acts freely on D: if $x^{\zeta} = x \in D$ for some $\zeta \in \mathbb{Z} \setminus \{1\}$, then $\langle x^{\Delta} \rangle$ is a proper subplane, and dim $\Delta_x \ge 5$ contrary to stiffness 2.2.

(b) $\Gamma|_{uv} \neq 1$ and $\Gamma/Z \cong PSL_2 \mathbb{R}$: in the case $\Gamma \leq \Delta_{[a,uv]}$ it would follow from [Salzmann et al. 1995, 61.2] that Γ is compact and hence a Lie group. For the same reason, Γ acts nontrivially on the other sides of the fixed triangle.

(c) There is at most one fixed line, say uv, such that $Z|_{uv}$ is a Lie group: otherwise Γ itself would be a Lie group.

(d) dim $x^{\Delta} \leq 6$ for each $x \in D$, and dim $\Delta_x \geq 3$: as $Z|_{au}$ and $Z|_{av}$ are not Lie groups, 2.6 implies that all orbits on these two sides of the fixed triangle have dimension < 4.

(e) There is some $p \in D$ such that $(Z\Psi)_p = 1$, and $\Lambda = (\Delta_p)^1$ satisfies dim $\Lambda = 3$; moreover, $(\Gamma Z)_p = 1$: if $p^{\Gamma} \not\subseteq ap$ (such a point p exists by step (b)), then $\langle p^{\Gamma} \rangle$ is a connected subplane, and $\langle p^{\Gamma Z} \rangle = \mathcal{P}$, or else Z would be a Lie group by 2.10. On the other hand, $(Z\Psi)_p|_{p^{\Gamma Z}} = 1$, dim $p^{\Psi} = 6$, dim $\Delta_p = 3$ by step (d), $\langle p^{\Psi} \rangle = \mathcal{P}$, and $(\Gamma Z)_p|_{p^{\Psi}} = 1$.

(f) $\Lambda \cong \Gamma/Z$ and any involution $\iota \in \Lambda$ is planar: consider the canonical epimorphism $\kappa : \Delta \to \Delta/Z$ and note that $\Delta^{\kappa} = \Gamma^{\kappa} \times \Psi^{\kappa}$. Let π be the projection onto the first factor. Then $\kappa : \Lambda \cong \Lambda^{\kappa}$ since $\Lambda \cap Z = \mathbb{1}$. The restriction $\pi : \Lambda^{\kappa} \to \Gamma^{\kappa}$ is injective because $\Lambda \cap \Psi Z = \mathbb{1}$, and it is surjective since dim $\Lambda = \dim \Gamma = 3$ [Salzmann et al. 1995, 93.12]. A reflection in Λ would have one of the fixed lines as axis, but Λ is simple; moreover, ι fixes a nondegenerate quadrangle. Therefore, ι is indeed planar. Now Z acts effectively on \mathcal{F}_{ι} by step (a), and Z is a Lie group contrary to the assumption.

8.2. Compact normal subgroup. If Δ has a serpentine normal subgroup Θ , and if dim $\Delta \ge 7$, then Δ is a Lie group (see the remark after 7.2).

Summary

The following table lists our conditions implying that Δ is a Lie group. There are always three conditions to be combined: the first column specifies the fixed configuration \mathcal{F}_{Δ} , the first row lists possible assumptions on the structure of Δ , and in the body of the table, a lower bound for dim Δ is given. The abbreviations in

					1	
\mathcal{F}_{Δ}	Δs -s	$\Theta \triangleleft \Delta$	$\mathbb{R}^t \triangleleft \Delta$	Δ arbitr.	references	
Ø	9	9*	7	10	3.1, 3.2,	3.3
$\{W\}$	4			9	4.1,	4.2
flag	4	9		10	4.1, 5.4,	5.1
$\langle u, v \rangle$	4	7		8	4.1, 5.6,	5.2
$\langle u, v, w \rangle$	4	7		8	4.1, 5.5,	5.3
$\{o, W\}$	10	11		12	6.2, 6.3, [Priwitz	er 1994]
$\langle u, v, ov \rangle$	10	11		12	7.1, 7.2, [Priwitz	er 1994]
$\langle o, u, v \rangle$	9	7		10	8.1, 8.2,	8.0
arbitrary	10	11		12	[Priwitz	er 1994]

the first line mean, in this order, that Δ is semisimple, that Δ contains a serpentine normal subgroup in the sense of 2.12, that Δ contains a normal vector group, or that no condition is imposed on the structure of Δ .

Here 9^{*} means that also $\Delta \cong SL_3 \mathbb{R} \times \Theta$ is conceivable.

References

- [Baer 1946] R. Baer, "Projectivities with fixed points on every line of the plane", *Bull. Amer. Math. Soc.* **52** (1946), 273–286. MR Zbl
- [Bödi 1994] R. Bödi, "On the dimensions of automorphism groups of four-dimensional double loops", *Math. Z.* **215**:1 (1994), 89–97. MR Zbl
- [Grundhöfer and Salzmann 1990] T. Grundhöfer and H. Salzmann, "Locally compact double loops and ternary fields", pp. 313–355 in *Quasigroups and loops: theory and applications*, edited by O. Chein et al., Sigma Ser. Pure Math. **8**, Heldermann, Berlin, 1990. MR Zbl
- [Hähl 1986] H. Hähl, "Achtdimensionale lokalkompakte Translationsebenen mit mindestens 17dimensionaler Kollineationsgruppe", *Geom. Dedicata* **21**:3 (1986), 299–340. MR Zbl
- [Halder 1971] H.-R. Halder, "Dimension der Bahnen lokal kompakter Gruppen", *Arch. Math. (Basel)* **22** (1971), 302–303. MR Zbl
- [Hofmann 1965] K. H. Hofmann, "Lie algebras with subalgebras of co-dimension one", *Illinois J. Math.* **9** (1965), 636–643. MR Zbl
- [Hofmann and Kramer 2015] K. H. Hofmann and L. Kramer, "Transitive actions of locally compact groups on locally contractible spaces", *J. Reine Angew. Math.* **702** (2015), 227–243. Correction in **702** (2015), 245–246. MR Zbl
- [Löwen 1976] R. Löwen, "Locally compact connected groups acting on Euclidean space with Lie isotropy groups are Lie", *Geometriae Dedicata* **5**:2 (1976), 171–174. MR Zbl
- [Löwen 1999] R. Löwen, "Nonexistence of disjoint compact Baer subplanes", Arch. Math. (Basel) 73:3 (1999), 235–240. MR Zbl
- [Poncet 1959] J. Poncet, "Groupes de Lie compacts de transformations de l'espace euclidien et les sphères comme espaces homogènes", *Comment. Math. Helv.* **33** (1959), 109–120. MR Zbl

- [Priwitzer 1994] B. Priwitzer, "Large automorphism groups of 8-dimensional projective planes are Lie groups", *Geom. Dedicata* **52**:1 (1994), 33–40. MR Zbl
- [Salzmann 1967] H. R. Salzmann, "Topological planes", *Advances in Math.* **2**:fasc. 1 (1967), 1–60. MR Zbl
- [Salzmann 1971] H. Salzmann, "Kollineationsgruppen kompakter 4-dimensionaler Ebenen, II", *Math.* Z. **121** (1971), 104–110. MR Zbl
- [Salzmann 1979] H. Salzmann, "Compact 8-dimensional projective planes with large collineation groups", *Geom. Dedicata* **8**:2 (1979), 139–161. MR Zbl
- [Salzmann 2003] H. Salzmann, "Baer subplanes", *Illinois J. Math.* **47**:1-2 (2003), 485–513. MR Zbl
- [Salzmann 2010] H. R. Salzmann, "Classification of 8-dimensional compact projective planes", *J. Lie Theory* **20**:4 (2010), 689–708. MR Zbl
- [Salzmann 2014] H. R. Salzmann, "Compact planes, mostly 8-dimensional: a retrospect", preprint, 2014. arXiv
- [Salzmann 2017] H. R. Salzmann, "Compact 16-dimensional planes: an update", preprint, 2017. arXiv
- [Salzmann et al. 1995] H. Salzmann, D. Betten, T. Grundhöfer, H. Hähl, R. Löwen, and M. Stroppel, *Compact projective planes*, De Gruyter Expositions in Mathematics 21, de Gruyter, Berlin, 1995. MR Zbl

Received 18 Nov 2018. Revised 19 Mar 2019.

HELMUT R. SALZMANN:

helmut.salzmann@uni-tuebingen.de

Mathematisches Institut, Universität Tübingen, Tübingen, Germany

Innovations in Incidence Geometry

MANAGING EDITOR

Tom De Medts	Ghent University tom.demedts@ugent.be
Linus Kramer	Universität Münster linus.kramer@wwu.de
Klaus Metsch	Justus-Liebig Universität Gießen
	klaus.metsch@math.uni-giessen.de
Bernhard Mühlherr	Justus-Liebig Universität Gießen
	bernhard.m.muehlherr@math.uni-giessen.de
Joseph A. Thas	Ghent University
	thas.joseph@gmail.com
Koen Thas	Ghent University
	koen.thas@gmail.com
Hendrik Van Maldeghem	Ghent University
	hendrik.vanmaldeghem@ugent.be

HONORARY EDITORS

Jacques Tits Ernest E. Shult †

EDITORS

Peter Abramenko	University of Virginia
Francis Buekenhout	Université Libre de Bruxelles
Philippe Cara	Vrije Universiteit Brussel
Antonio Cossidente	Università della Basilicata
Hans Cuypers	Eindhoven University of Technology
Bart De Bruyn	University of Ghent
Alice Devillers	University of Western Australia
Massimo Giulietti	Università degli Studi di Perugia
James Hirschfeld	University of Sussex
Dimitri Leemans	Université Libre de Bruxelles
Oliver Lorscheid	Instituto Nacional de Matemática Pura e Aplicada (IMPA)
Guglielmo Lunardon	Università di Napoli "Federico II"
Alessandro Montinaro	Università di Salento
James Parkinson	University of Sydney
Antonio Pasini	Università di Siena (emeritus)
Valentina Pepe	Università di Roma "La Sapienza"
Bertrand Rémy	École Polytechnique
Tamás Szonyi	ELTE Eötvös Loránd University, Budapest
-	¥ * 1

PRODUCTION

Silvio Levy

(Scientific Editor) production@msp.org

See inside back cover or msp.org/iig for submission instructions.

The subscription price for 2019 is US \$275/year for the electronic version, and \$325/year (+\$15, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP.

Innovations in Incidence Geometry: Algebraic, Topological and Combinatorial (ISSN 2640-7345 electronic, 2640-7337 printed) at Mathematical Sciences Publishers, 798 Evans Hall #3840, c/o University of California, Berkeley, CA 94720-3840 is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

IIG peer review and production are managed by EditFlow[®] from MSP.

PUBLISHED BY mathematical sciences publishers nonprofit scientific publishing http://msp.org/ © 2019 Mathematical Sciences Publishers

Innovation in Incidence Geometry

VOI. 17 NO. 3	2019
Chamber graphs of some geometries that are almost buildings VERONICA KELSEY and PETER ROWLEY	189
Groups of compact 8-dimensional planes: conditions implying the Lie property	201
HELMUT R. SALZMANN	
On two nonbuilding but simply connected compact Tits geometries of type C_3	221

ANTONIO PASINI

