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Groups of compact 8-dimensional planes:
conditions implying the Lie property

Helmut R. Salzmann

The automorphism group 6 of a compact topological projective plane with an
8-dimensional point space is a locally compact group. If the dimension of 6 is
at least 12, then 6 is known to be a Lie group. For the connected component 1
of 6 it is shown that dim1 ≥ 10 suffices, if 1 is semisimple or does not fix
exactly a nonincident point-line pair or a double-flag. 1 is also a Lie group, if
1 has a compact connected 1-dimensional normal subgroup and dim1≥ 11.

1. Introduction

A systematic study of compact 8-dimensional projective planes began with [Salz-
mann 1979]. Many of the results obtained in the following 15 years are presented
in Chapter 8 of the treatise Compact projective planes [Salzmann et al. 1995].
An up-to-date account of more recent contributions to the theme can be found
in [Salzmann 2014]. The classical model, the projective plane over the quaternion
field H, has the automorphism group PSL3 H of dimension 35. If P = (P,L) is
any other compact 8-dimensional plane, then its automorphism group 6 = AutP ,
taken with the compact-open topology, is a locally compact transformation group
of the point space P as well as of the line space L, and dim6 ≤ 18. All planes P
such that dim6 ≥ 17 have been described explicitly [Hähl 1986; Salzmann 2014].
The goal is to extend these results and to determine all pairs (P,1), where 1 is a
suitable connected subgroup of AutP . As in the cases of finite projective planes or
compact connected planes of smaller dimension, such a classification is possible
only if the group — in our case its dimension — is not too small. An important step
is to show that 1 is a Lie group. In all known examples, lines are homeomorphic
to the 4-sphere S4, each closed proper subplane is connected and has a point space
of dimension 2 or 4, and 6 is even a Lie group. In general, however, it is only
known that lines are homotopy equivalent to S4; it is conceivable that some planes
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have compact 0-dimensional subplanes; and it is an open problem whether or not
6 is always a Lie group. According to [Priwitzer 1994], the following theorem
holds: if dim6 ≥ 12, then 6 is a Lie group. Depending on the structure of a
connected subgroup 1 and the configuration F1 of its fixed elements (points and
lines), sharper bounds will be obtained here.

2. Preliminaries and background

This section contains a collection of basic facts. P = (P,L) will always be a com-
pact 8-dimensional projective plane if not stated otherwise; 1 denotes a connected
closed subgroup of AutP .

Notation. The notation is more or less standard and agrees with that in the book
[Salzmann et al. 1995]. A flag is an incident point-line pair; a double flag consists
of two points, say u, v, their join uv, and a second line in the pencil Lv. Homeo-
morphism is indicated by ≈. As customary, Cs1 0 or just Cs 0 is the centralizer
of 0 in 1. Distinguish between the commutator subgroup 0′ and the connected
component 01 of the topological group 0. The coset space 1/0 = {0δ | δ ∈1}
has the (covering) dimension 1 : 0 = dim1− dim0. The group 1[c,A] consists
of the axial collineations in 1 with axis A and center c. A collineation group 0 is
said to be straight if each orbit x0 is contained in some line. In this case a theorem
of Baer [1946] asserts that either 0 = 0[c,A] is a group of axial collineations or the
fixed configuration F0 is a Baer subplane.

2.1. Baer subplanes. It is known that each 4-dimensional closed subplane B of a
compact 8-dimensional plane P is a Baer subplane; i.e., each point of P is incident
with a line of B (and dually, each line of P contains a point of B); see [Salzmann
2003, §3] or [Salzmann et al. 1995, 55.5] for details. Lines of a Baer subplane are
homeomorphic to S2. If P contains a closed Baer subplane B, it follows easily that
the pencil of lines through a point outside B is a manifold, and hence, the lines of
P are homeomorphic to S4; see [Salzmann et al. 1995, 53.10] or [Salzmann 2003,
3.7]. By a result of Löwen [1999], any two closed Baer subplanes of P have a point
and a line in common. Generally, 〈M〉 will denote the smallest closed subplane of
P containing the set M of points and lines. We write BlP if B is a Baer subplane.

2.2. Stiffness. In the classical plane H, the stabilizer 3 = 6e of any frame e

(= nondegenerate quadrangle) is isomorphic to SO3 R; in particular, 3 is compact
and dim3 = 3. In any plane, 3 can be identified with the automorphism group
of the ternary field Hτ defined with respect to e. The fixed elements of 3 form
a closed subplane E = F3. It is not known if E is always connected or if 3 is
compact in general. Therefore, the following stiffness results play an important
role:
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(1) dim3≤ 4 [Bödi 1994].

(2) If F3 is connected or if 3 is compact, then dim3≤ 3 [Salzmann et al. 1995,
83.12–13].

(3) If F3 is contained in a Baer subplane B, then F3 is connected and the con-
nected component 31 of 3 is compact ([Salzmann et al. 1995, 55.4 and 83.9]
or [Salzmann 1979, (*)]).

(4) If , moreover, B is 3-invariant, then dim3≤ 1 [Salzmann et al. 1995, 83.11],

(4̂) if F3 itself is a Baer subplane, then 3 is compact [Salzmann et al. 1995, 83.6].

(5) If 3 is compact, then 3 is commutative or 31 ∼= SO3 R [Salzmann 1979, 2(1)].

(6) The stabilizer � of a degenerate quadrangle has dimension at most 7 [Salz-
mann et al. 1995, 83.17].

(7) If dim�= 7, then �1 ∼= eR
· SO4 R and lines are 4-spheres [Salzmann 1979,

(**)].

(8) If a subgroup 8 ∼= SO3 R of 1 fixes a line W , then each involution in 8 is
planar. Either 8 has no fixed point on W or F8 is a 2-dimensional subplane
[Salzmann 2010, Observation].

2.3. Fixed elements. The Lefschetz fixed-point theorem implies that each homeo-
morphism ϕ : P→ P has a fixed point.

(a) By duality, each automorphism of P fixes a point and a line [Salzmann et al.
1995, 55.19].

(b) The solvable radical P=
√
1 of 1 fixes some element of P .

(c) If F1 = ∅, then 1 is semisimple with trivial center, or 1 induces a simple
group on some connected closed 1-invariant subplane.

Proof. Argument (A) If 2 is a commutative connected normal subgroup of 1
and if 1 6= ζ ∈ Cs2, then pζ = p for some point p, and either p2 = p, or p2

is contained in a fixed line of 2, or p2 generates a connected (closed) subplane
S = 〈p2〉 and ζ |S = 1. In the latter case, 2=2|S 6= 1, and S is a proper subplane
of P .

(b) The claim will be proved by induction over the solvable length. Suppose that
1 itself is solvable and that the normal subgroup 2 has no fixed element. Let S
be a proper subplane as given by (A). If dimS = 2, then S has no proper closed
subplane [Salzmann et al. 1995, 32.7], and 2 has a fixed element in S. If S is a
Baer subplane, then (A) can be applied to 2; again F2 6= ∅, say p2 = p. Then
2|p1 = 1. Either 1 fixed some element or D = 〈p1〉 is a proper subplane. In the
latter case, 1|D = (1/2)|D has a fixed element by induction.
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(c) This will be proved successively for planes R of dimension 2, 4, and 8. If 1
is not semisimple, then P =

√
1 6= 1 by definition, and P fixes some element by

step (b), say pP
= p. Assume also that F1 = ∅. Then p1 is not contained in a

line and 〈p1〉 = S ≤ R is a closed subplane; normality of P implies P|S = 1. If
ζ 6= 1 is a central element of 1, then (A) yields a common fixed element p of ζ
and P, and ζ |S = P|S = 1.

If dimR = 2, there is no proper closed subplane, P|R = 1 = ζ |R, and 1 is
semisimple with trivial center, and hence 1 is strictly simple; see [Salzmann et al.
1995, 33.7] or [Salzmann 1967, 5.2]. If dimR = 4, then P 6= 1 or ζ 6= 1 implies
S 6= R, dimS = 2, and 1 = 1|S 6= 1 is simple. Finally, let dimR = 8. Then
S = 〈p1〉 < R, dimS ≤ 4, and F1 = ∅. Either dimS = 2 and 1|S is simple by
what has just been proved, or dimS = 4 and 1 is semisimple with trivial center.
In the latter case 1 is simple by [Salzmann et al. 1995, 71.8]. �

2.4. Dimension formula. By [Halder 1971] or [Salzmann et al. 1995, 96.10], the
following holds for the action of 1 on P or on any closed 1-invariant subset M
of P , and for any point a ∈ M :

dim1= dim1a + dim a1 or dim a1 =1 :1a.

2.5. Approximation theorem, see [Salzmann et al. 1995, 93.8].

(a) Every locally compact group 0 has an open subgroup 1 which is an extension
of its connected component 11 by a compact group.

(b) If 1 is locally compact and 1/11 is compact, then 1 has arbitrarily small
compact normal subgroups N such that 1/N is a Lie group.

(c) If , moreover, dim1 is finite, then dim N = 0 for each sufficiently small sub-
group N≤1.

2.6. Groups with open orbits. Let L be a line of the 8-dimensional plane P , and
let 1 be a closed subgroup of AutP with L1 = L. If U ⊆ L is a 1-orbit which
is open or, equivalently, satisfies dim U = dim L , then L is a manifold and 1
induces a Lie group on U. It follows that all lines are manifolds homeomorphic
to S4 (adapted from [Salzmann et al. 1995, 53.2]).

2.7. Compact groups on S4 (Richardson). If a compact connected group 8 acts
effectively on the 4-sphere S, and if 8 has an orbit of dimension > 1, then 8 is a
Lie group and (8, S) is equivalent to the obvious standard action of a subgroup of
SO5 R on S4 or 8∼= SO3 R has no fixed point on S [Salzmann et al. 1995, 96.34].

2.8. Theorem (Löwen). If the connected subgroup 1 of AutP fixes the line W
and if 1x is a Lie group for each x /∈W , then 1 itself is a Lie group.
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Proof. The following has been shown in [Löwen 1976]. Let (0,M) be a locally
compact connected transformation group of finite dimension, where X = M ∪∞
is a Peano continuum, all cohomology groups Hq(X,Q) are finite-dimensional,
and Hq(X,Q) = 0 for some n and all q ≥ n; moreover, the Euler characteristic
χ(X,Q) 6= 0, 1. If all stabilizers 0x with x ∈ M are Lie groups, then 0 is a
Lie group. This result applies to (1, P \ W ): by [Salzmann et al. 1995, 51.6,
51.8, 52.12], the one-point compactification X of P \W is homeomorphic to the
quotient space P/W , and X is a Peano continuum (i.e., a continuous image of
the unit interval); moreover, X is homotopy equivalent to S8, and X has Euler
characteristic χ(X)= 2. �

2.9. Compact groups. Each compact connected group is of the form (A×3)/N,
where A is the connected component of the center and 3 is a direct product of
compact simply connected almost simple Lie groups; the kernel N is a compact
central subgroup of dimension dim N= 0. A compact connected commutative nor-
mal subgroup 2 of a connected group 1 is contained in the center of 1 [Salzmann
et al. 1995, 93.11, 93.19].

2.10. Groups of subplanes. The automorphism group of every proper connected
closed subplane is a Lie group by [Salzmann et al. 1995, 32.21, 71.2].

2.11. Lemma. Suppose that 8 is a compact connected Lie group and that the
compact connected 1-dimensional group 2 is not a Lie group. If 0 = 82 acts
effectively on a subspace M of the plane, if H=8∩2 is finite, and if 2a = 1 and
8a is finite for some a ∈ M , then dim a0 > dim a8.

Proof. First, let H = 1, so that 0 = 8×2. If dim a0 = dim a8, then the con-
nected component 4 of (82)a satisfies dim4 = 1. Consider the restrictions of
the projection maps π : 4 → 8 and % : 4 → 2. Both maps are continuous
homomorphisms. The kernel kerπ is contained in 2a = 1 and π is injective.
Compactness of 8 implies that 4 is isomorphic to a closed subgroup of 8; hence,
4 is a Lie group. From ker %≤8a we infer that ker % is finite, and [Salzmann et al.
1995, 93.12] shows that % is surjective, but then 2 would be a Lie group contrary
to the assumption. In the general case analogous arguments apply to the natural
maps π :4→8/H and % :4→2/H. �

2.12. Definition. For the remainder of this article, we shall call a compact, con-
nected 1-dimensional subgroup of 1 a serpentine subgroup. The letter 2 will be
reserved for such subgroups. They are 1-tori or, more frequently, solenoids; the
latter are not Lie groups.
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3. No fixed elements

Suppose in this section that F1 =∅.

3.1. Theorem. If dim1 ≥ 10, or if 1 is semisimple and dim1 ≥ 9, then 1 is a
Lie group.

Proof. By the approximation theorem, there is a compact 0-dimensional central
subgroup N such that 1/N is a Lie group. Suppose that 1 6= ζ ∈ N, and let pζ = p
be a fixed point of ζ . A slight variation of argument (A) in the proof of 2.3 shows
that E = 〈p1〉 is a connected proper subplane.

(a) If dim E = 2, then 1 induces on E a group 1∗ = 1/K of dimension at most
8, and stiffness yields dim K≤ 3. Hence, dim K≥ 1 and 1 : K≥ 6. In particular,
E is isomorphic to the classical real projective plane [Salzmann et al. 1995, 33.6],
and 1∗ is a subgroup of SL3 R. As 1∗ has no fixed element, 1∗ is simple by
[Salzmann 1967, 5.2] or [Salzmann et al. 1995, 33.1] (see also 2.3 above), and
then dim1∗ = 8, 1∗ ∼= SL3 R. If 1 is semisimple, the kernel K is also simple,
and dim K= 3. In any case, dim1≥ 10 and dim K≥ 2. Because N induces a Lie
group on E (see 2.10 or [Salzmann et al. 1995, 32.21]), we may assume that N<K.
Either Fζ lP for some ζ ∈ N \ {1}, or N acts freely on the set of exterior points
(points not belonging to E). In the first case, the stiffness result (4) would imply
dim K ≤ 1. Hence, Nz = 1 for each exterior point z on an interior line L (a line
of E). If dim1L−dim1z = 4, then1L induces a Lie group on the orbit z1L by 2.6.
Therefore, N is finite, and 1 would be a Lie group. Consequently 1 :1z ≤ 2+ 3.
Choose two interior points a, b /∈ L and consider the stabilizer �=1z,a,b; it fixes
also the point L ∩ ab and hence 3 collinear points of E . Linear algebra shows that
� fixes all interior points of ab; moreover, dim� ≥ 1 and �|zN = 1. Thus, F�
is a connected proper subplane of dimension 2 or 4, and N acts effectively on F�.
From 2.10 it follows that N is a Lie group, and so is 1.

(b) Finally, let E lP and note that 1∗ =1|E has no fixed element. According to
[Salzmann et al. 1995, 71.4, 71.8], the group 1∗=1/K is strictly simple. Stiffness
shows dim K≤ 1 and 1 : K> 8 (since dim1≥ 10 or dim K= 0). All possibilities
for 1∗ are listed in [Salzmann et al. 1995, 71.8]; only PSL3 C has dimension > 8.
Hence, dim1≥ 16, and 1 is a Lie group by [Priwitzer 1994]. �

Remark. Previously 3.1 was only known for dim1 ≥ 11; see [Salzmann 2010,
Theorem 1.1] or [Salzmann 2014, 2.1].

3.2. Compact normal subgroup. If 1 has a serpentine normal subgroup 2 and if
dim1≥ 9, then 1 is a Lie group or, conceivably, 1∼= SL3 R×2 induces the full
collineation group on some invariant 2-dimensional desarguesian subplane.
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Proof. The proof follows the scheme of the previous one, and the same notation
will be used. If 1 is not a Lie group, then dim1= 9 by 3.1.

(a) Let E = 〈p1〉 be a 2-dimensional subplane. Again E is the classical real plane
and 1∗ = 1/K ∼= SL3 R is simple. Hence, 2N ≤ K. Either 1′ ∼= 1∗ or 1′ is a
twofold covering of SL3 R. In the first case, each involution in 1′ is a reflection
of P (if Fβ lP for some involution β, then N induces a Lie group on Fβ by 2.10,
the induced map β|E is a reflection, 〈E,Fβ〉 = P , and 1 would be a Lie group).
Consequently, there is a translation group 1[L ,L] ∼= R2 for each interior axis L . It
remains an open problem whether or not 2 must be a Lie group in this situation.

In the second case, the center of 1′ contains an involution ι such that FιlP ,
and the lines of P are homeomorphic to S4 (see 2.1). Moreover, 2|Fι = 1 by the
stiffness property [Salzmann et al. 1995, 71.7(a)] or by [Grundhöfer and Salzmann
1990, XI.9.3] (recall that 2|E = 1). Hence, 2 acts freely on the set of points not
belonging to Fι. Let L be a line of E and put L ′ = L \Fι. The group 1′ has a
subgroup ϒ ∼= SU2 C, and the connected component 8 of ϒL is a torus. As L ′ is
dense in L , it follows that 8 acts effectively on L ′ (note that E is classical). Let
p ∈ L ′ such that p8 6= p, dim8p = 0, and 8p is finite. We have 8 ∩2 = 〈ι〉.
Therefore, Lemma 2.11 applies and shows that 1 = dim p8 < dim p82 = 2. By
[Salzmann et al. 1995, 96.24] or 2.7 above 1 is a Lie group.

(b) If 〈p1〉 = C l P , the lines of P are 4-spheres. From 2.3 and 2.9 it follows
that 2|C = 1 and that 1|C is semisimple of dimension 8. By 2.3(c) and [Salzmann
et al. 1995, 71.8], the group 1∗ = 1|C is isomorphic to SL3 R or to PSU3 (C, r),
r ≤ 1. For each of the unitary groups, there is an interior line L such that SU2 C acts
nontrivially on the set L ′ of exterior points of L . In particular, a maximal compact
subgroup of 1L has an orbit of dimension > 1 on L ′. Recall that N acts freely on
the set of exterior points. By Richardson’s theorem, 1L induces a Lie group on L ′.
Hence, N and 1 are Lie groups. If 1∗ ∼= SL3 R, then there exists a 1-invariant
2-dimensional subplane of C [Salzmann et al. 1995, 72.3], and dim L1 = 2 for a
suitable line L . Hence, 1′|L ′ contains a circle group 8. Again 8 acts effectively
on L ′. The proof can now be completed exactly as at the end of step (a). �

3.3. Normal vector group. If F1=∅, if1 has a minimal normal vector subgroup
4, and if dim1≥ 7, then 1 is a Lie group.

Proof. From 2.3 it follows that F = F4 is a proper connected 1-invariant subplane.
There is a compact group N G1 such that 1/N is a Lie group. We may assume
that dim N= 0, that N is not a Lie group, and that N|F = 1. Note that dim1≤ 9
by 3.1. If F lP , then 4|F = 1 by definition, and 4 would be compact by stiffness.
Hence, F is a 2-dimensional subplane.
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(a) First, let dim1 = 9. Then the induced group 1|F = 1/K is simple by 2.3;
in fact, 1/K∼= SL3 R. A maximal compact subgroup 8 of 1 is connected by the
Malcev–Iwasawa theorem, and N<8. Consequently, dim8= 4 (or 8∼= SO3 R by
[Salzmann et al. 1995, 93.12]), 8 is a product of 8′ and a compact group 2= K1,
4 ∩ 2 = 1, and 4 would be contained in 1/K1, which is locally isomorphic
to SL3 R.

(b) In the cases dim1 ∈ {7, 8} the induced group 1/K is simple by 2.3, and then
1 : K= 3 [Salzmann et al. 1995, 33.6,7], but dim K≤ 3 by stiffness. �

Remark. If F1 is not empty, 4 can be a group of axial collineations, and in the
case 4 G1 there are no sharper results than in general.

4. Exactly one fixed element

Up to duality, we may assume that F1 consists of a line W .

4.1. Semisimple groups. If the semisimple group 1 fixes exactly one line and pos-
sibly some points on this line, and if dim1> 3, then 1 is a Lie group [Salzmann
2010, Theorem 1.3].

4.2. Theorem. If F1 = {W } and if dim1≥ 9, then 1 is a Lie group.

Proof. (a) Again there exist arbitrarily small compact central subgroups N≤1 of
dimension 0 such that 1/N is a Lie group; see 2.5. If N acts freely on P \W , then
each stabilizer 1x with x /∈W is a Lie group because 1x∩N= 1, and 1 is a Lie
group by 2.8.

(b) If xζ = x /∈W for some ζ ∈N\{1}, then x1 is not contained in a line, ζ |x1 = 1,
and E = 〈x1,W 〉 is a proper connected subplane. Assume in this step that E is 2-
dimensional. In this case the claim follows by similar arguments as in 3.1(a): let
1∗ =1|E =1/K. Then 1 : K≤ 6 by [Salzmann 1967, 3.19] or [Salzmann et al.
1995, 33.6] together with the dimension formula 2.4, and dim K≤ 3 by stiffness.
It follows that dim K = 3, 1 : K = 6, and E \W is the classical real affine plane
[Salzmann 1967, 4.3]. As 1∗ is a Lie group, we may assume that N< K. Again N
acts freely on the set of exterior points. The remainder of the proof is as in 3.1(a)
with W instead of L .

(c) If 1 is not a Lie group, the case ElP will lead to a contradiction. Write again
1∗ =1|E =1/K. Note that K is compact and acts freely on the set of points not
in E . If 1 is transitive on W ∩ E ≈ S2, then a maximal compact subgroup of 1
induces a Lie group on W by 2.7. Hence, K and 1 are Lie groups. Therefore, 1
has a 1-dimensional orbit V ⊂W ∩ E . Brouwer’s theorem [Salzmann et al. 1995,
96.30] (see also [Hofmann 1965]) shows that 1|V =1/0 has dimension at most 3.
Consequently dim0 ≥ 6. Choose a point v ∈ V , a line L in E with v ∈ L , and an
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exterior point z ∈ L . By 2.6 we have dim z0L < 4. Note that 3= (0L ,z)
1 fixes V

pointwise and that dim3 > 0. Because N acts freely on L \ E and N ≤ Cs1, it
follows that F3 is a proper connected subplane. Now N is a Lie group by 2.10. �

5. Collinear fixed points

Suppose in this section that 1 fixes a unique line W and one or more points on W .

5.1. Theorem. Let F1 = {v,W } be a flag. If dim1≥ 10, then 1 is a Lie group.

Proof. By the approximation theorem, there is a compact 0-dimensional normal
subgroup N such that 1/N is a Lie group. Because of 2.8 we may assume that
xζ = x for some ζ ∈ N \ {1} and some x /∈ W . As x1 is not contained in a line
and ζ |x1 = 1, it follows that C = 〈x1, v,W 〉 is a proper connected subplane. If
C is 2-dimensional, then dim1|C ≤ 5 and dim1 ≤ 8 by stiffness. Therefore, C
is a 1-invariant Baer subplane. The induced group 1|C = 1/K is a Lie group
by 2.10. Hence, it may be supposed that N ≤ K. Obviously, K acts freely on the
set of exterior points (points not in C), and dim K≤ 1 by stiffness. Thus, 1 :K≥ 9,
and C is isomorphic to the classical complex plane [Salzmann et al. 1995, 72.8].
Choose interior points u, w ∈W , an interior line L in the pencil Lv , and an exterior
point z ∈ L . If N is not a Lie group, then the connected component 3 of 1u,w,z

has positive dimension by 2.6, because 1 :1u,w,L ≤ 6. Note that zN
⊂F3 and that

3 fixes all interior points of W , so that F3 is a connected proper subplane. Now
N is a Lie group by 2.10. �

5.2. Theorem. If F1 = 〈u, v〉 and if dim1≥ 8, then 1 is a Lie group.

For a proof see [Salzmann 2017, Lemma 6.0′].

5.3. Proposition. If 1 fixes at least 3 distinct points and exactly 1 line, and if
dim1≥ 8, then 1 is a Lie group.

Remark. This follows from 5.2. An easy proof is given in [Salzmann 2017, 7.0′].

5.4. Compact normal subgroup. Suppose that F1 is a flag and that 1 has a ser-
pentine normal subgroup 2. If dim1≥ 9, then 1 is a Lie group.

Proof. This can be proved in a similar way as 5.1 and the first arguments are the
same. Again there is a 1-invariant Baer subplane C and 1|C =1/K is a Lie group.
Note that 2≤ Cs1 by 2.9 and that 2|C is a Lie group.

(a) 2∗ =2|C does not contain any involution: as F1 is a flag, there is no reflection
in 2∗. If ι is a planar involution in 2∗, then C ∩Fι is a 1-invariant 2-dimensional
subplane and stiffness implies dim1≤ 5+ 1. Hence, 2∗ = 1 and 2≤ K.
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(b) Choose an interior line L ∈ Lv, and exterior points x ∈ L and z ∈ W . The
kernel K acts freely on the set of all exterior points. Result 2.6 implies that
1≤ dim xK, dim zK

≤ 3, so that 3 = (1x,z)
1 has positive dimension. Recall that

N≤K. Put 0=2N and E =〈x0, z0〉. Then E ≤F3 is a proper connected subplane,
0 acts faithfully on E , and 0, N, and 1 are Lie groups (2.10). �

5.5. Compact normal subgroup. Assume that F1 = 〈u, v, w〉. If dim1≥ 7, and
if 1 has a serpentine normal subgroup 2, then 1 is a Lie group.

Proof. If 1 is not a Lie group, there exists a point p /∈ W = uv such that E =
〈p1, u, v, w〉 is a 2- or 4-dimensional subplane; see steps (a) and (b) in the proof
of 4.2. Put 1|E =1/K. In the first case, 1 :K≤ 3 and dim K≤ 3 by the dimension
formula and stiffness. Therefore, E lP and lines are homeomorphic to S4. Recall
that 2≤ Cs1 and that 2|E is a Lie group, either a torus or trivial. A torus would
contain a reflection [Salzmann et al. 1995, 55.21(c)], and 1 would fix some point
c /∈ W . Hence, E = F2 and 2 ≤ K. There is a compact central subgroup N<1

such that 1/N is a Lie group and N≤ K. As E is maximal in P , the kernel K acts
freely on the set of points outside E (the exterior points). Let x be an exterior point
on an interior line L in the pencil Lv . Because of 2.6, we have 1L :1x < 4. Hence,
3 = (1x)

1 satisfies dim3 ≥ 2. Stiffness implies that F3 is 2-dimensional. KN
acts freely on F3, and N is a Lie group by 2.10, but then 1 is also a Lie group. �

Arguments a little more intricate show that even the following is true:

5.6. Compact normal subgroup. Assume that F1 = 〈u, v〉. If dim1 ≥ 7, and if
1 has a serpentine normal subgroup 2, then 1 is a Lie group.

Proof. Suppose that 1 is not a Lie group. Again there is a point p /∈ W = uv
such that E = 〈p1, u, v〉 is a proper connected subplane; see steps (a) and (b) in
the proof of 4.2. Put 1|E =1/K. There is a compact central subgroup N<1 of
dimension dim N= 0 such that 1/N is a Lie group and N≤ K.

(a) If E is 2-dimensional, then dim K = 3 and 1 : K = 4. From [Salzmann et al.
1995, 33.9] it follows that E is the classical real plane; moreover, each compact
subgroup of 1|E is trivial, and 2|E = 1. Let L be a line of E in the pencil Lv
and consider a point x ∈ L \ E and a third point w ∈ uv ∩ E . Then 3=1x,w has
positive dimension and fixes each point of uv∩E . Hence, F3 is a proper connected
subplane, and N|F3 is a Lie group by 2.10. This is true for each choice of x . As P
is generated by E and at most two of such subplanes, N itself is a Lie group, and
so is 1.

(b) Thus, E lP and lines are homeomorphic to S4 by 2.1. Recall that 2≤ Cs1.
Again2|E is a compact Lie group by 2.10, and2|E is either a torus or trivial. In the
first case, the involution in 2|E is a reflection by [Salzmann et al. 1995, 55.21(c)],
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and 1 would fix its center and axis. Hence, 2|E = 1 and F2 = E . Choose L , x ,
and w as in step (a). Because of 2.6, we have dim1x ≥ 2. Put 3 = 1x,w and
note that 2N acts freely on L \ E . It follows that F3 is connected and that N
acts effectively on F3. Hence, F3 = P and 1x,w = 1 for each admissible w.
Therefore, 1x is sharply transitive on a cylinder and 1x has a torus subgroup 9.
If the involution ι ∈9 is planar, then 2N acts effectively on Fι, and N would be
a Lie group. Thus, ι is a reflection, its axis is L and its center is u. Interchanging
the roles of u and v, we find also a torus subgroup 8<1 such that the involution
σ ∈8 has the center v. We have 1w,L :1w,x ≤ dim x1 ≤ 3 and dim L1w =1w :
1w,L ≥ 5− 3. Consequently 1 is transitive on the set of admissible lines L , which
is homeomorphic to R2. Therefore, 8 fixes one of the lines L . This follows, e.g.,
from the much more general result [Poncet 1959, Théorème a]. The axis of σ is an
interior line in Lu and σ /∈8x so that 8x is finite. As L1≈R2 is simply connected,
a maximal compact subgroup X of 1L is connected [Salzmann et al. 1995, 93.10],
and X induces a connected group X on L \E . The group 8 yields a torus 8≤X. If
dim X= 2, then X=82 by [Salzmann et al. 1995, 93.12], and N<2. Moreover,
8∩2= 1 because 8 acts effectively on E , and dim x82> 1 by 2.11. If dim X> 2,
then dim xX

≥ 2 because Xx ≤ 1x and Xx is a torus. In both cases, X is a Lie
group by [Salzmann et al. 1995, 96.24], and then 1 is also a Lie group. �

6. Nonincident fixed elements

If1 fixes a nonincident point-line pair (and possibly further elements), then Löwen’s
criterion 2.8 does not apply.

6.1. Proposition. If 1 fixes a line W and if 1 is transitive on W , then 1 is a Lie
group [Priwitzer 1994, 2.1].

Alternative proof. By [Hofmann and Kramer 2015, Corollary 5.5], the induced
group 1|W is a Lie group and W is a manifold; in fact, W ≈ S4 [Salzmann et al.
1995, 52.3]. From [Salzmann et al. 1995, 96.19–22] it follows that 1|W has a
transitive subgroup SO5 R. The Malcev–Iwasawa theorem [Salzmann et al. 1995,
93.10] implies that a maximal compact subgroup 8 of 1 is connected. The result
[Salzmann et al. 1995, 55.40] shows that 8 has a subgroup ϒ ∼= Spin5 R. The
central involution in ϒ is a reflection with some center a /∈W . It suffices to show
that 8 is a Lie group. By the approximation theorem, there is an arbitrarily small
central subgroup N < 8 such that 8/N is a Lie group. As N centralizes each
stabilizer ϒz with z ∈W , we conclude that N|W = 1, i.e., N consists of homologies
with axis W and center a. Select a point v ∈ W and consider the action of 8v
on the line av. Note that ϒv ∼= Spin4 R fixes a second point u ∈ W , and that
ϒv has no subgroup of dimension 5. Put ϒv|av = ϒv/K. The homology group
K has dimension at most 3. Hence, ϒv has an orbit on av of dimension > 1, and
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Richardson’s theorem applies to 8v|av . In particular, 8v induces a Lie group on av,
and then N is a Lie group. �

6.2. Semisimple groups. Suppose that F1 is a nonincident point-line pair {a,W },
1 is semisimple, and dim1≥ 10. Then 1 is a Lie group.

Proof. By [Priwitzer 1994] we may assume that dim1< 12.

Case 1 (dim1 = 11). Then 1 = 09 is a product of two almost simple factors,
where dim0 = 3.

(a) Suppose that1 is not a Lie group, and denote the center of1 by Z. If 0Z|W 6=1,
then there is a point p such that G = 〈p0Z, a,W 〉 is a connected subplane (note
that 0|W = 1 implies p0 6= p). If dim p9 = 8, then 1 would be a Lie group
by [Salzmann et al. 1995, 53.2]. Therefore, 9p 6= 1 and 9p|G = 1, so that G is
a proper subplane (in fact a Baer subplane) and 0Z|G is a Lie group (see 2.10).
Thus, G = Fζ for some ζ ∈ Z. Consequently G1 = G, but 1 cannot act on the
4-dimensional plane G [Salzmann et al. 1995, 71.8].

(b) Hence, 0Z ≤ 1[a,W ]. From [Salzmann et al. 1995, 61.2] it follows that the
almost simple group 0 is compact. By [Salzmann et al. 1995, 55.32(ii)], the homol-
ogy group 0 does not contain a pair of commuting involutions. Hence, 0 ∼= SU2 C.
Moreover, 0 has 3-dimensional orbits on any line av, v ∈W . The group 9 acts al-
most effectively on W and 9 is not a Lie group. Therefore, 9|W ∼= PSU3 (C, 1). In
fact, 9|W is strictly simple because Z|W = 1, and 9|W is different from PSL3 R and
from the compact group PSU3 (C, 0) because these groups admit only finite cover-
ings and 9 is not a Lie group. The kernel K of the canonical map κ :9→9|W is
contained in Z. Let 8 be a maximal compact subgroup of 9. Then 8 is connected,
8κ ∼=U2 C, and dim8= 4. As 9 is not a Lie group, it follows that K is compact. If
lines are manifolds, then Richardson’s theorem as stated in [Salzmann et al. 1995,
96.34] applies and shows that 8 has two fixed points on W . Let v8 = v ∈W . Then
a maximal compact subgroup � of 1 fixes v, and � is connected by the Malcev–
Iwasawa theorem [Salzmann et al. 1995, 93.10]. Now �|av is a Lie group by 2.7,
and so are Z ≤ � and 1. Thus, lines are not manifolds, and 2.6 implies that all
orbits of 1 on W have dimension < 4.

(c) The structure theorem 2.9 shows that 8′ is a Lie group. In fact, 8′ ∼= SU2 C

because 8′κ 6∼= SO3 R. The restriction of κ to 8′ is an isomorphism, the involution
ω ∈ 8′ is in the center of 8, and ω is not planar (or lines would be manifolds);
moreover, ω is not a reflection with axis W . Hence, ω ∈1[u,av] for suitable points
u, v ∈W . Choose a maximal compact subgroup � of 1 such that 8≤�, so that �
fixes u and v. Both 8′ and 0 act effectively on au; the product of their involutions
is a reflection in 1[v,au]. Hence, 8′0|au ∼= SO4 R. From dim8 = 4 it follows
that dim�= 7. The structure theorem of compact groups [Salzmann et al. 1995,
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93.11] shows that � is a product of the connected component 2 of its center and
the groups 8′ and 0. Let U be some nontrivial orbit of � on au and note that
dim U < 4; in fact, dim U = 3 because 0 acts freely on U . By [Salzmann et al.
1995, 96.13] we have dim�|U ≤ 6. Consequently � has a 1-dimensional normal
subgroup acting trivially on U . The only possible kernel contains 2, but 2|U 6= 1
since Z acts freely on U . This contradiction proves that dim1 6= 11.

Case 2 (dim1 = 10). Then 1/Z ∼= PSp4 R ∼= O′5(R, 2); note that the other two
10-dimensional simple groups have simply connected double coverings [Salzmann
et al. 1995, 94.33] and hence cannot be images of non-Lie groups.

(a) The center Z acts freely on C = {x ∈ P \W | x 6= a}: suppose that pζ = p
for some p ∈ C and ζ ∈ Z \ {1}. Then ζ |p1 = 1, by assumption p1 is not
contained in a line, and D = 〈a, p1,W 〉 is a proper connected subplane. The
induced group 1|D is locally isomorphic to Sp4 R, and D is a Baer subplane, but
then dim1|D ≤ 8 because 1 fixes a,W ∈D. (According to [Salzmann et al. 1995,
72.8] a 4-dimensional plane with a group of dimension > 8 is classical, and 1|D
would be contained in GL2 C; see also [Salzmann 1971, 8.1].)

(b) If 1 contains a planar involution β, then Z induces a Lie group on Fβ , Fβ =Fζ
for some ζ ∈ Z, and Fζ would be a 1-invariant Baer subplane. This is impossible
for the same reasons as in step (a).

(c) As 1/Z has a subgroup SO3 R, the structure theorem 2.9 shows that 1 has
a subgroup 8 ∼= SU2 C: in the case 8 ∼= SO3 R one of 3 pairwise commuting
reflections of 8 would have the axis W [Salzmann et al. 1995, 55.35], but SO3 R

is simple.

(d) Suppose that lines are manifolds. Then W ≈S4 by [Salzmann et al. 1995, 52.3].
Some orbit of 8 on W has dimension at least 2. Consequently 1 induces a Lie
group 1/K on W (use Richardson’s theorem 2.7). The structure of 1 shows that
a maximal compact subgroup � of 1 is 4-dimensional. As K≤ Z and dim Z= 0,
it follows that dim�/K= 4. Note that �′ =8∼= SU2 C. Richardson’s theorem as
stated in [Salzmann et al. 1995, 96.34] shows that either 8|W ∼=8 has exactly two
fixed points u, v ∈W , where v is the center of the involution ι∈8, or8|W ∼= SO3 R

has a circle of fixed points and the central involution ι ∈ 8 is a reflection with
axis W . In any case, there is a point v ∈W such that v8 = v and 8|av ∼=8. By 2.7
each orbit c8 with a, v 6= c ∈ av is a 3-sphere. It follows that the orbit space av/8
is a closed interval J . The compact group K ≤ 1[a,W ] induces a group of order-
preserving homeomorphisms on J . Each endpoint b = c8 of an orbit xK

⊂ J is
a fixed element of K. Hence, K maps c8 onto itself. As K is central, cκ = cϕ(κ)

defines an injective continuous homomorphism K→8. Consequently K is finite
and � would be a Lie group.
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(e) Thus, lines are not manifolds, and by 2.6 each orbit of (a subgroup of) 1 on
a line has dimension at most 3. The group � is a product 28, where 2 is the
connected component of the center of �, 2∩8 ≤ 〈σ 〉 is trivial or generated by
the involution σ ∈8, and 2 is not a Lie group.

(f) Suppose that σ is not a reflection with axis W . Step (b) shows that σ has some
center u ∈ W and an axis av with v ∈ W . Consider an arbitrary point z ∈ Y :=
W \ {u, v}. We have dim8z = 0, and 8z is finite. With [Salzmann et al. 1995,
93.6] it follows that dim1z = 7 and dim1z8 = 10. Therefore, 1 = 1z8 and
z1 = z8. Thus, Y1 = Y and {u, v} would be 1-invariant, but F1 = {a,W }.

(g) Hence, σ ∈1[a,W ]. Recall that a maximal compact subgroup � =28 of 1
has dimension dim� = 4. If z1 ⊆ W is a nontrivial orbit, and if 1|z1 = 1/K,
then the kernel K is contained in Z (because 1 is almost simple). Therefore, �
acts almost effectively on z1. By [Salzmann et al. 1995, 96.13(a)] either z� = z
or dim z� = 3. Consequently, dim z1 = 3 for each z ∈ W . (Note that z1 6= z. If
dim z1 < 3, then �δ|z1 = 1 for all δ ∈1. As 1 is generated by all conjugates of �,
this is impossible.)

(h) 2 has (at least) 2 fixed points u, v ∈ W . This follows from [Löwen 1976,
Lemma 1 or 2]; see also 2.8 above.

(i) By 2.5, there is a sufficiently small compact central subgroup 4 of 1 such that
1/4 is a Lie group. Put N = 2∩4. Then 2/N is a Lie group, and so is �/N.
Hence, 1/N is also a Lie group. Denote the canonical map 1→1/N by λ. The
quotient space M =1λ/(1v)λ is a manifold, and M can be written in the form

{{Nγ | γ ∈1v}Nδ | δ ∈1} = {1vδ | δ ∈1} =1/1v ≈ v1,

since N<2<1v . Therefore, v1 is a 3-manifold. If v� 6= v, then [Salzmann et al.
1995, 96.11(a)] implies v� = v1. As 2 ≤ Cs�, we have 2|v� = 1 and hence
2|v1 = 1, i.e., 2 is in the kernel of the action of 1 on M . This kernel is contained
in Z because 1 is almost simple. Consequently dim2= 0, a contradiction showing
that v� = v.

(j) Consider the action of � and of 8 on K := av \ {a, v}. The only involution
in 8 is the reflection σ with axis W . Therefore, dim8c = 0 for each c ∈ K ,
and the compact group 8c is finite. Let 0 = (1v)1 and note that dim0 = 7,
dim c0 = dim c8= 3, dim0c= 4, dim0c8= 7, and hence 0=0c8, c2⊆ c0 = c8.
As1/Z is a Lie group and Zc=1 by step (a), it follows that the stabilizer5=2c is
a Lie group. The condition cϑ = cϕ(ϑ) defines a continuous injective isomorphism
of the compact group 2/5 onto a closed subgroup of 8. Hence, 2/5 is a Lie
group, and so are 2 and 1. �
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6.3. Compact normal subgroup. Suppose that F1={a,W } is a nonincident point-
line pair. If 1 has a serpentine normal subgroup 2 and if dim1≥ 11, then 1 is a
Lie group.

Proof. (a) 2 is contained in the center Z= Cs1 (see 2.9), and 1/Z is a Lie group.
Assume that Z is not a Lie group. If Z|W 6= 1, there is some point p /∈ W such
that pZ

6⊆ ap, and 1p|〈pZ〉 = 1. From [Salzmann et al. 1995, 53.2] it follows that
dim1p ≥ 4. Thus, E = 〈pZ

〉 is a proper connected subplane, and Z|E is a Lie group
by 2.10. Therefore, ζ |E = 1 for some ζ ∈ Z \ {1}. In particular, pζ = p, ζ |p1 = 1,
dim p1 ≤ 4, and dim1p ≥ 7. This contradicts stiffness and proves that Z≤1[a,W ].

(b) By assumption, 1 has no fixed point on W , and 6.1 shows that 1 is not tran-
sitive on W . Hence, there is some orbit V = v1 ⊂ W such that 0 < dim V < 4.
Choose points u, w ∈ V and c ∈ av \ {a, v} and note that dim c1v < 4 by 2.6. If
3=1c,u,w 6= 1, then F3 is a proper connected subplane, Z acts freely on F3, and
Z would be a Lie group by 2.10. We have dim1c ≥ 5 and dim u1c = 3 for each
u ∈ V \ {v}. Consequently 1 is doubly transitive on V .

(c) By [Salzmann et al. 1995, 96.16–17], either V is compact and the induced
group 1∗ =1|V is isomorphic to one of the simple groups PSL4 R,O′5(R, 1), or
PSU3 (C, 1), or 1∗ is an extension of R3

≈ V by a transitive linear group. In the
first case dim1> 15 and 1 is a Lie group. In the last case, dimw1u,v ≤ 1, 3 6= 1,
and 1 is also a Lie group. Only two possibilities remain: 1∗ is a simple group of
dimension 10 or 8.

(d) If dim1∗ = 10, then a maximal semisimple subgroup 9 of 1 is isomorphic
to the simple group O′5(R, 1) or to its double cover U2 (H, 1); a maximal compact
subgroup 8 of 9 is isomorphic to SO4 R or to Spin4 R. Accordingly 8v ∼= SO3 R

or 8v ∼= Spin3 R. In the first case, 8v would contain a reflection with axis W , but
SO3 R is simple. Hence, ϒ = 8v is simply connected. The involution ω ∈ ϒ is
contained in 1[a,W ], and each orbit cϒ , c ∈ av \ {a, v}, is 3-dimensional. Hence,
ω /∈ϒc and ϒc is finite. Moreover, 2c = 1 and ϒ ∩2≤ 〈ω〉. Lemma 2.11, applied
to ϒ2, shows that dim cϒ2 = 4. By 2.7 the group 2 is a Lie group and so is 1.

(e) Finally, let 1∗ = 1/K ∼= PSU3 (C, 1). Note that the central group 2 is con-
tained in K. There exists an 8-dimensional semisimple subgroup 9 of 1 (see
[Salzmann et al. 1995, 94.27] or apply Levi’s theorem [Salzmann et al. 1995, 94.28]
to a Lie approximation of 1). Consequently K=

√
1 is the radical, 1=9K, and

K ≤ Cs19. Suppose that zK
6= z ∈ W , let c ∈ az \ {a, z}, and put 3 = 9c. If

dim3 = 0, then dim c1 = 8, and 1 would be a Lie group by [Salzmann et al.
1995, 53.2]. As 3 fixes a connected set of points on W , it follows that E = F3
is a connected proper subplane, and E2 = E because 2 ≤ Cs3. The fact that
2|V = 1 implies that 2 acts effectively on E , so that 2 would be a Lie group by
2.10 above. Therefore, K≤1[a,W ], and K contains a compact connected subgroup
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of dimension at least 2 by [Salzmann et al. 1995, 61.2]. If lines are manifolds,
the claim follows from Richardson’s theorem 2.7. In the other case, 2.6 shows
dim z1 < 4 for each z ∈W . In fact, 1 is doubly transitive on each orbit z1 ⊆W ;
see step (b) of the present proof. Moreover, all transformation groups (1/K,U ),
where U is an orbit of 1 on W , are equivalent to (PSU3 (C, 1),S3) by [Salzmann
et al. 1995, 96.17(b)]. Consequently, 1v has a fixed point in each of these orbits.
Let again c ∈ av \ {a, v}. Then dim c1v < 4, 3 = 1c fixes a quadrangle, and
dim3≥ 5. This contradicts stiffness and completes the proof. �

7. Fixed double flag

Throughout this section, let F1 = 〈u, v, av〉 be a double flag.

7.0. Fact. If a semisimple group1 fixes a double flag, then dim1≤ 10 [Salzmann
2014, 6.1].

7.1. Semisimple groups. Suppose that F1 is a double flag. If 1 is semisimple and
if dim1≥ 10, then 1 is a Lie group.

Proof. (a) We have dim1 = 10 by 7.0, and 1 is almost simple. Let 8 be a
maximal compact subgroup of 1. If 1 is not a Lie group, then 1 maps onto
PSp4 R (or else 8 is locally isomorphic to SOk R, k ∈ {4, 5}, and 1 would be a Lie
group). Hence, 8′ is locally isomorphic to SU2 C. The center Z of 1 is an infinite
compact 0-dimensional subgroup, and Z acts freely on P \ (uv ∪ av): if xζ = x
for some x not on a fixed line and ζ ∈ Z \ {1}, then ζ |〈x1〉 = 1 and 〈x1〉 is a proper
connected subplane, but the almost simple group 1 cannot act on this subplane
[Salzmann et al. 1995, 71.8]. By the Malcev–Iwasawa theorem Z≤8.

(b) Any involution σ ∈ 8 is a reflection with axis av; in particular, 8′ ∼= SU2 C

and 8′|av ∼= SO3 R. In fact, σ is not planar (or else Z would induce a Lie group on
Fσ and the kernel of the induced action would not act freely on P \ (uv ∪ av)). If
σ ∈1[a,uv], then σ1σ would be a normal subgroup of translations of dimension
1 :1a . Hence, σ ∈1[u,av].

(c) Z consists of homologies with axis av. Suppose that aZ
6= a. Then dim1a ≤ 7

by [Salzmann 1979, (*)] or [Salzmann et al. 1995, 83.17], and d = dim a1 ≥ 3.
It follows that av ≈ S4: in the case d = 3, dim1a = 7 [Salzmann 1979, (**)];
otherwise apply 2.6. Moreover, 2.6 implies that 8|av is a Lie group, since 8′ has
an orbit of dimension > 1 on av. More precisely, 8|av ∼= SO3 R and 2=

√
8 acts

trivially on av; see the explicit form of Richardson’s theorem in [Salzmann et al.
1995, 96.34].

(d) 1 acts faithfully on uv, in particular, 8[uv] = 1: this holds since 1 is almost
simple and 1[uv] ≤ Z≤1[av].
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(e) Recall that 8′ ∼= SU2 C and that 8=8′2 is not a Lie group. If dim z8
′

= 2 for
some z ∈ uv \ {u, v}, then 8′z would contain an involution σ , but σ is a reflection
in 8[u,av]. Hence, dim z8

′

= 3≤ dim z8. Note that all the assumptions of Lemma
2.11 are satisfied by8 instead of 0; in fact, 8′∩2≤ 〈σ 〉, 2≤1[u,av], and2z = 1;
moreover, dim8′z = 0 and 8′z is finite. Consequently dim z8 = 4 and 2.6 implies
that 1 is a Lie group. �

7.2. Compact normal subgroup. If 1 has a serpentine normal subgroup 2, and
if dim1≥ 11, then 1 is a Lie group.

Proof. Assume that 1 is not a Lie group. By the approximation theorem, there is
a compact subgroup N G1 such that 1/N is a Lie group and dim N= 0. From 2.9
it follows that 0 :=2N≤ Cs1.

(a) If 0 is straight, then F0 lP or 0 is a group of axial collineations with fixed
center and axis in F1 [Baer 1946]. In the first case, 1 induces on F0 a group of
dimension at most 6, and dim1≤ 7 by stiffness. Letting a ∈F0 , we get dim1a ≤ 5.

(b) If 0 has the center v, then the axis passes through u and is fixed by 1, i.e.,
0 ≤1[v,uv] and 0a = 1. From 2.6 it follows that there is a suitable point a such
that dim a1 < 4. Let z ∈ uv \ {u, v}. The group 0 acts effectively on the connected
subplane D = 〈a0, z, u〉 and 1a,z|D = 1. In the cases D < P both 0 and 1 would
be Lie groups by 2.10. Therefore, 1a,z = 1, dim1≤ 7, and dim1a ≤ 4.

(c) If 0 has the center u, then the axis of 0 is av. For a given point a there are
points z ∈ uv and b ∈ au such that dim z1, dim b1< 4. As 0 is not a Lie group, the
connected subplane D = 〈a, b, v, z0〉 coincides with P . Consequently 1a,b,z = 1,
so that dim1a ≤ 6 and dim1≤ 10.

(d) If 0 is not straight, there is a point x such that E = 〈x0, u, v, av〉 is a connected
subplane and 1x |E = 1. In particular, 0x |E = 1 and 0 acts effectively on E . Again
E = P , and then dim1≤ 7 by 2.6. Similarly, dim1a ≤ 6. �

Remark. In any case, dim1a ≤ 6. This proves 8.2.

8. Fixed triangle

Let F1 = {a, u, v} be a triangle.

8.0. Theorem. If dim1≥ 10, then 1 is a Lie group.

Proof. If 1 is not a Lie group, then 2.6 implies that 1 has only orbits of dimension
at most 3 on two sides of the fixed triangle, say on uv and av. Hence, dim1z = 7
for z ∈ uv \{u, v}, and [Salzmann 1979, (**)] applies to 1z . Choose c ∈ av \{a, v}
and put x = az∩cu. Then dim1c,z ≥ 4, but 2.2(7) or [Salzmann 1979, (**)] asserts
that 1x ∼= SO3 R, a contradiction. �
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8.1. Semisimple groups. If F1 is a triangle, if 1 is semisimple, and if dim1≥ 9,
then 1 is a Lie group.

Proof. Suppose that 1 is not a Lie group. Only the case dim1 = 9 has to be
considered. Then 1 has a 3-dimensional factor 0 which is not a Lie group. Either
the complement 9 of 0 is locally isomorphic to SL2 C, or 9 is a product of two
3-dimensional factors. Let D = P \ (au ∪ av ∪ uv).

(a) The center Z of 1 acts freely on D: if xζ = x ∈ D for some ζ ∈ Z \ {1}, then
〈x1〉 is a proper subplane, and dim1x ≥ 5 contrary to stiffness 2.2.

(b) 0|uv 6= 1 and 0/Z ∼= PSL2 R: in the case 0 ≤ 1[a,uv] it would follow from
[Salzmann et al. 1995, 61.2] that 0 is compact and hence a Lie group. For the
same reason, 0 acts nontrivially on the other sides of the fixed triangle.

(c) There is at most one fixed line, say uv, such that Z|uv is a Lie group: otherwise
0 itself would be a Lie group.

(d) dim x1 ≤ 6 for each x ∈ D, and dim1x ≥ 3: as Z|au and Z|av are not Lie
groups, 2.6 implies that all orbits on these two sides of the fixed triangle have
dimension < 4.

(e) There is some p ∈ D such that (Z9)p = 1, and 3= (1p)
1 satisfies dim3= 3;

moreover, (0Z)p = 1: if p0 6⊆ ap (such a point p exists by step (b)), then 〈p0〉 is
a connected subplane, and 〈p0Z

〉 = P , or else Z would be a Lie group by 2.10. On
the other hand, (Z9)p|p0Z = 1, dim p9 = 6, dim1p = 3 by step (d), 〈p9〉 = P ,
and (0Z)p|p9 = 1.

(f) 3 ∼= 0/Z and any involution ι ∈ 3 is planar: consider the canonical epimor-
phism κ : 1→ 1/Z and note that 1κ = 0κ×9κ . Let π be the projection onto
the first factor. Then κ : 3 ∼= 3κ since 3∩Z = 1. The restriction π : 3κ → 0κ

is injective because 3 ∩9Z = 1, and it is surjective since dim3 = dim0 = 3
[Salzmann et al. 1995, 93.12]. A reflection in 3 would have one of the fixed lines
as axis, but 3 is simple; moreover, ι fixes a nondegenerate quadrangle. Therefore,
ι is indeed planar. Now Z acts effectively on Fι by step (a), and Z is a Lie group
contrary to the assumption. �

8.2. Compact normal subgroup. If 1 has a serpentine normal subgroup 2, and
if dim1≥ 7, then 1 is a Lie group (see the remark after 7.2).

Summary

The following table lists our conditions implying that 1 is a Lie group. There
are always three conditions to be combined: the first column specifies the fixed
configuration F1, the first row lists possible assumptions on the structure of 1, and
in the body of the table, a lower bound for dim1 is given. The abbreviations in
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the first line mean, in this order, that 1 is semisimple, that 1 contains a serpentine
normal subgroup in the sense of 2.12, that 1 contains a normal vector group, or
that no condition is imposed on the structure of 1.

F1 1 s-s 2 G1 Rt
G1 1 arbitr. references

∅ 9 9∗ 7 10 3.1, 3.2, 3.3
{W } 4 9 4.1, 4.2
flag 4 9 10 4.1, 5.4, 5.1

〈u, v〉 4 7 8 4.1, 5.6, 5.2
〈u, v, w〉 4 7 8 4.1, 5.5, 5.3
{o,W } 10 11 12 6.2, 6.3, [Priwitzer 1994]

〈u, v, ov〉 10 11 12 7.1, 7.2, [Priwitzer 1994]
〈o, u, v〉 9 7 10 8.1, 8.2, 8.0
arbitrary 10 11 12 [Priwitzer 1994]

Here 9∗ means that also 1∼= SL3 R×2 is conceivable.
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