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Abstract

One of the fundamental problems in Incidence Geometry is the classifi-

cation of finite BN-pairs of rank 2 (most notably those of type B2), without

the use of the classification theorem for finite simple groups. In this paper,

which is the first in a series, we classify finite BN-pairs of rank 2 (and the

buildings that arise) for which the associated parameters (s, t) are powers

of 2, and such that the associated polygon has no proper thick ideal or full

subpolygons. As a corollary, we obtain the complete classification of gen-

eralized octagons of order (s, t) with st a power of 2, admitting a BN-pair.

(For quadrangles and hexagons, this result will be obtained in part II.)
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1 BN-Pairs, associated buildings and Tits’ conjec-

ture

A group G is said to have a BN-pair (B,N), where B,N are subgroups of G, if

the following properties are satisfied:

(BN1) 〈B,N〉 = G;

(BN2) H = B∩N ⊳N and N/H = W is a Coxeter group with distinct generators

s1, s2, . . . , sn;

(BN3) BsiBwB ⊆ BwB ∪ BsiwB whenever w ∈ W and i ∈ {1, 2, . . . , n};

(BN4) siBsi 6= B for all i ∈ {1, 2, . . . , n}.

∗The author is a Postdoctoral Fellow of the Research Foundation, Flanders (FWO), Belgium.
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The subgroup B, respectively W , is a Borel subgroup, respectively the Weyl

group, of G. The natural number n is called the rank of the BN-pair. Throughout

this paper, we only consider finite BN-pairs (the group G is assumed to be finite).

To each finite BN-pair one can associate a synthetic combinatorial structure,

called “building”, and a vast literature is available on this subject. If the rank

of an abstract spherical building is at least 3, J. Tits showed in the celebrated

work [15], that it is always associated to a BN-pair, and this deep observation

led him to classify all finite BN-pairs of rank ≥ 3 (cf. §11.7 of op. cit.). When

the rank of a building B is 2, it is, in general, not possibly to associate to B

a BN-pair in a “natural way”; this is because when the type of B is I2(3) = A2

or B2, non-classical examples exist that do not admit Chevalley groups as flag-

transitive automorphism groups; see, e.g., [12] for several examples. For the

types I2(6) = G2 and 2F4 = I2(8) (which are the only other types possible — see

the result of Feit-Higman quoted below), no such examples are known.

Conjecture (J. Tits, [15, §11.5.1]). If a finite building ∆ of irre-

ducible type and rank 2 is such that Aut(∆) permutes transitively the

pairs consisting of a chamber and an apartment containing it (that

is, if ∆ is associated with a BN-pair), then ∆ is isomorphic with the

building of an absolutely simple algebraic group over a finite field, or

with the building of a Ree group of type 2F4 over a finite field.

Remark 1.1. Using the classification of finite simple groups (CFSG), F. Bueken-

hout and H. Van Maldeghem answered Tits’ question affirmatively in [1]. How-

ever, Tits had a classification free proof in mind.

A famous result of W. Feit and D. Higman [4] states that a finite generalized

n-gon only exists if and only if n ∈ {3, 4, 6, 8}. The classification of finite BN-pairs

of rank 2 in automorphism groups of generalized 3-gons (projective planes) is a

classical result [9].

From now on, the rank of a BN-pair (which corresponds to the rank of the

associated building) is always 2. In that case, the Weyl group W is a dihedral

group Dm (of size 2m) for some natural number m. We say that the BN-pair

(B,N) is of type B2 if W is a dihedral group D4, and of type A2 if it is dihe-

dral of order 6. It is of type G2, respectively 2F4, if W is dihedral of order 12,

respectively 16.

One can associate a building B(G) to the group G —where the BN-pair is

still supposed to have rank 2— in the following way. For this purpose, define

P1 = 〈B,Bs1〉 and P2 = 〈B,Bs2〉.
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• Call the right cosets of P1 “points”.

• Call the right cosets of P2 “lines”.

• Call two such (distinct) cosets “incident” if their intersection is non-empty

(so P1g is incident with P2h, g, h ∈ G, if P1g ∩ P2h 6= ∅).

Then B(G) is a “generalized n-gon” on which G acts by right multiplication,

transitively permuting the ordered n-tuples of points which form an ordinary

n-gon in the building. Combinatorially, a (finite) generalized n-gon (n ≥ 3) is a

point-line geometry Γ = (P,B, I) for which the following axioms are satisfied:

(i) Γ contains no ordinary k-gon (as a subgeometry), for 2 ≤ k < n;

(ii) any two elements x, y ∈ P ∪ B are contained in some ordinary n-gon (as

a subgeometry) in Γ;

(iii) there exists an ordinary (n + 1)-gon (as a subgeometry) in Γ.

A generalized polygon (GP) is a generalized n-gon for some n. Detailed infor-

mation about the combinatorial theory and characterizations can be found in

[10, 19], see also the recent monographs [12, 11].

The (dual) classical examples of finite generalized polygons are the buildings

which can be associated to the standard BN-pair in any of the groups listed

below in Theorem 2.1, cf. §4 of the present paper.

Acknowledgment. I would like to thank Pierre Deligne and Hendrik Van Malde-

ghem for their useful remarks on a first set of drafts of this paper.

2 Split BN-pairs (of type B2) and Condition (†)

Let G be a group with a BN-pair (B,N) of type B2, and let P1, P2 be the two

maximal parabolic subgroups containing B. For i = 1, 2, let si ∈ G normalize N

and Pi, but not P3−i. Put H = B ∩ N , as before. Then we define Condition (†)
as follows.

(†) For some i ∈ {1, 2}, there exists a subgroup U of B with U E Pi such that

UH = B ∩ Bsi .

A (general) BN-pair (B,N) is called split if Property (‡) below holds:

(‡) There exists a normal nilpotent subgroup U of B such that B = UH.
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In a celebrated work [6, 7], P. Fong and G. M. Seitz determined all finite

split BN-pairs of rank 2 (the B2-case being, by far, the most complicated type to

handle in [6, 7]):

Theorem 2.1 (P. Fong and G. M. Seitz [6, 7]). Let G be a finite group with a

split BN-pair of rank 2. Then G is an almost simple group related to one of the

following classical Chevalley/Ree groups:

(1) PSL3(q);

(2) PSp4(q)
∼= O5(q);

(3) PSU4(q) ∼= O−
6 (q);

(4) PSU5(q);

(5) G2(q);

(6) 3D4(q), or

(7) a Ree group of type 2F4.

So, a thick finite generalized polygon is isomorphic, up to duality, to one of the

classical examples if and only if it verifies the Moufang Condition (see [17] for a

definition of the latter notion).

Clearly, for BN-pairs of type B2 we have (‡) ⇒ (†). In [14], K. Thas and

H. Van Maldeghem proved that a finite group with a BN-pair of type B2 satisfy-

ing (†) is essentially isomorphic to a classical group:

Theorem 2.2 (K. Thas and H. Van Maldeghem [14]). Let G be a finite group

with a BN-pair of type B2, and suppose that G,B,N satisfies the condition (†).
Then the BN-pair is split, hence G is an almost simple group related to one of the

Chevalley groups listed in Theorem 2.1.

Equivalently, a thick finite generalized quadrangle is isomorphic, up to duality,

to one of the classical examples if and only if for each point there exists an auto-

morphism group fixing it linewise and acting transitively on the set of its opposite

points.

This theorem was obtained independently of Theorem 2.1.
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3 BN-Pairs of rank 2 in even characteristic

We will here prove the following result for finite BN-pairs of rank 2 (up to a

technical lemma which will be obtained in part II):

Theorem 3.1. Let G be a finite group with an irreducible effective BN-pair of

rank 2, and suppose that the parameters of the associated building are powers of 2.

Suppose that the associated generalized polygon has no proper thick ideal or full

subpolygons. Then the BN-pair is split, hence G is an almost simple group related

to one of the following classical Chevalley/Ree groups:

(1) PSL3(q);

(2) PSp4(q)
∼= O5(q);

(3) PSU4(q) ∼= O−
6 (q);

(4) PSU5(q);

(5) G2(q);

(6) 3D4(q), or

(7) a Ree group of type 2F4.

Equivalently, a thick finite generalized n-gon of order (s, t) with st a power of 2

is isomorphic, up to duality, to one of the classical examples if Aut(S) acts transi-

tively on its ordered ordinary n-gons, and if there are no proper thick ideal or full

subpolygons.

For BN-pairs of type A2, that is, when the associated building is a projective

plane, the outcome of Theorem 3.1 is of course well-known.

Note again that by [4], only generalized n-gons with n ∈ {3, 4, 6, 8} have

to be considered. For generalized 8-gons, the result is particularly interesting

because for any known finite example the parameters are powers of 2, and for

any thick finite generalized 8-gon the product of the parameters always is even

[19]. Besides that, finite generalized octagons do not admit proper full or ideal

suboctagons [19, 1.8.8].

On part II. In part II, we will prove the technical Proposition 4.2 below, which

will be used in the proof of the main result. We will also obtain the results

described in §5 (with particular emphasis on the quadrangles, and examples),

and further study GPs with a BN-pair, while containing a proper thick full or

ideal subpolygon. When st is a power of 2, we will complete the classification

started in this paper.
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4 BN-Pairs of type B2, G2 and 2F4

We now sketch the proof of Theorem 3.1 for BN-pairs of type B2, G2 and 2F4.

4.1 Setting and notation

We assume that the reader is well acqainted with the standard terminology

(such as “collinearity”, “concurrency”, “opposition”, “automorphism groups”,

etc.) on incidence geometries — for what is needed in this paper, the references

[10, 19] are sufficient.

The Ree-Tits octagon. We do not aim to precisely define the only known class,

up to duality, of finite generalized octagons, namely the Ree-Tits octagons. The

reader is referred to J. Tits [16] for a detailed account, and also the book of

H. Van Maldeghem [19]. We only give a very short indirect description. Let

M be a finite metasymplectic space, that is, a building of type F4, of which the

planes are defined over the finite field Fq, q a power of 2. Suppose also that M
admits a polarity — so that q is an odd power of 2. Then the absolute points and

lines of this polarity form, together with the natural incidence, a generalized

octagon of order (q, q2) which we denote by O(q), and which admits a Ree

group of type 2F4 as an automorphism group which acts transitively on the

ordered ordinary 8-gons. Together with its point-line dual O(q)D, the Ree-Tits

octagons are the only class of generalized octagons known presently.

The classical generalized hexagons. These objects are much better under-

stood and investigated than the Ree-Tits octagons, and the reader is referred to

[19] for details. Let us just mention that they are related to the simple groups

G2 and 3D4(q) via the standard BN-pairs in these groups.

The classical generalized quadrangles. Similarly as for the hexagons, we

refer to [10] for more information.

Setting. We set some more notation.

• Γ is supposed to be a finite generalized quadrangle (4-gon), hexagon

(6-gon) or octagon (8-gon) of order (s, t), where st is a power of 2, with

{s, t} ∩ {0, 1} = ∅.

• Aut(Γ) is the automorphism group of Γ, while Aut(K) is the automor-

phism group of a group K.
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• The group G† is a subgroup of Aut(Γ) which admits an irreducible, ef-

fective BN-pair (B,N) of type B2, G2 or 2F4. So G† acts faithfully on the

points (and lines) of Γ.

• L is an arbitrary but fixed line of Γ. One of the purposes is to derive the

main result from a more general local result, so one may want to keep the

local arguments in mind. Often, we will identify L, and any other line,

with the set of points incident with it.

• G = G†
L.

4.2 Statement and proof of the theorem

We are ready to obtain the main result of the present paper.

Let M be any line opposite L (the lines are at maximal distance in the line

graph). Then GM induces a 2-transitive group on (the points incident with) L

and M of degree s + 1, and its isomorphism class is independent of M . Let K

be the kernel of the action of G on the points incident with L; the Levi-factor

corresponding with L is

L = G/K . (1)

Let θ be a nontrival 2-central involution in GM/(GM∩K). If θ would fix more

than one point incident with L, all points of L (and M) are fixed, since s is a

power of 2, contradiction. (Note that a Sylow 2-subgroup of GM/(GM ∩ K)

fixes some point r of L, and is transitive on L \ {r}.) So θ fixes precisely one

point incident with L.

We now address the following result of D. Holt (which is stated less generally

here than in [8]):

Theorem 4.1 (D. Holt [8]). Let (T,X) be a finite 2-transitive permutation group

of odd degree k. Suppose T contains a 2-central involution φ that fixes exactly

one letter, and let J be the set of involutions that also fix exactly one letter. Put

〈J 〉 = H. Then one of the following cases occurs:

(i) H = 〈O(H), φ〉; 1

(ii) |X| ≡ 1 mod 4 and H ∼= Ak in its action on X or |X| ≡ 3 mod 4 and

H ∼= Sk in its action on X;

(iii) (H,X) is isomorphic to one of the simple groups PSL2(2
n), n > 1, PSU3(2

n),

n > 1, or Sz(2n), n = 2m + 1 ≥ 3, in its natural 2-transitive representation.

1
O(H) is the unique “largest” normal subgroup of H of odd order.
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Put J = {involutions in GM/(GM ∩K) which fix precisely one point incident

with L}.

We first consider Theorem 4.1, case (ii), with H = 〈J 〉. Note that |G| =

|{lines opposite L}|× |GM |, and that |K| = |KM |× |MK |. Let GM/(GM ∩K) ∼=
GMK/K = L = G/K; then |G| = |GM/(GM ∩ K)| × |KM | × |MK |. Whence

|GM | = |GM/(GM ∩ K)| × |KM | leads to |MK | = |{lines opposite L}| — that

is, K acts transitively on the lines opposite L. In other words

Γ is half 1-Moufang (w.r.t. the lines of Γ) in the terms of [18, 19]. (∗)

This situation is handled further on.

Suppose GM/(GM ∩ K) 6= L; then clearly

GM/(GM ∩ K) ∼= As+1

∼= 〈GU ‖ U opposite L〉 / (〈GU ‖ U opposite L〉 ∩ K) , (2)

and L ∼= Ss+1.

Let Λ be any ordinary n-gon containing L as a side, let x IL, x ∈ Λ, Y be

the line in Λ which is opposite L, and y be the point in Λ opposite x. Let

P1 := GY /(GY ∩K) ∼= As+1. Consider the action of (GΛ)x on the lines incident

with x (or y) not contained in Λ; then just by comparing sizes, it is not hard to

see that w.l.o.g. we can suppose that (G†
x)y/((G†

x)y ∩ K ′) =: P2, where K ′ is

the kernel of the action of G†
x on the lines through x, contains At+1. (By for

instance counting |Gx| in two ways, one obtains that

(t + 1)t|K ∩ GY | · |P1| = (s + 1)s|K ′ ∩ (G†
x)y| · |P2| . (3)

Put |P1| = (s + 1)!/2 in this equation, and observe that, if there are no proper

thick full or ideal subpolygons, then |K ′ ∩ (G†
x)y| · |K ∩ GY | is odd. Case (i) of

Theorem 4.1 (in this dual situation) is immediate — cf. the relevant part of the

proof below. Now consider the largest powers of 2 dividing both sides of (3) to

exclude case (iii) (minus case (ii)).)

So without loss of generality, we may assume that t ≤ s when handling

case (ii).

In this paragraph, we will also suppose that s > 4. (The cases s = 2, 4 are

left to the reader, but can equally be found in [1], since CFSG is not needed

for these values of s.) Now choose an involution α in GM which fixes precisely

s − 3 points of M (note that such an involution must exist!2); then α fixes a

2Let x1, . . . , xs−3 be distinct points on L, and let D be the subgroup of GM fixing these points.

Then |D| is even, so D contains an involution, say β. Since β induces an element of As+1, it either

fixes precisely x1, . . . , xs−3 on L, or it fixes all points incident with L. But then, since t − 1 is odd,

Γ would have a proper thick full subGP, contradiction.
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thick proper subpolygon of Γ elementwise, say Γ′, of order (s− 3, t′), since t− 1

is odd. The standard inequalities s ≥ s′t′ for n = 4 and st ≥ s′
2
t′

2
for n = 6

[19, 1.8.12] now lead to a contradiction. For n = 8, we have the inequality

s′t′
2 ≤ st , (4)

see [20]. Substituting s′ = s − 3 in (4) and taking the fact that s ≥ t into

account (so that 2t ≤ s since 2st is a perfect square for octagons), together with

Higman’s inequality for octagons [19, 1.7.2], we obtain a contradiction.

We now suppose to be in Theorem 4.1, case (i), that is, we assume

H = 〈J 〉 = 〈O(H), φ〉 , (5)

with φ as in the statement of Theorem 4.1. Then |H| = 2|O(H)|, as O(H)〈φ〉 =

〈φ〉O(H), while H must act transitively on L. Recall the classical result of

Burnside saying that a finite 2-transitive permutation group contains a unique

minimal normal subgroup, which is either elementary abelian or nonabelian

simple. For GM/(GM ∩ K), we will denote this subgroup by N(GM ).

Suppose that N(GM ) is simple. By W. Feit and J. Thompson [5], N(GM )

either has even size, or its order is a prime. Let us first assume that the size

is even. As N(GM ) ∩ O(H) E N(GM ), this intersection must be trivial. As

both groups normalize each other, they commute. Since |N(GM )| > s + 1

(as a transitive group of even size), we can choose a nonidentity element α of

N(GM ) which fixes a point of L. Suppose O(H) is not transitive on L. It is then

clear, since H = O(H)〈φ〉 and H acts transitively on L, that O(H) must have

(precisely) two distinct orbits on L. This contradicts the fact that s + 1 = |L| is

odd. So O(H) is transitive. The fact that O(H) acts transitively on L leads to

the conclusion that α must act as the identity on L, so we have a contradiction.

Now suppose that N(GM ) is an elementary abelian ℓ-group for the odd

prime ℓ. Then N(GM ) acts sharply transitively on L, so that s + 1 = ℓn for

the positive integer n. Put s = 2h. An elementary arithmetic exercise leads to

the fact that either n = 1 or ℓ = 3, n = 2, h = 3.

We first handle the case n = 1. Choose a point x IL. Then (GM )xK/K can

be naturally (and faithfully) interpreted as an automorphism group of the affine

1-space AG(1, ℓ) (by its action by conjugation on N(GM )). So (GM )xK/K ≤
AGL1(ℓ) ∼= F

×
ℓ , and GMK/K is a sharply 2-transitive group on L. But then each

element of (GM )x is 2-central while fixing only one point, which contradicts

|H| = 2ℓ unless (s, p) = (2, 3) (a case which is known without CFSG).

Let (n, ℓ, h) = (2, 3, 3). One can fairly easy handle this case using the list of

2-transitive groups of degree 9 [2], but since this is done in [13], the reader is

referred to op. cit. for the details.
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Now suppose that 〈J 〉/(〈J 〉 ∩ K) =: P1 is isomorphic to one of the simple

groups PSL2(2
n), n > 1, PSU3(2

n), n > 1, or Sz(2n), n = 2m + 1 ≥ 3, in its

natural 2-transitive representation of degree s + 1. First note that, since G/K

also satisfies the conditions of Theorem 4.1, we know that G/K also falls in

one of the three possibilities of Theorem 4.1. It follows that if J ′ is the set of

involutions of G that fix precisely one point of L, either 〈J ′〉/(K ∩ 〈J ′〉) =: P2

is isomorphic to one of the simple groups PSL2(2
n), n > 1, PSU3(2

n), n > 1,

or Sz(2n), n = 2m + 1 ≥ 3, or Property (∗) is satisfied. The only possible

obstruction would be case (ii). (Case (i) can be handled as before.) Suppose by

way of contradiction that P2
∼= As+1. Then

|〈J ′〉| = |M 〈J ′〉| |〈J ′〉M | . (6)

Note that |M 〈J ′〉| is a power of 2 since 〈J ′〉 E G, and that 〈J 〉 E 〈J ′〉M . So

clearly we can write

|As+1| = (s + 1)!/2 = 2m · |P1| · θ, (7)

where m ∈ N, and θ divides the size of Aut(P1). For s ≥ 8 we now easily obtain

a contradiction by comparing the odd factors of both sides of (7). The cases

s = 2, 4 are left to the reader.

Now suppose that P1 = P2. From the following observation, which we will

obtain in part II, one can now decide that either (B,N) is split, or Property (∗)

is satisfied (w.r.t. lines).

Proposition 4.2. (We use the same notation as in the current proof.) If for every

A ∈ {GM/(GM ∩ K), 〈GU ‖ U opposite L〉/(〈GU ‖ U opposite L〉 ∩ K), G/K}
we have that S ≤ A ≤ Aut(S), with S the little projective group of a split BN-pair

of rank 1 (acting in the expected way), then either K is transitive on the lines

opposite L, or (B,N) is split.

By interchanging the role of points and lines —which we can do since Γ

admits a BN-pair— Γ is half 1-Moufang w.r.t. points, so, by definition, Γ is

1-Moufang. By a result of H. Van Maldeghem [18], we can now conclude that

Γ is a Moufang generalized polygon, which group theoretically translates in the

fact that (B,N) is split. Theorem 2.1 leads us to the desired result. �

(For terminology on split BN-pairs of rank 1, or “Moufang sets”, we refer to [3].)

4.3 Implication

We briefly state another corollary of Theorem 3.1, which was open without

CFSG.
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Theorem 4.3. A finite generalized octagon of order (s, t), where st is a power of 2,

is half 1-Moufang if and only if it is isomorphic to a Ree-Tits octagon O(s), s then

being an odd power of 2, if and only if it admits a BN-pair.

Proof. The result follows from the fact that a half 1-Moufang generalized oc-

tagon admits a BN-pair, and Theorem 3.1 (noting again that finite octagons do

not have proper thick full or ideal suboctagons [19, 1.8.8]). �

Remark 4.4. The author is, at present, trying to show that the extra assumption

on the parameters is always satisfied for a BN-pair of type 2F4.

5 From “local” to “global” BN-pairs (of type B2)

In this final section, we describe, without proof, some of the results of [13] on

BN-pairs of type B2. The starting point of this section is the following observa-

tion [13]:

Let Γ∗ be any of the (dual) classical generalized quadrangles in even

characteristic, and say its order is (s, t), and hence st is a power

of 2. Let (B∗, N∗) be an irreducible effective BN-pair in 〈B∗, N∗〉 ≤
Aut(Γ∗) for which B(〈B∗, N∗〉) ∼= Γ∗, and let {L∗,M∗} be any pair

of non-concurrent lines. Then no central Baer quadrangle exists “in”

〈B∗, N∗〉L,M .

The “Baer quadrangle” alluded to in the previous statement is, by definition,

a thick sub generalized quadrangle which is fixed pointwise (i.e. elementwise)

by a 2-central involution of some Sylow 2-subgroup in 〈B∗, N∗〉L,M .

Let B(〈B,N〉) =: Γ be the building which is associated to the irreducible

effective BN-pair (B,N) of type B2. Then the following property is easy to

prove for any line L:

(BN)L: Aut(Γ)L acts transitively on the ordered pairs (x, y) of points

for which x ∼ y 6= x and xy 6∼ L.

The first main result of [13] is essentially the following, which describes a

classification of generalized quadrangles which satisfy the local property (BN)L

for at least one line L, together with an assumption motivated by the first ob-

servation of this section.

Theorem 5.1. Let Γ be a thick finite generalized quadrangle of order (s, t), and

suppose G is a subgroup of Aut(Γ) that fixes some line L, and acts transitively
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on the ordered pairs (x, y) for which x ∼ y 6= x, and xy 6∼ L. Suppose further-

more that s and t are even, and that not every 2-central involution in GM fixes

a Baer subquadrangle, for some M 6∼ L, pointwise. Then we have the following

possibilities.

(a) Let K be the subgroup of G that fixes L pointwise. Then s is a power of 2,

and H EG/K ≤ Aut(H), where H is isomorphic to one of PSL2(s), Sz(
√

s),

PSU3(
3
√

s2). Furthermore, if t is a power of 2, and O = {1}, where

O := (G/Z) /
(

〈GR ‖ R 6∼ L〉K/K
)

, (8)

then for any point x IL, Gx contains a normal nilpotent subgroup U such

that Gx = U(Gx ∩ N), with N the stabilizer in G of any ordinary 4-gon

containing L as a side and x as an edge.

(b) There is an odd prime ℓ such that, when denoting the elementary abelian

ℓ-group of order ℓm by Eℓm , we have

G/K = Eℓn ⋊ (G/K)x , (9)

with x any point incident with L, such that s + 1 = ℓn for some integer n.

The group (G/K)x is isomorphic to some subgroup of AΓLn(ℓ), and st di-

vides |K|.

Finally, we mention that similar local results as those described in Theo-

rem 5.1 can be found for the cases n = 6 and n = 8 — see part II. However,

for BN-pairs of type B2, this local theory seems to make more sense, because

there, effectively, nonclassical finite generalized quadrangles exist which admit

“local BN-pairs”. There even exist nonisomorphic finite generalized quadrangles

which admit isomorphic “local BN-pairs” (cf. part II).
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