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Symplectic Floer homology
of area-preserving surface diffeomorphisms

ANDREW COTTON-CLAY

The symplectic Floer homology HF�.�/ of a symplectomorphism �W †! † en-
codes data about the fixed points of � using counts of holomorphic cylinders in
R �M� , where M� is the mapping torus of � . We give an algorithm to com-
pute HF�.�/ for � a surface symplectomorphism in a pseudo-Anosov or reducible
mapping class, completing the computation of Seidel’s HF�.h/ for h any orientation-
preserving mapping class.

53D40, 37J10

1 Introduction

1.1 Statement of results

Let † be a compact, connected, oriented surface. Let ! be a symplectic form (here,
an area form) on †. Let � 2 Symp.†; !/ be a symplectomorphism (here, an area-
preserving diffeomorphism) of † with nondegenerate fixed points. That is, the fixed
points of � are cut out transversally in the sense that det.1� d�x/¤ 0 for any fixed
point x . We then consider the symplectic Floer homology chain complex

CF�.�/ WD Z=2 hx j x 2 Fix.�/i ;

a Z=2–graded chain complex over Z=2. The grading of a generator x is given by
the sign of det.1� d�x/. Note that a fixed point x of � corresponds to a constant
section of the mapping torus M� , the †–bundle over S1 with monodromy � . The
matrix coefficient h@x;yi of the differential @ on CF�.�/ is then given by the mod 2
count of the index one components of the moduli space of holomorphic cylinders in
R�M� , with respect to a generic R–invariant almost complex structure, which limit
to the sections corresponding to x and y at ˙1, assuming these counts are finite.
See Section 2 for details.

The standard condition, which in this form is due to Seidel [45], used to ensure that
these counts are finite is monotonicity. Let !� be the two-form on M� induced by !
on †�R and let c� be the first Chern class of the vertical tangent bundle of M�!S1 .
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Definition 1.1 A map �W †!† is monotone if Œ!� �Dkc� as elements of H 2.M� IR/
for some k 2R.

Because c� controls the index, or expected dimension, of moduli spaces of holomorphic
curves under change of homology class and !� controls their energy under change
of homology class, this condition ensures that the energy is constant on the index one
components of the moduli space, which implies compactness. See Section 2.1 and
Section 2.2 for details.

The mapping class group �† is given by �0.DiffC.†//, the connected components
of the group of oriented diffeomorphisms (or, equivalently, homeomorphisms) of †.
For h 2 �† , let Symph.†/ denote the space of symplectomorphisms in the mapping
class h and Sympm

h .†/ denote the space of monotone symplectomorphisms in the
mapping class h. Seidel [45] has shown that the inclusions

Sympm
h .†/ ,! Symph.†/ ,! DiffC

h
.†/

are homotopy equivalences; in particular, Sympm
h .†/ is path connected. Furthermore,

Seidel showed that HF�.�/ is invariant as � is deformed through monotone symplecto-
morphisms. These imply that we have a symplectic Floer homology invariant HF�.h/
canonically assigned to each mapping class h given by HF�.�/ for any monotone
symplectomorphism.1

In this paper, we give an algorithm to compute HF�.h/ in all previously unknown
cases on surfaces of negative Euler characteristic.2 In addition, we define and give an
algorithm to compute HF�.h/ for all mapping classes on surfaces with boundary (see
Remark 1.2 for our conventions for mapping classes on surfaces with boundary). We
furthermore compute the H�.†/–module structure. In a forthcoming paper [7], we
extend the results of this paper to an algorithm to compute HF�.�/ over a Novikov
ring for any � 2 Symph.†/ and use this to give a sharp lower bound on the number
of fixed points of an area-preserving map with nondegenerate fixed points in a given
mapping class, generalizing the Poincaré–Birkhoff fixed point theorem.

Thurston’s classification of surface diffeomorphisms [49; 12] states that every mapping
class of † is precisely one of the following:

� Periodic (finite order): For some representative � , we have �` D id for some
` 2 Z>0 .

� Pseudo-Anosov: See Section 3.2.
1Furthermore, when † has negative Euler characteristic, these three groups, and in particular

Sympm
h
.†/ , are contractible, so this assignment really is canonical.

2The genus one case follows from Pozniak’s thesis [39, Sections 3.5.1–2].
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� Reducible: Some representative � fixes setwise a collection of curves C none
of which are nullhomotopic or boundary parallel (and the mapping class is not
periodic).

In the reducible case, cutting along a maximal collection of curves C gives a map
on each component of † n C (given by the smallest power of � which maps that
component to itself) which is periodic or pseudo-Anosov.

Remark 1.2 When † has boundary, we instead consider the connected components
of DiffC

@
.†/, the group of orientation-preserving diffeomorphisms of † with no fixed

points on the boundary. We then additionally consider maps with full Dehn twists at the
boundary to be reducible, and periodic and pseudo-Anosov maps with boundary come
with the additional data of which direction each setwise fixed boundary component
rotates. See Section 4.2 for more details.

We briefly summarize previous work and which cases of HF�.h/ have been computed.
Dostoglou and Salamon [8] extended Floer’s work [15] on symplectomorphisms Hamil-
tonian isotopic to the identity to other symplectomorphisms. Seidel [43] was the first
to consider symplectic Floer homology specifically for surface symplectomorphisms,
calculating it for arbitrary compositions of Dehn twists along a disjoint collection
of curves. These are examples of reducible mapping classes, where the reducing
collection of curves is the stated collection. Gautschi [17] calculated the symplectic
Floer homology for all periodic mapping classes as well as reducible mapping classes
in which the map on each component is periodic.

Eftekhary [9] generalized Seidel’s work on Dehn twists in a different direction. Given
two disjoint forests CC and C� of embedded, homologically essential curves,3 he
showed that, for � any composition of single positive Dehn twists along each curve
in CC and single negative Dehn twists along each curve in C� , we have HF�.Œ��/D
H�.mod 2/.† nC�;CC/. He also showed that some of these maps are pseudo-Anosov.

We determine the symplectic Floer homology for any pseudo-Anosov mapping class and
for any reducible mapping class. In particular, we allow pseudo-Anosov components
as well as periodic components.

For pseudo-Anosov mapping classes, we deform the canonical singular representative
�sing of the mapping class (see Section 3.2) near its singularities to a smooth, symplectic
representative with nondegenerate fixed points �sm . For reducible mapping classes,

3That is, any two curves in CC intersect at most once, and there are no cycles in the graph whose
vertices are curves in CC and whose edges are intersections, and similarly for C� . In addition, no curve
in CC intersects any curve in C� .
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we give a similar perturbation of the boundary behavior of the canonical singular
representative of pseudo-Anosov maps in Section 4.2 and combine this with standard
representatives of maps on periodic components and of Dehn twists along the reducing
curves to give standard-form-maps �sm for reducible mapping classes.

We give a notion of weak monotonicity satisfied by �sm such that HF�.�/ is well-
defined for and invariant among weakly monotone maps. Monotonicity implies weak
monotonicity, and so HF�.h/D HF�.�/ for any weakly monotone � . Furthermore
we show that the H�.†/–module structure of HF�.�/ is invariant among weakly
monotone maps.

Definition 1.3 A map �W † ! † is weakly monotone if the class Œ!� � vanishes
on ker.c� jT .M�//, where T .M�/ � H2.M� IR/ is generated by tori T such that
�jT W T ! S1 is a fibration with fiber S1 , where the map � W M� ! S1 is the
projection.

This brings us to our main results.

Theorem 1.4 For h a pseudo-Anosov mapping class, we have:

(1) Every symplectomorphism �W .†; !/! .†; !/ in the mapping class h is weakly
monotone. Hence if � has nondegenerate fixed points, then HF�.�/ is well-
defined and HF�.�/D HF�.h/D HF�.�sm/.

(2) Moreover, HF�.�sm/D CF�.�sm/.

(3) Only the fundamental class of H�.†/ (the identity), acts nontrivially.

Remark 1.5 Furthermore, we show in Section 5 that CF�.�sm/ is combinatorially
computable from an invariant train track representation. In particular, see Theorem
5.1. An invariant train track for a mapping class can be found algorithmically from,
for example, a representation of the mapping class as a composition of Dehn twists by
work of Bestvina and Handel [1].

Theorem 1.6 For h a reducible mapping class, we have:

(1) Any standard form map is weakly monotone.

(2) HF�.h/ splits into summands for each component4 of †nC (and annular region
– see Section 4.2), with the periodic and annular components as in Gautschi [17]

4But note that the summand for a given component may be affected by the direction it is required to
rotate near its boundary.
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and the pseudo-Anosov components as in Theorem 1.4, except when a pseudo-
Anosov component with an unrotated boundary component (see Section 4.2)
abuts a component on which the map is the identity, in which case there may
be explicitly given additional flow lines between these two components. See
Theorem 4.16 for details and a complete statement and computation.

(3) H�.†/ acts by intersection products on components on which the map is the
identity and which do not meet pseudo-Anosov components, and only the funda-
mental class (the identity) acts nontrivially on other components.

Corollary 1.7 The total rank of HF�.hn/8<:
is bounded if � is periodic;
grows linearly if � is reducible with all components periodic;
grows exponentially otherwise:

In Section 6 we explicitly work out HF�.h/ for h a large collection of pseudo-Anosov
mapping classes based on a construction of Penner [35] using Theorem 1.4 and the
train track computation in Theorem 5.1:

Theorem 1.8 Let fCig and fDj g be collections of noncontractible simple closed
curves on † with the Ci mutually disjoint, the Dj mutually disjoint, and Ci transverse
to Dj . Suppose that every region of the complement †�

`
i Ci � j̀ Dj is a disk

with more than two edges.

Let �D
Q

j �
�2
Dj

Q
i �

2
Ci

and let h be the mapping class of � . Then HF�.�/DHF�.h/
has total rank

4
X
i;j

jCi \Dj j
2
C 2g� 2:

1.2 Relationships with other Floer theories

Symplectic Floer homology for surface symplectomorphisms is the d D 1 part of
periodic Floer homology5 (PFH) of � (see Hutchings and Sullivan [21, Section 2]
and Hutchings [18]), a Floer homology theory whose chain complex is generated by
certain multisets of periodic orbits of � and whose differential counts certain embedded
pseudoholomorphic curves in R�M� . This theory was created to be a candidate for
a 3–dimensional version of Taubes’ “SWD Gr” result [46]. Since the first draft of
this paper came out, Lee and Taubes [30] have shown this to be isomorphic to the

5Beware, however, that for some of the spinc –structures, the monotonicity condition for PFH differs
from that for symplectic Floer homology.
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Seiberg–Witten Floer homology (SWFH) (see Kronheimer and Mrowka [25]) of M�

in certain spinc–structures when d < g� 1. This in turn is conjectured to agree with
Ozsváth and Szabó’s Heegaard Floer homology invariant HFC [34].

PFH is also related to embedded contact homology (ECH) (see Hutchings and Sulli-
van [22]), which is an analogous construction with R�Y for Y a contact 3–manifold
and is also conjectured to agree with SWFH and HFC . Taubes has recently announced
a result relating ECH to SWFH [47; 48] and yet more recently Lee and Taubes have
announced a result relating PFH to SWFH. This would imply that the results of this
paper calculate the SWFH of M� in certain spinc –structures.

PFH has been computed for a single Dehn twist and certain other cases [21], but no
pseudo-Anosov cases are known for g > 1. ECH has been computed for T 3 [22] and
for M� for � an Anosov map on the torus (ie a map given by a hyperbolic element of
SL2Z) by Lebow [26]. Jabuka and Mark [23] have computed HFC.M�/ for a subset
of the mapping classes calculated by Seidel [43] and Eftekhary [9] for symplectic Floer
homology, and the results agreed.

1.3 Relationship with vanishing cycles and mutation

Seidel has a conjecture for the symplectic Floer homology of a general composition
of positive Dehn twists on a surface with boundary in terms of Hochschild homology
coming from his work on vanishing cycles and mutation [44]. Due to the complicated
relationship between Thurston’s classification of surface diffeomorphisms, which our
results are based on, and compositions of positive Dehn twists, comparing Seidel’s
conjecture with the results of this paper is nontrivial. Since the first draft of this paper,
Perutz [37] has announced a proof, in progress, of Seidel’s conjecture. It would be
interesting to find applications of the equality of these two very different computations.
It may also be interesting to understand this equality directly, perhaps by understanding
how the Floer complex changes as the Bestvina–Handel algorithm is implemented.

1.4 Organization of the paper

In Section 2 we review symplectic Floer homology and give a detailed discussion of
when it is well-defined. We introduce Nielsen classes and the direct sum decomposition
of .CF�; @/ resulting therefrom. We use a simplified version of Yi-Jen Lee’s bifurcation
analysis to show that, in our setting, HF�.�/ is invariant under deformations through
weakly monotone maps. Finally we show invariance of the H�.†/–module structure
using an algebraic interpretation of the H1.†/–action in terms of the twisted Floer
homology complex.
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In Section 3.1 we show that every map in a pseudo-Anosov mapping class is weakly
monotone.

In Section 3.2, we describe the canonical singular representative of a pseudo-Anosov
mapping class �sing in the closed case and give a Hamiltonian perturbation supported
near its singularities which results in a smooth symplectomorphism �sm . In addition,
we analyze the fixed points of �sm near the perturbed singularities and note that they
are all of the same index.

In Section 3.3, we use a result of Birman and Kidwell [2] and the conclusions of Section
3.2 to show that all differentials vanish on CF�.�sm/ and deduce the H�.†/–module
structure.

In Section 4.1, we study the topology of the space of weakly monotone maps in arbitrary
mapping classes in order to prove a stronger invariance result for HF� .

In Section 4.2, we describe the standard form for reducible maps and discuss the
behavior of pseudo-Anosov maps near the boundary. We give a Hamiltonian pertur-
bation of �sing to �sm at the boundary. We then give in Section 4.3 a classification of
the Nielsen classes of fixed points of standard form reducible maps after Jiang and
Guo [24], extending their work to the symplectic case, where one must also consider
fixed regions between parallel Dehn twists (which can be isotoped away if one is not
required to preserve area). We then use this to show in Section 4.4 that standard form
reducible maps �sm are weakly monotone in every Nielsen class, which requires a
lengthy technical argument. This allows us to show that HF�.�sm/D HF�.h/.

In Section 4.5, we use a neck-stretching argument of Gautschi [17] in Lemma 4.15 to
show that .CF�.�sm/; @/ splits into direct summands for each component (including
regions between parallel Dehn twists) with one exception. This exception occurs when
a pseudo-Anosov component abuts a component on which the map is the identity.
We adapt Gautschi’s neck stretching argument to this case and combine this with an
argument of Salamon and Zehnder [41] in Lemma 4.14 to compute the differential
by relating holomorphic cylinders from fixed points in one of these regions to the
other to Morse flow lines passing through the reducing curve between the regions.
This allows us to give a computation in Theorem 4.16 of HF�.�sm/, together with
its H�.†/–module structure, using our result for pseudo-Anosov components and
Gautschi’s [17] work on periodic components.

In Section 5, we review the theory of train tracks and give a combinatorial formula
computing HF�.�sm/ for pseudo-Anosov mapping classes (and thus for reducible
mapping classes as well, by the direct sum decomposition given in Section 4.5) from
the action of �sm on an invariant train track. Note that Bestvina and Handel [1] give

Geometry & Topology, Volume 13 (2009)



2626 Andrew Cotton-Clay

an algorithm to find an invariant train track from eg the representation of a mapping
class as a product of Dehn twists.

In Section 6, we apply the results of Section 5 to a large collection of examples of
pseudo-Anosov maps due to Penner and obtain an explicit formula for the rank of
HF�.h/ in these cases.

1.5 Directions for further research

Cylindrical contact homology Symplectic field theory and contact homology invari-
ants (see Eliashberg, Givental and Hofer [10]) exist for mapping tori due to the existence
of a Hamiltonian structure (see Bourgeois et al [3], Cieliebak and Mohnke [5] and
Fabert [11]). In this setting, the “cylindrical mapping torus contact homology” splits as
a direct sum

1M
nD1

H� .C�.�; n// ;

where C�.�; n/ is generated by good periodic orbits of degree n. This chain complex
is similar to CF�.�n/, but the latter is generated instead by periodic points, with
multiplicity, of degree n. This, and its more complicated “full” version, are a sort
of intermediate step between symplectic Floer homology and (cylindrical) contact
homology of open books. Mei-Lin Yau [51] has given a correspondence between (not
necessarily cylindrical) holomorphic curves in mapping tori and in their 0–surgeries,
which are contact 3–manifolds with a natural open book decomposition. Since the first
draft of this paper came out, Colin and Honda [6] have computed certain examples of
cylindrical contact homology for open books.

Product structures We have an understanding of the H�.†/–module structure, but
lack an understanding of products �W HF.�/˝HF. /!HF.� ı / unless one of the
two maps is the identity. An important special case is an understanding of rings of the
form

1M
nD0

HF�.�n/ or
1M

nD�1

HF�.�n/:

Grading and spinc–structures We use a Z=2–grading, but a relative Z=.2div.c�//D
Z=.4g � 4/ grading is available for each Nielsen class6 or more generally for each
homological Nielsen class, that is, among generators whose orbits agree in H1.M�/.
A good understanding of the splitting not into Nielsen classes but into homological
Nielsen classes, together with relative grading data, is lacking.

6In our calculations, we have more than one generator in a given Nielsen class only in situations in
which we have a correspondence between Floer flow lines and Morse flow lines. Thus the relative grading
for Nielsen classes is simply the Morse relative grading.
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2 Floer homology, weak monotonicity, Nielsen classes, bifur-
cation analysis and module structure

2.1 Review of symplectic Floer homology

Let † be a compact, connected, oriented surface of negative Euler characteristic.
Let ! be a symplectic form (ie an area form) on †. Let � 2 Symp.†; !/ be a
symplectomorphism (ie an area-preserving diffeomorphism) of † and consider

M� D
R�†

.t C 1;x/� .t; �.x//
;

the mapping torus of � . Note that this is a †–bundle over S1 and we have the
projection � W M�!R=ZD S1 .

Suppose � has nondegenerate fixed points; that is, at a fixed point, d� does not have 1

as an eigenvalue (in particular, fixed points are isolated). Under certain conditions (see
below), we can define the symplectic Floer homology HF�.�/ associated to � . This is
the homology of a Z=2–graded7 chain complex CF�.�/ (which depends on the choice
of almost complex structure; see below) which is freely generated as a vector space
over Z=2 by the fixed points of � . The grading �.x/ of a fixed point x is given by
.�1/�.x/ D sign.det.1� d�//. The homology, but not necessarily the chain complex
itself, is invariant under certain deformations of � (and independent of the choice of
almost complex structure). We give a summary of how to define HF�.�/ and point
out any relevant pitfalls. See also Dostoglou and Salamon [8] and Seidel [45].

Let �.M�/ denote the space of smooth sections of � W M� ! S1 , also known as the
twisted loop space,8 consisting of smooth paths  W R!† such that  .t/D�. .tC1//.
Note that a fixed point x 2† of � can be interpreted as a constant path  .t/D x in
�.M�/. The tangent space of �.M�/ at a path  consists of sections � of  �T†
such that �.t/D d�.�.tC1//. We have an action one-form ˛� on �.M�/ defined by

˛�. /� D

Z 1

0

!

�
d

dt
; �

�
dt:

7There is a lift to a relative Z=div.2c1.E// D Z=.4g � 4/ grading, with a corresponding absolute
grading by homotopy classes of 2–plane fields; see Perutz [38] or Hutchings [20].

8We will abuse notation and switch between sections of M� and paths in † at will.
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Note that the zeroes of this one-form are precisely the constant paths  , that is, the
paths corresponding to fixed points of � .

The differential on CF�.�/ is defined by a certain count of “gradient flow lines” of ˛� .
To get a metric (which doesn’t show up explicitly in the equations), we require a
complex structure on †. Let J be the space of smooth 1–periodic families J D fJtg

(that is, ��JtC1�
�1
� D Jt ) of !–tame9 almost complex structures on †. Then we can

define M.x;y;J / to be the set of maps uW R2!† such that:

u.s; t/D �.u.s; t C 1//(1)

lim
s!C1

u.s; � /D x and lim
s!�1

u.s; � /D y(2)

@suCJt .u/@tuD 0:(3)

We call such a u a flow line from x to y . We may think of u as a section uW R�S1!

R�M� of id�� W R�M�!R�S1 . We may also think of u as a path in �.M�/

between x and y , the constant paths associated to the fixed points x and y . We will
use these three interpretations interchangeably.

At each flow line u, we have a Fredholm linearized x@ operator Du . We let Mk.x;y;J /

be the subset consisting of those maps u for which the index of Du is k . For generic
J 2 J , Du is onto and so by the implicit function theorem, all of these are smooth
manifolds of dimension k (see Floer, Hofer and Salamon [16]). Additionally, these
moduli spaces come with a natural action of R by translation in the first coordinate,
and so we consider their quotients Mk.x;y;J /=R.

We would like to define the differential10 by

@x D
X

y

cx;y y(4)

where cx;y is a count of the number of points (modulo 2) in M1.x;y;J /=R, and we
would also like to have @2 D 0 so that we can take the homology HF�.�/. In order to
do this, we need compactness and gluing results (note that bubbling is not an issue as
�2.†/D 0), which require upper bounds on the energy

E.u/D
1

2

Z
R�Œ0;1�

.j@suj2Cj@tuj
2/ ds dt(5)

9That is, !.v;Jv/ > 0 for v ¤ 0 .
10We use symplectic Floer homology, which agrees with the conventions in periodic Floer homology

[18; 21].
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in each Mk.x;y;J / (at least for k D 1 or 2). For u 2Mk.x;y;J /, we have

E.u/D

Z
R�Œ0;1�

u�!:(6)

These are locally constant. To ensure they are bounded, we impose:11

Condition 2.1 E.u/ is constant on Mk.x;y;J /.

Given this, the symplectic Floer homology groups HF�.�/ are well defined. Addition-
ally, they are independent of the choice of (generic) J (which follows, for example, by
Theorem 2.8). We have yet to consider invariance under (certain) deformations of the
map � . More on that in Section 2.4.

2.2 Index and weak monotonicity

In order to verify Condition 2.1, we need to know more about the index k D ind.Du/.
We follow [18, Sections 2.1–2.3, 5.1]. We first define the relative first Chern class and
the Conley–Zehnder index and then use these to state a formula for ind.Du/.

Let E denote the vertical tangent bundle of M�!S1 . This bundle carries a symplectic
structure induced by ! . If x 2 �.M�/ corresponds to a fixed point x (ie x.t/D x ),
let T .x/ denote the set of homotopy classes of symplectic trivializations of  �x E .
This is an affine space over Z.

Suppose we have a flow line uW R�S1!R�M� which limits to x at �1 and y at
C1. If we choose trivializations �x 2 T .x/ and �y 2 T .y/, we get a relative first
Chern class c1.u

�E; �x; �y/ 2 Z by counting the zeroes of a section of u�E which
is constant (and nonzero) with respect to �x and �y over the two boundary circles.
If v is another flow line with the same limits, let Œu� v� be the homology class in
H2.R�M�/DH2.M�/ corresponding to the obvious (up to reparametrization) map
S1 �S1!R�M� . Then we have

c1.u
�E; �x; �y/� c1.v

�E; �x; �y/D hc1.E/; Œu� v�i :(7)

We also have an integer called the Conley–Zehnder index �.x; �x/ associated to a
fixed point x and a trivialization �x 2 T .x/. We have a natural connection on the
bundle M� ! S1 whose monodromy is given by � . Linearized parallel transport
induces a connection on  �x E . Thus if we traverse x once, then using �x this induces
a path of symplectic matrices in Sp.2;R/ from 1 to d�x . We let �.x; �x/ be the

11We could make do without this if we were willing to work over a Novikov ring. This is the approach
we take in [7].
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Maslov index of this path of symplectic matrices (see eg Salamon and Zehnder [41]).
Furthermore, �.x; �x/� �x (modulo 2).

Theorem 2.2 (Index [40]) For u a flow line from x to y ,

ind.Du/D 2c1.u
�E; �x; �y/C�.x; �x/��.y ; �y/:

In particular, this is independent of the choice of trivializations.12

Corollary 2.3 (Change of homology class) If u and v are flow lines with the same
limits, then

ind.Du/� ind.Dv/D 2 hc1.E/; Œu� v�i :

Following Seidel [45], we now turn this into a way to verify Condition 2.1. If u and
v are two flow lines from x to y , then by following u and then the reverse of v ,
we get a loop in �.M�/ based at x , ie an element  uv 2 �1.�.M�/; x/. We may
think of an element  2 �1.�.M�/; x/ as a map S1 �S1! S1 �M� which is a
section of id�� W S1 �M� ! S1 � S1 . On S1 �M� as well as on M� , we have
two elements of H 2.M� IR/ (we will abuse notation and consider these on S1 �M�

or M� interchangeably). First we have !� induced by ! on †, and second we have
c� D c1.E/. Both of these may be evaluated on elements of �1.�.M�/; x/. We
denote these actions by !�. /D

R
S1�S1  

�!� and c�. /D c1. 
�E/ŒS1 �S1�.

Corollary 2.4 (Monotonicity for x ; cf [45, Lemma 9]) Suppose that for all  2
�1.�.M�/; x/ such that c�. /D 0, we also have !�. /D 0. Then E.u/ is constant
on Mk.x;y;J / for all k , y and J . That is, Condition 2.1 is satisfied for flow lines
starting at x . In this case, we say that � satisfies monotonicity for x .

Proof Suppose we have u and v in Mk.x;y;J /. Then we have ind.Du/�ind.Dv/D

k�kD0, so by Corollary 2.3, c�. uv/Dhc1.E/; Œu� v�iD0. Thus, using !�. uv/D

0, we have:

0D !�. uv/D

Z
S1�S1

 �!� D

Z
R�Œ0;1�

u�! �

Z
R�Œ0;1�

v�! DE.u/�E.v/:

Thus we’ve reduced Condition 2.1 to:

Condition 2.5 (Weak monotonicity) !� vanishes on the kernel of

c� W H1.�.M�//!R:

12We use the notation of Hutchings [18, Theorem 5.1], who states this theorem for general Riemann
surfaces, where it is due to Schwarz [42, Theorem 3.3.11].
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2.3 Nielsen classes

Given a map � , there is a topological separation of fixed points due to Nielsen. The
chain complex CF�.�/ splits into direct summands corresponding to each Nielsen
class (defined below). That is, if two fixed points x and y are in different Nielsen
classes, then the matrix coefficient cx;y D h@x;yi is zero. This idea has been used eg
by Pozniak [39, Sections 3.3.1, 3.5.1] and Seidel [43] and has also been noticed by
Nielsen theorists, eg Fel 0 shtyn [13].

Definition 2.6 Two fixed points x and y of � are in the same Nielsen class, or Nielsen
equivalent, if there exists a path  W Œ0; 1�! † with  .0/ D x ,  .1/ D y such that
�. / is homotopic to  (rel. endpoints). Note that this is an equivalence relation.

There can be a flow line from x to y only if x and y are in the same Nielsen class: If
u.s; t/ is a flow line from x to y , let the path t W Œ0; 1�!† be a reparametrization
of u. � ; t/ (for each t ). Then the curve 1 exhibits the Nielsen equivalence between
x and y : its limits are x and y , and it is homotopic (rel. endpoints) through t to
0 D �.1/.

Interpreting fixed points as sections of M� ! S1 , that is, as elements of �.M�/,
we note that two fixed points are Nielsen equivalent if and only if their sections are
homotopic. That is, �0.�.M�// describes possible Nielsen classes.

For � 2 �0.�.M�//, let CF�.�; �/ be the chain complex generated by fixed points in
Nielsen class corresponding to �. (Note that this may be the zero chain complex.) We
have CF�.�/D

L
�2�0.�.M�//

CF�.�; �/ as chain complexes, and thus

HF�.�/D
M

�2�0.�.M�//

HF�.�; �/:

Let �.M�/� denote the �–component of �.M�/. Then HF�.�; �/ is well-defined if
we have:

Condition 2.7 (�–Weak monotonicity) !� vanishes on the kernel of

c� W H1.�.M�/�/!R:

2.4 Bifurcation analysis of Yi-Jen Lee

The standard argument to show invariance under certain deformations of � is the
continuation argument as in [15]. It gives invariance under Hamiltonian deformations
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of � . Seidel [45, Section 3] has a generalized continuation argument which shows
invariance under deformations which preserve monotonicity. We have need of a more
general version of monotonicity, and thus also require a more general invariance result.

Floer’s original invariance argument [14] was not a continuation argument, but rather
a bifurcation argument, in which one analyzes degeneracies that arise in generic one-
parameter families and their effect on HF� . He did not complete all of the analysis
required, but with the advent of the continuation argument, this was no longer needed.
Yi-Jen Lee [28; 29] has worked out a general bifurcation argument for what she calls
Floer-type theories, including all of the necessary analysis. Michael Usher [50] has a
nice summary of the invariance result this gives (which Lee conjectured in an earlier
paper [27, Equation 3.2] but did not explicitly state as a Theorem in [28; 29]) and its
algebraic aspects. We give a brief discussion of a simplified version sufficiently general
for our needs.

Theorem 2.8 (Simplified version of [50, Theorem 3.6, due to Lee [28; 29]]) Suppose
.†; !/ is a symplectic manifold with �2.†/ D 0. Let �r W † ! † be a smooth
family of symplectomorphisms and Jr D fJtgr a smooth family (of 1–periodic
families) of almost complex structures such that .�0;J0/ and .�1;J1/ are generic.
Let � 2 �0.�.M�0

// Š �0.�.M�r
// be a Nielsen class. Suppose that !�r

van-
ishes on ker.c�/W �1.�.M�r

/; �/ ! R (that is, �r is �–weakly monotone). Then
.CF�.�0; �;J0/; @0/ is chain homotopy equivalent to .CF�.�1; �;J1/; @1/.

The main idea of the proof is to study generic 1–parameter families and what happens
to .CF�; @/ at times r0 where the data fail to be generic. Because we have assumed that
!� vanishes on ker.c�/, we cannot have a flow line of index 0 from a fixed point x

to itself (Lee calls these “type II handleslides”) because, by Corollary 2.3, it would
have zero energy. The argument is then formally identical to bifurcation arguments in
Morse theory; see for instance Hutchings [19] for a carefully done modern perspective
in the more complicated circle-valued case (which includes type II handleslides). For
Lee’s account in the Floer theory setting, see [28, Section 4.4], noting that we have no
type II handleslides.

In generic 1–parameter families, there are three types of degeneracies that can happen
at a time r0 :

� Cancellation: A degenerate flow line from x to y of index 1,

� Birth-death: A birth or death of two fixed points x and y at a degenerate fixed
point,

� Handleslide: A flow line from x to y of index 0.
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For a cancellation, at times r0� � < r < r0 we have two flow lines (of opposite sign
were we working with Z–coefficients) which cancel at time r0 (or the time-reversal of
this situation). This does not change the chain complex .CF�; @/.

For a birth-death, let us assume without loss of generality we have a death of a pair x

and y , with a single flow line from x to y for r shortly before r0 . Let z and w be
two other fixed points. We compare h@�z; wi and h@Cz; wi, the matrix coefficients at
times just before r0 and at times just after r0 , respectively. Because !� vanishes on
ker.c�/, we may have either flow lines of index 1 from z to y or flow lines of index 1

from y to z , but not both. Let us assume that the former is the case. Flow lines from
z to y are glued to flow lines from x to w . Thus

h@Cz; wi D h@�z; wi˙ h@�z;yi h@�x; wi :

This does not change the chain homotopy type of the chain complex (we need not
worry about the sign as we are working with Z=2–coefficients, but the case with
Z–coefficients is fine as well); see eg Usher [50, Section 3.3].

For a handleslide, the generators of the chain complex do not change. We again
compare @� and @C . If we have a fixed point z with a flow line to x for r near r0 ,
then, by gluing this with our flow line from x to y , we get a flow line from z to
y on one side of r0 . Similarly, if we have a fixed point w with a flow line from y

for r near r0 , then we get a flow line from x to w on one side of r0 . Thus, letting
AW CF�! CF� be given by A.x/D x˙y and A.v/D v for all v¤ x , we have that
@C DA�1 ı @� ıA. Thus the isomorphism-type of .CF�; @/ does not change, and, in
particular, the homology is unchanged.

The analysis required to make the above rigorous is the gluing described in the birth-
death situation and in the handleslide situation. Lee does this in the second paper [29],
where she must also glue tori due to type II handleslides.

2.5 Product structure and invariance

There is a product �W HF.�/˝HF. /!HF.� ı /, whose matrix coefficients count
holomorphic sections of a hamiltonian symplectic fibration with fiber † over the pair
of pants CP1 n f0; 1;1g. The monodromies are given by � ,  and � ı .

In particular, this gives HF.�/ the structure of a module over the quantum homology
QH.†/ D HF.id/ via �W HF.id/˝ HF.�/ ! HF.�/. By Liu and Tian [31], this
intrinsic definition is equivalent to the following extrinsic definition: given a 2 HF.id/
and x a fixed point of � , choose a cycle C representing a 2 HF.id/ŠH�.†/. Then
the coefficient ha�x;yi for y a fixed point of � is given by a count holomorphic
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cylinders as in Section 2.1 with the extra condition that they pass through the cycle C

at s D t D 0.

The action of the fundamental class on HF.�/ is the identity. The action of the point
class has been studied by Seidel [45], who shows that it acts as zero unless the mapping
class of � is the identity mapping class. We calculate the action of H1.†/ below. For
this to have meaning, we have need of a proof of the invariance of the module structure
under weakly monotone deformations, which we come to presently.

Proposition 2.9 The action of H1.†/ on HF.�/ is invariant under weakly monotone
deformations of � .

Remark 2.10 This implies that the full module structure is invariant by the discussion
in the previous paragraph, or by the observation that the action of H1.†/ algebraically
determines the full module structure. We expect the full module structure to be invariant
for weakly monotone deformations of symplectomorphisms in higher dimensions, using
more details of Lee’s bifurcation analysis [28; 29].

Proof The key observation here is that the action of H1.†/ has index one and thus,
using the extrinsic definition, we may consider index one moduli spaces of cylinders,
the same moduli spaces used in defining the differential, and then impose the constraint
that they pass through C at s D t D 0 (whereas for the differential we mod out by the
R–action). We fix C missing the fixed points of � . Then we have

hŒC ��x;yi D
X

p2M1.x;y;J /=R

ŒC � � Œp�;(8)

where Œp� is the relative homology class of the cylinder from x to y , in the H2.M�/–
torsor of 2–chains with boundary y � x , and ŒC � � Œp� is the intersection product,
where by ŒC � we really mean i�ŒC � for i W †!M� the inclusion to the fiber over
0 2 S1 .

The extrinsic definition is equivalent to the following algebraic definition, as in [22,
Section 12.1.3]. Let H DH2.M�/. We can define the fully twisted symplectic Floer
homology .CFtw.�/; @tw/ as the free Z=2ŒH �–module generated by fixed points of � ,
with differential given by˝

@twx;y
˛
D

X
p2M1.x;y;J /=R

.Œp�� bxy/;

where bxy is a choice of an element in the H –torsor associated to x and y . We
require the choices to be compatible in the sense that they form a cochain with respect
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to the gluing maps and additionally require that ŒC � � bxy D 0 for all x;y . This is
possible because we may assume that C is nonseparating (else ŒC � is zero). The chain
homotopy type of .CFtw.�/; @tw/ is invariant under weakly monotone deformations
of � . The proof is the same as that of Theorem 2.8, with the additional comment that
gluing is additive on relative homology classes, and so the same algebraic formulas
given above for birth-deaths and handleslides carry over.13

Via the intersection product, the chain C gives a map iC W H ! Z=2. This induces
a Z=2–linear map �C W Z=2ŒH �! Z=2ŒH � defined on elements h 2H by �C .h/D
iC .h/h. Note that this is a derivation of Z=2ŒH � over Z=2. We now define a Z=2ŒH �–
linear map @tw

C
on CFtw.�/ via

@tw
C x D

X
y

�C .h@
twx;yi/y:

We have that @tw ı @tw
C
D @tw

C
ı @tw (as noted in [22, Section 12.1.3], this follows from

.@tw/2D 0 and �C .xy/D �C .x/yCx�C .y/). Setting all elements of H equal to one,
we have @C on CF.�/ which commutes with @. This gives a map @C W HF.�/!HF.�/
which agrees with the map ŒC ���W HF.�/! HF.�/ by Equation (8). To complete
the proof of the invariance of the latter under weakly monotone deformations, we have
only to show that the former is invariant under chain homotopies of CFtw.�/.

Consider a Z=2ŒH �–linear chain map ˆW CFtw.�/! CFtw.�0/ (we’re only interested
in the case where this is a quasi-isomorphism, but it does not matter). Note that via
the inclusion i W CF! CFtw and the map j W CFtw

! CF sending all elements of H

to one, we have a chain map j ıˆ ı i W CF.�/! CF.�0/. We show ˆ@tw
C

and @tw
C
ˆ

are chain homotopic, which implies jˆi@C and @C jˆi are chain homotopic. We
compute:

hˆ@tw
C xi ;xki D hˆh@

tw
C xi ;xj ixj ;xki

D h@tw
C xi ;xj ihˆxj ;xki

D �C .h@
twxi ;xj i/hˆxj ;xki

D �C .h@
twxi ;xj ihˆxj ;xki/� h@

twxi ;xj i�C .hˆxj ;xki/

Similarly,

h@tw
C ˆxi ;xki D �C .hˆxi ;xj ih@

twxj ;xki/� �C .hˆxi ;xj i/h@
twxj ;xki:

The first terms on the right hand sides are equal as @twˆDˆ@tw . The others are of the
form @twK and K@tw , so indeed the two left hand sides are chain homotopic.

13For the handleslide, we actually must use A.x/D x˙ .h�bxy/y , where h is the class of the index
zero flow line. For the birth-death, we simply choose bxy to be the class of the short flow line between x

and y and the same formula carries over.
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3 Pseudo-Anosov maps

3.1 Weak monotonicity and invariance in pseudo-Anosov mapping classes

The aim of this section is to show:

Proposition 3.1 For any (not necessarily monotone) symplectomorphism �W .†; !/!

.†; !/ in a pseudo-Anosov mapping class h, if � has nondegenerate fixed points, then
HF�.�/ is well-defined and HF�.�/D HF�.h/.

In order to prove this we show that every symplectomorphism � in a pseudo-Anosov
mapping class is weakly monotone (ie satisfies Condition 2.5). To do this, we show
that H1.�.M�//D 0.

Lemma 3.2 For � pseudo-Anosov and  2 �.M�/, �1.�.M�/;  /D 0.

Proof We consider  as a map R! † with  .t/ D �. .t C 1//. An element of
�1.�.M�/;  / is of the form s.t/ for s 2S1DR=Z with 0.t/D  .t/. We consider
˛0.s/Ds.0/ and ˛1.s/Ds.1/. These are closed curves on † and �.˛1.s//D˛0.s/.
Furthermore, ˛0.s/ is homotopic to ˛1.s/ by the homotopy ˛t .s/D s.t/. We now
quote Lemma 3.3 (below) to conclude that ˛0.s/ must be nullhomotopic.

To deal with this case, we consider the fibration:

�† ����! �.M�/??yf
†

Here f takes a section to its value at t D 0. The fiber over  .0/ 2† is homeomorphic
to �†, which we think of as loops in † based at  .0/, as follows: Let  t W †!† be
an isotopy from the identity to a map which takes  .0/ to  .1/. Then, given an element
x.t/ of �† (ie a loop based at  .0/), we consider y.t/D  t .x.t//, an element of
the fiber over  .0/ of the map f . This gives the homeomorphism.

Thus we have a long exact sequence of homotopy groups, a piece of which is

�2.†;  .0//! �1.�.M�/;  /! �1.†;  .0//:

The image in �1.†;  .0// of the element of �1.�.M�/;  / represented by the ho-
motopy s.t/ is represented by ˛0.s/, which is nullhomotopic. Thus it comes from
�2.†;  .0//, which is trivial. Thus we have �1.�.M�/;  /D 0.
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Lemma 3.3 [4, Lemma 5.6] If �W †! † is pseudo-Anosov, and C is a noncon-
tractible curve on †, then �m.C /' �n.C / if and only if mD n.

Proof of Proposition 3.1 By Lemma 3.2, Condition 2.5 is trivially satisfied. Thus
HF�.�/ is well-defined. To show that HF�.�/D HF�.h/, we use Theorem 2.8. We
find an isotopy of symplectic maps �t such that �0 D � and �1 is monotone. This
exists because Sympm ,! Symp is a homotopy equivalence [45]. By Lemma 3.2,
each �t satisfies the conditions of Theorem 2.8.

3.2 Symplectic representatives of pseudo-Anosov mapping classes

Pseudo-Anosov mapping classes have canonical representatives (up to topological
conjugacy) which happen to be singular. The goal of this section is to describe how to
symplectically smooth these singular representatives. We review the structure of the
singular representatives and then spend the rest of the section symplectically smoothing
their singularities.

A singular measured foliation F on a surface † is, away from a finite number of points,
a smooth foliation with a transverse measure, that is, a measure of how far a curve is
travelling in the direction transverse to the foliation. Away from the singular points
the foliation has charts which take the leaves to horizontal lines in R2 such that the
transverse distance between leaves is simply the vertical distance in R2 . At a singular
point, F has a number of prongs p � 3 as in the left of Figure 1 for the case p D 3

(more on this below).

A pseudo-Anosov map �sing (that is, a canonical singular representative) preserves two
measured foliations F and G which are transverse everywhere except their singular
points, which coincide and have the same number of prongs (as in the left of Figure 1).
The map �sing expands the transverse measure on F by a factor of � > 1 and con-
tracts the transverse measure on G by the same factor. See Fathi, Laudenbach and
Poenaru [12], Casson and Bleiler [4], Thurston [49], Mosher [33], Jiang and Guo [24]
and Penner [35] for more on pseudo-Anosov maps.

As in [12, Exposé 9], we can find a Markov partition for �sing . That is, we can
decompose our surface into a finite collection of homeomorphic images of rectangles,
overlapping only on their boundaries, such that F and G pull back to the standard
horizontal and vertical foliations. We equip these rectangles with the standard flat
metric coming from the transverse measures. Upon gluing together the rectangles, we
may obtain cone points of angle p� , which we call singular points with p prongs.

We change coordinates by a homeomorphism isotopic to the identity such that the
foliations are smooth away from the singular points. Furthermore we require that in a
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neighborhood of a singular point x with p prongs, we have a smooth chart such that
one of our foliations F is given by the subbundle of the tangent space to † on which
the quadratic differential zp�2dz2 is positive real, and the other G by the subbundle
on which it is negative real. See the left of Figure 1.

We choose our symplectic form to be the area form associated with the flat-metric-
with-cone-points described above. This is smooth even at the singularities. We must
find a smooth symplectic perturbation of the map � near the singularities. We describe
the perturbation near a fixed singularity. Near a singularity that maps to a different
singularity, one can use the work below under an identification of neighborhoods of
the singularities.

Figure 1: Left: The foliations F and G in the case p D 3 . Right: The
singular Hamiltonian vector field whose time–1 flow is � when � D id in
the case p D 3 .

If we divide up a neighborhood of this singular point by considering the components
of the complement of the prongs of F , each of these components is diffeomorphic to a
rectangle on which the two foliations are the horizontal and vertical foliations. This
diffeomorphism is given in radial coordinates by .r; �/ 7! .r; p

2
�/ (see Figure 2). This

map multiplies area by the constant multiple p
2

and thus a map is symplectic on one
of the components if and only if the associated map is symplectic on the associated
rectangle.

If x is a fixed point, then � cyclically permutes these rectangles. If we compose � with
an appropriate rotation � (rotation by some multiple of 2�=p ) so that each rectangle
is taken to itself, then the map � ı� D � ı � on the closure of one of these rectangles
is given in coordinates by the linear map

A� D

�
� 0

0 ��1

�
;
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Figure 2: Angular dilation of one of the regions transforms it to a standard
rectangle with horizontal and vertical foliations.

where the origin is the singularity. The map A� is the time–1 flow of the Hamiltonian
vector field associated to the Hamiltonian H D �xy , where �D ln�.

We can obtain a singular Hamiltonian Hsing (singular at x only) on an entire neigh-
borhood of x by piecing together the Hamiltonians on the various components. The
Hamiltonians agree on the prongs, and the only issue is smoothness there. To see
that we actually have a smooth Hamiltonian away from x , consider that if we use
G instead of F and find Hamiltonians in the manner described above, they agree on
the half-rectangles (given by the overlaps) with the Hamiltonians coming from F
and they are smooth on the prongs associated to F . Alternatively, we can simply
note that Hsing D �r2 cos.p�/ in polar coordinates, or �Re.zp/=jzjp�2 in complex
coordinates. See the right of Figure 1.

Our strategy now is to modify Hsing inside a small disk. We divide our task into two
cases:

� �¤ id (the “rotated” case)

� �D id (the “unrotated” case)

Perturbing rotated singularities

Our map � is given (in a neighborhood of x ) by the time–1 flow of the singular
Hamiltonian Hsing composed with ��1 . We modify � by forming Hsm D fHsing ,
where f is a smooth function whose zero set is a small ball and which is one outside a
slightly larger one. Then we let �sm (in a neighborhood of x ) be the time–1 flow of
the Hamiltonian Hsm composed with ��1 .
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The union of all of the prongs is still preserved setwise by �sm and the rectangles
continue to be permuted in the same manner as before. Thus the only possible fixed
point is at x , where we have an elliptic fixed point, for �sm is given simply by ��1 in
a neighborhood of x .

Perturbing unrotated singularities

Here � is simply given (in a neighborhood of x ) by the time–1 flow of Hsing . We must
do something more elaborate than in the previous section in order to avoid degenerate
fixed points.

We construct Hsm in two steps. First we construct it on a small ball, where it has p�1

nondegenerate saddle points, and then we join it to Hsing by an interpolation with no
critical points. See Figure 3 for the basic idea.

Figure 3: Smoothing Hsing in the case p D 3 . On the left we have the
level sets of Hsing and on the right we have the level sets of the perturbed
Hamiltonian Hsm with p� 1D 2 saddle points.

Lemma 3.4 There is a smooth function G on the closed disk D DD.1/ with p� 1

nondegenerate saddle points and no other critical points such that on the boundary of
the disk, Gj@D is Morse14 with p minima and p maxima. Additionally, consider the
one-manifold Cmax consisting of the points where Gj@D.r/ is maximum for r near 1.
Likewise consider Cmin . We require that the derivative of G along Cmax (pointing
outward) is positive, that the derivative along Cmin is negative and that Cmax and Cmin

are transverse to @D.r/ where they are defined.

14We won’t be doing Morse theory here; this is simply a convenient class of functions.
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Proof The function x sin.�y/ has a saddle point at .0; k/ for k 2 Z. We consider
a small rectangle Œ��; ��� Œ0;p� 2� with semicircular caps on each end. This is not
smooth, but we may smooth it with a C 1 –small perturbation near the points where it
fails to be C 2 . We claim the map on this domain B has the requisite properties (we
then choose an appropriate map from D.1/ to B ).

On B , except near the ends, the maxima, minima and zeroes near the boundary are
(for an appropriate choice of the subdisks D.r/) horizontal lines and the map on the
boundary has nondegenerate zeroes and extrema.

The C 1 –small perturbation from above can’t produce extra critical points of Gj@D.r/ .
Additionally, for � small enough, x sin.�y/ is a C 2 –small perturbation of �xy , which
has nondegenerate extrema and satisfies the derivative condition in the statement of the
lemma, so x sin.�y/ also has nondegenerate extrema. Finally, the map is seen to have
the correct number of zeroes and extrema.

Lemma 3.5 Let G be as in Lemma 3.4. Then there exist constants 0 < c1� 1 and
c2� 1 such that if we define Hsm D c1G.c2z/ on a small disk of radius 1=c2 , there
exists an extension to a function Hsm which equals Hsing outside a somewhat larger
disk and which has no critical points in the intermediate region.

Proof We proceed in three steps (we will rescale at the end):

(1) Select r1 slightly less than 1 and consider the disk D.r1/�D.1/. We modify G

so that the zeroes and extrema are in the correct places on D.1/�D.r1/ (in the sense
that their placement agrees with that of Hsing D �r2 cos.p�/).

Isotop the identity map on the disk (through maps which preserve D.r/ setwise) to one
which takes the zeroes of GjD.1/�D.r1/ to the segments � D .k=p/�=2, the maxima
of G on the boundary of disks intermediate to D1 and D2 to the segments �D .2k=p/�

and the minima to the segments � D ..2kC1/=p/� . Note that these � correspond with
the placement of the zeroes, maxima and minima of the map Hsing D �r2 cos.p�/.

Let G1 be the composition of the inverse of the result of this isotopy with G . Note
that G1 also satisfies the conditions of Lemma 3.4

(2) Now select r2 such that r1< r2<1 and consider the disk D.r2/. We modify G1 so
that it is f .r/ cos.p�/ for some increasing function f .r/ on the region D.1/�D.r2/.

To do this, select an increasing function f .r/ on D.1/ such that on D.1/�D.r1/,

jf .r/ cos.p�/j �KjG1j

for some large constant K .
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Let G2 be a modification of G1 on D.1/�D.r1/ which is increasing in absolute value
(except where it is zero) on the rays � D const as r increases from r1 to 1 except
possibly for a brief period initially (ie near r1 ) and such that G2 D f .r/ cos.p�/ on
D.1/�D.r2/. We claim that we do not create additional critical points. Because the
maxima, minima and zeroes have the desired behavior in Lemma 3.4, there are only
issues in between them. We can make the initial period where G2 is not increasing
short enough so as not to create new critical points of G2 in this region.

(3) Extend G2 to a function G3 on R2 by extending f .r/ to an increasing function
which equals C r2 for r � 0 and some large constant C . Finally, let Hsm equal
c1G3.c2z/ for appropriate constants c1; c2 (defined on an appropriate region).

Thus our map �sm has p � 1 positive hyperbolic fixed points, and no others, in the
perturbed region. There are no fixed points coming from closed orbits because there are
no components of level sets of Hsm which are circles, for then there would necessarily
be an extremum inside, and Hsm has none.

3.3 Floer homology of �sm for pseudo-Anosov maps

We now consider the symplectic Floer homology of the smooth representative �sm

we have just constructed. By Proposition 3.1, because the mapping class h of �sm

is pseudo-Anosov, HF�.�sm/ D HF�.h/, which in turn is equal to HF�.�/ for any
other � in the same mapping class.

Theorem 3.6 In CF�.�sm/, all differentials vanish. Thus HF�.h/ D HF�.�sm/ D

CF�.�sm/.

Proof In [2] it is shown that no two fixed points (this includes both singular and
nonsingular fixed points) of a singular, standard form pseudo-Anosov map �sing are
Nielsen equivalent. If we can show that two fixed points of �sm are Nielsen equivalent
if and only if they are both associated to the same singularity of �sing , then we will
be done, for a differential u gives a Nielsen equivalence as in Section 2.3. Thus there
are no differentials except between those associated to the same singularity. These,
however, are all of the same index (mod 2) by Section 3.2.

To see that it is indeed the case that two fixed points of �sm are Nielsen equivalent if
and only if both are associated to the same singularity of �sing , we argue as follows:

(1) Whether two fixed points x and y of a map  are Nielsen equivalent is unchanged
by modifying a map inside a disk away from either fixed point (and thus any number
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of disks away from the fixed points), for any path passing through a disk is homotopic
(rel boundary) to any other with the same endpoints.

(2) If two isolated fixed points x and y of a map  are Nielsen inequivalent and we
modify our map in a small disk near x to a map  0 , then any fixed point x0 (of the
modified map) inside this disk is Nielsen inequivalent to y , for if we take a path  0

exhibiting Nielsen equivalence of x0 and y (under  0 ) and append a short path from
x to x0 , then this new path  exhibits Nielsen equivalence of x and y (under our  ).

To see this, note that the path following  from x to x0 and then onward until it exits
(for the last time) our small disk at a point x00 (call this path ˛ ) stays inside a slightly
larger disk under  . Thus the homotopy from x00 to  .x00/D  0.x00/ given by the
homotopy from  0 to  0. 0/ extends to a homotopy rel x from ˛ to  .˛/. This
implies that  is homotopic to  . /.

Repeated application of these two points gives our conclusion.

Corollary 3.7 H1.†/ acts as zero on HF�.h/ for h pseudo-Anosov.

Proof There are no flow lines between generators of CF�.�sm/, so the extrinsic or
algebraic definition of the action of H1.†/ as in Section 2.5 is trivial. By Proposition
2.9, the same holds for HF�.h/.

4 Reducible maps

4.1 The space of �–weakly monotone maps

In the reducible case, not every map is weakly monotone. We need to understand the
structure of the space of �–weakly monotone maps, and in particular show that it is
path connected, in order to prove invariance.15 We first recall the definition:

Definition 4.1 The symplectomorphism �W .†; !/! .†; !/ is weakly monotone for
a Nielsen class � 2 �0.�.M�// (or �–weakly monotone) if !� jN D 0, where

N D ker
�
c� W H1.�.M�/�/!R

�
;

where �.M�/� denotes the �–component of �.M�/.

15The results of this section go through for weakly monotone maps as well with similar arguments,
which is sufficient for our needs, but involving Nielsen classes is not much more difficult.
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We would like to be able to define the space Symp�
h
.†; !/ of maps � in a mapping

class h 2 � which are �–weakly monotone. To do this we must show that Nielsen
classes are well-defined not only for a single map but also for an entire mapping class.
Suppose we have an isotopy �t from � D �0 to �1 . Thinking of a Nielsen class as a
homotopy class of maps f W Œ0; 1�!† with the restriction that f .1/D �.f .0//, we
have a natural way to extend a given f (up to reparametrization) to a representative of
a Nielsen class for �t by extending the path f from f .0/ to �.f .0// to a path ft

from f .0/ to �t .f .0// in the obvious manner. We must show that if �1 D � then the
Nielsen class of f1 is the same as the Nielsen class of f .

Lemma 4.2 Nielsen classes are well-defined on an entire mapping class if † has
negative Euler characteristic. That is, in the above setup, the Nielsen class of f1 is the
same as the Nielsen class of f .

Proof We consider the universal cover H of †. We have a map ˆW †� S1! †

given by .x; t/ 7! �t .x/. This extends to a map ẑ W H� Œ0; 1��H�R!H on the
universal covers. If ẑ . � ; 0/D ẑ . � ; 1/, then the result follows. That is, we must show
the map ˆ ıpW H�S1!† extends to a map to H (where pW H�S1!†�S1 is
the covering map).

Recall the homotopy lifting property, which states that this map extends if and only
if .ˆ ı p/��1.H � S1/ D 0 � �1.†/. To see that this is the case, consider that
�1.† � S1/ D �1.†/ � Z. The image that we’re interested in is the image of the
copy of Z under the map ˆ�W �1.†/�Z! �1.†/. Because � is a diffeomorphism,
ˆ�. � ; 0/W �1.†/! �1.†/ is an isomorphism. Thus the image of the copy of Z is in
the center of �1.†/ because it commutes with every element of the image of ˆ�. � ; 0/,
which is all of �1.†/.

Because �.†/ < 0, the center of �1.†/ is trivial,16 and so the image of the copy of Z
is indeed trivial. The result follows.

Thus we denote the space of maps in a mapping class h2� which are weakly monotone
for � by Symp�

h
.†; !/. Similarly we use Sympm

h .†; !/ for the monotone symplectic
maps in the mapping class h and Symph.†; !/ for all symplectic maps in the mapping
class h. We note that if � is monotone, then it is �–weakly monotone (for any �): the
constant k is simply the proportionality constant relating ! and c� D c1.E/.

16To see this, note that if �1.†/ has a center, then we get a copy of Z=k �Z=` acting freely and
properly discontinuously by deck transformations (and, in particular, hyperbolic isometries) on H . The
free hyperbolic isometries (ie the parabolic and hyperbolic ones) are infinite order, so k D `D 0 . Thus the
quotient is a 2–manifold with fundamental group Z�Z . The only one of these is the torus. This gives a
hyperbolic structure on the torus, which violates Gauss–Bonnet.
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Proposition 4.3 (cf [45, Lemma 6 ff]) The inclusions

Sympm
h .†; !/ ,! Symp�

h
.†; !/ ,! Symph.†; !/

are homotopy equivalences.

Proof For the duration of this proof, the † and ! will be implied and we will omit
them when they are not needed.

Fix � 2 Sympm
h . We have the action Symp0 �Symph ! Symph . Using � , this

gives a homeomorphism Symp0 �f�g ! Symph . We ask which elements of Symp0

correspond under this homeomorphism to elements of Symp�
h

.

Consider  2 H1.�.M�/�/: We have a map H1.�.M�//! H2.M� IZ/ given by
taking the image in H2.M� IZ/ of the fundamental class of the torus representing the
element of H1.�.M�//. Denote the image of  by A 2H2.M� IZ/. Then if � is
�–weakly monotone, we have that c�.A /D 0 implies !�.A /D 0.

Suppose we perturb the map � by an isotopy �t from � D �0 to �1 . There is then
a natural way to extend  (up to reparametrization of S1 ):  is (as an element of
�.M�/) a path from  D  .0; � / to ��1. /. We let  t be the extension of this to a
path from  to ��1

t . / in the obvious manner. We wish to understand how !�t
.A t

/

and c�t
.A t

/ vary with t .

The latter is constant: we are simply taking the Euler numbers of isomorphic bundles.

For the former, we briefly recall the Flux homomorphism (see McDuff and Salamon [32,
Section 10.2] for details). This is a map FluxW ASymp0.†; !/! H 1.†IR/ (where
ASymp0.†; !/ is the universal cover of the identity component Symp0.†; !/, ie paths
in Symp.†; !/ starting at the identity up to homotopy). Its value, when paired with an
element  2H1.†;Z/ represented by the smooth image of an S1 , is the area swept
out by  under the path of symplectomorphisms. In our situation with �.†/ < 0,
we actually have FluxW Symp0.†; !/!H 1.†IR/ because maps S1 �S1!† are
nullhomologous, and so the area swept out by these is zero.

Thus the difference between !�0
.A 0

/ and !�1
.A 1

/ is

Flux.f��1
t ı�0gt2Œ0;1�/Œ�

�1
0 . /�;

ie the area swept out (on †) by ��1
t . / as t goes from 0 to 1. By the last line of the

previous paragraph, we may simply write this as Flux.��1
1
ı�0/Œ�

�1
0
. /�.

Let N be the subgroup of H1.†IR/ generated by Œ��1. /� for  the smooth image
of an S1 such that there exists a  2H1.�.M�/�/ with  .0; � /D  . Note that for
each such  , the class A is well defined, for if we have two different  ’s, putting
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them together we get a map S1 �S1!†, which then must be nullhomologous. Let
N0 �N be generated by Œ��1. /� for those  which additionally satisfy c�.A /D 0.

We get that �1 2 Symp�
h

if and only if

Flux.��1
1 ı�/.�

�1
� . � //

ˇ̌
N0
D 0:

That is, Symp�
h

is the kernel of the antihomomorphism

Symph

��1 ı�
����! Symp0

Flux
��! H 1.†IR/

� jN0
���! Hom.N0;R/

This antihomomorphism is surjective and continuous and thus all the fibers are home-
omorphic (and homotopic in Symph ) and, seeing as the range is contractible, each
fiber is also homotopic to all of Symph . Thus Symp�

h
' Symph by the inclusion. As

asserted in [45, Lemma 6ff], Sympm
h ' Symph by the inclusion (the proof is similar to

what we’ve done here but is slightly simpler), and so Sympm
h 'Symp�

h
by the inclusion

as well.

Proposition 4.4 For any �–weakly-monotone symplectomorphism �W .†; !/ !

.†; !/ in a mapping class h, HF�.�I �/ is well-defined and HF�.�I �/D HF�.hI �/.

Proof We apply Proposition 4.3: there is an isotopy �t with �0D� and �1 monotone
such that �t is �–weakly monotone for all t . Now well-definedness follows by
Condition 2.7. The final equality follows from Theorem 2.8.

Corollary 4.5 If �W .†; !/! .†; !/ is a symplectomorphism in mapping class h

and is �–weakly monotone for all �, then HF�.�/D HF�.h/.

4.2 Structure of reducible maps

By Thurston’s classification (see Thurston [49] and Fathi, Laudenbach and Poenaru [12];
also cf Gautschi [17, Definition 8]), in a reducible mapping class h 2 � , there is a (not
necessarily smooth) map � which satisfies the following:

Definition 4.6 A reducible map � is in standard form if there is a �– and ��1 –
invariant finite union of disjoint noncontractible (closed) annuli N �† such that:

(1) For A a component of N and ` the smallest positive integer such that �` maps
A to itself, the map �`jA is either a twist map or a flip-twist map. That is, with
respect to coordinates .q;p/ 2 Œ0; 1��S1 , we have one of

.q;p/ 7! .q;p�f .q// (twist map)

.q;p/ 7! .1� q;�pCf .q// (flip-twist map);
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where f W Œ0; 1�!R is a strictly monotonic smooth map. We call the (flip-)twist
map positive or negative if f is increasing or decreasing, respectively. Note that
these maps are area-preserving.

(2) Let A and ` be as in (1). If `D 1 and �jN is a twist map, then Im.f /� Œ0; 1�.
That is, �jint.A/ has no fixed points. (If we want to twist multiple times, we
separate the twisting region into parallel annuli separated by regions on which
the map is the identity.) We further require that parallel twisting regions twist in
the same direction.

(3) For S a component of †nN and ` the smallest integer such that �` maps
A to itself, the map �`jS is area-preserving and is either periodic (ie some
power is the identity) or pseudo-Anosov. If periodic, we require it to have the
form of an isometry of a hyperbolic surface with geodesic boundary. We define
pseudo-Anosov on a surface with boundary and standard form for such below.
If a periodic component S has `D 1 and �jS D idS we will furthermore call it
fixed.

Remark 4.7 When a pseudo-Anosov component abuts a fixed component with no
twist region in between, we’ll need to deal with this case differently throughout. This is
the major interaction between components. (There is also the influence of the twisting
direction in neighboring twist regions on fixed components.) When two pseudo-Anosov
components meet, we perturb both as below and there is no interaction.

A model for a pseudo-Anosov map on a surface with boundary is given in [24, Section
2.1]. The idea is to define a pseudo-Anosov map on a surface with punctures and then
“blow up” the punctures to recover boundary components. To define a pseudo-Anosov
map on a surface with punctures, we simply consider the punctures as (yet more)
singularities and let our foliations F and G be given by the subbundles of the tangent
space of † on which the quadratic differential zp�2dz2 is positive (resp. negative) real,
but instead of requiring p � 3, we only require p � 1. The case p D 2 corresponds
to a smooth fixed point (which we have punctured at the fixed point). As in Section
3.2, the map � is given in polar coordinates in a neighborhood of the puncture by the
time–1 flow of the (singular at the puncture) Hamiltonian Hpunc D �r2 cos.p�/.

We must now blow up each puncture to a boundary circle such that the map on the
boundary S1 is a rotation by some angle ˛ (to match up with the maps in item (1) in
Definition 4.6). This can be done in various ways (see Jiang and Guo [24, Section 2.1]
for example), but we must do it in such a way that the resulting map is area-preserving
and all fixed points are nondegenerate. Note that we are free to choose ˛ as the
difference can be made up by twisting (or by undoing twisting).
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As in Section 3.2, we again have our rotation � (which is rotation by some multiple of
2�=p ) and this again gives us two cases:

� �¤ id (the “rotated” case)

� �D id (the “unrotated” case)

Perturbing rotated punctures

In the rotated case, we choose ˛ to be the same as the rotation angle for ��1 . The
same argument as in Section 3.2 allows us to modify the map so that it has no fixed
points except inside a disk which is rotated with angle ˛ . Excising a subdisk, we have
our boundary component with rotation angle ˛ .

Perturbing unrotated punctures

The unrotated case is again more complicated. In order for the fixed points to be
nondegenerate, we’ll need the rotation angle ˛ to be a nontrivial one. The desired
result will be a Hamiltonian whose flow is a rotation inside a small ball. We’ll find one
which has p hyperbolic fixed points around the rotating region and agrees with the
flow of Hpunc outside a slightly larger ball. See Figure 4 for the basic idea.

Figure 4: Modifying Hpunc in the case p D 3 . On the left we have the
level sets of Hpunc and on the right we have the level sets of the perturbed
Hamiltonian Hsm whose flow is rotation inside a small ball (with an elliptic
fixed point at the center, but we’re excising the ball so it won’t count) and has
p D 3 hyperbolic fixed points surrounding the rotating region.

We proceed in four steps. First we add a positive bump of the form f .r; �/DAe�kr2

to Hpunc to produce the p equally spaced saddle points. Then we smoothly cut off
the tail of f without modifying the critical points of Hpunc C f . Next we modify
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HpuncCf near the origin so that its flow rotates at constant angular velocity. Finally
we ensure there are no fixed points of the time–1 flow of the Hamiltonian vector field
except for those corresponding to our p critical points.

Step 1 We consider H1 D HpuncC f .r; �/ D �r2 cos.p�/CAe�kr2

with A and
k positive constants to be chosen later. We’re interested in the critical points of
this function (away from the origin, where it’s singular), so we calculate its partial
derivatives:

@H1

@r
D 2�r cos.p�/� 2krAe�kr2

@H1

@�
D�p�r2 sin.p�/:

Thus at the critical points of H1 we must have sin.p�/D0. In this case, cos.p�/D˙1.
If it’s �1, @H1=@r cannot be zero (because both terms are negative). When it’s 1,
@H1=@r D 2�r � 2krAe�kr2

. For r > 0, this is zero when ekr2

D kA=�, ie when
r D rc WD

p
.1=k/ ln.kA=�/. We impose the restriction that kA > �. Note that by

making k large, we can make rc arbitrarily small.

In summary, we get critical points at one value of r at the values of � when cos.p�/D1,
that is, for p values of � . To check that these are all saddle points, we compute the
Hessian at these points:

@2H1

@r2
D 2�C 2�kr3 > 0

@2H1

@�2
D�p2�r2 < 0

@2H1

@r@�
D 0:

Thus the critical points are all nondegenerate and of index one, so we have p saddle
points.

Step 2 Keeping f solely a function of r , we cut it off smoothly starting at some
point past rc to give a Hamiltonian H2 which agrees with Hpunc outside a ball. As
long as we keep @f=@r > �2�r , we create no new critical points.

Note that f .rc/D �=k . Keeping @f=@r near ��rc (which, using eg AD e�=k , is
1=
p

k ), we can bring f to zero in a radial distance of a constant times 1=
p

k ; ie for
k large we can make H2 agree with Hpunc outside an arbitrarily small ball.

Step 3 Now we modify H2 near the origin to give us H3 which is �Br2CC near
the origin (for B positive), which corresponds to the Hamiltonian flow rotating at a
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constant angular rate. Since @H2=@r is negative for r < rc , we can patch together
�Br2CC near the origin with H2 outside a small ball (of radius less than rc ) in a
radially symmetric manner to get H3 such that @H3=@r is negative for r < rc (we do
this by choosing C sufficiently large).

Step 4 Finally, to ensure no fixed points of the time–1 flow of Hsm , we let Hsm be
H3 multiplied by a radially symmetric function which is � for r <R (for � sufficiently
small that the only fixed points of the time–1 flow inside radius R are the critical points
and for R large enough that H3 agrees with Hpunc for r >R) and 1 for r > 2R (we
may have to make rc smaller so we can fit a ball of radius 2R, but this is no problem).
This creates no new fixed points in the region R< r < 2R because H3 and @H3=@r

have the same sign there. Now there are no fixed points of �sm , the time–1 flow of
the Hamiltonian vector field of Hsm , except for the p critical points of Hsm because
outside radius R there are no compact flow lines.

Thus our map �sm has p positive hyperbolic fixed points, and no others, in the perturbed
region. Note that everything in this section works in exactly the same manner if we
add on a small negative bump instead of a small positive bump, which we may do in
order to twist in the opposite direction.

4.3 Nielsen classes for reducible maps

We now study the Nielsen classes of fixed points of standard form reducible maps. Let
us briefly describe the fixed points of our standard form reducible maps. We have:

� (Type Ia) The entire component of fixed components S of †nN with �.S/<0.

� (Type Ib) The entire component of fixed components S of †nN with �.S/D0.
These are annuli and only occur when we have multiple parallel Dehn twists.

� (Type IIa) Fixed points x of periodic components S of †nN with �.S/ < 0

which are setwise fixed by � . (These can be understood by considering the map
on S as a hyperbolic isometry, from which we see that x must be an elliptic
fixed point).

� (Type IIb) Fixed points x of flip-twist regions. (These are elliptic. Note that
each flip-twist region has two fixed points.)

� (Type III) Fixed points x of pseudo-Anosov components S of †nN which are
setwise fixed by � . These come in 4 types (note that there are no fixed points
associated to a rotated puncture):
– (Type IIIa) Fixed points which are not associated with any singularity or

puncture (ie boundary component) of the presmoothed map. These may be
positive or negative hyperbolic.
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– (Type IIIb-p ) Fixed points which come from an unrotated singular point
with p prongs. There are p�1 of these for each such, all positive hyperbolic.

– (Type IIIc) Fixed points which come from a rotated singular point. There
is one for each such and it is elliptic.

– (Type IIId-p ) Fixed points which come from an unrotated puncture (bound-
ary component) with p prongs. There are p for each such, all positive
hyperbolic.

In the smooth case (as opposed to the area-preserving case, which we’re dealing with),
Type Ib fixed points can be isotoped away. To see why, we introduce the concept of a
multiple twist region which is a (maximal) annulus which is the union of a collection
of twist annuli and fixed annuli (ie those of type Ib); note that every fixed annulus is
between two twist annuli. In other words, this is a region in which we’re performing
multiple parallel Dehn twists. If we’re allowed non–area-preserving maps, we can get
rid of all fixed points in such a region by performing an isotopy which moves every
interior point closer to one boundary component.

With this setup, Jiang and Guo [24] have studied the Nielsen classes of fixed points of
maps which are in standard form with the following modifications:

� All Type Ib fixed points have been eliminated (in the above manner).

� Fixed points of Type IIIb associated to the same singular point are left as one
fixed point.

� Fixed points of Type IIId associated to the same puncture are left as a full circle
(ie the blown-up puncture).

Jiang and Guo show that in this case, Nielsen classes of fixed points are all connected
– that is, two fixed points are in the same Nielsen class if and only if there is a path
between them through fixed points. That is, we have a separate Nielsen class for every
component of Type Ia, for every single fixed point of Type IIa, IIb, IIIa or IIIc and for
every unrotated singular point of the presmoothed map for Type IIIb (ie the collection
of fixed points associated to a single unrotated singular point are all in the same Nielsen
class).

Type IIId is special, as mentioned in Remark 4.7. If a pseudo-Anosov component meets
a fixed component, then notice that the full circle of fixed points of Type IIId (in the
above non–area-preserving model) coincides with fixed points on the boundary of the
Type Ia fixed points (note that a pseudo-Anosov component never meets a Type Ib
component, as these only occur between twist regions). In this case there will be some
interaction, and, while we will perturb the pseudo-Anosov side as in Section 4.2 and
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the fixed side with a corresponding small rotation near the boundary, the resulting p

fixed points will be in the same Nielsen class as the Type Ia fixed points in the fixed
component. If two pseudo-Anosov components meet, the two full circles coincide and,
after perturbing as in Section 4.2, we will have pC q positive hyperbolic fixed points
all in the same Nielsen class, where p is the number of prongs on one side and q is
the number of prongs on the other side. Note that in this case we will have to twist
in a coherent manner, but this is not an issue. In all other cases, we have a separate
Nielsen class associated to the boundary component of the pseudo-Anosov component
containing p positive hyperbolic fixed points.

Jiang and Guo’s argument actually extends to imply that, if we don’t eliminate Type Ib
fixed points (which we won’t be able to do in an area-preserving manner), there is a
separate Nielsen class (separate from all the others just mentioned) for each component
of Type Ib. We briefly explain this.17 We note that the argument will crucially use
the fact that in multiple twist region, all twisting happens in the same direction (ie all
parallel Dehn twists have the same sign).

Recall that two fixed points x and y are Nielsen equivalent if there exists a path  .t/
with  .0/D x ,  .1/D y , and �. .t// is homotopic rel boundary to  .t/. This notion
extends to �–invariant sets (ie setwise fixed). We say that two �–invariant sets A

and B (either of which may be a single fixed point) are �–related if there exists a
path  W .Œ0; 1�; 0; 1/! .†;A;B/ such that �. / '  through maps .Œ0; 1�; 0; 1/!
.†;A;B/. We say that such a  is a �–relation between A and B .

For a map � in standard form, we consider a collection of �–invariant reducing curves
fCig given by @N for N our collection of annuli, excepting that when we have parallel
annuli, we only use the two outermost �–invariant curves; that is, we consider a
multiple twist region as a single annulus. The following is (part of what is) proved in
[24, Section 3.2-3]:

Lemma 4.8 [24, Sections 3.2–3] Suppose x and y are two fixed points of a map �
which is in standard form which are Nielsen equivalent. Let z be a �–relation between
x and y . Homotop z to a �–relation  with minimal (geometric) intersection number
with the Ci in its homotopy class. Break this path into segments at its crossings with
the Ci . Let j be the j –th segment and let Sj be the (closure of the) component of
†nfCig on which j lives (Sj may be an annulus). If j is an interior segment, let Aj

and Bj be the two reducing curves (ie elements of fCig) the segment j intersects. If
j is an initial segment, instead let Aj D x and if j is a terminal segment, let Bj D y .

17Gautschi explains how to do this as well [17, Proposition 20], but his argument is specific to the case
in which there are no pseudo-Anosov components.
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Then j is a �–relation between Aj and Bj on the subsurface Sj . Furthermore, Aj

and Bj must be pointwise fixed. Furthermore, we may homotop j inside the fixed
point locus unless we’re dealing with a fixed point (ie Aj D x or Bj D y ) and the fixed
point is in a multiple twist region. (The same is true here – see the Corollary below.)

Corollary 4.9 For a map � in standard form, each component of Type Ib fixed points
is in its own Nielsen class, distinct from the Nielsen class of any other fixed point of � .
Furthermore, if  is a �–relation between two fixed points lying inside a multiple twist
region, we may homotop it to lie inside the fixed point locus.

Proof By Lemma 4.8, we need only show that on the closed annulus on which we’ve
performed multiple parallel Dehn twists all of the same sign, Nielsen classes of fixed
points are connected (ie they are simply the fixed subannuli and, if fixed, boundary
circles). Note that we allow the boundary to twist or remain fixed.

Consider a path  between two fixed points x and y in this situation. Consider
1–chains with fixed endpoints x and y up to homology. This is an affine space over
the first homology of the annulus, which is Z. The difference between �. / and
 in terms of this relative homology is the element of the homology of the annulus
corresponding to the number of twisting regions between x and y , with sign. Because
all twisting regions have the same sign, this number is not zero unless x and y are in
the same component of the fixed point locus of � , and so they cannot be homotopic
unless x and y are in the same component.

If x and y are in the same component of the fixed point locus, then we can easily
homotop our �–relation  to lie inside the component (because the annulus deformation
retracts onto the circle), proving the second statement as well.

4.4 Weak monotonicity of standard form reducible maps

We now show that � D �sm in standard form is weakly monotone.

Lemma 4.10 Let �W †!† be in standard form. Then !� W H1.�.M�//!R is the
zero map.

Proof Consider a section  of

† ����! S1 �M�??y
S1 �S1

Geometry & Topology, Volume 13 (2009)



2654 Andrew Cotton-Clay

such that  .0; � / is in Nielsen class � and Œ � 2H1.�.M�/�/ is the class we wish to
test !� on.

As in Lemma 3.2, let ˛t .s/ D  .s; t/. Each ˛t should be thought of as a closed
curve on † by identifying all fibers of M� D .R�†/=� �! S1 with the fiber over
t D 0 by projecting R�† to † (with t D 0 and t D 1 thought of as separate times).
Then �.˛0/D ˛1 is homotopic to ˛0 through ˛t . Let A denote the 2–chain with
boundary given by this homotopy. Note that this is equivalent to giving the homology
class Œ .S1�S1/� (the two are related by appending the tube S1�˛0 to the 2–chain
A , thought of as living in the fiber † over zero). We have !�.A /D

R
S1�S1  

�!� .

We desire to show that !�.A /D 0. Note that continuously varying the homotopy
˛t has no effect on !�.A /. Nor does continuously varying ˛0 (which requires that
we vary ˛1 D �.˛0/ appropriately) as this does not change the cohomology class
Œ .S1 �S1/�.

Claim There is a choice of  such that A either lies entirely inside a single pseudo-
Anosov component or avoids all pseudo-Anosov components.

Given this, we have two cases.

Case 1 A lies entirely in S , a pseudo-Anosov component. We show that !�.A /D
0 (ie the constant k is zero). In this case, by Lemma 3.3, we must have ˛0 either
nullhomologous or boundary parallel.18 If it’s nullhomologous, we may argue as in
Lemma 3.2 and conclude that !�.A /D 0.

If ˛0 is boundary parallel, we homotop it near the boundary component so that the
map there is given by the local model of Section 4.2 (see also Figure 4). This map is
then Hamiltonian, and so, choosing our homotopy to be one also lying in this region
(which, as noted above, does not change the class of A ) we see that !�.A /D 0.

Case 2 A avoids all pseudo-Anosov components. In this case, we may as well be
considering a map in standard form which has no pseudo-Anosov components (for
example, by replacing pseudo-Anosov components with periodic components with the
same boundary behavior). This is the situation Gautschi considers, and he shows in
[17, Proposition 13] that !�.A /D 0 for all  in this case.

We now prove the above claim. We consider two cases.

Case A � has a fixed point in class �.

18Technically, that result was for pseudo-Anosov maps on closed surfaces. Jiang and Guo give an
argument [24, Proof of Lemma 2.2] which includes pseudo-Anosov maps with boundary.
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We show that we may assume A lies entirely inside the component S of †nN in
which x lies. This requires showing both that we can restrict to ˛0�S (which implies
˛1 D �.˛0/� S ) and that we can bring the homotopy ˛t inside S .

Notice that ˛0 is a �–relation between x and itself. As in the statement of Lemma 4.8,
we homotop ˛0 so that it has minimal geometric intersection with a reducing set of
curves. Then by Lemma 4.8 and the fact that the collection of fixed points in a single
Nielsen class is a subset of a single component of †nN (see Section 4.3), ˛0 must lie
in S .

To see that we can bring the homotopy ˛t inside S , notice that the inclusion S ,!†

is �1 –injective. Thus there exists a possibly different homotopy ˛0t between ˛0 and
˛1 which lies in S . Piecing these together we get a map S1 � S1 ! † which is
necessarily nullhomologous because �.†/ < 0. Thus the class A is the same for our
new homotopy.

Case B � has no fixed point in class �.

We argue in 3 steps that A may be homotoped either entirely inside a pseudo-Anosov
component or to avoid all pseudo-Anosov components:

Step 1 Let fCig be the subset of the reducing curves given by the boundaries of the
pseudo-Anosov components (including those abutting Type Ia components). Inspired
by Jiang and Guo [24, Sections 3.2–3] (cf Lemma 4.8), we homotop ˛0 so it has
minimal geometric intersection with the collection of the Ci and work in the universal
cover H of †. Each Ci is noncontractible, so each lift in H is a copy of R, and each
component Sk of †n

`
i Ci is �1 –injective, so each lift of Sk is also a universal cover

of Sk . Furthermore, each lift of a Ci separates H into two components. Thus z̨0
(a chosen lift of ˛0 ) intersects each lift of Ci at most once (else we could perform a
finger move to reduce intersections).

We lift � to z�W H!H and note that z� maps lifts of Ci to lifts of some Cj (for each i

and some j ). Thus z�.z̨0/ also has minimal intersection with the lifts of the Ci .

Step 2 Choose some basepoint p on ˛0 and let zp be a lift compatible with our chosen
lift of z̨0 . Consider ˇ.t/D  .0; t/, a curve from p to �.p/. Choose a lift ž of ˇ
through zp . Let z̨ be a segment inside z̨0 from zp to zp0 (another lift of p ) which is
injective on its interior (ie its projection wraps around ˛ once).

Thus we have a rectangle in the universal cover with corners zp , zp0 , z�. zp/ and z�. zp0/
and edges z̨ , z�.z̨/, ž and ž0 (the lift of ž through zp0 ). We call its interior z .

We will be homotoping these objects into easier to work with positions but will not
change their names as we do so: homotop ˇ (and thus also ž and ž0 ) and thus also ˛0 ,
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so it has minimal intersection with the Ci , so the lifts each intersect each lift of a Ci

at most once. We can do this without disturbing this property for ˛0 .

Step 3 Homotop z rel boundary so that it is transverse to each lift of a Ci . Let zC
be the intersection of z with the lifts of the Ci . This is a compact one-manifold with
boundary in the rectangle z .

Note that zC has no circle components because all of the lifts of the Ci are copies of R.
Also note that no component of zC has both boundary components on the same edge of
the rectangle z because each of the edges intersects each lift of a Ci at most once.

Step 4 Each of the edges of  has a certain number of boundary points of zC on it.
Note that opposite edges have the same number of such (which are in corresponding
positions) because one pair is a lift of the same path ˇ on †, and the other pair are
lifts of curves ˛0 and �.˛0/ and � preserves the collection fCig.

Using this and Step 3, we have three cases:

Case 1 There are no boundary points of zC on z̨ (and thus also on z�.z̨/).

Thus zC consists of some number of (nonintersecting) paths from ž to ž0 which each
go from a point on ž to the corresponding point on ž0 . If we project to †, what we
see is the annulus given by A with boundary ˛0 and �.˛0/D ˛1 with some number
of intermediate Ci ’s. If there is at least one intermediate Ci , then ˛0 is homotopic to
a Ci . If we homotop it so that its image is Ci , we find that !�.A /D 0, as desired.

If there are no intermediate Ci ’s, then A is contained in one component of †n
`

i Ci ,
as desired.

Case 2 There are no boundary points of zC on ž (and thus also on ž0 ).

In this case, zC consists of some number of (nonintersecting) paths from z̨ to z�.z̨/
which each go from a point on z̨ to a point on z�.z̨/. If we project to †, what we see
is the annulus given by A with boundary ˛0 and �.˛0/ D ˛1 with some number
of Ci ’s (which are nonintersecting) running from a point on ˛0 to the corresponding
point on ˛1 . If there are no such Ci ’s, then A is contained in one component of
†n

`
i Ci , as desired. Similarly if there is only one Ci .

Suppose there are at least two such Ci . We desire to show that A avoids pseudo-
Anosov components. Suppose that it does not. Then there is some rectangle in A 
with boundary edges given by portions of some Ci and some Cj as well as portions of
˛0 and ˛1 which is contained in a pseudo-Anosov component. Note that � applied to
this portion of ˛0 is the portion of ˛1 .

Work only in the pseudo-Anosov component as a surface with boundary. If Ci (resp. Cj )
corresponds to a boundary component with p > 1 prongs, consider a surface in which
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we’ve collapsed Ci (resp. Cj ) and have a pseudo-Anosov map on this surface with
fewer boundary components. Near any boundary component with one prong, we have a
(hyperbolic) fixed point nearby. After collapsing any with p > 1, we have a fixed point
of some kind nearby (we may perturb to our standard map if desired; there will still be
a fixed point of some kind nearby). By the argument in the proof of Theorem 3.6, we
may modify ˛0 slightly to exhibit a Nielsen equivalence between a fixed point near
Ci and a fixed point near Cj (recall that ˛1 D �.˛0/). Thus by the results of Section
4.3 (or by [2], as in the proof of Theorem 3.6, if our surface is now closed), Ci D Cj .
Now if Ci has p > 1 prongs so that we’ve collapsed it, then we have a curve  on
the surface such that �. /D  (using the induced map � ). Thus  is nullhomotopic
by [24, Lemma 2.2]. Similarly, if Ci is a p D 1 boundary component and again by
[24, Lemma 2.2] we find that it is contractible. But this is impossible – we can reduce
intersections of ˛0 with Ci D Cj by a finger move. Thus A avoids pseudo-Anosov
components, as desired.

Case 3 There are boundary points of zC on both z̨ and ž.

In this case, the projection to † looks much like it did in Case 2, but now the portions
of the Ci ’s running from ˛0 to ˛1 needn’t start and end at corresponding points; that
is, they twist in the annulus. Inspired by [17, Lemma 7], we consider an appropriate
power of � , �k . We get A , �.A /, . . . �k�1.A / which patch together to give an
annulus kA between ˛0 and �k.˛0/ of area k!�.A /. If we choose k properly,
then the Ci running through kA start and end at corresponding points of ˛0 and
�k.˛0/. Thus we’re in Case 2 (possibly with an irrelevant Dehn twist in the annulus),
and we see that k!�.A /D 0, and so !�.A /D 0.

Corollary 4.11 Let �W †!† be in standard form. Then � is �–weakly monotone
for all � 2 �0.�.M�//.

Corollary 4.12 Let �W .†; !/! .†; !/ be a reducible symplectomorphism in stan-
dard form in mapping class h 2 � . Then HF�.�/D HF�.h/.

Proof This follows from Corollary 4.11 and Corollary 4.5.

4.5 Floer homology of �sm for reducible maps

In this section we show how to compute HF�.�sm/ by showing that .CF�.�sm/; @/

splits into a contribution from each component (and annular region between parallel
Dehn twists), though what this contribution is may be affected by the behavior of
the neighboring regions. The argument follows Gautschi [17, Sections 4–5], with the
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pseudo-Anosov components and their contribution “coming along for the ride,” with
the exception of pseudo-Anosov components directly abutting fixed components (cf
Remark 4.7 and Section 4.3).

The basic idea is to perturb the fixed components by the Hamiltonian flow of a Morse
function (actually a small Morse–Smale function). This Morse function should agree
near the boundary with the direction of twisting of a twist component, if any. That
is, the Morse function achieves a local maximum at boundaries that twist positively
and a local minimum at boundaries that twist negatively. Let y� denote the perturbed
map. At boundary components of the fixed components where there’s a positive twist
joining up, a local model for y� in a neighborhood of the boundary component is
.q;p/ 7! .q;p� ı/ for ı > 0 small. Similarly, when joining up with a negative twist,
the map in a neighborhood of the boundary component is .q;p/ 7! .q;pCı/ for ı > 0

small. We let †0 denote the collection of fixed components, and @˙†0 the collection
of components of @†0 on which we’ve joined up with a positive (resp. negative) twist.

Additionally, the Morse function should agree near the boundary of a pseudo-Anosov
component with the Hamiltonian perturbation we chose in Section 4.2, which we
may have to modify slightly by shrinking the size of the perturbation further (ie the
same process we did already in Section 4.2, but with a smaller � ). We may choose
which direction to twist on each side when a pseudo-Anosov component meets a fixed
component so long as we do so coherently. The collection of components of the
boundary of †0 which meet a pseudo-Anosov component will be denoted @p†0 .

With this setup, we call y� a perturbed standard form map. Note that we have left
some ambiguity with respect to which direction we’re twisting when a fixed component
meets a pseudo-Anosov component.

Now Gautschi [17, Proposition 14] has a neck-stretching argument (actually, he enlarges
the symplectic form) to show that different components of †nN don’t interact because
flow lines originating at fixed points of Type Ia and Type Ib can’t approach the boundary
of a component except where a Type IIId boundary abuts a Type Ia component (see
the proof of Lemma 4.15, below, for other fixed points). This uses the fact that
!� W H1.�.M�//!R is the zero map, ie our Lemma 4.10. We present a modification
of Gautschi’s argument in order to show that flow lines between Type Ia and Type IIId
fixed points in abutting components don’t reach past the Hamiltonian portion of the
pseudo-Anosov component corresponding to the Type IIId fixed points. We combine
this with an argument of Salamon and Zehnder [41] to determine these flow lines.

Remark 4.13 Hutchings and Sullivan have an argument involving intersection pos-
itivity with the J –holomorphic foliation coming from R� T for T a torus in M�
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which is invariant under the mapping torus flow [21, Lemma 3.11]. They consider only
such tori coming from fixed circles C �†, but the argument extends to collections of
circles which are permuted. This can also be used, together with an argument as in
[24, Sections 3.2–3] or Case B of the proof of Lemma 4.10, to show that flow lines
originating at fixed points of Type Ia and Type Ib can’t approach the boundary of
a component except where a Type IIId boundary abuts a Type Ia component. Their
argument seems to be morally equivalent to Gautschi’s, with both essentially getting at
a local energy contribution. We don’t have an argument along the lines of Hutchings
and Sullivan’s for Lemma 4.14, below, but one may be possible.

Lemma 4.14 Consider the subset †0
0

of † consisting of Type Ia regions which abut
Type IIId fixed points together with neighborhoods of the corresponding Type IIId
boundaries (including the fixed points) in the appropriate pseudo-Anosov components.
Then there exists a modification of the Hamiltonian on the interior of †0

0
such that

the differentials between fixed points in †0
0

are given by gradient flow lines of the
Hamiltonian.

Proof We perform the same analysis at each Type IIId boundary.

We assume the setup of Step 4 of Section 4.2. Our plan is to modify what is done in
that step. We multiply by �1 for r <R. For 5R

4
< r < 3R

2
, we multiply by �2 , and we

multiply by 1 for r > 2R. We assume that 0� �i � 1. We furthermore multiply our
Hamiltonian on †0 by �1 . The plan is to obtain a local energy contribution whenever
a differential passes through the region 5R

4
< r < 3R

2
and then to use Gautschi’s trick

of varying the symplectic form to increase the local energy contribution without bound
while keeping constant the energy of differentials between fixed points in †0

0
.

Part 1 We derive bounds on jrH j. Fix R. We use the standard Euclidean metric.
We perform a brief calculation to bound jrH j from above and below for R< r < 2R.
Suppose H is of the form ��r2 cos.p�/ (for some � ) in a subset of this region. Then

jrH j D ��

q
4r2 cos2.p�/Cp2r6 sin2.p�/:

1

2
�min.cos2.p�/; sin2.p�//�max.cos2.p�/; sin2.p�//� 1;Using

��

r
1

2
min.4r2;p2r6/� jrH j � ��

q
4r2Cp2r6we have:

H) ��
1
p

2
min.2r;pr3/� jrH j � ��.2r Cpr3/

H) ��
1
p

2
min.2R;pR3/� jrH j � ��.4RC 8pR3/:
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We must also bound the derivative in the region R < r < 5R
4

. When r D 5R
4

, we’re
supposed to have H.r/D �2�r2 cos.p�/. No matter what �1 is, we’ll have to increase
H by a quantity of at most �2�

25
16

R2 over an interval of length R
4

. We can do this
keeping jrH j less than twice the ratio, namely jrH j � �2�

25
4

R.

Part 2 We seek the local energy contribution. Consider our differential u.s; t/ and
suppose that u.s; t/ achieves the r –value 3R

2
. We obtain an energy estimate for such u

and then use Gautschi’s trick of varying the symplectic form in a neighborhood of
the annulus 5R

4
< r < 3R

2
to show that a differential between two fixed points in †0

0

cannot reach beyond 3R
2

at any point.

For s in the interval between s1 and s2 , we have that u.s; 0/ is between r –values
5R
4
C

R
16

and 3R
2
�

R
16

. Thus we have bounds of the form �2K1 � jrH j � �2K2

(where K1 and K2 are some constants, because � and R are fixed).

To find a lower bound on d.�.x/;x/ for x 2† with an r –value of between 5R
4
C

R
16

and 3R
2
�

R
16

, we bound the second derivative of H (that is, the Hessian) from above.
It is not hard to see that this is bounded in terms of �2 , � and R, and the bound in
terms of �2 is linear. Thus we have a bound of the form jHess.H /j � �2L.

The maximum displacement of � at time 1 is bounded by �2K1 (the upper bound
on jrH j). Thus the maximum change in rH is .�2/

2K1L. Thus for sufficiently
small �2 , this is smaller than 1

2
�2K2 . Thus the displacement of the flow at time 1 is at

least 1
2
�2K2 (by the above lower bound on jrH j).

Thus
Z 1

0

j@tu.s; t/j dt �
1

2
�2K2

for s between s1 and s2 . By Hölder’s inequality, we haveZ 1

0

j@tu.s; t/j
2 dt �

1

4
.�2/

2.K2/
2

for s between s1 and s2 . ThusZ 1
�1

Z 1

0

j@tu.s; t/j
2 dt ds �

1

4
.�2/

2.K2/
2
js1� s2j:

We now use Gautschi’s trick. If we multiply the symplectic form and the metric
by M � 0 (while keeping the almost complex structure J constant) on the entire
pseudo-Anosov component minus a region near the boundary. On the region between
the compact pieces of the level set through the p saddle points and the boundary, we
multiply the symplectic form and metric by a function M.s/ constant on level sets
H D s which quickly reaches one (and similarly at any other boundary component). In
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particular, we’ve multiplied the symplectic form and metric by M in a neighborhood
of the annulus 5R

4
< r < 3R

2
. The holomorphic curves all remain exactly the same

because we haven’t changed the complex structure, but we get a better energy estimate
in terms of the new metric, with a factor of M showing up:

E.u/D

Z 1
�1

Z 1

0

j@tu.s; t/j
2 dt ds �

1

4
M.�2/

2.K2/
2
js1� s2j:

In addition, by Lemma 4.10, our action functional is exact and so the energy of a
holomorphic curve is given by the difference in the action between its two endpoints. If
we temper M.s/ from M to 1 quickly enough, we can make the difference in action
between any two fixed points in †0

0
arbitrarily close to the difference in action before

we expanded the symplectic form and metric because the region in which we have
modified the symplectic form does not separate the fixed points from each other in the
sense that they can be connected by a topological cylinder which avoids the region. The
action of this topological cylinder is then nearly unchanged and is equal to the energy
of any holomorphic curve u between the two fixed points. Thus as we vary M , E.u/

must remain (nearly) constant, contradicting the above inequality. Thus differentials
between fixed points in †0

0
do not go past r D 3R

2
.

Part 3 Now we use the argument of Salamon and Zehnder [41, Theorem 7.3] to show
that for � small enough, the only differentials in the region †0 together with everything
within radius 3R

2
(we call this combined region †0

0
) are those corresponding to gradient

flow lines of our Hamiltonian (which we make Morse–Smale19).

The main point is that making �1 and �2 small makes jrH j small in the region
governed by �1 and �2 – that is, †0

0
(recall that jrH j � �2�

25
4

R in the region
R� r � 5R

4
, so jrH j is governed linearly in this entire region by �1 and �2 ). We note

that on †0
0

we may assume that rH is determined up to a scalar multiple (namely,
�2 ) by keeping the ratio between �1 and �2 constant.

We briefly recap Salamon and Zehnder’s argument in order to show that it applies in
our situation. They show linearization of the x@ operator is onto for every differential
which corresponds to a gradient flow line [41, Theorem 7.3 (1)] for rH sufficiently
small. This is a local condition and thus carries over to our setting.

They then argue as follows: if there’s a differential for �H for � > 0 arbitrarily close
to zero, we can take a sequence of these with � ! 0. The energy of such goes like
�E , where E is the maximum energy possibly when using H .

19Morse-Smale functions are dense in the space of Morse functions, and so we can do this without
disturbing any of our inequalities or critical points qualitatively.
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By Gromov compactness we get a sequence converging to a broken differential. In our
setting, we should add that this broken differential must stay in †0

0
by the reasoning

in Part 2 and the fact that there are no fixed points in the same Nielsen class as fixed
points in †0

0
which are outside †0

0
. The rest of the argument can now be repeated

verbatim.

Lemma 4.15 (cf [17, Lemma 16]) For any generic path of complex structures Jt

on †, the Floer homology chain complex .CF�.�/; @Jt
/ splits into a sum of chain

complexes .Ci ; @i/ for each component of †nN . These chain complexes are the Floer
homology chain complex of the component S with boundary, except that when a
pseudo-Anosov component abuts a fixed component, we include the boundary fixed
points as part of the fixed component and not as part of the pseudo-Anosov component.

Proof Fixed points in different components of †nN are in different Nielsen classes
by Section 4.3 (except where a Type Ia region meets a Type IIId boundary). The
moduli spaces of flow lines between different Nielsen classes are empty, as discussed
in the proof of Theorem 3.6, so indeed the chain complex splits. The neck stretching
argument of Gautschi [17, Proposition 14] mentioned earlier implies that the flow lines
don’t reach the boundary of the component for components of Type Ia and Type Ib
(unless a Type Ia region meets a Type IIId boundary). For all other components, there
are no possible differentials because fixed points of Type IIa, Type IIb, Type IIIa and
Type IIIc are all the only fixed point in their Nielsen class by Section 4.3, and fixed
points of Type IIIb and fixed points of Type IIId not abutting a component of Type Ia
are in a Nielsen class with only points of the same index by Sections 3.2, 4.2 and 4.3.
For Type Ia components abutting Type IIId boundaries, we use Lemma 4.14.

This splitting together with the fact that we’ve identified the summands with the
Floer homology of the components S means that we can cite the rest of Gautschi’s
calculation and add on the contributions from pseudo-Anosov components and from
Type Ia components which abut Type IIId fixed points.

First, some notation. Recall the notation of †0 for the collection of fixed components
as well as the three types of boundary @˙†0 and @p†0 . Additionally let †1 be
the collection of periodic components and let †2 the collection of pseudo-Anosov
components with punctures (ie before any perturbation in Section 4.2) instead of
boundary components wherever there is a boundary component that meets a fixed
component.

We further subdivide †0 . Let †a be the collection of fixed components which don’t
meet any pseudo-Anosov components. Let †b;p be the collection of fixed components
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which meet one pseudo-Anosov component at a boundary with p prongs. In this case,
we assign the boundary components to @�†0 (this is an arbitrary choice). Let †ı

b;p

be the collection of the †b;p with each component punctured once. Let †c;q be the
collection of fixed components which meet at least two pseudo-Anosov components
such that the total number of prongs over all the boundaries is q . In this case, we assign
at least one boundary component to @C†0 and at least one to @�†0 (and beyond that,
it does not matter).

Theorem 4.16 Let y� be a perturbed standard form map †!† in a reducible mapping
class h 2 � with choices of the signs of components of @p†0 and notation as in the
preceding paragraphs. Then

HF�.h/D HF�.y�/ŠH�.mod 2/.†a; @�†aIZ=2/

˚

M
p

�
H�.mod 2/.†

ı
b;p; @�†b;pIZ=2/˚ .Z=2/

.p�1/j�0.†b;p/j
�

˚

M
q

�
H�.mod 2/.†c;q; @�†c;qIZ=2/˚ .Z=2/

qj�0.†c;q/j
�

˚ Z=2ƒ.
y�j†1

/
˚CF�.y�j†2

/;

where ƒ.y�j†1
/ is the Lefschetz number of y�j†1

, the Z=2ƒ.
y�j†1

/ summand is all
in even degree, the other two Z=2 summands are all in odd degree, and CF�.y�j†2

/

denotes the chain complex for y� on the components †2 (where, as mentioned above,
we’ve left off the Type IIId fixed points which abut a fixed component).

Furthermore, H1.†/ acts as zero except on the first summand, where it acts by the
intersection product. That is, given a component S of †a with @CS D 0, the action
of H1.†/ is by intersection products for its image under the map to H1.†;† nS/D

H1.S; @�S/, and given a component S with @�S D 0, the action of H1.†/ is by
intersection products with the inclusion of H1.S/ to H1.†/, noting that this action
preserves H1.S/.

Proof The first summand and the Z=2ƒ.
y�j†1

/ summand are as in [17, Theorem 1].
The last summand comes from the fact that there are no differentials in the Floer chain
complex on the pseudo-Anosov components as in the proof of Theorem 3.6. (We’ve
left off the Type IIId fixed points which meet fixed components and will deal with them
elsewhere.)

The sum over q arises in the same manner as the first summand with the extra note
that if we choose a Morse function on †c which has no maxima or minima, which we
can do because every component of †c has both a positive and a negative boundary
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component, then there are no differentials between the fixed points in each of the †c

components and the various Type IIId fixed points (which correspond to the second
term in the sum over q ).

The sum over p arises in this same manner, except that we choose a Morse function on
each component of †b with one maximum and no minima (which we can do due to its
one positive boundary component). Then one of the Type IIId fixed points cancels with
the maximum (they form a cancelling pair), resulting in the homology of the punctured
component and in one fewer fixed point in the second half of the sum over p .

For the action of H1.†/, we use the extrinsic or algebraic formulation given in Section
2.5 for HF�.y�/, using Proposition 2.9 to see that our calculation holds for HF�.h/.
The action preserves Nielsen classes because it is defined in terms of flow lines so it
acts on the summands in the statement of the theorem. It acts as zero on the last two
because there are no flow lines between generators of those summands. Furthermore,
it can only act nontrivially on a summand which is nonzero in both degrees mod two,
which now leaves only the first. There the correspondence of Morse flow lines and
Floer flow lines shows that the action is the same as the action of H1.†/ on Morse
homology, which is the same as the intersection product.

Remark 4.17 In comparing this result with [43] or [17], note that we use symplectic
Floer homology instead of symplectic Floer cohomology.

5 Train tracks and combinatorially computing HF�.h/

In order to compute HF�.h/ for a pseudo-Anosov or reducible mapping class from
Theorem 3.6 or Theorem 4.16, we need to understand the canonical singular repre-
sentative �sing of the pseudo-Anosov mapping class, or of the pseudo-Anosov pieces
of the reducible map. In particular, we must understand its fixed points, its singular
points, and how each singular fixed point is mapped to itself (ie whether it is rotated).
All this data is combinatorially computable from the action of a representative of the
mapping class on an invariant train track. It is the purpose of this section to describe
how this computation works. We note that by work of Bestvina and Handel [1], one
can algorithmically produce an invariant train track from a representation of �sing as a
collection of Dehn twists (or, if �sing is reducible, produce reducing curves from the
Dehn twists, and then repeat with the pseudo-Anosov pieces). Additionally, there is a
large collection of examples due to Penner [35] for which producing the invariant train
track from the Dehn twists is trivial. We review Penner’s construction and compute
some examples based on it in the next section. In this section as well, we follow
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Penner [35]. See also Bestvina and Handel [1], Penner and Harer [36, Epilogue],
Mosher [33, Section 9], Fathi, Laudenbach and Poenaru [12] and Thurston [49].

A train track � on a surface † is a collection of simple closed curves and graphs
in which every vertex has valence at least three embedded in the interior of †. It is
required to be a smooth embedding on each closed edge (and curve), both of which
we call a branch, and at the vertices, called switches, the tangent vectors for each
edge must be collinear and in addition they must not be all of the same sign (that is,
the track must not “stop”). The train track separates the surface into various faces,
which are components of †n� . These faces have straight vertices (which we do not
count as vertices of the face) and cusp vertices (which we do). We require each face
to have negative Euler characteristic, with cusps counting as �1

2
. Note that the sum

of the Euler characteristics of the faces (with this cusp contribution) equals the Euler
characteristic of the surface. We say that a track � fills † if every component of †n�
is either a disk or a boundary parallel annulus (with some number of cusps).

For a train track � , define the branch space V� to be the vector space generated by
the branches bi of � . We say that a track � carries a track � 0 if we can isotop � 0

such that it lies entirely inside � . We may assume that switches of � 0 are taken to
switches of � (but not every switch of � will have a switch of � 0 on it, even if � 0 passes
through that switch). In this case, we get an incidence matrix M W V� ! V� 0 given by
M bi D

P
j Mij cj for branches bi of � and cj of � 0 , where Mij is the count of “how

many times cj passes over bi .”

A track � is recurrent if for each branch b of � , there is a curve  which is carried
by � and which runs over b . A track � is transversely recurrent if for each branch b

of � , there is a simple closed curve  which intersects b nontrivially and creates no
bigons with � (a bigon with cusps on any of its edges doesn’t count). If both of these
are true, we say the track � is birecurrent.

Following [36, Epilogue], we consider a map �W †!† and a birecurrent train track �
such that �.�/ is carried by � (this is what is meant by an invariant train track for � ).
In this case we get an incidence matrix M W V� ! V�.�/ D V� (where the equality is
given by identifying �.b/ with b ). For � to be pseudo-Anosov, it will be necessary
that � fills † and also that (possibly after modifying the track by moves given in [1],
such as collapsing invariant trees) M is Perron–Frobenius, which means that some
(positive) power of M has all positive entries. It then follows that M has a unique
(up to scaling) eigenvector v D .vi/ with all positive entries. Furthermore, its (positive
real) eigenvalue � > 1 is the eigenvalue of M which is maximum in absolute value.
M T is also Perron–Frobenius, and we let w D .wi/ denote its unique (up to scaling)
eigenvector with all entries positive. Its eigenvalue must also be �.
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From this data we can construct the measured foliations for �sing . We fatten each
branch and let its width be vi and its length be wi . These automatically satisfy the
switch condition that the sum of the widths of branches abutting a switch from one
direction equals the sum of the widths of the branches abutting the switch from the
opposite direction. Additionally, they satisfy a dual switch condition on the w ’s (see
Penner [35]). It then turns out that we can “zip up” the fattened track, collapsing the
faces and getting a singular point for each face [35].

Computing the number of fixed points

Now we come to the crux of the matter, which is how to compute the number of fixed
points based on this description. To warm up we consider a toy model: suppose R

is a rectangle in the plane (parallel to the x– and y–axes) and we apply an affine
transformation ˆ which stretches by a factor of � > 1 in the x–direction and shrinks
by a factor of � in the y–direction. Suppose furthermore that the vertical extent of
ˆ.R/ is contained within the vertical extent of ˆ and the horizontal extent of R is
contained within the horizontal extent of ˆ.R/, where in both cases we allow their
boundaries to coincide. Then ˆ has precisely one fixed point in R, as can be readily
deduced from the contraction mapping principle in the x and y coordinates separately.
Furthermore, if their boundaries coincide either horizontally or vertically, then the fixed
point will be on this boundary (and if two boundaries coincide, the fixed point will be
at the common vertex). Note also that we again get a unique fixed point if the affine
transformation stretches in the x–direction, contracts in the y–direction and is then
rotated by 180ı (ie is negative hyperbolic instead of positive hyperbolic), subject to
the same conditions on the vertical/horizontal extents.

What this means is that there is one fixed point of � every time the branch �.bi/ runs
over the branch bi . This count is the trace of M . Unfortunately, we have overcounted,
counted some singular fixed points together with the nonsingular fixed points and
additionally undercounted a specific type of nonsingular fixed point, so we have to
make some corrections.

In order to deal with the overcounting and undercounting, we formalize two further
pieces of data. These are the tangential and transverse lists. Arbitrarily orient each
branch bi . We let �i denote the (tangential) ordered list given by the bj ’s which �.bi/

runs over (we also record whether the orientations agree when �.bi/ runs over bj ).
Note that the number of times bj appears in �i equals Mij . Also, let �i denote the
(transverse) ordered list given by the bj ’s for which �.bj / runs over bi , in order from
left to right (with bi pointing up; again we record whether their orientations agree).
Note that the number of times bj appears in �i is given by Mji .
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Let up denote the number of unrotated fixed singular points with p prongs and let rp
denote the number of rotated fixed singular points with p prongs. Both of these can
be read off from the track � together with the lists �i and �i . Rotated fixed singular
points do not contribute any to tr.M /, but unrotated fixed singular points contribute p

to tr.M /, corresponding to p points which are identified when the fattened track is
zipped up (ignoring under- and over-counting that will be dealt with below). Note that
there can be no other fixed points that are on the boundary of the fattened track (and
which would then be identified when this boundary is zipped up) because the track is
stretched by �.

Next we have overcounting of nonsingular fixed points when there is a fixed point at
the end of a (fattened) branch, ie living over a switch, for then it is counted twice, once
in each of the two branches it lies in. Let si equal one-half the number of times that
bi is the first entry in �i plus one-half the number of times it’s the last (in both cases
we require that the orientation of �.bi/ agree with the orientation of bi ). The numberP

i si represents how many of these sorts of overcounting errors there are.

Finally we have undercounting of nonsingular fixed points when there is a “flip.” That
is when bi and bj share a common switch and, supposing without loss of generality
that this is the initial switch for each of bi and bj , the list �i begins with bj and �j

begins with bi (both with compatible orientations). Let f denote the number of flips.

Theorem 5.1 For � pseudo-Anosov on a closed surface †, the rank of HF�.�/ in
the above setup is tr.M /Cf �

P
i si C

P
p.rp �up/.

Proof By Theorem 3.6, we get a contribution of
P

p.p � 1/up from the unrotated
singular points, a contribution of

P
p rp from the rotated singular points, and the above

discussion shows that the number of normal fixed points is tr.M /C f �
P

i si �P
p p up . Adding together these three quantities, we get the desired result.

We could get the number of even generators and the number of odd generators from
the lists �i and �i with orientations attached, if desired. Alternatively, we can simply
use the Lefschetz fixed point theorem to get the difference between the number of odd
and the number of even generators and combine that with the above theorem.

6 Penner’s construction and computation of examples

For a simple closed curve C on †, let �C be the positive Dehn twist about C . Consider
a collection fCig of disjoint embedded curves on † and fDj g another such collection.
Let � be any composition of positive Dehn twists along the Ci ’s and negative Dehn
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twists along the Dj ’s such that every curve listed shows up at least once. Penner [35]
shows that if every region of the complement †�

`
i Ci � j̀ Dj is a disk with more

than two edges, then the mapping class Œ�� is pseudo-Anosov. Furthermore, if every
curve listed shows up at least twice, then we have an explicit invariant train track for �
whose incidence matrix M is Perron–Frobenius.20

This invariant train track � is simply take the union of all the curves Ci and Dj with
their intersection points modified to be switches: at an intersection point of Ci with
Dj , have the switch curve to the right as viewed along Ci (and thus to the left as
viewed along Dj ). This convention guarantees that the train track is invariant under
positive Dehn twists along the Ci ’s and under negative Dehn twists along the Dj ’s.

At an intersection point of Ci with Dj , there are two ends of Dj meeting Ci , and
these (possibly) correspond to separate branches of the train track � . If we perform a
Dehn twist along a curve just to one side of Ci , then one of these branches is modified
to one which goes all the way around Ci , and if we Dehn twist on the other side of Ci ,
the other is. We will be twisting along Ci at least twice, so we may ensure that we
twist on each side of Ci at least once. This will ensure that the incidence matrix M is
Perron–Frobenius.

The incidence matrix M is simply the product of the incidence matrices for each curve
we twist along (the matrix depends on the side of the curve we twist on). Thus tr.M /

can be computed as the trace of this product of matrices. The other terms in Theorem
5.1 are also combinatorial. We have:

Theorem 6.1 Let fCig and fDj g be collections of noncontractible simple closed
curves on † with the Ci mutually disjoint and the Dj mutually disjoint such that every
region of the complement †�

`
i Ci � j̀ Dj is a disk with more than two edges.

Let �D
Q

j �
�2
Dj

Q
i �

2
Ci

and let h be the mapping class of � . Then HF�.�/DHF�.h/
has rank

4
X
i;j

jCi \Dj j
2
C 2g� 2:

Proof We calculate each of the terms in the formula given in Theorem 5.1. In order
to find tr.M /, we express M as a product of the incidence matrix for

Q
j �
�2
Dj

with
the incidence matrix for

Q
i �

2
Ci

.

First we fix some notation. We have curves Ci and Dj and branches c˛ and dˇ which
lie on some Ci and some Dj , respectively. We let CŒ˛� denote the curve Ci such that

20This train track will still be invariant if some curves show up only once, but the incidence matrix
might not be Perron–Frobenius and we might need to perform some moves as in [1].
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c˛ lies on Ci and likewise for DŒˇ� . We will write our incidence matrices in block
form with the entries associated to the c˛ and the dˇ separated.

The incidence matrix for
Q

i �
2
Ci

is of the form

MC D

�
I 0

A I

�
where A is a matrix with entries Aˇ˛ equal to the number of times the branch dˇ
passes over c˛ . This equals the number of times dˇ passes over the curve CŒ˛� , which
equals the number of times the branch dˇ intersects the curve CŒ˛� , that is, how many of
its ends lie on CŒ˛� , with each end counting separately. We denote this as #.dˇ\CŒ˛�/,
though this may not equal their set-theoretic intersection number when the two ends
of dˇ coincide. We get a contribution from each end of dˇ because we’ve twisted on
either side of each Ci . Likewise, the incidence matrix for

Q
j �
�2
Dj

is of the form

MD D

�
I B

0 I

�
where B is a matrix with entries B˛ˇ equal to the number of ends of the branch c˛
which lie on DŒˇ� .

We have M DMDMC D

�
I B

0 I

� �
I 0

A I

�
D

�
I CBA B

A I

�
:

Thus

tr.M /D bC
X
˛;ˇ

B˛ˇAˇ˛;(9)

where b is the total number of branches.

We claim that X
˛ˇ

B˛ˇAˇ˛ D 4
X
i;j

jCi \Dj j
2:(10)

To see this, note thatX
ˇ2Œˇ�

B˛ˇAˇ˛ D
X
ˇ2Œˇ�

#
�
c˛ \DŒˇ�

�
#
�
dˇ \CŒ˛�

�
D #

�
c˛ \DŒˇ�

�
2#
�
DŒˇ�\CŒ˛�

�
;

where the factor of two comes from the fact that each intersection point of DŒˇ� with
CŒ˛� is associated to two ends of branches in DŒˇ� . Now summing over ˛ 2 Œ˛� gives
Equation (10). We furthermore note that the number of branches b is twice the number

Geometry & Topology, Volume 13 (2009)



2670 Andrew Cotton-Clay

of intersections, ie bD2
P

i;j jCi\Dj j, because each intersection involves four branch
ends (of which there are two per branch).

It remains to compute the remaining terms in Theorem 5.1. First we consider the
start and end of each branch (from its ordered list � ). Consider the branch c˛ . It is
unchanged by twisting along the Ci ’s. When we twist along the Dj ’s, c˛ covers the
D–curve at its initial end, then itself, then the D–curve at its final end. In particular,
s˛ is zero and there are no contributions to flips from the c˛ ’s alone. Now consider
the branch dˇ . When we twist along the Ci ’s, it is modified and covers the C –curve
at its initial end, then itself, then the C –curve at its final end, but also it starts and
ends on those two C –curves at its initial and final switches and in the same orientation
(at the switch) as itself at the switches. Call these initial and final branches cinit and
cfin . Then when we twist along the Dj ’s, by the same reasoning, the initial switch
that cinit runs over is dˇ , and the final switch that cfin runs over is dˇ , each with the
appropriate orientation. Thus the ordered list �ˇ begins and ends with dˇ (with the
correct orientations). Thus sˇ D 2=2D 1 and also there are no flips.

Thus we get a (negative) contribution of
P

i si D
P
ˇ 1. This equals the number

of branches in the D–curves. Because each switch has two d –branches and two
c–branches incident to it, and each branch has two ends, we get that this equals the
number of switches, which is

P
i;j jCi \Dj j.

It remains to examine the singularities. These correspond to regions in the complement
of the C ’s and D ’s. We can determine the number of these using Euler characteristic:
the number of switches minus the number of branches plus the number of these regions
equals the Euler characteristic of the surface, which is 2� 2g . We know the number
of switches is

P
i;j jCi \Dj j and the number of branches is 2

P
i;j jCi \Dj j. Thus

there are 2� 2gC
P

i;j jCi \Dj j singularities.

We claim that each of these singularities is fixed and unrotated. To determine this
requires understanding the transverse list �ˇ for each branch dˇ : the initial and final
branches in this list (with orientation) determine which regions are mapped to the
regions on either side of dˇ and how rotated they are.21 Thus we must show that the
initial and final branches in this list are both dˇ with the correct orientation.

When we perform a Dehn twist along DŒˇ� , the branches that cover a given branch dˇ
are those c˛ ’s which meet DŒˇ� . These cover dˇ on the side corresponding to the side
of DŒˇ� we’ve twisted on. The outermost branches covering dˇ (ie the initial and final
branches in �ˇ ) are those which meet dˇ at a switch which are on the opposite side
of the switch from dˇ . Thus the outermost branches covering dˇ are the outermost

21Note that because each region borders some dˇ ’s, we won’t need to consider the c˛ ’s separately.
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branches covering these c˛ ’s after twisting along CŒ˛� (for then these will be carried
along with c˛ and cover dˇ when we twist along DŒˇ� ). These are likewise the d –
branches meeting the c˛ at a switch on the opposite side of the switch. One of these
is dˇ , and we can see that in fact this branch is the outermost when c˛ covers dˇ , as
desired.

Summing up, we’ve shown that

HF�.�/D tr.M /Cf �
X

i

si C

X
p

.rp �up/

D

�
2
X
i;j

jCi \Dj jC 4
X
i;j

jCi \Dj j
2

�
C 0

�

X
i;j

jCi \Dj j �

�
2� 2gC

X
i;j

jCi \Dj j

�
D 4

X
i;j

jCi \Dj j
2
C 2g� 2:

Remark 6.2 This easily extends to
Q

j �
�2`
Dj

Q
i �

2k
Ci

. Only tr.M / is changed (we
replace A by kA and B by `B ). We get HF�.�/D 4k`

P
i;j jCi \Dj j

2C 2g� 2.
In fact, any composition of positive powers of

Q
j �
�2
Dj

and positive powers of
Q

i �
2
Ci

can be computed in this manner. The correction terms again remain the same, so we
only need to know how to compute tr.M /.
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