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Hypercontact structures and Floer homology

SONJA HOHLOCH

GREGOR NOETZEL

DIETMAR A SALAMON

We introduce a new Floer theory associated to a pair consisting of a Cartan hyper-
contact 3–manifold M and a hyperkähler manifold X . The theory is a based on the
gradient flow of the hypersymplectic action functional on the space of maps from
M to X . The gradient flow lines satisfy a nonlinear analogue of the Dirac equation.
We work out the details of the analysis and compute the Floer homology groups
in the case where X is flat. As a corollary we derive an existence theorem for the
3–dimensional perturbed nonlinear Dirac equation.

53D40, 32Q15

1 Introduction

In this paper we examine a hyperkähler analogue of symplectic Floer homology. We
assume throughout that X is a hyperkähler manifold with complex structures I;J;K

and symplectic forms !1; !2; !3 . We also assume that M is a compact oriented 3–
manifold equipped with a volume form � 2�3.M / and a positive frame v1; v2; v3 2

Vect.M / of the tangent bundle. Associated to these data is a natural 1–form on the
space F WD C1.M;X / of smooth functions f W M !X defined by

(1) yf 7!

Z
M

�
!1.@v1

f; yf /C!2.@v2
f; yf /C!3.@v3

f; yf /
�
�

for yf 2 TfF D�0.M; f �TX /. This 1–form is closed if and only if the vector fields
vi are volume preserving, ie

Lv1
� D Lv2

� D Lv3
� D 0:

Since every closed oriented 3–manifold is parallelizable it admits a volume preserving
frame (see Gromov [17, Section 2.4.3]). Our main examples are the 3–torus with the
coordinate vector fields and the 3–sphere with the standard hypercontact structure.
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Hypercontact structures

A hypercontact structure on a 3–manifold M is a triple of contact forms ˛ D
.˛1; ˛2; ˛3/ 2�

1.M;R3/ such that

˛1 ^ d˛1 D ˛2 ^ d˛2 D ˛3 ^ d˛3 DW �

and ˛i^d j̨C j̨ ^d˛i D 0 for i ¤ j . The Reeb vector fields v1; v2; v3 are pointwise
linearly independent and preserve the volume form � . The hypercontact structure is
called positive if they form a positive frame of the tangent bundle. In this setting the
1–form (1) is the differential of the action functional AW F !R defined by

(2) A.f / WD �
Z

M

�
˛1 ^f

�!1C˛2 ^f
�!2C˛3 ^f

�!3

�
:

A positive hypercontact structure is called a Cartan structure if the ˛i form a dual
frame of the cotangent bundle, ie ˛i.vj /D ıij . In the Cartan case � WD d˛1.v2; v3/D

d˛2.v3; v1/ D d˛3.v1; v2/ is constant and d˛i D � j̨ ^ ˛k and Œvi ; vj � D �vk for
every cyclic permutation i; j ; k of 1; 2; 3. (We use the sign convention of McDuff and
Salamon [22] for the Lie bracket.)

The archetypal example is the 3–sphere M D S3 , understood as the unit quaternions,
with v1.y/D iy , v2.y/D jy , v3.y/D ky . Hypercontact structures were introduced
by Geiges–Gonzalo [13; 14]. They use the term taut contact sphere for what we call
a hypercontact structure. They proved that every Cartan hypercontact 3–manifold is
diffeomorphic to a quotient of the 3–sphere by the right action of a finite subgroup of
Sp.1/.

Tori

Let M D T3 DR3=Z3 be the standard 3–torus equipped with the standard volume
form � D dt1^dt2^dt3 and vi D

P3
jD1 aij@j where AD .aij /

3
i;jD1

is a nonsingular
real 3� 3 matrix. In this case the lift of the 1–form (1) to the universal cover �F of F
is the differential of the function

(3) AD
3X

i;jD1

aijAij W
�F !R

where Aij .f / denotes the !i –symplectic action of the loop tj 7! f .t/, averaged over
the remaining two variables tk ; t` with k; ` ¤ j . If X is flat and F0 � F denotes
the space of contractible maps f W T3!X then A descends to F0 . Explicitly, we
have Aij .f / WD �

R 1
0

R 1
0

R
D u�tk ;t`

!i dtk dt` for f 2 F0 , where utk ;t` W D! X is a
smooth family of maps satisfying utk ;t`.e

2� itj /D f .t1; t2; t3/.
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Hyperbolic spaces

A third class of examples arises from unit tangent bundles of higher genus surfaces
or equivalently from quotients of the group G WD PSL.2IR/. Let H�C denote the
upper half plane and P WD

˚
.z; �/ 2C2 j Im.z/D j�j

	
the unit tangent bundle of H .

The group G acts freely and transitively on P by

g�.z; �/ WD

�
azC b

czC d
;

�

.czC d/2

�
; g DW

�
a b

c d

�
2 SL.2IR/:

Now let ��PSL.2IR/ be a discrete subgroup acting freely on H such that the quotient
† WD �nH is a closed Riemann surface. Then the 3–manifold

M WD �nG

is diffeomorphic to the unit tangent bundle T1† D �nP via Œg� 7! Œg�.i; 1/�. The
group G carries a natural bi-invariant volume form � 2�3.G/ given by

�.g�;g�;g�/ WD
1

2
trace.Œ�; ���/

for �; �; � 2 g WD Lie.G/D sl.2IR/. This volume form descends to M and is invariant
under the right action of G. Now consider the traceless matrices

�1 WD

�
1 0

0 �1

�
; �2 WD

�
0 1

1 0

�
; �3 WD

�
0 �1

1 0

�
:

The resulting vector fields vi.g/ WD g�i on G are � –equivariant and preserve the
volume form � . Hence they descend to volume preserving vector fields on M (still
denoted by vi ) and so the 1–form (1) is closed in this setting.

Note that �.v1; v2; v3/D 2 and d�.v3/D 0, d�.v1/D id�.v2/. The Lie brackets
of the vector fields vi are given by

Œv2; v3�D�2v1; Œv3; v1�D�2v2; Œv1; v2�D 2v3

(because the �i act on G on the right). Hence, if ˛i 2 �
1.M / denote the 1–forms

dual to the vector fields vi , we have

d˛1 D�2˛2 ^˛3; d˛2 D�2˛3 ^˛1; d˛3 D 2˛1 ^˛2:

This implies that the 1–form (1) is the differential of the action functional

A.f / WD
Z

M

�
˛1 ^f

�!1C˛2 ^f
�!2�˛3 ^f

�!3

�
:
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However, in this setting the energy identity (7) discussed below does not help in the
compactness proof. This is the reason why we do not include the higher genus case in
our discussion in the main part of this paper.

Floer theory

The zeros of the 1–form (1) are the solutions f W M !X of the nonlinear elliptic first
order partial differential equation

(4) /@.f / WD I@v1
f CJ@v2

f CK@v3
f D 0:

This is a nonlinear analogue of the Dirac equation first introduced by Taubes [29].
Obviously, the constant functions are solutions of (4). When M D S3 other solutions
arise from the composition of rational curves with suitable Hopf fibrations (see below).
When M D T3 solutions can be obtained from elliptic curves. In the case M D

�nG solutions arise from the composition of K–holomorphic curves †! X with
� W M !†. These examples are all homologically trivial, even though Hopf fibrations
over holomorphic spheres in the K3 surface do represent nontrivial homotopy classes
in �3 . A homologically nontrivial example with target manifold X WDH=Z4 with
its standard hyperkähler structure and domain M WD T3 DR3=Z3 with vector fields
vi D @=@ti is given by f .t/ WD t1C it2C .1C j/t3 .

In this paper we prove an existence result for the solutions of the perturbed nonlinear
Dirac equation

(5) /@H .f / WD I@v1
f CJ@v2

f CK@v3
f �rH.f /D 0:

Here H W X �M ! R is a smooth function and we denote by rH.f / the gradient
with respect to the first argument. The linearized operator for this equation is self
adjoint and we call a solution f W M ! X of (5) nondegenerate if the linearized
operator is bijective. In the nondegenerate case, and when X is flat, one can count
the solutions with signs, however, it turns out that this count gives zero. Nevertheless
we shall prove the following hyperkähler analogue of the Conley–Zehnder theorem
confirming the Arnold conjecture for the torus [4]. In fact, in the torus case with
v1 D @=@t1 the solutions of (4) can be interpreted as the periodic orbits of a suitable
infinite dimensional Hamiltonian system.

Theorem A Let M be either a compact Cartan hypercontact 3–manifold (with Reeb
vector fields vi ) or the 3–torus (with a constant frame vi ). Let X be a compact flat
hyperkähler manifold. Then the space of solutions of (5) is compact. Moreover, if the
contractible solutions are all nondegenerate, then their number is bounded below by
the sum of the Z2 –Betti numbers of X . In particular, Equation (5) has a contractible
solution for every H .

Geometry & Topology, Volume 13 (2009)



Hypercontact structures and Floer homology 2547

The proof of Theorem A is based on the observation that the solutions of (5) are the
critical points of the perturbed hypersymplectic action functional AH .f / WDA.f /�R

M H.f /� . As in symplectic Floer theory, this functional is unbounded above and
below, and the Hessian has infinitely many positive and negative eigenvalues. Thus the
standard techniques of Morse theory are not available for the study of the critical points.
However, with appropriate modifications, the familiar techniques of Floer homology
carry over to the present case, at least when X is flat, and thus give rise to natural Floer
homology groups for a pair .M;X /.

The Floer groups are determined by a chain complex that is generated by the so-
lutions of (5). The boundary operator is determined by the finite energy solutions
uW R�M !X of the negative gradient flow equation

(6) @suC I@v1
uCJ@v2

uCK@v3
uDrH.u/:

One of the key ingredients in the compactness proof is the energy identity

(7)
1

2

Z
M

jdf j2 D
1

2

Z ˇ̌
I@v1

f CJ@v2
f CK@v3

f
ˇ̌2
�

Z
M

3X
iD1

"i ^f
�!i

for f W M !X , where the "i 2�
1.M / are dual to the vector fields vi . In the torus

case these forms are closed and thus the last term in (7) is a topological invariant. In
the Cartan hypercontact case this term is the hypersymplectic action A.f /.

To compute the Floer homology groups we choose a Morse–Smale function H W X !R
and study the equation

(8) @suC "�1
�
I@v1

uCJ@v2
uCK@v3

u
�
DrH.u/

for small values of ". The gradient lines of H are solutions of this equation and we shall
prove that, for " > 0 sufficiently small, there are no other contractible solutions. This
implies that our Floer homology groups HF�.M;X / are isomorphic to the singular
homology H�.X IZ2/.

Theorem B Let M be either a compact Cartan hypercontact 3–manifold (with Reeb
vector fields vi ) or the 3–torus (with a constant frame vi ). Let X be a compact
flat hyperkähler manifold and fix a class � 2 �0.F/. Then, for a generic perturbation
H W X �M !R, there is a natural Floer homology group HF�.M;X; � IH / associated
to a chain complex generated by the solutions of (5) where the boundary operator is
defined by counting the solutions of (6). The Floer homology groups associated to
different choices of H are naturally isomorphic. Moreover, for the component �0 of
the constant maps there is a natural isomorphism HF�.M;X; �0IH /ŠH�.X IZ2/.
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Remark The precise condition we need for extending the standard techniques of Floer
theory to our setting is that X has nonpositive sectional curvature. As every hyperkähler
manifold has vanishing Ricci tensor, nonpositive sectional curvature implies that X

is flat and hence is a quotient of a hyperkähler torus by a finite group. An example
is the quotient of the standard 12–torus H3=Z12 by the Z2 –action determined by
.x;y; z/ 7! .y;x; zC 1=2/.

A more general setting

There is conjecturally a much richer theory which provides Floer homological invariants
for all triples .M;X; �/, consisting of a Cartan hypercontact 3–manifold M , a compact
hyperkähler manifold X , and a homotopy class � of maps from M to X . One basic
observation is that every holomorphic sphere in a hyperkähler manifold gives rise to
a solution of (4) on M D S3 . Another point is that �3.X / can be a very rich group.
For example, the third homotopy group of the K3 surface has 253 generators (see
Cochran–Habegger [3, Appendix]).

Example Think of the 3–sphere as the unit sphere in the quaternions HŠR4 and of
the 2–sphere as the unit sphere in the imaginary quaternions Im.H/ŠR3 . For �D
�1iC�2jC�3k2S2 denote J� WD�1IC�2JC�3K and !�D�1!1C�2!2C�3!3:

Define h�W S
3! S2 by h�.y/ WD �xy�y . If uW S2!X is a J�–holomorphic sphere

then
f WD u ı h�W S

3
!X

is a critical point of A and

E.u/D
1

2

Z
S2

jduj2 D

Z
S2

u�!� D
1

2�
A.u ı h�/:

To see this, assume �D i and write h1.y/ WD �xyiy , h2.y/ WD �xyjy , and h3.y/ WD

�xyky . These functions satisfy @vi
hi D 0 and @vj hi D�@vi

hj D 2hk for every cyclic
permutation i; j ; k of 1; 2; 3. Hence h1 ^ @v3

h1 D @v2
h1 . If uW S2 ! X is an I –

holomorphic sphere it follows that the function f WD u ı h1 satisfies @v1
f D 0 and

I@v3
f D @v2

f and hence is a solution of (4). Moreover, 2�
R

S2 � D�
R

S3 ˛1 ^ h�
1
�

for � 2 �2.S2/. (When � is exact both sides are zero. Since �˛1 ^ h�
1

dvolS2 D

4 dvolS3 the value of the factor follows from Vol.S2/ D 4� and Vol.S3/ D 2�2 .)
With � D u�!1 this implies 2�

R
S2 u�!1 D�

R
S2 ˛1 ^ h�

1
u�!1 DA.u ı h1/. Here

the last equation follows from the fact that u�!2Du�!3D 0 for every I –holomorphic
curve u.

The main technical difficulty in setting up the Floer theory for general hyperkähler
manifolds is to establish a suitable compactness theorem. In contrast to the familiar
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theory the derivatives for a sequence of solutions of (5) or (6) will not just blow up at
isolated points but along codimension–2 subsets. For example, if u� W S

2! X is a
sequence of I –holomorphic curves and hW S3! S2 is a suitable Hopf fibration, then
f� WD u� ıh is a sequence of solutions of (4) and its derivatives blow up along the Hopf
circle h�1.z0/ whenever the derivatives of u� blow up near z0 . This phenomenon is
analogous to the codimension 4 bubbling in Donaldson–Thomas theory [7].

Floer–Donaldson theory

Let † be a hyperkähler 4–manifold with complex structures i; j;k and symplectic
forms �1; �2; �3 . Consider the elliptic partial differential equation

(9) du� Idui�Jduj�KdukD 0

for smooth maps uW †!X . This is sometimes called the Cauchy–Riemann–Fueter
equation and it has been widely studied (see Taubes [29], Haydys [18, Chapter 3; 19]
and references). For †DR�M with its standard hyperkähler structure (see below)
Equation (9) is equivalent to (6) with H D 0. The solutions of (9) satisfy the energy
identity

(10) E.u/D
1

8

Z
†

jdu� Idui�Jduj�Kdukj2 dvol† �
Z
†

3X
iD1

�i ^u�!i ;

where E.u/ WD 1
2

R
† jduj2 dvol† . The linearized operator

DuW �
0.†;u�TX /!�1

H.†;u
�TX /

takes values in the space of 1–forms on † with values in u�TX that are complex
linear with respect to I , J , and K . When † is closed this operator is Fredholm
between appropriate Sobolev completions and its index is

(11) ind.Du/D�hc2.TX /;u�Œ†�iC
�.†/

24
dimR X;

where �.†/ is the Euler characteristic. Equation (11) continues to hold in the case †D
S1�M with its natural quaternionic structure. We sketch a proof below. Conjecturally,
there should be Gromov–Witten type invariants obtained from intersection theory on
the moduli space of solutions of (9).

It is also possible to consider hyperkähler 4–manifolds † with cylindrical ends
�˙W R˙ �M˙ ! †. Here we assume that M˙ is either a Cartan hypercontact
3–manifold or a 3–torus. Then R˙ �M˙ has a natural flat hyperkähler structure;
see Donaldson [5] and Geiges–Gonzalo [14]. In the hypercontact case the symplectic
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forms are !i D ��1d.e��s˛i/ D e��s.�ds ^ ˛i C j̨ ^ ˛k/ and in the torus case
they are !i D �ds ^ ˛i C j̨ ^ ˛k for every cyclic permutation i; j ; k of 1; 2; 3.
In both cases the complex structure i is given by @s 7! �v1 , v1 7! @s , v2 7! v3 ,
v3 7!�v2 and similarly for j and k. We assume that the embeddings �˙ are hyperkähler
isomorphisms onto their images and that the complement † n .im �C[ im ��/ has a
compact closure. Alternatively, it might also be interesting to consider hyperkähler
4–manifolds with asymptotically cylindrical ends as in Kronheimer [20; 21]. One can
then (conjecturally) use the solutions of Equation (9) with Hamiltonian perturbations
on the cylindrical ends to obtain a homomorphism HF�.M�;X /! HF�.MC;X /

respectively HF�.MC;X /! HF�.M�;X /.

Proof of the index formula We relate Du to a Dirac operator on † associated to a
spinc structure. On † we have a Hermitian vector bundle W DW C˚W � where

W C WD u�TX ˚u�TX; W � WD HomH.T†;u
�TX /˚HomI .T†;u

�TX /:

Here HomH.T†;u
�TX / denotes the bundle of quaternionic homomorphisms and

HomI .T†;u
�TX / denotes the bundle of homomorphisms that are complex linear

with respect to I and complex antilinear with respect to J and K . The complex
structures on W C and W � are given by .�1; �2/ 7! .I�2; I�1/. The spinc structure
�W T†! End.W / has the form

�.v/ WD

�
0 �
 .v/�


 .v/ 0

�
for v 2 Tz† where 
 .v/W W Cz !W �

z is given by


 .v/.�1; �2/ WD .�H.hv; � i�1/; �I .hv; � i�2//:

Here �H; �I W HomR.T†;u
�TX /! HomR.T†:u

�TX / denote the projections

�H.A/ WDA� IAi�JAj�KAk; �I .A/ WDA� IAiCJAjCKAk:

The Dirac operator DW �0.†;W C/ ! �0.†;W �/ is the direct sum of Du and�DuW �
0.†;u�TX / ! �1

I
.†;u�TX / given by �Du� WD �I .r�/. These operators

have the same index and hence

2indR.Du/D indR.D/D
rankR.W C/

24
�.†/C

1

2
hc1.W

C/2� 2c2.W
C/; Œ†�i:

The last equation follows from the Atiyah–Singer index theorem (see [23]). Alter-
natively, one can identify �0.†;W C/ with �0;0.†;u�TX / ˚ �2;0.u�TX / via
.�1; �2/ 7! .�1C �2;J.�2 � �1/!jCK.�2 � �1/!k/ and the space �0.†;W �/ with
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�1;0.†;u�TX / via .˛1; ˛2/! ˛1C˛2 . Under these identifications the Dirac opera-
tor D corresponds to the twisted Cauchy–Riemann operator

@C @�W �ev;0.†;u�TX /!�odd;0.†;u�TX /:

Since I is homotopic to �I , the complex Fredholm index of D is the holomorphic
Euler characteristic of the bundle u�TX !† and, by the Hirzebruch–Riemann–Roch
formula,

indR.Du/D indexC.D/D

Z
†

ch.u�TX /td.T†/:

With chD rankC
Cc1C

1
2
.c2

1
�2c2/ and tdD 1C 1

2
c1C

1
12
.c2

1
C c2/ this gives again

the above formula, and (11) follows because c1.TX /D c1.T†/D 0.

Ring structure

As an example of this construction we obtain (conjecturally) a ring structure on
HF�.S3;X /. Take † WDH n f�1

2
; 1

2
g and define ��W .�1; 0��S3!H by

��.s;y/ WD e�sy:

The image of this map is the complement of the open unit ball in H . The embed-
ding �CW Œ0;1/� .S3 tS3/!H is the disjoint union of the embeddings .s;y/ 7!
e�1�sy˙1

2
. The resulting quaternionic pair of pants product

HF�.S3;X /˝HF�.S3;X /! HF�.S3;X /

should be independent of the choice of the embeddings and the Hamiltonian perturba-
tions used to define it. Moreover, counting the solutions of (9) on the punctured cylinder
R�M n fptg, will lead to a module structure of HF�.M;X / over HF�.S3;X / for
every M .

The compactness and transversality results in the present paper show that this con-
struction is perfectly rigorous and gives rise to an associative product on HF�.S3;X /

whenever X is flat. Moreover, in this case it agrees with the cup product under our
isomorphism HF�.S3;X /ŠH�.X IZ2/.

Relations with Donaldson–Thomas theory

In [7] Donaldson and Thomas outline the construction of Donaldson type invariants of 8–
dimensional Spin.7/–manifolds Z and Floer homological invariants of 7–dimensional
G2 –manifolds Y . In the case Z D†�S , where † and S are hyperkähler surfaces,
they explain that solutions of their equation on †�S correspond, in the adiabatic limit
where the metric on S degenerates to zero, to solutions uW †!M.S/ of (9) with
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values in a suitable moduli space X DM.S/ of bundles over S . In a similar vein
there is a conjectural correspondence between the Donaldson–Thomas–Floer theory of

Y DM �S

with the Floer homology groups HF�.M;M.S// discussed above whenever M is
either a Cartan hypercontact 3–manifold or a flat 3–torus. Namely, the solutions of the
Floer equation in Donaldson–Thomas theory on R�Y with Y DM �S correspond,
in the adiabatic limit, formally to the solutions of (6) on R�M with values in M.S/.

Boundary value problems

If M is Cartan hypercontact 3–manifold with boundary @M and Reeb vector fields
v1; v2; v3 then there is a unique map �W @M ! S2 such that

� WD
X

i

�ivi W @M ! TM

is the outward pointing unit normal vector field. In this case the 1–form (1) is not
closed. Its differential is given by the formula

TfF �TfF !RW . yf1; yf2/ 7!

Z
@M

!�. yf1; yf2/ dvol@M :

This is a symplectic form on the space of maps @M ! X . Thus it seems natural to
impose the Lagrangian boundary condition

f .y/ 2Ly ; y 2 @M;

where
F

y2@M Ly is a smooth submanifold of @M �X such that Ly is Lagrangian
with respect to !�.y/ for every y 2 @M . In this paper we do not carry out the analysis
for this boundary value problem.

In the technical parts of this paper we shall restrict the discussion to the case where M

is a (Cartan) hypercontact 3–manifold. The analysis for the case M D T3 is almost
verbatim the same and in some places easier because the metric is flat. In Section 2
we introduce the hypersymplectic action functional and its critical points, discuss the
Floer equation, and restate Theorem A. In Section 3 we prove the main compactness
and exponential decay theorems for the solutions of (5) and (6). These results are
only valid for flat target manifolds X . The details of the transversality theory are
worked out in Section 4 (for general target manifolds X ). With compactness and
transversality established, the construction of Floer homology is completely standard
and we restrict ourselves to restating the result in Section 5. However, the computation
of Floer homology still requires some serious analysis which is carried out in Section 5.
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Three appendices discuss basic properties of hypercontact 3–manifolds, the relevant a
priori estimates, and a removable singularity theorem.
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2 The hypersymplectic action functional

Let X be a hyperkähler manifold with complex structures I;J;K and associated sym-
plectic forms !1; !2; !3 . Let .M; ˛1; ˛2; ˛3/ be a positive hypercontact 3–manifold
with Reeb vector fields v1; v2; v3 (see Appendix A). Then the space F WDMap.M;X /

of smooth maps f W M ! X carries a natural hypersymplectic action functional
AW F !R given by

(12) A.f / WD �
Z

M

�
˛1 ^f

�!1C˛2 ^f
�!2C˛3 ^f

�!3

�
:

The next lemma shows that the critical points of A are the solutions of the partial
differential equation

(13) /@.f / WD Idf .v1/CJdf .v2/CKdf .v3/D 0:

This is a Dirac type elliptic equation because the vector fields vi are everywhere
linearly independent (see Lemma A.1) and the complex structures I;J;K satisfy the
quaternionic relations. (The square of /@ in local coordinates is a standard second order
elliptic operator.)

Lemma 2.1 The differential of A along a path R! F W t 7! ft is

d

dt
A.ft /D

Z
M

h@tft ; /@.ft /i� dvolM ;

where � and the metric on M are as in Remark A.2.

Proof By Cartan’s formula, we have

d

dt
f �t !i D dˇi ; ˇi WD !i.@tf; dft � /;
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for i D 1; 2; 3. Hence

d

dt
A.ft /D�

Z
M

X
i

˛i ^ dˇi D�

Z
M

X
i

d˛i ^ˇi

D�

Z
M

�X
i

d˛i ^ˇi

�
.v1; v2; v3/ dvolM

D�

Z
M

�
X

i

ˇi.vi/ dvolM

D

Z
M

�h@tft ; Idft .v1/CJdft .v2/CKdft .v3/i dvolM :

Here the second equation follows from integration by parts, the third equation follows
from the fact that v1; v2; v3 form an orthonormal basis, the fourth follows from the
definition of � in Remark A.2, and the last equation uses the definition of ˇi and the
hyperkähler structure of X . This proves the lemma.

The energy identity

The energy of a smooth function f W M !X is defined by

(14) E.f / WD
1

2

Z
M

jdf j2 dvolM D
1

2

Z
M

3X
iD1

jdf .vi/j
2 dvolM :

Lemma 2.2 The energy of a smooth function f W M ! X is related to the hypersym-
plectic action via

(15) E.f /DA.f /C
1

2

Z
M

j/@.f /j2 dvolM �
Z

M

h/@.f /; df .v0/i dvolM ;

where

(16) v0 WD ˛2.v3/v1C˛3.v1/v2C˛1.v2/v3:

In particular E.f /DA.f / for every solution of (13).

Remark 2.3 The vector field v0 vanishes if and only if ˛i.vj /D ıij . If this holds
then, for every f 2 F , we have

E.f /DA.f /C
1

2

Z
M

j/@.f /j2 dvolM :

Hence the energy of f is controlled by the L2 norm of /@.f /D gradA.f / and the
action.
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Proof of Lemma 2.2 By direct calculation (dropping the term dvolM ) we obtain

1

2

Z
M

j/@.f /j2� E.f /

D
1

2

Z
M

�
jIdf .v1/CJdf .v2/CKdf .v3/j

2
�

X
i

jdf .vi/j
2

�
D

Z
M

�
hKdf .v1/; df .v2/iC hIdf .v2/; df .v3/iC hJdf .v3/; df .v1/i

�
D

Z
M

�
f �!1.v2; v3/Cf

�!2.v3; v1/Cf
�!3.v1; v2/

�
:

On the other handZ
M

h/@.f /; df .v0/i �A.f /

D

Z
M

h/@.f /; ˛2.v3/df .v1/C˛3.v1/df .v2/C˛1.v2/df .v3/i �A.f /

D

Z
M

˛2.v3/
�
f �!2.v2; v1/Cf

�!3.v3; v1/
�

C

Z
M

˛3.v1/
�
f �!1.v1; v2/Cf

�!3.v3; v2/
�

C

Z
M

˛1.v2/
�
f �!1.v1; v3/Cf

�!2.v2; v3/
�

C

Z
M

�
˛1 ^f

�!1C˛2 ^f
�!2C˛3 ^f

�!3

�
D

Z
M

�
f �!1.v2; v3/Cf

�!2.v3; v1/Cf
�!3.v1; v2/

�
:

The last equation follows by inserting the vector fields v1; v2; v3 into the 3–forms
˛i ^f

�!i . This proves the lemma.

The Hessian

The tangent space of F at f is the space of vector fields along f :

TfF D Vect.f /D�0.M; f �TX /:

It is convenient to use the inner product

(17) h�; �iL2 WD

Z
M

h�; �i � dvolM :
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on this space. One reason for this choice is the formula in Lemma 2.1. Another is the
following observation.

Lemma 2.4 For every smooth function f W M !R we have

(18)
Z

M

df .vi/� dvolM D 0:

Thus the covariant divergence of the vector field vi is given by

div.vi/D��
�1d�.vi/

and the operator rvi
W �0.M;E/!�0.M;E/ is skew adjoint with respect to the L2

inner product (17) (for every Riemannian vector bundle E!M with any Riemannian
connection).

Proof The covariant divergence of a vector field v 2 Vect.M / is the function
div.v/W M !R defined by div.v/ WD

P
j hrej v; ej i for any orthonormal frame ej of

TM . It is characterized by the propertyZ
M

df .v/ dvolM C
Z

M

f div.v/ dvolM D 0

for every function f W M ! R. Now, for every 1–form ˇ 2 �1.M /, we have
.ˇ^ d˛i/.v1; v2; v3/ D ˇ.vi/� and hence ˇ ^ d˛i D ˇ.vi/� dvolM . With ˇ D df

this gives (18). The formula for the covariant divergence of vi follows by replacing f
with ��1f . This proves the lemma.

Lemma 2.5 The covariant Hessian of A at f 2 F is the operator

/DD /Df W �0.M; f �TX /!�0.M; f �TX /

given by

(19) /D� WD Irv1
�CJrv2

�CKrv3
�

for � 2 �0.M; f �TX /. Here r is the Levi–Civita connection of the hyperkähler
metric on X . The operator /DW W 1;2.M; f �TX /! L2.M; f �TX / is self-adjoint
with respect to the L2 inner product (17).

Proof The covariant Hessian of A at f 2F is defined by the formula � 7! rt ./@ft /jtD0

where t 7! ft is a smooth curve in F with f0 D f and @tft jtD0 D � . Hence (19)
follows from the fact that the complex structures I;J;K are covariant constant and r
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is torsion free. That /D is symmetric with respect to the L2 inner product (17) follows
from Lemma 2.4. To prove that /D is self-adjoint we observe that its square is given by

/D /D� D�rv1
rv1
� �rv2

rv2
� �rv3

rv3
�

C I
�
R.df .v2/; df .v3//� �rŒv2;v3��

�
CJ

�
R.df .v3/; df .v1//� �rŒv3;v1��

�
CK

�
R.df .v1/; df .v2//� �rŒv1;v2��

�
:

(20)

Here R denotes the Riemann curvature tensor on X . Since v1; v2; v3 are linearly
independent /D2 is a standard second order elliptic operator in local coordinates (with
leading term in diagonal form) and hence has the usual elliptic regularity properties.
In particular, if � 2L2 and /D� 2L2 , then /D2� 2W �1;2 and elliptic regularity gives
� 2W 1;2 . This implies that /D is self-adjoint as an operator on L2 with domain W 1;2 ,
as claimed.

As in symplectic and instanton Floer theories it is a fundamental observation that the
action functional is unbounded above and below and that the operator /D has infinitely
positive and negative eigenvalues.

Remark 2.6 If the symplectic forms !i D d�i on X are exact then the hypersym-
plectic action functional can be written in the form

A.f /D
Z

M

3X
iD1

�i.@vi
f / � dvolM :

The archetypal example is the space X D H of quaternions with the standard hy-
perkähler structure. In this case the operator f 7! /@.f / D /Df is linear and the
hypersymplectic action is the associated quadratic form

A.f /D
1

2

Z
M

hf; /Df i� dvolM :

Since A.f / D 0 for every real valued function f W M ! R � H it follows that
the negative and positive eigenspaces of /D are both infinite dimensional. In the case
M DS3 with the standard hypercontact structure, specific eigenfunctions are f .y/Dy

with eigenvalue �3, f .y/D yC 2xy with eigenvalue 1, and f .y/D � ı h.y/ where
hW S3!S2 is a suitable Hopf fibration and �W S2!H is the inclusion of the 2–sphere
into the imaginary quaternions; in the last example the eigenvalue is �4.

Geometry & Topology, Volume 13 (2009)



2558 Sonja Hohloch, Gregor Noetzel and Dietmar A Salamon

Perturbations

Let H W X �M !R be a smooth function and define the perturbed hypersymplectic
action functional AH W F !R by

AH .f / WD �

Z
M

3X
iD1

˛i ^f
�!i �

Z
M

H.f /� dvolM :

Here we write H.f / for the function M ! R W y 7! H.f .y/;y/. For y 2M let
Hy WDH. � ;y/ and denote by rH. � ;y/ WD rHy the gradient of H with respect to
the first argument. Then, by Lemma 2.1, the critical points of AH are the solutions of
the perturbed equation

(21) Idf .v1/CJdf .v2/CKdf .v3/DrH.f /:

Here we denote by rH.f / the vector field y 7! rHy.f .y// along f . By Lemma
2.2, every solution of (21) satisfies the inequality

AH .f /� �

Z
M

�
�H.f /C

1

2
jrH.f /j2

�
dvolM :

Gradient flow lines

By Lemma 2.1, the gradient of AH with respect to the L2 inner product (17) is given
by

gradAH .f /D Idf .v1/CJdf .v2/CKdf .v3/�rH.f /DW /@H .f /:

Hence the negative gradient flow lines of AH are the solutions uW R�M !X of the
partial differential equation

(22) @suC I@v1
uCJ@v2

uCK@v3
uDrH.u/:

The energy of a smooth map uW R�M !X is defined by

EH .u/ WD
1

2

Z
R�M

�
j@suj2Cj/@H .u/j

2
�
� dvolM ds:

As in finite dimensional Morse theory and Floer homology, the finite energy solutions
of (22) are the ones that converge to critical points of the perturbed hypersymplec-
tic action functional as s tends to ˙1 (see Theorem 3.13 below). Thus, in the
case EH .u/ < 1, there are solutions f ˙W M ! X of Equation (21) such that
lims!˙1 @su.s;y/D 0, uniformly in y , and

(23) lim
s!˙1

u.s;y/D f ˙.y/; lim
s!˙1

AH .u.s; � //DAH .f
˙/:
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Moreover the solutions of (22) minimize the energy EH .u/ subject to (23) and their
energy is EH .u/DAH .f

�/�AH .f
C/:

Moduli spaces

A solution f of /@H .f /D 0 is called nondegenerate if the perturbed Hessian

(24) /Df;H � WD Irv1
�CJrv2

�CKrv3
� �r�rHy.f /

is bijective. We shall prove that nondegeneracy can be achieved by a generic choice of
the Hamiltonian H W X �M !R (see Theorem 4.1 below). Assuming this we fix two
critical points f ˙ of the perturbed hypersymplectic action functional AH and denote
the space of Floer trajectories by

M.f �; f CIH / WD
n

uW R�M !X
ˇ̌̌
u satisfies .22/; .23/; sup

R�M

jduj<1
o
:

We shall prove, again for a generic choice of the perturbation, that these spaces are
smooth finite dimensional manifolds. The proof will involve the linearized operator

(25) Du;H � WD rs�C Irv1
�CJrv2

�CKrv3
� �r�rH.u/:

As in all other versions of Floer homology the Fredholm index of this operator is
the spectral flow of the Hessians along u. We shall prove that, when M is a Cartan
hypercontact 3–manifold and X is flat all the known analysis of symplectic Floer
theory carries over to the present setting and gives rise to Floer homology groups that
are isomorphic to the singular homology of X . This leads to the following existence
theorem for solutions of /@H .f /D 0. We emphasize that the algebraic count of the
solutions gives zero and thus does not provide an existence result.

Theorem 2.7 Let M be a compact Cartan hypercontact 3–manifold and X be a
compact flat hyperkähler manifold. If every solution f of /@H .f /D 0 is nondegenerate
then their number is bounded below by the sum of the Betti numbers of X (with
coefficient ring Z2 ). In particular, /@H .f /D 0 has a solution for every smooth function
H W X �M !R.

Proof See Section 5.

3 Regularity and compactness

We assume throughout that X is a compact hyperkähler manifold and M is a compact
3–manifold equipped with a positive hypercontact structure ˛ . Then the Reeb vector
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fields v1; v2; v3 form a (positive) orthonormal frame of TM and hence determine a
second order elliptic operator

(26) L WD

3X
iD1

Lvi
Lvi
D�d�d �

3X
iD1

div.vi/Lvi
:

If ˛ is a Cartan structure then div.vi/ D d�˛i D 0 (by Lemma 2.4) and so L is
the Laplace–Beltrami operator on M . In local coordinates y1;y2;y3 on M the
operator L has the form

LD

3X
�;�D1

a��
@2

@y�@y�
C

3X
�D1

b�
@

@y�
;(27)

a�� WD

3X
iD1

v
�
i v

�
i ; b� WD

3X
i;�D1

@v�i
@y�

v
�
i :where

Since the vector fields vi form an orthonormal frame of TM , the coefficients a��

define the Riemannian metric on the cotangent bundle in our local coordinates. The
operators L on M and

(28) L WD @s@sCL

on R �M will play a central role in our study of the solutions of Equations (21)
and (22).

Theorem 3.1 (Regularity) If p > 3 then every W 1;p solution f of /@H .f /D 0 is
smooth. If p > 4 then every W 1;p solution u of (22) is smooth.

Proof For every vector field v 2 Vect.M / we write @vf D Lvf D df .v/: Then,
for every smooth map f W M ! X and any two vector fields v;w on M , we have
rv@wf �rw@vf D�@Œv;w�f: Hence

(29) /D /@.f /D�
3X

iD1

rvi
@vi
f � I@Œv2;v3�f �J@Œv3;v1�f �K@Œv1;v2�f:

In local coordinates .x1; : : : ;xm/ on X and .y1;y2;y3/ on M we have

.rv@wf /
k
D

3X
�;�D1

�
@2f k

@y�@y�
v�w� C

@f k

@y�
@w�

@y�
v�C

mX
i;jD1

�k
ij

@f i

@y�
@f j

@y�
v�w�

�
:
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With L as in (27) this gives

. /D /@.f //k D�Lf k
�

3X
�;�D1

mX
i;jD1

�k
ij a��

@f i

@y�
@f j

@y�
�gk

f ;

gk
f WD

mX
`D1

3X
�D1

�
Ik
` Œv2; v3�

�
CJ k

` Œv3; v1�
�
CKk

` Œv1; v2�
�
�@f `
@y�

:where

Moreover, the function hk
f
WD . /D /@.f //k D . /DrH.f //k is given by

hk
f D

mX
j ;`D1

3X
�D1

ck�
`

�
@.rH /`

@xj

@f j

@y�
C
@.rH /`

@y�
C

mX
iD1

�`ij .rH /i
@f j

@y�

�
;

ck�
` WD Ik

` v
�
1 CJ k

` v
�
2 CKk

` v
�
3 :where

Hence every solution of (21) (of class W 1;p ) satisfies the elliptic pde

(30) Lf k
D�

3X
�;�D1

mX
i;jD1

�k
ij a��

@f i

@y�
@f j

@y�
�gk

f � hk
f :

If f 2W 1;p for some p > 3 then the right hand side is in Lp=2 and hence, by elliptic
regularity, f is of class W 2;p=2 . By the Sobolev embedding theorem, we then obtain
f 2W 1;q where q WD 3p=.6�p/ > p . Continuing by induction, we obtain eventually
that f 2W 1;q for some q > 6, hence f 2W 2;p and, again by induction, f 2W k;p

for every integer k .

To prove regularity for the solutions of (22) we introduce the operators

D WD rsC Irv1
CJrv2

CKrv3
; D� WD �rsC Irv1

CJrv2
CKrv3

:

Then we have

D�.@suC /@.u//D�rs@su�

3X
iD1

rvi
@vi

u

� I@Œv2;v3�u�J@Œv3;v1�u�K@Œv1;v2�u:

(31)

Here we have used (29) and the fact that rs@vi
uD rvi

@su for i D 1; 2; 3. If u is a
solution of (22) then @suC /@.u/DrH.u/. Hence in this case we obtain the equation

Luk
D�

3X
�;�D1

mX
i;jD1

�k
ij .u/

�
@ui

@s

@uj

@s
C a��

@ui

@y�
@uj

@y�

�
�gk

u � hk
u ;(32)
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L WD
@2

@s2
C

3X
�;�D1

a��
@2

@y�@y�
C

3X
�D1

b�
@

@y�
;where

gk
u WD

mX
`D1

3X
�D1

�
Ik
` Œv2; v3�

�
CJ k

` Œv3; v1�
�
CKk

` Œv1; v2�
�
� @u`
@y�

;

hk
u WD

mX
j ;`D1

3X
�D1

ck�
`

�
@.rH /`

@xj

@uj

@y�
C
@.rH /`

@y�
C

mX
iD1

�`ij .rH /i
@uj

@y�

�
(33)

�

mX
jD1

@.rH /k

@xj

@uj

@s
�

mX
i;jD1

�k
ij .u/.rH /i

@uj

@s
:

If u2W 1;p with p> 4 then the right hand side in (31) is in Lp=2 and so u2W 2;p=2 .
Thus the Sobolev embedding theorem gives u 2 W 1;q with q WD 4p=.8� p/ > p .
Continuing by induction we obtain that u is smooth. This proves the theorem.

The bootstrapping argument in the proof of Theorem 3.1 gives rise to uniform estimates
for sequences that are bounded in W 1;p . Hence the Arzéla–Ascoli theorem gives the
following compactness result.

Theorem 3.2 Assume X is compact.

(i) Let p > 3 and � � M be an open set. Then every sequence of solutions
f � W �! X of Equation (21) that satisfies sup� kdf

�kLp.C / <1 for every
compact set C �� has a subsequence that converges in the C1 topology on
every compact subset of �.

(ii) Let p > 4 and � � R�M be an open set. Then every sequence of solutions
u� W �! X of Equation (22) that satisfies sup� kdu�kLp.C / < 1 for every
compact set C �� has a subsequence that converges in the C1 topology on
every compact subset of �.

A priori estimates

To remove the bounded derivative assumption in Theorem 3.2, at least in the case where
X is flat, we establish mean value inequalities for the energy density of the solutions
of (22). The solutions of (21) then correspond to the special case @su� 0. The mean
value inequalities will be based on Theorem B.1 in Appendix B.

Throughout we denote by L and L the operators (26) and (28) on M and R�M ,
respectively, and by R the Riemann curvature tensor on X . For a map uW R�M !X
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we define the energy density euW R�M !R by

eu WD
1

2
j@suj2C

1

2

3X
iD1

j@vi
uj2;

and we denote by ruW R �M ! R the sum of the sectional curvatures of suitable
coordinate planes tangent to u:

ru WD 2

3X
jD1

hR.@su; @vj u/@vj u; @suiC

3X
i;jD1

hR.@vi
u; @vj u/@vj u; @vi

ui:

Throughout we fix a Hamiltonian perturbation H W X �M !R. We explicitly do not
assume that the hypercontact structure on M is a Cartan structure (unless otherwise
mentioned).

Lemma 3.3 There are positive constants A and B , depending only on the vector fields
vi , the metric on X , and the Hamiltonian perturbation H , such that every solution
uW R�M !X of (22) satisfies the estimate

(34) LeuC ru � �A�B.eu/
3=2:

If H D 0 we obtain an estimate of the form LeuC ru � �Ceu:

Proof It is convenient to denote the vector field @s on R�M by v0 . Then the Lie
brackets Œv0; vj � vanish for all j , but we shall not use this fact. Abbreviate

w1 WD Œv2; v3�; w2 WD Œv3; v1�; w3 WD Œv1; v2�

and define the operators

LX
WD

3X
iD0

rvi
@vi
; Lr WD

3X
iD0

rvi
rvi
:

Thus LX acts on maps uW R�M !X and Lr acts on vector fields along such maps.
With this notation every solution u of (22) satisfies the equation

(35) LX uD�D�rH.u/� I@w1
u�J@w2

u�K@w3
u;

where D� D�rsC Irv1
CJrv2

CKrv3
. Moreover,

(36) Leu D

3X
jD0

hLr@vj u; @vj uiCpu; pu WD

3X
i;jD0

ˇ̌
rvi
@vj u

ˇ̌2
:
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We compute

Lr@vj uD
X

i

rvi
rvj @vi

u�
X

i

rvi
@Œvi ;vj �u

D

X
i

R.@vi
u; @vj u/@vi

uCrvjL
X u�

X
i

�
rvi
@Œvi ;vj �uCrŒvi ;vj �@vi

u
�

D

X
i

R.@vi
u; @vj u/@vi

uC hj .u/C �j .u/;

where the sums are over i D 0; 1; 2; 3 and

hj .u/ WD
�
rvjrs � Irvjrv1

�Jrvjrv2
�Krvjrv3

�
rH.u/;

�j .u/ WD �Irvj @w1
u�Jrvj @w2

u�Krvj @w3
u�

X
i

�
rvi
@Œvi ;vj �uCrŒvi ;vj �@vi

u
�
:

Since the vector fields v1; v2; v3 form an orthonormal frame of TM there is a constant
c � 1 such that, for every smooth map uW R�M !X and every smooth perturbation
H W X �M !R, we have

3X
jD0

ˇ̌
�j .u/

ˇ̌2
� c .euCpu/ ;

vuuut 3X
jD0

ˇ̌
hj .u/

ˇ̌2
� c kHkC 3

�
1C euC

p
pu

�
:

Here pu is as in (36). This gives

ˇ̌̌̌
ˇ

3X
jD0

h�j .u/; @vj ui

ˇ̌̌̌
ˇ� 1

2c

3X
jD0

j�j .u/j
2
C

c

2

3X
jD0

j@vj uj2

�
pu

2
C

�
cC

1

2

�
eu;ˇ̌̌̌

ˇ
3X

jD0

hhj .u/; @vj ui

ˇ̌̌̌
ˇ� c kHkC 3

p
2eu

�
1C euC

p
pu

�
�

pu

2
C c2

kHk2
C 3 euC

p
2c kHkC 3

p
eu.1C eu/:
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Hence it follows from (36) that

LeuC ru D puC

3X
jD0

hhj .u/C �j .u/; @vj ui

� �

�
1

2
C cC c2

kHk2
C 3

�
eu�
p

2c kHkC 3 .eu/
1=2.1C eu/

� �c2
kHk2

C 3 �
�
1C cC c2

kHk2
C 3

�
eu�
p

2c kHkC 3 .eu/
3=2

and thus

(37) LeuC ru � �C
�
kHk2

C 3 C
�
1CkHk2

C 3

�
euCkHkC 3 .eu/

3=2
�
;

where C WD 1Cc2 . Using the inequality ab� 1
3
a3C

2
3
b3=2 for a; b� 0 we obtain (34)

with

A WD C

�
kHk2

C 3 C
1

3

�
1CkHk2

C 3

�3�
; B WD C

�
2

3
CkHkC 3

�
:

This proves the lemma.

Remark 3.4 For general hyperkähler manifolds Lemma 3.3 gives an estimate of the
form

Le � �c.1C e2/

for the energy density of solutions of (21) and (22). In dimensions n D 3; 4 the
exponent 2 is larger than the critical exponent .nC 2/=n in Theorem B.1. For the
critical points f W M !X of AH this means that the energy

E.f /D
1

2

Z
M

jdf j2 dvolM

does not control the sup norm of jdf j even if we assume that there is no energy
concentration near points. This is related to noncompactness phenomena that can be
easily observed in examples. Namely, composing a holomorphic sphere in X (for one
of the complex structures J� D �1I C �2J C �3K ) with a suitable Hopf fibration
gives rise to a solution of /@.f /D 0. Now the bubbling phenomenon for holomorphic
spheres leads to sequences f � W S3!X of solutions of (21) where the derivative df �

blows up along a Hopf circle, while the energy remains bounded.

Lemma 3.5 There is a constant C > 0, depending only on the vector fields vi , the
metric on X , and the Hamiltonian perturbation H , such that every solution uW R�M!

X of (22) satisfies the estimate

(38) L j@suj2 � �C
�
1Cjduj2

�
j@suj2 :
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Proof Abbreviate v0 WD @s and w1 WD Œv2; v3�, w2 WD Œv3; v1�, w3 WD Œv1; v2� as in
the proof of Lemma 3.3. Define the functions e0; r0W R�M !R by

e0 WD
1

2
j@suj2 ; r0 WD

3X
iD1

hR.@su; @vi
u/@vi

u; @sui

Then

(39) Le0 D

3X
iD0

ˇ̌
rvi
@su

ˇ̌2
ChLr@su; @sui:

As in the proof of Lemma 3.3 we have

(40) Lr@suD
X

i

R.@vi
u; @su/@vi

uC h0.u/C �0.u/;

where the sum is over i D 1; 2; 3 and

h0.u/ WD
�
rsrs � Irsrv1

�Jrsrv2
�Krsrv3

�
rH.u/;

�0.u/ WD �Irs@w1
u�Jrs@w2

u�Krs@w3
u:

Now jh0.u/jC j�0.u/j � c

 
1CjdujC

sX
i

ˇ̌
rvi
@su

ˇ̌2!
j@suj

and hence it follows from (39) and (40) that

Le0C r0 D

X
i

ˇ̌
rvi
@su

ˇ̌2
Chh0.u/C �0.u/; @sui

�

X
i

ˇ̌
rvi
@su

ˇ̌2
� 2c

 
1CjdujC

sX
i

ˇ̌
rvi
@su

ˇ̌2!
e0

�
1

2

X
i

ˇ̌
rvi
@su

ˇ̌2
� 2c

�
1CjdujC ce0

�
e0:

Since e0 � jduj2 and r0 � c jduj2 e0 this proves (38).

Compactness for critical points

Theorem 3.6 Let M be a Cartan hypercontact 3–manifold and X be a compact flat
hyperkähler manifold. Let H W X �M !R be any smooth function. Then the set of
solutions of (21) is compact in the C1 topology.

Geometry & Topology, Volume 13 (2009)



Hypercontact structures and Floer homology 2567

Lemma 3.7 Let M be a Cartan hypercontact 3–manifold and X be a compact flat
hyperkähler manifold. Then there is a constant c > 0 such that

A.f /� c

Z
M

j/@.f /j2 dvolM

for every f 2 F . In particular, every solution of (13) is constant.

Proof Throughout we abbreviate

kf k WD

sZ
M

jf j2 dvolM ; kdf k WD

sZ
M

jdf j2 dvolM :

The Poincaré inequality asserts that there is a constant C > 0 such that every smooth
function f W M !Hn satisfies

(41)
Z

M

f dvolM D 0 H) kf k � C kdf k :

Since ˛ is a Cartan structure Equation (29) takes the form

(42) /D /Df D d�df � � /Df

for f W M !Hn . Here we write /@.f /D /Df because X DHn is equipped with the
standard flat metric and f 7! /@.f / is a linear operator. Taking the inner product with
f we obtain

kdf k2 D

Z
M

hf; /D /Df C � /Df i dvolM

� k /Df k2C � kf k k /Df k
� k /Df k2C �C kdf k k /Df k

� k /Df k2C
1

2
kdf k2C

�2C 2

2
k /Df k2

whenever f has mean value zero. By Lemma 2.2, this implies

A.f /D
1

2

�
kdf k2�k /Df k2

�
�
�
1C �2C 2

� Z
M

j /Df j2 dvolM

for every smooth map f W M !Hn . (We can drop the mean value zero condition by
adding a constant to f .) Now the theorem of Geiges–Gonzalo [13] shows that M is a
quotient of the 3–sphere by a finite subgroup of SU.2/. If M DS3 every smooth map
f W M !X factors through a map to the universal cover Hn of X and the assertion
follows. The general case follows from the special case for the induced map on the
universal cover of M .
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Proof of Theorem 3.6 By Lemma 3.7 the critical points of AH satisfy a uniform
action bound. The action bound and the energy identity of Lemma 2.2 give a uniform
L1 bound on the functions e� WD jdf� j

2 . Since the exponent 3
2

in the estimate (34)
of Lemma 3.3 is less than the critical exponent 5

3
we obtain from the Heinz trick

(Theorem B.1) a uniform L1 bound on the sequence e� . Hence the result follows
from Theorem 3.2.

Remark 3.8 If M is the 3–torus then the assertion of Lemma 3.7 continues to hold
for the contractible maps f W M ! X . In the noncontractible case we may have
nonconstant solutions of (21) and the estimate of Lemma 3.7 only holds with an
additional constant on the right.

Remark 3.9 Let X be a K3 surface. Then compactness fails for the critical points of
AH even in the case H D 0 and for sequences with bounded energy (see Remark 3.4).

Compactness and exponential decay for Floer trajectories

Lemma 3.10 Let M be a Cartan hypercontact 3–manifold and X be a compact hy-
perkähler manifold. Let H W X �M !R be any smooth function and uW R�M !X

be a solution of (22). Then the following holds.

(i) For every s 2R we have

(43)
1

2

Z
M

jduj2 �A.u.s; � //CVol.M / sup
X�M

jrH j2C
3

2

Z
M

j@suj2 :

(ii) If u has finite energy

EH .u/D

Z 1
�1

Z
M

j@suj2 � dvolM ds <1

and sup jduj<1 then all the derivatives of u are bounded on R�M and @su

converges to zero in the C1 topology as s tends to ˙1.

(iii) If X is flat then

EH .u/ <1 H) sup jduj<1:

Proof We prove (i). By Lemma 2.2, every solution u of (22) satisfies

E.u.s; � //DA.u.s; � //C
1

2

Z
M

jrH.u/� @suj2
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and hence

1

2

Z
M

jduj2 D E.u.s; � //C
1

2

Z
M

j@suj2

�A.u.s; � //CVol.M / sup
X�M

jrH j2C
3

2

Z
M

j@suj2 :

Here we have used the fact that the hypercontact structure on M is a Cartan structure.
This proves (i).

We prove (ii). Since u satisfies (35) and jduj is bounded the standard elliptic boot-
strapping arguments as in the proof of Theorem 3.1 give uniform bounds on the higher
derivatives of u. Since jduj is bounded it follows from Lemma 3.5 that the function
j@suj2 satisfies an estimate of the form

L j@suj2 � �C j@suj2 :

This in turn implies that u satisfies the mean value inequality

j@su.s0;y/j
2
� c

Z s0C1

s0�1

Z
M

j@suj2 dvolM ds

for a suitable constant c > 0 (see Theorem B.1 with AD 0 and �D ˛ D 1). Using
the finite energy condition again we find that @su converges to zero uniformly as jsj
tends to infinity. Convergence of the higher derivatives of @su follows from an elliptic
bootstrapping argument using Equation (40). This proves (ii).

We prove (iii). Assume X is flat. Then it follows from Lemma 3.3 that there are
positive constants A and B such that

L jduj2 � �A�B jduj3

for every solution uW R�M !X of (22). Hence, by Theorem B.1, there are positive
constants „ and c such that every solution of (22) satisfies

(44) B2

Z
Br .z/

jduj2 < „ H) jdu.z/j2 � c

�
Ar2
C

1

r4

Z
Br .z/

jduj2
�

for z 2R�M and 0< r � 1. Now suppose uW R�M !X is a solution of (22) with
finite energy EH .u/ <1. Then the formulaZ s1

s0

Z
M

j@suj2 � dvolM ds DAH .u.s0; � //�AH .u.s1; � //

shows that there is a constant C > 0 such that AH .u.s; � //� C for all s . Explicitly
we can choose C WD A.u.0; � //C EH .u/. Combining this with (43) we obtain an
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inequality

(45)
Z

M

jduj2 � cC 3

Z
M

j@suj2

for every s 2 R, where c WD 2C C 2 Vol.M / sup jrH j. Next we choose T > 0 so
large that Z 1

T

Z
M

j@suj2 dvolM <
„

4B2
:

Then, for z0 D .s0;y0/ 2 ŒT C 1;1/�M and r < „=.8cB2/, we haveZ
Br .z0/

jduj2 �

Z s0Cr

s0�r

Z
M

jduj2 dvolM ds

�

Z s0Cr

s0�r

�
cC 3

Z
M

j@suj2 dvolM

�
ds

� 2cr C 3

Z 1
T

Z
M

j@suj2 dvolM ds

� 2cr C
3„

4B2
<
„

B2
:

Here the second inequality follows from (45) and the third from the fact that s0�r >T .
The same estimate holds for s0 � �T � 1. Hence it follows from (44) that jduj is
bounded. This proves the lemma.

Remark 3.11 It is an open question if part (iii) of Lemma 3.10 continues to hold
without the hypothesis that X is flat.

Lemma 3.12 Let M be a Cartan hypercontact 3–manifold and X be a compact flat
hyperkähler manifold. Let H W X �M !R be any smooth function. Then there is a
constant c > 0 such that

�c �AH .u.s; � //� c

for every finite energy solution uW R�M !X of (22) and every s 2R.

Proof By Theorem 3.6, there is a constant c > 0 such that

�c �AH .f /� c

for every critical point of AH . Now let uW R�M ! X be a finite energy solution
of (22) and choose a sequence of real numbers s�!�1. Passing to a subsequence we
may assume that u.s�C � ; � / converges, uniformly with all derivatives, to a solution
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of (22) on the domain Œ�1; 1� �M . By (i), this solution is a critical point of AH .
Hence

lim
�!1

AH .u.s
� ; � //� c:

Since the action is nonincreasing along negative gradient flow lines this shows that
A.u.s; � //� c for all s 2R. The lower bound is obtained by the same argument for a
sequence s�!C1. This proves the lemma.

Theorem 3.13 (Exponential decay) Let M be a Cartan hypercontact 3–manifold
and X be a compact hyperkähler manifold. Let H W X �M !R be a smooth function
such that every solution of (21) is nondegenerate. Let uW R�M !X be a solution
of (22). Then the following are equivalent.

(a) The energy EH .u/ is finite and jduj is bounded.

(b) There are solutions f ˙W M !X of Equation (21) such that

(46) lim
s!˙1

u.s;y/D f ˙.y/; lim
s!˙1

AH .u.s; � //DAH .f
˙/;

and lims!˙1 @su.s;y/ D 0, Moreover, the convergence is uniform in y and
jduj is bounded.

(c) There are positive constants � and c1; c2; c3; : : : such that

(47) k@sukC `..RnŒ�T;T �/�M / � c`e
��T

for every T > 0 and every integer `� 0. Moreover, jduj is bounded.

Proof That (c) implies (a) is obvious. We prove that (a) implies (b). By Lemma 3.10 it
follows from (a) that j@suj converges to zero uniformly as jsj tends to infinity and that
du is uniformly bounded with all its derivatives. Hence every sequence s�!˙1 has
a subsequence, still denoted by s� , such that u.s� ; � / converges in the C1 topology
to a solution of (21). Now it follows from the nondegeneracy of the critical points of
AH that they are isolated. Hence the limit is independent of the sequence s� . This
proves (b).

We prove that (b) implies (c). Consider the function �W R! Œ0;1/ defined by

�.s/ WD
1

2

Z
M

� j@suj2 dvolM :

By assumption, this function converges to zero as s tends to ˙1. Moreover, its second
derivative is given by

�00.s/D

Z
M

� jrs@suj2C

Z
M

� hrsrs@su; @sui
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Denote by /DH WD Irv1
CJrv2

CKrv3
�rrH.u/

the covariant Hessian as in (24). Since the vector fields vi are independent of s we
have

rs@suD�rs /@H .u/D� /DH @suD /DH /@H .u/:

Differentiating this equation covariantly with respect to s we obtain

rsrs@suD /DHrs /@H .u/C Œrs; /DH �/@H .u/D /DH /DH @su� Œrs; /DH �@su:

Since /DH is self-adjoint with respect to the L2 inner product with weight � this gives

�00.s/D

Z
M

� jrs@suj2C

Z
M

� j /DH @suj2�

Z
M

� hŒrs; /DH �@su; @sui:

Since jduj is bounded we have an inequalityZ
M

� hŒrs; /DH �@su; @sui � c k@sukL1.M /

Z
M

j@suj2 :

Moreover, by Lemma 3.10, the bound on jduj guarantees that u.s; � / converges in the
C1 topology to f ˙ as s tends to ˙1. Since f ˙ are nondegenerate critical points
of AH we deduce that there is a constant � > 0 such that, for jsj sufficiently large,
we have Z

M

� j /DH @suj2 � 2�2

Z
M

j@suj2 :

Choosing jsj so large that c k@sukL1.M / < �
2 we then obtain

�00.s/� �2�.s/:

d

ds
e��s.�0.s/C ��.s//D e��s.�00.s/� �2�.s//� 0:Hence

Since �.s/! 0 as s!1 we must have

��.s/C�0.s/� 0

for all sufficiently large s and hence e�s�.s/ is nonincreasing. This proves the expo-
nential decay for � . To establish exponential decay for the higher derivatives one can
use an elliptic bootstrapping argument based on Equation (40) to show that the L1

norm of @su controls the higher derivatives. This proves the theorem.

Remark 3.14 If X is flat then the condition sup jduj <1 in (a)–(c) in Theorem
3.13 can be dropped. This follows from Lemma 3.10 (iii) and the fact that each of the
conditions (46) and (47) guarantees finite energy. Similarly, the next theorem continues
to hold for general compact hyperkähler manifolds if we impose the additional condition
sup� supR�M jdu� j<1.
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Theorem 3.15 (Compactness) Let M be a Cartan hypercontact 3–manifold and X

be a compact flat hyperkähler manifold. Let H W X�M !R be a smooth function such
that every solution f of /@H .f /D 0 is nondegenerate. Let f ˙ be two distinct critical
points of AH and u� be a sequence in M.f �; f CIH /. Then there is a subsequence
(still denoted by u� ), a catenation

u1 2M.f0; f1IH /;u2 2M.f1; f2IH /; : : : ;uN 2M.fN�1; fN IH /

of Floer trajectories, and there are sequences s�
1
< s�

2
< � � �< s�

N
such that

f0 D f
�; fN D f

C; AH .fj�1/ >AH .fj /;

and, for j D 1; : : : ;N , the shifted sequence u�.s�j C � ; � / converges to uj uniformly
with all derivatives on every compact subset of R�M .

Proof By Lemma 3.10 the functions u� satisfy (44) for suitable constants A;B; c; „.
This implies the following.

Energy quantization I Let x0 2R�M and suppose that there is a sequence x�!x0

such that jdu�.x�/j diverges to infinity. Then

lim inf
�!1

Z
B".x0/

jdu� j2 �
„

B2

for every " > 0.

The proof uses the Wehrheim trick. Suppose, by contradiction, that there is a constant
" > 0 and a sequence �i!1 such that B2

R
B".x0/

jdu�i j
2 < „ for every i . Then we

can use (44) with x 2 B"=2.x0/ and r D "=2 to obtain

jdu�i .x/j2 � c

 
A"2

4
C

16

"4

Z
B".x0/

jdu�i j
2

!
�

Ac"2

4
C

16c„

B2"4

for all x 2B"=2.x0/ and �� �0 . With xDx�i it follows that the sequence jdu�i .x�i /j

is bounded, a contradiction.

Energy quantization II Let x0 D .s0;y0/ 2 R �M and suppose that there is a
sequence x� D .s� ;y�/! .s0;x0/ such that jdu�.x�/j diverges to infinity. Then

lim inf
�!1

Z s0C"

s0�"

Z
M

j@su� j2 �
„

3B2

for every " > 0.
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By Lemma 3.10 (i) we have

(48)
Z

M

j@su� j2 �
1

3

Z
M

jdu� j2� c

for some constant c > 0 independent of � and s . The assertion follows by integrating
this inequality from s0� " to s0C " and taking the limit "! 0.

With this understood it follows that, after passing to a subsequence, we obtain diver-
gence of the energy density at most near finitely many points. On the complement
of these finitely many points, a further subsequence converges to a solution u1 of
@su1C /@H .u

1/D 0 in the C1 topology, by Theorem 3.2. Now it follows from the
inequality (48) that the L2 norm of du1 is finite on every compact subset of R�M

and in particular in a neighborhood of each bubbling point. Hence we can use the
removable singularity Theorem C.1 to deduce that the limit solution can be extended
into the finitely many missing points. The upshot is that, by standard arguments,
we obtain a convergent subsequence as in the statement of the theorem, except that
u�.s�j C � ; � / need only converge to uj in the complement of finitely many points. If
these bubbling points do exist we have

AH .fj�1/�AH .fj /D EH .uj /� lim
T!1

Z s�
j
CT

s�
j
�T

Z
M

j@su� j2�
„

B2

for some j . However, this would imply that the sum of the energies EH .uj / is
strictly smaller than EH .u

�/ D AH .f
�/ � AH .f

C/ which is clearly impossible.
Thus bubbling cannot occur and the sequence jdu� j must remain uniformly bounded.
This proves the theorem.

Remark 3.16 A key issue in developing the Floer theory of the action functional AH

for general (compact) hyperkähler manifolds is to extend Theorems 3.6 and 3.15 to
the nonflat case. One then has to address the codimension-2 bubbling phenomenon for
finite energy sequences of solutions f of /@H .f /D 0 and u of @suC /@H .u/D 0.

4 Moduli spaces and transversality

Transversality for critical points

Let H WD C1.X �M / and, for H 2H , denote by

C.H / WD ff W M !X jf satisfies /@H .f /D 0g
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the set of critical points of AH . Recall that a critical point f 2 C.H / is called
nondegenerate if the Hessian

/Df;H WD Irv1
CJrv2

CKrv3
�rrH.f /

is bijective as an operator from TfF D �0.M; f �TX / to itself (respectively as an
operator from W kC1;p.M; f �TX / to W k;p.M; f �TX /). Denote by

Hmorse
WD fH 2H j every critical point f 2 C.H / is nondegenerateg

of all H 2H such that AH W F !R is a Morse function.

Theorem 4.1 For every compact 3–manifold M with a positive hypercontact structure
and every hyperkähler manifold X the set Hmorse is of the second category in H .

Proof Fix an integer `� 2 and abbreviate H` WD C `.X �M /. Then the regularity
argument in the proof of Theorem 3.1 shows that f with /@H .f /D 0 is of class W `;p

for any p <1. Fix a constant p > 3 and denote by

C` WD f.f;H / 2W 1;p.M;X /�H` jf satisfies /@H .f /D 0 g

the universal moduli space of critical points. We prove that C` is a C `�1 Banach
manifold. It is the zero set of a C `�1 section of a Banach space bundle

E!W 1;p.M;X /�H`

with fibers Ef;H WDLp.M; f �T x/. The section is given by

.f;H / 7! /@H .f /

and we must prove that it is transverse to the zero section. Equivalently, the operator

(49) W 1;p.M; f �TX /�H`!Lp.M; f �TX /; .�; h/ 7! /Df;H � �rh.f /

is surjective for every H 2H` and every f 2 C.H /.

Let 1=pC 1=q D 1 and choose an element � 2 Lq.M; f �TX / that annihilates the
image of (49) in the sense thatZ

M

h�; /Df;H � �rh.f /i � dvolM D 0

for all h 2 H` and � 2 W 1;p.M; f �TX /. Then, by elliptic regularity, we have
� 2W `;p.M; f �TX / and

/Df;H �D 0;

Z
M

h�;rh.f /i � dvolM D 0 8 h 2H`:
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In particular � is continuous. If � 6� 0 then it is easy to find a smooth function
hW X �M ! R such that h�;rh.f /i � 0 everywhere on M and h�;rh.f /i > 0

somewhere. Namely, choose a point y02M with �.y0/¤0 and a function h0W X!R
such that

h0.f .y0//D 0; rh0.f .y0//D �.y0/:

Then there is a neighborhood U0 �M of y0 such that

h�.y/;rh0.f .y//i> 0

for all y 2 U0 . Now choose a smooth cutoff function ˇW M ! Œ0; 1� with support in
U0 such that ˇ.y0/ D 1. Then the function h.y;x/ WD ˇ.y/h0.x/ has the required
properties. Thus we have proved that the operator (49) is always surjective and hence
C` is a C `�1 Banach manifold as claimed.

Now the obvious projection
�`W C`!H`

is a C `�1 Fredholm map of index zero. Since `� 2, it follows from the Sard–Smale
theorem that the set Hmorse;` �H` of regular values of �` is dense in H` . Now the
result follows by the usual Taubes trick as explained, for example, in [22, Chapter 3].
Namely, for a constant c > 0 we may introduce the set Hmorse;`

c of all H 2H` such
that the critical points f 2 C.H / with sup jdf j � c are nondegenerate. By Theorem
3.2, this set is open in H` . (In fact Theorem 3.2 can be extended to obtain a W `�1;p

convergent subsequence whenever H is of class C ` respectively converges in C ` .)
Since Hmorse;` D

T
c>0H

morse;`
c , we obtain with `D1 that each corresponding set

Hmorse
c is open and dense in H and so HmorseD

T
c>0Hmorse

c is a countable intersection
of open and dense sets in H . This proves the theorem.

Fredholm theory

The study of the spaces of solutions of (22) is based on the linearized operators
Du;H W W

1;p.R�M;u�TX /!Lp.R�M;u�TX / defined by

Du;H WD rsC Irv1
CJrv2

CKrv3
�rrH.u/:

It follows from the familiar arguments in Floer homology that Du;H is a Fredholm
operator whenever f ˙ are nondegenerate critical points of AH and u satisfies the
exponential decay conditions of Theorem 3.13. It is also a standard result that the
Fredholm index of Du;H is given by the spectral flow of Atiyah–Patodi–Singer [2].
More precisely, given a contractible critical point f 2 C.H / choose a smooth path
Œ0; 1�! F W t 7! ft such that

f0 � constant; f1 D f
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and choose " > 0 such that the negative eigenvalues of /Df0
are all less than �". Now

define the integer �H .f / by the formula

(50) �H .f / WD �specflow
� ˚

/Dft ;tH C ".1� t/1
	

0�t�1

�
:

It follows from Equation (11) (with † D S1 �M ) that this integer is independent
of homotopy t 7! ft whenever X is flat. If f W M !X is not contractible then the
definition of the index �H .f / depends on the choice of a fixed reference map f0 .

Proposition 4.2 Assume H 2Hmorse and f ˙ 2 C.H /.

(i) For every smooth map uW R�M !X satisfying (23) the operator

Du;H W W
1;p.R�M;u�TM /!Lp.R�M;u�TM /

is Fredholm and its Fredholm index is

index.Du;H /D �H .f
�/��H .f

C/:

(ii) If H W X !R is a Morse function with sufficiently small C 2 norm and f .y/�
x0 is a critical point of H then �H .f / D dim X � indH .x0/ is equal to the
Morse index of x0 as a critical point of �H (ie the number of positive eigenval-
ues of the Hessian of H at x0 ).

Proof The Fredholm property in (i) follows from standard arguments in Floer theory
as in Donaldson [6] and Floer [9] in the instanton setting and in Floer [10] and
Salamon [27] in the symplectic setting. The index identity is a well known result
about the correspondence between the spectral flow and the Fredholm index (see
Atiyah–Patodi–Singer [2] and Robbin–Salamon [25]). The second assertion follows
immediately from the definition of �H .

Transversality for Floer trajectories

For f ˙ 2 C.H / we denote by M.f �; f CIH / the moduli space of all solutions
uW R�M !X of (22) and (23) for which jduj is bounded. To prove that these spaces
are smooth manifolds we must show that the linearized operator Du;H is surjective for
every solution u of Equation (22) and (23). Let

Hreg
�H

denote the set of all Hamiltonian perturbations H 2 H such that /Df;H is bijec-
tive for every critical point f 2 C.H / of AH and Du;H is surjective for every
u 2M.f �; f CIH / and all f ˙ 2 C.H /.
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Theorem 4.3 For every compact 3–manifold M with a positive hypercontact structure
and every hyperkähler manifold X the set Hreg is of the second category in H . If
H 2Hreg then the moduli space M.f �; f CIH / is a smooth manifold of dimension

dimM.f �; f CIH /D �H .f
�/��H .f

C/

for every pair f ˙ 2 C.H /.

To prove this result we follow essentially the discussion in [12]. The first step is a
unique continuation result.

Proposition 4.4 Let `� 3, H 2H` , and u0;u1W R�M !X be two C `�1 solution
of (22). If u0 and u1 agree to infinite order at a point .s0;y0/2R�M then they agree
everywhere.

Proof In local coordinates x1; : : : ;xm on X and y1;y2;y3 on M both functions
satisfy Equation (32). For the difference

yuk
WD .u1�u0/

k

in local coordinates this gives an estimate

jLyuk
j � c

mX
jD1

�
jyuj
jC

ˇ̌̌̌
@yuj

@s

ˇ̌̌̌
C

3X
�D1

ˇ̌̌̌
@yuj

@y�

ˇ̌̌̌ �
; k D 1; : : : ;m:

This is precisely the hypothesis of Aronszajn’s theorem [1]. Hence, if yu vanishes to
infinite order at a point it must vanish identically in a neighborhood of that point. This
implies that the set of all points .s;y/ where u0 and u1 agree to infinite order is open
and closed. This proves the proposition.

Proposition 4.5 Let H 2 H and uW R �M ! X be a smooth map. Let � 2
�0.R�M;u�TX / be a vector field along u such that

Du;H � Drs�C Irv1
�CJrv2

�CKrv3
� �r�rH.u/D 0:

If � 6� 0 then the set

Z WD f.s;y/ 2R�M j �.s;y/D 0g

can be covered by countably many codimension 2 submanifolds of R�M . In particular,
the set .R�M / nZ is open, connected, and dense in R�M .
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Proof The proof has three steps.

Step 1 If � vanishes to infinite order at a point .s0;y0/ 2 R�M then � vanishes
identically.

We use the identity

D�D�CLr� D� I
�
R.@su; @v1

u/� �R.@v2
u; @v3

u/�CrŒv2;v3��
�

�J
�
R.@su; @v2

u/� �R.@v3
u; @v1

u/�CrŒv3;v1��
�

�K
�
R.@su; @v3

u/� �R.@v1
u; @v2

u/�CrŒv1;v2��
�
:

If D� Dr�rH.u/ we obtain an inequality of the form

ˇ̌̌
Lr�

ˇ̌̌
� c

 
j�jC jrs�jC

3X
jD1

ˇ̌
rvj �

ˇ̌ !
:

In local coordinates the leading term of Lr has diagonal form. Hence the assertion of
Step 1 follows from Aronszajn’s theorem [1].

Step 2 Let Zk � Z denote the set where � and its derivatives vanish up to order k .
Then, for every z0D .s0;y0/2Zk nZkC1 , there is an open neighborhood U0�R�M

and a codimension 2 submanifold V �R�M such that

.Zk nZkC1/\U0 � V:

Fix an element z0 2 Zk nZkC1 . For � D .�0; �1; �2; �3/ 2N4 denote

r
�� WD rv0

� � � rv0
rv1
� � � rv1

rv2
� � � rv2

rv3
� � � rv3

�;

where v0 WD @s and each term rvi
occurs �i times. Since all derivatives of � vanish

up to order k at the point z0 we have

rvi
r
��.z0/Dr

�
rvi
�.z0/:

for j�j WD �0 C �1 C �2 C �3 D k and i D 0; 1; 2; 3. Since z0 … ZkC1 there is a
multi-index � 2 N4 with j�j D k and an i 2 f0; 1; 2; 3g such that rvi

r��.z0/ ¤ 0.
Consider the vector field

� WD r��

along u. Again using the fact that all derivatives of � up to order k vanish at z0 we
obtain

rv0
�.z0/C Irv1

�.z0/CJrv2
�.z0/CKrv3

�.z0/D 0:
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Since one of the vectors rvi
�.z0/ is nonzero it follows that the four vectors rvi

�.z0/

cannot all be linearly dependent. Hence, in local coordinates x1; : : : ;xm on X there
exist indices i; j 2 f1; : : : ;mg such that the differentials of the functions �i ; �j (on an
open neighborhood of z0 in R�M ) are linearly independent. Hence, by the implicit
function theorem, there is a neighborhood U0 �R�M of z0 such that the set

V WD fx 2 U0 j �
i.x/D �j .x/D 0g

is a codimension 2 submanifold of R�M . Since

.Zk nZkC1/\U0 � V

this proves Step 2.

Step 3 We prove the proposition.

By Step 1 we have

Z D
1[

kD0

.Zk nZkC1/ :

By Step 2 each of the sets Zk nZkC1 can be covered by finitely many submanifolds
of codimension 2. This proves the proposition.

Let H 2H` and uW R�M ! X be a C `�1 solution of (22) and (23). Call a point
.s;y/ 2R�M regular if

@su.s;y/¤ 0; u.s;y/¤ f ˙.y/; u.s;y/ … u.R n fsg;y/:

Let R.u/�R�M denote the set of regular points of u.

Proposition 4.6 Fix an integer ` � 4. Let H 2H` and uW R�M ! X be a C `�1

solution of (22) and (23) with f � ¤ f C . Then the set R.u/ of regular points of u is
open and dense in R�M .

Proof That the set R.u/ is open follows by the same argument as in the proof of [12,
Theorem 4.3]. We prove in four steps that R.u/ is dense.

Step 1 The set
R0.u/ WD f.s;y/ 2R�M j @su.s;y/¤ 0g

is open and dense in R�M .

The vector field @su is in the kernel of the linearized operator Du;H and is a vector
field of class C `�2 and hence of class C 2 . Now Step 1 in the proof of Proposition 4.5
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continues to hold for C 2 vector fields and hence the set R0.u/ is dense in R�M .
That it is open is obvious. This proves Step 1.

Step 2 The set

R1.u/ WD f.s;y/ 2R0.u/ ju.s;y/¤ f
˙.y/g

is open and dense in R�M .

That the set is open is obvious. We prove it is dense. By Step 1 it suffices to prove that
every point .s;y/ 2R0.u/ can be approximated by a sequence in R1.u/. Because
@su.s;y/ ¤ 0, every sequence .s� ;y/ with s� ! s and s� ¤ s belongs to the set
R1.u/ for � sufficiently large. This proves Step 2.

Step 3 The set

R2.u/ WD f.s;y/ 2R1.u/ ju.s;y/ … u.R� fyg nR0.u//g

is open and dense in R�M .

We prove that the set is open. Suppose, by contradiction, that there is an element
.s0;y0/ 2 R2.u/ and a sequence .s� ;y�/ 2 R1.u/ nR2.u/ converging to .s0;y0/.
Since .s� ;y�/ …R2.u/ there is an s0� 2R such that

@su.s0� ;y�/D 0; u.s0� ;y�/D u.s� ;y�/:

The sequence s0� must be bounded; for if s0� ! ˙1 then u.s0� ;y�/ converges to
f ˙.y0/ and this implies u.s0;y0/ D f

˙.y0/, a contradiction. Thus, passing to a
subsequence, we may assume that s0� converges to a point s0

0
2R. It then follows that

u.s0;y0/Du.s0
0
;y0/ and @su.s0

0
;y0/D 0, contradicting the fact that .s0;y0/2R2.u/.

We prove that the set R2.u/ is dense in R�M . It suffices to prove that every element
.s0;y0/ 2R1.u/ can be approximated by a sequence in R2.u/. If this is not the case
for some element .s0;y0/2R1.u/ then there is an " > 0 such that the following holds:

js� s0j< " H) 9 s0 2R such that u.s;y0/D u.s0;y0/; @su.s0;y0/D 0:

However this contradicts Sard’s theorem. Namely for " small the curve

� WD fu.s;y0/ j js� s0j< "g

is a one dimensional submanifold of X and we can choose a projection � W U ! � on
a suitable tubular neighborhood. Consider the open set S WD fs 2R ju.s;y0/ 2 U g.
The assertion would then mean that every element of � is a singular value of the map
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S ! � W s 7! �.u.s;y0//. By Sard’s theorem, this is impossible whenever u is C 1 .
This proves Step 3.

Step 4 The set R.u/ is open and dense in R�M .

We have already observed that the set is open. We prove it is dense. By Step 3, it suffices
to prove that every element of R2.u/ can be approximated by a sequence in R.u/.
Suppose, by contradiction, that this is not the case for some element .s0;y0/ 2R2.u/.
Then there is an open neighborhood U �M of y0 and two positive real number ";T
such that the following holds. We abbreviate I WD .s0� "; s0C "/.

(a) I �U �R2.u/ nR.u/.
(b) u.s;y/ … u.I �U / for jsj � T and y 2 U .

(c) The map xI !X W s 7! u.s;y/ is an embedding for every y 2 U .

Since I �U �R1.u/, the condition I �U \R.u/D∅ means that for every .s;y/ 2
I �U there is an s0 2R n fsg such that u.s0;y/D u.s;y/. Since .s;y/ 2R2.u/ we
must have @su.s0;y/ ¤ 0 and, by (b), we have js0j � T . Hence there can only be
finitely many such points s0 . For sD s0 let s1< � � �< sN be the points in Œ�T;T �nfs0g

with
u.s0;y0/D u.s1;y0/D � � � D u.sN ;y0/:

Choose r > 0 so small that the map Œsj �r; sjCr �!X W s 7! u.s;y0/ is an embedding
for every j . Shrinking U if necessary, we may assume that this continues to hold for
every y 2 U .

Next we claim that there is a ı > 0 and a compact neighborhood V � U of y0 such
that

y 2 V H) u.Œs0� ı; s0C ı�;y/�

N[
jD1

u.Œsj � r; sj C r �;y/:

If this were not the case, we could find sequences .s� ;y�/! .s0;y0/ and s0� 2Rnfs�g
such that u.s� ;y�/D u.s0� ;y�/ and

ˇ̌
s0� � sj

ˇ̌
> r for all j and � . By taking the limit

s0� ! s0 we would then obtain another element s0 … fs0; : : : ; sN g with u.s;y0/ D

u.s0;y0/, a contradiction.

Now define the set

†j WD
˚
.s;y/ 2 Œs0� ı; s0C ı��V ju.s;y/ 2 u.Œsj � r; sj C r �;y/

	
for j D1; : : : ;N . These sets are closed and their union is the entire set Œs0�ı; s0Cı��V .
Hence, by Baire’s category theorem, at least one of the sets †j must have nonempty
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interior. Assume without loss of generality that †1 has nonempty interior and that
.s0;y0/ 2 int.†1/. Choose a neighborhood W � V of y0 and a constant � > 0 such
that

.s0� �; s0C �/�W �†1:

Then for every pair .s;y/ 2 .s0 � �; s0 C �/ �W there is a unique element s0 DW

�.s;y/ 2 Œs1� r; s1C r � such that

u.s;y/D u.�.s;y/;y/:

This map � is evidently C `�1 and satisfies �.s0;y0/D s1 . Moreover,

0D @su.s;y/�rH.u.s;y//C I@v1
u.s;y/CJ@v2

u.s;y/CK@v3
u.s;y/

D .@s�/@su.�;y/�rH.u.�;y//C I
�
@v1

u.�;y/C .@v1
�/@su.�;y/

�
CJ

�
@v2

u.�;y/C .@v2
�/@su.�;y/

�
CK

�
@v3

u.�;y/C .@v3
�/@su.�;y/

�
D
�
.@s� � 1/1C @v1

�I C @v2
�J C @v3

�K
�
@su.�;y/:

Since @su¤ 0 the four vectors @su, I@su, J@su, K@su are linearly independent and
thus we obtain @vi

� � 0 for i D 1; 2; 3 and @s� � 1. This means that

�.s;y/D sC s1� s0:

In other words, the solution .s;y/ 7! u.sC s1 � s0;y/ of (22) agrees with u on an
open set. By Proposition 4.4, this implies u.s;y/D u.sC s1� s0;y/ for all s and y .
Hence f C D f � , a contradiction. This proves the proposition.

Proof of Theorem 4.3 Fix a constant p > 4. There is a Banach manifold B D
B.f �; f C/ of all continuous maps uW R�M ! X that are locally of class W 1;p

and, near infinity, can be written as

u.s;y/D expf˙.y/.�
˙.s;y//

with �C 2 W 1;p.ŒT;1/ �M; .f C/�TX / and similarly for �� . Fix an element
H0 2Hmorse . Following Floer [10] we choose a separable Banach space H0 �H of
smooth functions hW X �M !R satisfying the following axioms.

(I) If f 2 C.H0/ and h2H0 then h vanishes to infinite order at the point .f .y/;y/
for every y 2M .

(II) Let .x;y/2X�M such that y¤f .x/ for every f 2C.H0/. Let AW TxX!R
be a linear map. Then there are smooth functions hW X !R, ˛x W X ! Œ0; 1�,
and ˇx W M ! Œ0; 1� such that the following holds.
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(a) h.x/D 0 and dh.x/DA. Moreover, ˛ and ˇ are supported in the balls of
radius 1 about x and y , respectively, and ˛.x/D ˇ.y/D 1.

(b) For ı; " > 0 define ˛ıx W X ! Œ0; 1� and ˇ"y W M ! Œ0; 1� by

˛ıx.expx.�// WD ˛x.expx.ı
�1�//; ˇ"y.expy.�// WD ˇy.expy."

�1�//:

Then the function hı;"W M �X !R given by

hı;".x0;y0/ WD ˛ıx.x
0/ˇ"y.y

0/h.x0/

belongs to H0 for ı; " positive and sufficiently small.

To define the space H0 we choose a smooth cutoff function �W Œ0;1/! Œ0; 1� such
that �.r/D 1 for r sufficiently small and �.r/D 0 for r � r0 , where r0 is smaller
than the injectivity radii of X and M . For x 2X and y 2M define

˛x.expx.�// WD �.j�j/; ˇy.expy.�// WD �.j�j/:

Then define H0 to be the set of all smooth functions hW X �M !R that vanish to
infinite order along the graph of any element f 2 C.H0/ and such that

khkc WD

1X
`D0

c�1
` khkC ` <1; c` WD 22`

�
sup

x
k˛xkC ` C sup

y



ˇy




C `

�
:

This space satisfies (I) and (II).

Consider the universal moduli space

M0.f
�; f C/ WD

˚
.u;H0C h/ 2 B�H j h 2H0; u 2M.f �; f CIH /

	
:

This space is the zero set of a smooth section of the Banach space bundle

E! B� .H0CH0/

with fibers Eu;H D Lp.R�M;u�TX /. The section is .u;H / 7! @suC /@H .u/ and
the claim below asserts that it is transverse to the zero section. Hence M0.f

�; f C/

is a smooth Banach manifold. Now the obvious projection

�0WM0.f
�; f C/!H0CH0

is a Fredholm map. Hence, by the Sard–Smale theorem, the set of regular values of
�0 is of the second category in the sense of Baire in H0CH0 . Thus the set Hreg is
dense in H . Now we may introduce sets Hreg

c � Hreg for c > 0, as in the proof of
Theorem 4.1, where the requirement of transversality is restricted to a compact set
of Floer trajectories. These sets are all open and, by what we have just proved, they
are also dense in H . It then follows that Hreg is the intersection of countably many
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open and dense sets Hreg
c for c D 1; 2; 3; : : : and hence is of the second category in

the sense of Baire.

Claim The operator

W 1;p.R�M;u�TX /�H0!Lp.R�M;u�TX /; .�; h/ 7!Du;H �rh.u/

is surjective for every H 2H and every u 2M.f �; f CIH /.

Let 1=pC 1=q D 1 and suppose � 2Lq.R�M;u�TM / annihilates the image of the
operator in the sense thatZ 1

�1

Z
M

h�;Du;H � �rh.u/i � dvolM ds D 0

for all h 2H0 and � 2W 1;p.R�M;u�TX /. Then � is smooth and

(51) D�u;H �D 0;

Z
R�M

h�;rh.u/i � dvolM ds D 0

for all h 2H0 . We prove in three steps that � vanishes identically.

Step 1 For every s 2R we have
R

M h�; @sui� dvolM D 0.

Since Du;H @suD 0 and D�
u;H

�D 0 we have

d

ds

Z
M

h�; @sui � dvolM D
Z

M

�
h�;rs@suiC

Z
M

hrs�; @sui
�
� dvolM

D

Z
M

�
h�;Du;H @sui �

Z
M

hD�u;H �; @sui
�
� dvolM

D 0:

Here we have used the formulas Du;H DrsC /Du;H , D�
u;H
D�rsC /Du;H , and the

fact that /Du;H is self-adjoint. Since � 2Lq and @su 2Lp , their inner product over
R�M is finite and this proves Step 1.

Step 2 �.s;y/ and @su.s;y/ are linearly dependent for all .s;y/ 2R�M .

Suppose otherwise that @su.s0;y0/ and �.s0;y0/ are linearly independent for some
.s0;y0/ 2 R �M . By Proposition 4.6 we may assume .s0;y0/ 2R.u/. Choose a
compact interval I �R containing s0 in its interior such that I � fy0g �R.u/ and
I !X W s 7! u.s;y0/ is an embedding. Then there are open neighborhoods U �X

of u.s0;y0/ and V �M of y0 such that

(�) if y 2 V and s 2R such that u.s;y/ 2 U then s 2 I .
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Otherwise there are sequences s� 2RnI and y�!y0 such that u.s� ;y�/ converges to
u.s0;y0/. If s� is unbounded then u.s0;y0/2ff

�.y0/; f
C.y0/g, which is impossible

because .s0;y0/ 2R.u/. Thus the sequence s� is bounded and hence has a limit point
s 2 R n int.I/ with u.s;y0/D u.s0;y0/. Since s ¤ s0 and .s0;y0/ 2R.u/ this is a
contradiction.

Since @su.s0;y0/ and �.s0;y0/ are linearly independent, hypothesis (II) on the space
H0 asserts that there is a smooth function h0W X ! R and smooth cutoff functions
˛W X ! Œ0; 1� and ˇW M ! Œ0; 1�, centered at x0 WD u.s0;y0/ and y0 , respectively,
such that

h0.u.s0;y0//D 0;
@

@s

ˇ̌̌̌
sDs0

h0.u.s;y0//D 0; dh0.u.s0;y0//�.s0;y0/D 1;

and such that the function hı;" defined by

hı.x;y/ WD ˛ı.x/h0.x/; hı;".x;y/ WD ˇ".y/hı.x;y/;

is an element of H0 for ı; " sufficiently small. If ı , " are so small that Bı.u.s0;y0//�

U and B".y0/� V then the function .s;y/ 7! hı;".u.s;y/;y/ is supported in I �V .
Namely, if hı;".u.s;y/;y/¤ 0 then u.s;y/ 2 U and y 2 V and hence s 2 I , by (�).

Next we prove that

(52)
Z

R
dhıy0

.u.s;y0//�.s;y0/ ds > 0

for ı > 0 sufficiently small. To see this we observe that there is a constant c > 0,
independent of ı , such that the following holds. First,

js� s0j �
ı

c
H) ˛ı.u.s;y0//dhy0

.u.s;y0//�.s;y0/�
1

2
;

because ˛.u.s0;y0//D dhy0
.u.s0;y0//�.s0;y0/D 1

and so the condition js� s0j � ı=c with c sufficiently large guarantees ˛ı.u.s;y0//�

3=4 and dhy0
.u.s;y0//�.s;y0/� 2=3. Second,

ˇ̌
hy0

.u.s;y0//d˛
ı.u.s;y0//�.s;y0/

ˇ̌
�

c js� s0j
2

ı
� c3ı;

because the function s 7! hy0
.u.s;y0// vanishes to first order at s D s0 and the first

derivative of ˛ı is bounded by a constant times 1=ı . The last inequality follows from
the fact that d˛ı.u.s;y0//D 0 for js� s0j � cı . Both estimates taken together show
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that Z
R

dhıy0
.u.s;y0//�.s;y0/ ds �

Z s0Ccı

s0�cı

�
1

2
� c3ı

�
ds D 2cı

�
1

2
� c3ı

�
:

Thus (52) holds for ı < 1=2c3 .

Now choose " so small thatZ
R

dhıy.u.s;y//�.s;y/ ds > 0

for every y 2M with d.y0;y/< ". Then the integral in (51) is positive for the function
h.x;y/D hı;".x;y/D ˇ".y/hı.x;y/. This proves Step 2.

Step 3 � vanishes identically.

Assume, by contradiction, that � 6� 0. Then, by Proposition 4.5, the set

U WD f.s;y/ 2R�M j @su.s;y/¤ 0; �.s;y/¤ 0g

is nonempty, open, and connected. By Step 2, there is a continuous function �W U !
Rnf0g such that �.s;y/D�.s;y/@su.s;y/ for all .s;y/2U . Since U is connected, by
Proposition 4.5, the function � cannot change sign. Suppose � > 0 on U . (Otherwise
replace � by ��.) Then

h�; @sui D � j@suj2 > 0

on U and h�; @sui D 0 on R �M n U . This contradicts Step 1 and proves Step 3,
the claim, and the first assertion of the theorem. The second assertion follows from
Proposition 4.2 and the infinite dimensional implicit function theorem.

The above proof follows essentially the argument in [12, Theorem 5.1]. There are,
however, a few subtle but important differences. In the present setting we cannot remove
the Hamiltonian term rH from the equation by a change of coordinates. Second, in
symplectic Floer theory the complement Z WD .R�M / n U of the set U in Step 3
is discrete. This is replaced in the present context by the codimension 2 property of
Proposition 4.5. In [12] the proof argues that @s�� 0 and, because Z is discrete, that
� can therefore be defined globally on R�M (and not just on U ). The condition
@s�� 0 can also be obtained in the present case by the same argument, but we do not
need it to obtain the contradiction.

The idea for the proof of the codimension 2 result was communicated to the third
author, several years ago, by Kim Froyshov (in the context of Seiberg–Witten theory).
This requires smooth perturbations and therefore we cannot work with the C ` argument
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as in the proof of Theorem 4.1 but must instead use Floer’s Banach spaces of smooth
functions. As a result the construction of the function h in Step 2 above is somewhat
less explicit than in the proof of [12, Theorem 5.1].

5 Floer homology

We assume throughout that M is a compact Cartan hypercontact 3–manifold and X

is a compact flat hyperkähler manifold. For H 2Hreg we introduce the chain complex

CFk.M;X IH / WD
M
f2C.H /

�H .f /Dk

Z2hf i:

This group is finitely generated by Theorem 3.6. It is graded by the index function in
Equation (50)

�H W C.H /! Z:

Since H 2 Hreg , Theorem 4.3 asserts that the moduli space M.f �; f CIH / is a
smooth manifolds of dimension �H .f

�/��H .f
C/ for every pair f ˙ 2 C.H /. The

real numbers act on these spaces by time shift and it follows from Theorem 3.15 that

�H .f
�/��H .f

C/D 1 H) #M.f �; f CIH /=R<1:

Thus we can use the numbers

n2.f
�; f C/ WD #M.f �; f CIH /=R .modulo 2/

to define a boundary operator @H W CFk.M;X IH /! CFk�1.M;X IH / by

@H
hf �i WD

X
f2C.H /

�H .fC/Dk�1

n2.f
�; f C/hf Ci

for f � 2 C.H / with �H .f
�/D k .

Theorem 5.1 For every H 2Hreg we have @H ı @H D 0.

To prove this one just needs to observe that the standard Floer gluing argument [6;
22; 27] carries over verbatim to the present setting. The Floer homology groups of
.M;X IH / are now defined by

HFk.M;X IH / WD
ker @H W CFk.M;X IH /! CFk�1.M;X IH /

im @H W CFkC1.M;X IH /! CFk.M;X IH /
:

It follows again from the familiar arguments in symplectic Floer theory that these
Floer homology groups are independent of the choice of the Hamiltonian perturbation
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H 2Hreg . Here one can follow verbatim the discussion in [11; 28], using the solutions
of (22) with H depending on s , to prove the following theorem.

Theorem 5.2 There is a natural family of isomorphisms

ˆˇ˛W HF�.M;X IH˛/! HF�.M;X IHˇ/;

one for each pair H˛;Hˇ 2Hreg , such that

ˆ
ˇ ıˆˇ˛ Dˆ
˛; ˆ˛˛ D id :

Theorem 5.3 Let X be a compact flat hyperkähler manifold. Then there is a natural
family of isomorphisms

ˆ˛W H�.X IZ2/! HF�.M;X IH˛/;

one for every H˛ 2Hreg , such that

ˆˇ Dˆˇ˛ ıˆ˛:

The proof of Theorem 5.3 is based on the following result which asserts that the Floer
chain complex agrees with the Morse complex for a special class of perturbations.

Theorem 5.4 Let M be a compact Cartan hypercontact 3–manifold and X be a
compact flat hyperkähler manifold. Let H W X !R be a Morse function whose gradient
flow is Morse–Smale. Then there is a constant "0 > 0 such that the following holds
for 0< "� "0 . If x˙ are critical points of H with index difference indH .x

C/ �

indH .x
�/� 1 and uW R�M !X is a finite energy solution of the Floer equation

(53) @suC "�1 /@.u/DrH.u/; lim
s!˙1

u.s;y/D x˙;

then indH .x
C/� indH .x

�/D 1, the function u.s;y/ is independent of y 2M , and
the operator Du;" WD rsC "

�1 /D�rrH.u/ is surjective.

Remark 5.5 Equation (53) is equivalent, via rescaling, to the equation

(54) @szuC /@.zu/D "rH.zu/; lim
s!˙1

zu.s;y/D x˙;

for the function zu.s;y/ WDu."s;y/: Since the limit points x˙ are constant (as functions
of y ) the energy is

1

"
E"H .zu/D EH .u/D

Z 1
�1

Z
M

j@suj2 � D � Vol.M /
�
H.xC/�H.x�/

�
:
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The solutions of (54), and hence also those of (53), determine the boundary operator
on CF.M;X I "H /. Moreover, Du;" is surjective if and only if the operator Dzu;"H in
Proposition 4.2 is surjective.

The proof of Theorem 5.4 needs some preparations.

Lemma 5.6 Let M be a compact hypercontact 3–manifold and X be a flat hyper-
kähler manifold. If H W M �X !R is any smooth function and uW R�M ! X is a
solution of (22) then

(55)
Z s1

s0

Z
M

�
jrs@suj2Cj /D@suj2

�
� �

�
C C

4

r2

�Z s1Cr

s0�r

Z
M

j@suj2 �

for all s0 < s1 and r > 0, where

C WD 2 kHkC 3 k@sukL1 C 2 kHk2
C 2 :

Proof For s 2R define

�.s/ WD
1

2

Z
M

j@suj2 �;  .s/ WD
1

2

Z
M

�
jrs@suj2Cj /D@suj2

�
�:

Then

�00.s/D

Z
M

jrs@suj2 �C

Z
M

hrsrs@su; @sui�

D

Z
M

jrs@suj2 �C

Z
M

hrsrsrH.u/; @sui� �

Z
M

hrs@su; /D@sui�:

Here we have used the fact that /D commutes with rs , because X is flat, and that /D
is self-adjoint with respect to the L2 inner product with weight � . Since rs@su D

rsrH.u/� /D@su we obtain

�00.s/D 2 .s/C

Z
M

hrsrsrH.u/; @sui� �

Z
M

hrsrH.u/; /D@sui�:

Using the two inequalities jrsrsrH.u/j � kHkC 3 j@suj2 C kHkC 2 jrs@suj and
jrsrH.u/j � kHkC 2 j@suj we obtain

�00.s/� 2 .s/�

Z
M

jrsrsrH.u/j j@suj � �

Z
M

jrsrH.u/j j /D@suj �

� 2 .s/�kHkC 3

Z
M

j@suj3 � �kHkC 2

Z
M

�
jrs@sujC j /D@suj

�
j@suj �

�  .s/�
�
kHkC 3 k@sukL1 CkHk

2
C 2

� Z
M

j@suj2 �

D  .s/�C�.s/:
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Now let r;R> 0. Then, for 0� s � r , we haveZ s1

s0

 �C

Z s1Cr

s0�r

� �

Z s1Cs

s0�s

. �C�/�

Z s1Cs

s0�s

�00

D �0.s1C s/��0.s0� s/

D
d

ds

�
�.s1C s/C�.s0� s/

�
:

Integrating this inequality from 0 to t we obtain

r

2

�Z s1

s0

 �C

Z s1Cr

s0�r

�

�
� �.s1C t/C�.s0� t/

for r=2� t � r . Integrating this inequality again from r=2 to r givesZ s1

s0

 �

�
C C

4

r2

�Z s1Cr

s0�r

�:

This proves the lemma.

Lemma 5.7 Let M , X , and H be as in Theorem 5.4. Then there are positive
constants "0 and C such that every solution u of (53) with 0< "� "0 satisfies

sup
R�M

j@suj � C; sup
R�M

ˇ̌
@vi

u
ˇ̌
� C "

for i D 1; 2; 3.

Proof It is convenient to work with the solutions

zu.s;y/D u."s;y/

of Equation (54). The function s 7! A"H .zu.s; � // is nonincreasing along zu and
converges to �"� Vol.M /H.x�/ as s!�1. Hence

A.zu.s; � //DA"H .zu.s; � //C
Z

M

"H.zu.s; � //� � "� Vol.M / kHk ;(56)

kHk WDmax H �min H:where

The energy of u can be estimated by

(57) E"H .zu/D
Z 1
�1

Z
M

j@szuj
2 � dvolM � "� Vol.M / kHk :

By Equation (43) in Lemma 3.10, we have

1

2

Z
M

jd zuj2 �A.zu.s; � //C "2 Vol.M / sup
R�M

jrH j2C
3

2

Z
M

j@szuj
2
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for every s 2 R. Integrating this inequality from s0 � 1 to s0 C 1, and using (56)
and (57) we obtainZ s0C1

s0�1

Z
M

jd zuj2 � c"; c WD .3C 4�/Vol.M / kHkC 4 Vol.M / sup
R�M

jrH j2 :

Hence, by Lemma 3.3 and Theorem B.1, there are positive constants c0 and "0 such
that sup jd zuj � c0 for every solution of (54) with 0< "� "0 .

To improve this estimate we observe that the constant in Lemma 5.6 with H replaced
by "H is

C D 2"2
kHk2

C 2 C 2" kHkC 3 k@szukL1 � c1";

where c1 depends only on H and the bound on jd zuj established above. Hence it
follows from Lemma 5.6 with r D1 thatZ 1

�1

Z
M

�
jrs@szuj

2
Cj /D@szuj

2
�
� � c1"E"H .zu/� c2"

2

Here we have used the fact that the energy of d zu is bounded by a constant times ".
Since

R
M @szuD "

R
M rH.u/ we obtain from (59) with � D @szu thatZ

M

j@szuj
2
� c0

�Z
M

j /D@szuj
2
CkHk2

C 1 "
2

�
:

Integrating this inequality from s0� 1 to s0C 1 givesZ s0C1

s0�1

Z
M

j@szuj
2
� c0

Z 1
�1

Z
M

j /D@szuj
2
C 2c0 kHk

2
C 1 "

2
� c3"

2:

Now it follows from Lemma 3.5 and Theorem B.1 that every solution of (54) with
0 < " � "0 satisfies the pointwise inequality j@szuj � c4" for a suitable constant
c4 > 0. Using the equation we obtain j/@.zu/j � c5". Using again the fact that /@D /D
(on functions with values in Hn ) is an elliptic operator whose kernel consists of the
constant functions we obtain

R
M jd zuj

2
� c6"

2 for every s . Integrating this inequality
from s0�1 to s0C1, and using Lemma 3.3 and Theorem B.1, we conclude that every
solution of (54) with 0< "� "0 satisfies the pointwise inequality jd zuj2 � c7"

2 for a
suitable constant c7 > 0. This proves the lemma.

Lemma 5.8 Let M , X , and H be as in Theorem 5.4. Then there are positive
constants "0 , ı , and c such that the following holds. If f W M ! X is a smooth
function such that

sup
M

ˇ̌
"�1 /@.f /�rH.f /

ˇ̌
< ı
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then

(58)
Z

M

j�j2 � c

Z
M

ˇ̌
"�1 /D� �r�rH.f /

ˇ̌2
for every � 2�0.M; f �TX /.

Proof Suppose, by contradiction, that there are sequences "�! 0 and f� W M !X

such that the sequence
�� WD "

�1
� /@.f�/�rH.f�/

converges uniformly to zero and (58) does not hold for f� . It is convenient to choose
lifts of the maps with values in the universal cover Hn of X . These lifts will still be
denoted by f� W M !Hn and we introduce the sequence of mean values

xf� WD
1

Vol.M /

Z
M

f� :

Assume without loss of generality that the sequence xf� 2Hn is bounded and hence,
passing to a subsequence if necessary, that it converges. By elliptic regularity for the
operator /D whose kernel consists of the constant functions (Lemma 3.7), there is a
constant c0 > 0 such that

(59)
Z

M

� D 0 H)

Z
M

j�j2 � c0

Z
M

j /D�j2 ; sup
M

j�j � c0 sup
M

j /D�j

for every smooth map �W M !Hn . To prove the second inequality in (59) one can
use the Sobolev estimate k�kL1 � c k�kW 1;p for p > 3 and then Lp regularity for
/D . Applying this inequality to the sequence f� � xf� we obtain

sup
M

jf� � xf� j � c0 sup
M

j/@.f�/j D c0"� sup
M

jrH.f�/C �� j ! 0

and so f� converges uniformly to the same limit as xf� . Since

lim
�!1

rH. xf�/D lim
�!1

1

Vol.M /

Z
M

rH.f�/D lim
�!1

1

Vol.M /

Z
M

�� D 0;

this limit is a critical point of H . Hence there is a constant c1 > 0 such that, for �
sufficiently large and x� 2Hn , we have

(60) jx�j � c1jrx�rH. xf�/j:

Now let �W M ! Hn be a smooth map (thought of as a vector field along f� ) and
denote

x� WD
1

Vol.M /

Z
M

�:
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Then /D� has mean value zero and hence is L2 orthogonal to rx�rH. xf�/. This implies

"�2
� k /D�k2Cjrx�rH. xf�/j

2
D k"�1

� /D� �rx�rH. xf�/k
2

� 3k"�1
� /D� �r�rH.f�/k

2
C 3kr

��x�
rH.f�/k

2

C 3krx�rH.f�/�rx�rH. xf�/k
2

� 3k"�1
� /D� �r�rH.f�/k

2
C ck� � x�k2C cjx�j2kf� � xf�k

2

� 3k"�1
� /D� �r�rH.f�/k

2
C cc0k /D�k2C cc1jrx�rH. xf�/j

2
kf� � xf�k

2

Here all norms are L2 norms on M , the constant c depends only on H , and the last
inequality follows from (59) and (60). For � sufficiently large the last two terms one
the right are together at most one quarter of the terms on the left. For these values of �
we have

"�2
� k /D�k2Ckrx�rH. xf�/k

2
� 4k"�1

� /D� �r�rH.f�/k
2:

Hence if follows from (59) and (60) that f� satisfies (58) for � sufficiently large, in
contradiction to our assumption. This proves the lemma.

Lemma 5.9 Let M , X , and H be as in Theorem 5.4. Then there are positive
constants "0 , ı , � , and c such that the following holds. If T > 0 and uW R�M !X

is a solution of (53) with 0< "� "0 such thatZ T

�T

Z
M

j@suj2 < ı

sup
y2M

j@su.s;y/j2 � ce��.T�jsj/
Z T

�T

Z
M

j@suj2then

for jsj � T � 2.

Proof The functions

�.s/ WD
1

2

Z
M

j@suj2 ;

 .s/ WD

Z
M

jrs@suj2C

Z
M

ˇ̌
"�1 /D@su�r@surH.u/

ˇ̌2
�00.s/D  .s/C

Z
M

hr
2
rH.@su; @su/; @suisatisfy

�  .s/� 2 kHkC 3 k@sukL1.M / �.s/:
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Hence, by Lemma 5.7, there is a constant B > 0 such that �00 � �B�: Now apply
Theorem B.1 to the function � to obtain

jsj � T � 1 H) �.s/� c1

Z sC1

s�1

� � c1

Z T

�T

� � c1ı:

Careful inspection of the proof of Theorem B.1 for nD 1 shows that the constant can be
chosen as c1 D 8.

p
BC 1/. This shows that the rescaled function zu.s;y/ WD u."s;y/

satisfies the inequality

jsj � "�1.T � 1/ H)

Z
M

j@szuj
2
� c1"

2ı:

Now integrate this inequality from s0� 1 to s0C 1. Using Lemma 3.5 (together with
the uniform C 1 bound of Lemma 5.7) and Theorem B.1 we then obtain the pointwise
inequality j@szu.s;y/j

2
� c2"

2ı for jsj � "�1.T � 1/� 1. For the function u this gives

jsj � T � 2 H) sup
M

ˇ̌
"�1 /D@su�rH.u/

ˇ̌2
D sup

M

j@suj2 � c2ı:

If ı is chosen sufficiently small we obtain from Lemma 5.8 with � D @su thatZ
M

j@suj2 � c3

Z
M

ˇ̌
"�1 /D@su�r@surH.u/

ˇ̌2
for jsj � T � 2. Thus �.s/� c3 .s/ and, putting things together, we have

�00.s/�  .s/� 2 kHkC 3 k@sukL1.M / �.s/

�

�
1

c3

� 2 kHkC 3

p
c2ı

�
�.s/

for jsj � T � 2. With ı sufficiently small this gives �00.s/ � �2�.s/ and hence the
function s 7! e��s.�0.s/C ��.s// is nondecreasing. If �0.s0/ � 0 we then obtain
e��s0��.s0/ � e��s0.�0.s0/C ��.s0// � e��s.�0.s/C ��.s// for s0 � s � T � 2.
Thus �e�.s�s0/�.s0/� �

0.s/C ��.s/ and integrating this inequality gives

e�.T�s0�2/�.s0/� �.T � 2/C �

Z T�2

s0

� � .c1C �/

Z T

�T

�:

If �0.s0/� 0 we obtain a similar inequality by reversing time. Thus we have proved that
e�.T�jsj/�.s/� c4

R T
�T � for jsj � T � 2, where c4 WD e2�.c1C �/. The pointwise

estimate for j@suj2 follows by the same argument as above from Lemma 3.5 and
Theorem B.1 via rescaling. This proves the lemma.

Proof of Theorem 5.4 The proof has four steps. It is modelled on the adiabatic limit
argument in [8].
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Step 1 There exists a constant "0 > 0 with the following significance. If 0< "� "0 ,
x˙ are critical points of H with indH .x

C/� indH .x
�/ D 1, and u0W R! X is a

gradient trajectory from x� to xC for "H , ie

(61)
d

ds
u0.s/DrH.u0.s//; lim

s!˙1
u0.s/D x˙;

then the function R�M ! X W .s;y/ 7! u0.s/ is a regular solution of (53), ie the
operator Du0;" is surjective.

Let � 2W 1;p.R�M;u�
0
TX / and define x� 2W 1;p.R;u�

0
TX / by

x�.s/ WD
1

Vol.M /

Z
M

�.s;y/ dvolM .y/

for s 2R. Then

Du0;"� D @s
x�Crx�rH.u0/CDu0;".� �

x�/:

Denote by W
1;p

0
.R�M;u�

0
TX / �W 1;p.R�M;u�

0
TX / the subspace of all func-

tions � such that �.s; � / has mean value zero on M for every s and similarly for
L

p
0
.R�M;u�

0
TX /�Lp.R�M;u�

0
TX /. Then the operator

Du0;"W W
1;p

0
.R�M;u�0TX /!L

p
0
.R�M;u�0TX /

is equivalent to the operator

Dzu0;"H DrsC /D� "rrH.zu0/

associated to the rescaled function zu0.s/ WD u0."s/. This operator is bijective for "D 0

and hence also for " > 0 sufficiently small. Hence Step 1 follows from the above
decomposition of the operator Du0;" (and the fact that there are only finitely many
index one gradient trajectories up to time shift).

Step 2 There is a constants "0 > 0 with the following significance. If x˙ are critical
points of H such that indH .x

C/�indH .x
�/D1, and uW R�M!X and u0W R!X

are solutions of (53) and (61), respectively, such that

0< "� "0; sup
R�M

d.u;u0/ < ı

then there is an s0 2R such that u.sC s0;y/D u0.s/ for all s and y .

We wish to find a real number s0 close to zero such that

(62)
1

Vol.M /

Z
M

u.s0; � /�u0.0/?rH.u0.0//:
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To prove that s0 exists we consider the function

�.s/ WD
1

Vol.M /

Z
M

hu.s; � /�u0.0/;rH.u0.0//i dvolM :

It satisfies

j�.0/j � ı�; � WD jrH.u0.0//j> 0:

Choose a constant � > 0 so small that

jx�u0.0/j � � H) hrH.x/;rH.u0.0//i>
�2

2
:

Let C be the constant of Lemma 5.7 so that supR�M j@suj � C . Then we have
ju.s;y/�u0.0/j � ju.s;y/�u.0;y/jC ı � C jsjC ı; and hence

C jsjC ı � � H) ju.s;y/�u0.0/j � �:

Combining the last two inequalities we have, for C jsjC ı < � , that

P�.s/D
1

Vol.M /

Z
M

h@su.s; � /;rH.u0.0//i

D
1

Vol.M /

Z
M

hrH.u.s; � //;rH.u0.0//i

�
�2

2
:

To obtain a zero of � we need this inequality on an interval of length T (on either side
of zero) where 1

2
�2T � ı�, or equivalently T � 2ı=�. On the other hand, the interval

at our disposal has length at most .� � ı/=C . Thus we must impose the condition
.�� ı/=C > 2ı=�, or equivalently

ı

�
1C

2C

�

�
< �:

Under this assumption there is a real number s0 with js0j � 2ı=� such that (62) holds.
We can still control the distance of u.sC s0;y/ and u0.s/ by a fixed multiple of ı .
We assume from now on that ju.sC s0;y/�u0.s/j � cı for all s and y and that (62)
holds.

Consider the functions

�.s;y/ WD u.sC s0;y/�u0.s/;

�.s;y/ WD rH.u.sC s0;y//�rH.u0.s//�r�.s;y/rH.u0.s//:
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Then j�.s;y/j � kHkC 3 j�.s;y/j
2 and

(63) @s�C "
�1 /D� �r�rH.u0/D �:

Hence the functions

x�.s/ WD
1

Vol.M /

Z
M

�.s; � /; x�.s/ WD
1

Vol.M /

Z
M

�.s; � /

@s
x� �rx�rH.u0/D x�; hx�.0/;rH.u0.0//i D 0:satisfy

Since the gradient flow of H is Morse–Smale and u0 is an index–1 gradient trajectory
of H the kernel of the operator

Du0
WD @sCrrH.u0/W W

1;p.R;Hn/!Lp.R;Hn/

is 1–dimensional and is spanned by @szu0 . Since @su0.0/D rH.u0.0// the restric-
tion of Du0

to the codimension–1 subspace of all � 2 W 1;p.R;Hn/ that satisfy
h�.0/;rH.u0.0//i D 0 is a Banach space isomorphism. This implies that there is a
constant c0 > 0, depending only on u0 , such that

h�.0/;rH.u0.0//i D 0 H) k�kW 1;p � c0k@s� �r�rH.u0/kLp :

Applying this to the elements � D x� we have Du0
x� D x� and hence

kx�kLp � c0kx�kLp �
c0

Vol.M /1=p
k�kLp �

c0c kHkC 3

Vol.M /1=p
ı k�kLp :

Here we have used the inequality j�j � kHkC 3 j�j
2
� c kHkC 3 ı j�j. Now it follows

from (63) and the discussion in the proof of Step 1 for the rescaled operator Dzu0;"H

that, for a suitable constant (still denoted by c0 ) and " > 0 sufficiently small, we have

k� � x�kLp � c0"k�� x�kLp

� c0"

�
1C

1

Vol.M /1=p

�
k�kLp

�
c0c kHkC 3

Vol.M /1=p

�
"C "Vol.M /1=p

�
ık�kLp :

If ı.1C "C "Vol.M /1=p/ < Vol.M /1=p=c0c kHkC 3 then � must vanish and this
proves Step 2.

Step 3 There are positive constant "0 and c such that the following holds. If x˙ are
critical points of H and uW R�M !Hn is a lift of a solution of (53) (with 0<"� "0 )
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to the universal cover Hn of X , then the function

xu.s/ WD
1

Vol.M /

Z
M

u.s; � / dvolM

satisfies the inequalitiesZ 1
�1

j@sxu.s/j
2 ds �H.xC/�H.x�/C c"2;

Z 1
�1

jrs@sxu.s/j
2 ds � c;

and j@sxu.s/�rH.xu.s//j � c" for every s 2R.

First note that

@sxu.s/� "rH.xu.s//D
1

Vol.M /

Z
M

.rH.u.s; � //�rH.xu.s/// dvolM

and hence

j@sxu.s/�rH.xu.s//j2 �
kHkC 2

Vol.M /

Z
M

ju.s; � /� xu.s/j2 dvolM

�
c1 kHkC 2 "2

Vol.M /

Z
M

j/@.u/j2 dvolM

� c2"
4:

Here the second inequality follows from (59) and the last from Lemma 5.7. Second,
the function xu satisfiesZ 1

�1

jrs@sxu.s/j
2 ds �

1

Vol.M /

Z 1
�1

Z
M

jrs@suj2 dvolM ds � c3

Here we have used Lemma 5.7 and Lemma 5.6 for the rescaled function zu.s;y/ WD
u."s;y/ with C equal to a constant times "2 . Third, we haveZ 1

�1

j@sxu.s/j
2 ds D

1

Vol.M /

Z 1
�1

Z
M

�
j@suj2� j@su� @sxuj

2
�

�H.xC/�H.x�/C
c0

Vol.M /

Z 1
�1

Z
M

j /D@suj2

�H.xC/�H.x�/C c4"
2:

Here we have used (59) and Lemma 5.6, again for the rescaled function zu.s;y/ WD
u."s;y/. This proves Step 3.

Step 4 We prove the theorem.
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Let x˙ be a pair of critical points of H of index difference less than or equal to 1.
Suppose, by contradiction, that there is a sequence of solutions u� W R�M !X of (53)
associated to a sequence "�! 0 such that u�.s;y/ is not independent of y . Replace
each u� by a lift to the universal cover Hn of X (still denoted by u� ) with the same
limit point lims!�1 u�.s;y/.

First, by Lemma 5.9, the functions s 7!@su�.s;y/ satisfy a uniform L1 bound. Namely,
if ı is the constant of Lemma 5.9 and N > Vol.M /.H.xC/�H.x�//=ı is an integer
then, for each � , the real axis can be divided into N intervals such that the energy of
u� on each of these intervals is less than �ı and hence, by Lemma 5.9, @su� satisfies
uniform exponential estimates on all these intervals. This shows that the images of the
functions u� are contained in a fixed compact subset of Hn .

Now consider the associated functions

xu�.s/ WD
1

Vol.M /

Z
M

u.s; � / dvolM :

Normalize the sequence such that H.xu�.0//D 2�1.H.xC/CH.x�//. The W 2;2 –
bound of Step 3 guarantees the existence of a subsequence (still denoted by xu� ) that
converges in the C 1 –norm on every compact subset of R to a gradient trajectory xu1
of H . The energy bound of Step 3 shows that the limit sequence has energy at most
H.xC/�H.x�/. We claim that xu1 connects x� to xC . Otherwise, the standard
compactness argument would give a subsequence converging to a catenation of at
least two gradient trajectories running from x� to xC , contradicting the Morse–Smale
property of the gradient flow. Now it follows from Step 3 thatZ 1

�1

j@sxu1j
2
DH.xC/�H.x�/D lim

�!1

Z 1
�1

j@sxu� j
2 :

This implies that xu�.s�/ must converge to x˙ for every sequence s�!˙1. Hence
xu� converges uniformly to xu1 on all of R. Now it follows from the Sobolev inequality
and the elliptic estimate for the operator /D that

ku�.s; � /� xu�.s/kL1.M / � c1 k /Du�.s; � /kLp.M / � c2"�

for p > 3. Here the last inequality follows from Lemma 5.7. Hence

lim
�!1

sup
s;y
ju�.s;y/� xu1."�s/j D 0:

By Step 2 this implies that, for � sufficiently large, u�.s;y/ agrees with xu1.s/ up to
a time shift and hence is independent of y . This contradicts our assumption and proves
the theorem.
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Lemma 5.10 Let M , X , and H be as in Theorem 5.4. Then there is a constant
"0 > 0 such that every smooth solution f W M !X of the equation

(64) /@.f /D "rH.f /

with 0< " < "0 is constant.

Proof Since X is flat we may replace X by its universal cover Hn and use the fact
that /@.f / D /Df in this setting. It follows from Lemmas 2.2 and 3.7 that there is a
constant c1 > 0 such that

kdf kL2 � c1 k /Df kL2

for every smooth map f W M !Hn . Moreover, Equation (42) shows that the second
order differential operator /D /DW W 2;2.M;Hn/! L2.M;Hn/ is Fredholm and has
index zero. Its kernel agrees with the kernel of /D . Hence there is a constant c2 > 0

such that
k /Df kL2 � c2 k /D /Df kL2

for every smooth map f W M !Hn . If /Df D "rH.f / we obtain

/D /Df D "
�
Ir@v1

frH.f /CJr@v2
frH.f /CKr@v3

frh.f /
�

k /D /Df kL2 � "kr2HkL1 kdf kL2 :and hence

kdf kL2 � "c1c2kr
2HkL1kdf kL2This gives

for every solution f W M !Hn of (64). With "c1c2



r2H




L1
< 1 this implies that

every solution is constant as claimed.

Proof of Theorem 5.3 Let H W X !R be as in Theorem 5.4. If " > 0 is sufficiently
small then, by Lemma 5.10, all critical points of A"H are constant and, by Theorem
5.4, each Floer trajectory for "H of index 1 is a Morse gradient line and there are
no nontrivial Floer trajectories with index less than 1. Thus, for H 0 2 Hreg suffi-
ciently C 2 close to "H , the Floer chain complex .CF.M;X IH 0/; @H 0/ coincides
with the Morse complex of "H . Hence the Floer homology group HF.M;X IH 0/

is naturally isomorphic to the Morse homology of .X; "H /. This gives rise to an
isomorphism H�.X IZ2/! HF.M;X IH 0/ and composition with the isomorphisms
HF.M;X IH 0/! HF.M;X IH˛/ of Theorem 5.2 gives a family of isomorphisms
satisfying the requirements of Theorem 5.3.

Proof of Theorem 2.7 Assume X is a compact flat hyperkähler manifold and let
H 2 Hmorse . Then, by Theorem 3.6, the number of critical points of AH remains
unchanged under any perturbation of H that is sufficiently small in the C 2 norm.
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Hence, by Theorem 4.3, we may assume without loss of generality that H 2Hreg . By
Theorem 5.3, we then have

#C.H /D dim CF�.M;X IH /� dim HF�.M;X IH /D dim H�.X IZ2/:

This proves the theorem.

Remark 5.11 An alternative proof of Theorem 5.3 can be given along the lines of [24],
avoiding the adiabatic limit argument of Theorem 5.4. This would involve Morse–Bott
exponential decay for finite energy solutions of (22) with H D 0 on a half cylinder
Œ0;1/�M respectively .�1; 0��M . Since X is flat, such solutions converge to a
point in X as s!˙1, and one can then study solutions where this limit point lies
on a gradient trajectory of a Morse function on X , as in [24], to obtain the desired
isomorphism from Morse to Floer homology, respectively its inverse.

If M WD S3 with the standard hypercontact structure, the Morse–Bott exponential
decay as s ! C1 can be reduced to the removable singularity Theorem C.1: If
uW R�S3! X is a solution of (22) with H D 0 and wW H n f0g ! X is given by
w.e�sy/ WD u.s;y/ then

(65) @0w� I@1w�J@2w�K@3w D 0:

Moreover, the energy of w on a ball of radius r D e�s0 is given by

r2

Z
Br

jdwj2 DA.u.s0; � //D 2

Z 1
s0

Z
S3

j@suj2 :

(Here we use � D 2 for M D S3 .) We emphasize that no such argument is available
for the limit s!�1. This reflects a fundamental asymmetry in Equation (22) related
to the noncommutativity of the quaternions.

Appendix A Hypercontact manifolds

Let M be an oriented 3–manifold. Three contact structures �1; �2; �3 on M are said to
form a hypercontact structure if there exists a 1–form ˛ D .˛1; ˛2; ˛3/ 2�

1.M;R3/

such that ˛i ^ d˛i > 0, �i D ker˛i , and

(66) ˛i ^ d˛i D j̨ ^ d j̨ DW �; ˛i ^ d j̨ C j̨ ^ d˛i D 0

for i ¤ j . The 1–form ˛ is determined by the contact structures �i up to multiplication
by a positive function on M . We shall sometimes abuse notation and refer to the
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1–form ˛ 2�1.M;R3/ as the hypercontact structure. Associated to ˛ is a family of
contact forms

˛� WD h�; ˛i D �1˛1C�2˛2C�3˛3

parametrized by the standard 2–sphere S2 �R3 . In this formulation equations (66)
hold if and only the volume form ˛�^d˛� is independent of �. Hypercontact structures
were introduced and studied by Geiges–Gonzalo [13; 14]. They used the term taut
contact sphere for the map � 7! ˛� . The term hypercontact structure was used with a
different meaning in [15].

Lemma A.1 Let ˛ 2 �1.M;R3/ be a hypercontact structure. Then the associated
Reeb vector fields v1; v2; v3 2 Vect.M / are everywhere linearly independent.

Proof Since ˛�^d˛�Dj�j
2 � for �2R3 the 2–forms d˛1; d˛2; d˛3 are everywhere

linearly independent. Since d˛i D �.vi/� this shows that v1; v2; v3 are everywhere
linearly independent.

Remark A.2 If the 1–forms ˛1; ˛2; ˛3 form a hypercontact structure then, by Lemma
A.1, the Reeb vector fields v1; v2; v3 form a global framing of the tangent bundle. Call
the hypercontact structure positive if this framing is compatible with the orientation.
This can be achieved by reversing the sign of all three 1–forms, if necessary. In the
positive case the function

(67) � WD d˛1.v2; v3/D d˛2.v3; v1/D d˛3.v1; v2/

on M is positive. Moreover, it is convenient to choose a Riemannian metric on M in
which the vi form an orthonormal basis. The associated volume form is given by

dvolM D
˛i ^ d˛i

�
; i D 1; 2; 3:

Remark A.3 Let ˛1; ˛2; ˛3 be a hypercontact structure with Reeb vector fields
v1; v2; v3 and, for � 2 S2 , denote v� WD �1v1C �2v2C �3v3: Then v� is the Reeb
vector field of ˛� . To see this note that

(68) ˛i.vj /C j̨ .vi/D 0; d˛i.vj ; � /C d j̨ .vi ; � /D 0

for i ¤ j , by (66) and Lemma A.1. Hence ˛�.v�/D 1 and d˛�.v�; � /D 0.

Lemma A.4 Let ˛ be a hypercontact structure on M with Reeb vector fields v1; v2; v3 .
Let �W M !R be defined by (67) and �W M !R3 by

�1 WD ˛2.v3/; �2 WD ˛3.v1/; �3 WD ˛1.v2/:

Let e1; e2; e3 denote the standard basis of R3 . Then the following holds.

Geometry & Topology, Volume 13 (2009)



2604 Sonja Hohloch, Gregor Noetzel and Dietmar A Salamon

(i) The Lie brackets of the Reeb vector fields satisfy

(69) Œv2; v3�D �v1; Œv3; v1�D �v2; Œv1; v2�D �v3

if and only if

(70) d�.vi/D �ei ^�; i D 1; 2; 3:

(ii) If (69) and (70) hold then � is constant. Conversely, if � and � are constant then
�� 0.

(iii) The function � vanishes if and only if ˛i ^ d j̨ D 0 for i ¤ j , or equivalently
d˛i D � �˛i for i D 1; 2; 3. Here � denotes the Hodge �–operator.

Definition A.5 A positive hypercontact structure ˛ with � � 0 is called a Cartan
structure.

Corollary A.6 If ˛ is a Cartan structure then � is constant, the ˛i form the dual basis
of the vi , the vi satisfy (69), ˛i ^ d j̨ D 0 for i ¤ j , and d�˛i D 0 for i D 1; 2; 3.

Proof of Lemma A.4 We introduce the 1–form � 2�1.M;R3/ and the vector fields
w1; w2; w3 2 Vect.M / by

� WD
1

�

0@ d˛2.v3; � /

d˛3.v1; � /

d˛1.v2; � /

1A ; w1 WD Œv2; v3�;

w2 WD Œv3; v1�;

w3 WD Œv1; v2�:

Then � satisfies

(71) �i.vj /D ıij ; ˛.�/D �.�/C �.�/^�:

We also introduce the matrices

A WD

0@ ˛1.w1/ ˛1.w2/ ˛1.w3/

˛2.w1/ ˛2.w2/ ˛2.w3/

˛3.w1/ ˛3.w2/ ˛3.w3/

1A ; S WD

0@ �1.w1/ �1.w2/ �1.w3/

�2.w1/ �2.w2/ �2.w3/

�3.w1/ �3.w2/ �3.w3/

1A ;
ˆ WD

0@ 1 �3 ��2

��3 1 �1

�2 ��1 1

1A ; B WD

0@ d�1.v1/ d�1.v2/ d�1.v3/

d�2.v1/ d�2.v2/ d�2.v3/

d�3.v1/ d�3.v2/ d�3.v3/

1A :
Then the second equation in (71) implies ˆS DA. Next we observe that

˛i.Œvj ; vk �/D d˛i.vj ; vk/�Lvj ˛i.vk/CLvk
˛i.vj /:
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Hence ˛i.Œvj ; vk �/D �Cd�j .vj /Cd�k.vk/ whenever i; j ; k is a cyclic permutation
of 1; 2; 3, and ˛i.Œvi ; vk �/D�Lvi

˛i.vk/: These identities can be summarized in the
form ˛i.wj /C d�j .vi/D .�C

P
k d�k.vk//ıij or

(72) ˆS DAD

 
�C

X
k

d�k.vk/

!
1�BT :

Moreover, we have

0D dd˛1.v1; v2; v3/

D Lv1
d˛1.v2; v3/CLv2

d˛1.v3; v1/CLv3
d˛1.v1; v2/

� d˛1.v1; Œv2; v3�/� d˛1.v2; Œv3; v1�/� d˛1.v3; Œv1; v2�/

D d�.v1/� d˛1.v2; Œv3; v1�/� d˛1.v3; Œv1; v2�/:

Repeating the argument for ˛2 and ˛3 and using Equation (68) we obtain

d�.v1/D �.�3.w2/� �2.w3//;

d�.v2/D �.�1.w3/� �3.w1//;

d�.v3/D �.�2.w1/� �1.w2//;

(73)

Hence � is constant if and only if the matrix S is symmetric.

We prove (i). Equation (69) is equivalent to S D �1 and Equation (70) to BD �.ˆ�1/.
If S D �1 then it follows from (72) that

BT
D �.1�ˆ/C

X
k

d�k.vk/1:

Examining the diagonal entries we find that d�k.vk/D 0 for k D 1; 2; 3 and hence
BT D�.1�ˆ/. This in turn implies that BT D�B and thus BD�.ˆ�1/. Conversely,
if B D �.ˆ� 1/ then B is skew symmetric and d�k.vk/D 0 for all k . So it follows
from (72) that ˆS D �1CB D �ˆ and hence S D �1.

We prove (ii). If (69) holds then S D �1 is symmetric and so � is constant, by (73).
Conversely, if � and � are constant then, by (72), we have ˆS D �1 and, by (73),
S D ST . Hence ˆ is symmetric and so �� 0.

To prove (iii) we observe that, for every cyclic permutation i; j ; k of 1; 2; 3, we have
˛i ^ d j̨ D ��k dvolM and � �˛i D d˛i C�kd j̨ ��j d˛k . (Take the product with
a 1–form ˇ and use the identity .ˇ ^ d˛i/.v1; v2; v3/ D �ˇ.vi/.) This proves the
lemma.
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Example A.7 The standard hypercontact structure on the unit sphere S3 �R4 with
coordinates y D .y0;y1;y2;y3/ is given by the 1–forms

˛1 WD y0dy1�y1dy0Cy2dy3�y3dy2;

˛2 WD y0dy2�y2dy0Cy3dy1�y1dy3;

˛3 WD y0dy3�y3dy0Cy1dy2�y2dy1:

Identify R4 with the quaternions via

y D y0C iy1C jy2Cky3

and R3 with the imaginary quaternions via �D i�1C j�2C k�3 . Then the 1–form
˛� WD �1˛1C�2˛2C�3˛3 and its Reeb vector field v� are given by

˛�.yI �/D Re.�yx�/; v�.y/D �y

for � 2 S2 � Im.H/ and � 2 TyS3 . We emphasize that in this example �� 0 and
� � 2.

The standard hypercontact structure on S3 is preserved by the right action of the unit
quaternions via Sp.1/�S3! S3 W .a;y/ 7! ya. For the left action of Sp.1/ on S3

we have
��a˛� D ˛a�1�a; ��av� D va�1�a;

where �a 2 Diff.S3/ is given by �a.y/ WD ay for a 2 Sp.1/ and y 2 S3 .

Proposition A.8 (Geiges–Gonzalo [13; 14]) Every Cartan hypercontact 3–manifold
.M; ˛/ is diffeomorphic to a quotient of the 3–sphere (with the standard hypercontact
structure up to scaling) by a finite subgroup of Sp.1/.

Proof By rescaling, if necessary, we may assume that � D 2. Then there is a unique
Lie algebra homomorphism Lie.Sp.1// D Im.H/ ! Vect.M / W � 7! v� such that
vi; vj; vk are the Reeb vector fields of ˛1; ˛2; ˛3 , respectively. Since M is compact
and Sp.1/ is simply connected, this Lie algebra homomorphism integrates to a unique
Lie group homomorphism

Sp.1/! Diff.M / W x 7! �x :

This group action of Sp.1/ on M is transitive, because M is connected, and it has
finite isotropy subgroups. Fix an element y0 2M and define the map  W Sp.1/!M

by  .x/ WD �x.y0/. This map induces a diffeomorphism Sp.1/=G0 !M , where
G0 WD fx 2 Sp.1/ j�x.y0/D y0g denotes the stabilizer of y0 . This diffeomorphism
identifies the vector field x 7! ix on Sp.1/=G0 with the vector field vi on M and
similarly for j and k.
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Appendix B The Heinz trick for subcritical exponents

Let M be a smooth Riemannian n–manifold (not necessarily compact) and let L be
a scalar second order elliptic operator. We assume that L differs from the Laplace
Beltrami operator � WD�d�d by a first order operator. We study nonnegative solutions
eW M !R of the differential inequality

Le � �A�Be�(74)

1� ��
nC 2

n
:where

In the critical case �D .nC 2/=n the Heinz trick gives a mean value inequality for
nonnegative solutions eW Br .p0/! Œ0;1/ of (74) with sufficiently small L1 norm
(see for example Robbin–Salamon [26] and Wehrheim [30]). For � < .nC 2/=n the
same proof shows that the condition on the L1 norm can be dropped and one obtains a
global estimate for the sup-norm in terms of the L1 norm of e .

Theorem B.1 Let K �M be a compact set and let 1� �� .nC 2/=n.

(i) Assume � < .nC 2/=n. Then there is a constant c > 0 with the following
significance. If eW M !R is a nonnegative C 2 function satisfying (74) then

(75) sup
K

e � c

�
AC

Z
M

e dvolM C
�

Bn=2

Z
M

e dvolM

�˛�
;

where ˛ WD 2=.2C n� n�/.

(ii) Assume � D .n C 2/=n. Then there are positive constants „; ı; c with the
following significance. If eW M!R is a nonnegative C 2 function satisfying (74)
then, for x 2K and 0< r � ı , we have

(76) Bn=2

Z
Br .x/

e < „ H) e.x/� c

�
Ar2
C

1

rn

Z
Br .x/

e dvolM

�
:

Proof The proof has three steps. For p0 2M and r > 0 we denote by Br .p0/�M

the closed ball of radius r about p0 . The first step restates Theorem 9.20 in [16].

Step 1 There are constants c1 > 0 and ı > 0 with the following significance. If
p0 2K and 0< r � ı then every nonnegative C 2 function eW Br .p0/!R satisfies

�e � 0 H) e.p0/�
c1

rn

Z
Br .p0/

e dvolM :
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Step 2 There are constants c2 > 0 and ı > 0 with the following significance. If
p0 2K , 0< r � ı , and A� 0, then every nonnegative C 2 function eW Br .p0/!R
satisfies

Le � �A H) e.p0/� c2

�
Ar2
C

1

rn

Z
Br .p0/

e dvolM

�
:

Let ı be smaller than the injectivity radius of M and than the constant in Step 1.
Choose geodesic coordinates y1;y2; : : : ;yn in Br .y0/ with yi.p0/D 0. Then

LD
X
�;�

a��
@2

@y�@y�
C

X
�

b�
@

@y�

with a��.0/D ı�� . Choose ı so small that

jyj � ı H)
ˇ̌
a��.y/� 1

ˇ̌
C ı

ˇ̌
b�.y/

ˇ̌
�

1

n

for � D 1; : : : ; n. Denote by �0 D
P
�.

@
@y�

/2 the standard Laplace operator and
consider the function

u.y/ WD
A

2
jyj2 :

This function satisfies �0uD nA and

.Lu��0u/.y/DA

 X
�

.a��.y/� 1/C
X
�

b�.y/y�

!
� �A:

Hence Lu� .n� 1/A and

L.eCu/� LeC .n� 1/A� 0:

By Step 1, this implies

e.0/D e.0/Cu.0/�
c1

rn

Z
Br

.eCu/ dvolM :

Hence the assertion follows from the fact thatZ
Br

u dvolM � !nA

Z r

0

�nC1 d�D
!nArnC2

nC 2
:

Here !n denotes the area of the unit sphere in Rn and ı is chosen so small that dvolM
and the volume form of the flat metric differ by a factor at most 2. This proves Step 2.
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Step 3 There is a constant c3 > 0 with the following significance. If eW M !R is a
nonnegative C 2 function satisfying

Le � �A�Be�

for some constants A;B � 0 then

sup
K

e � c3

 
AC

Z
M

e dvolM C
�

Bn=2

Z
M

e dvolM

�2=.2Cn�n�/
!
:

Let ı be as in Step 2 and assume c2ı
2 �

1
4

. Fix a point p0 2K . Define hW Œ0; ı�!R
by

h.s/ WD

�
ı� s

ı

�n

max
Bs.p0/

e:

Then h.0/D e.p0/; h.ı/D 0:

Since h is nonnegative there is an s� 2 Œ0; ı/ and a p� 2 Bs�.p0/ such that

h.s�/D max
0�s�ı

h.s/; c WD e.p�/D max
Bs� .p0/

e:

" WD
ı� s�

2
:Denote

max
B".p�/

e � max
Bs�C".p0/

e D
ınh.s�C "/

.ı� s�� "/n
�

2nınh.s�/

.ı� s�/n
D 2n max

Bs� .p0/
e D 2nc:Then

Hence in B".p
�/ we have the inequality

Le � �A�Be� � �A�B.2nc/�:

By Step 2 this implies

(77) c D e.p�/� c2

�
.ACB.2nc/�/r2

C
1

rn

Z
M

e dvolM

�
for 0� r � ". Now comes the crucial case distinction.

Case 1 If c �A then we have

e.p0/� c �A

and so the desired estimate holds with c3 D 1. Thus we may assume A� c .

Case 2 Assume

A� c; c2B2n�c��1"2
�

1

4
:
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Then we may choose r � " < ı such that c2B2n�c��1r2 D
1
4

and obtain

c2.ACB.2nc/�/r2
� c2cı2

C c2B.2nc/�r2
�

c

2
:

Hence, by (77), we have

c �
2c2

rn

Z
M

e dvolM D 2c2.4c2B2n�/n=2c.n��n/=2

Z
M

e dvolM :

Since � < .nC 2/=n we have 2C n� n� > 0 and hence

e.p0/� c � c3

�
Bn=2

Z
M

e dvolM

�2=.2Cn�n�/

;

with c3 WD .2c2.c22n�C2/n=2/2=.2Cn�n�/ . (For the critical exponent we have that
.n��n/=2 D 1. In this situation Case 2 can be excluded by the assumption of a
sufficiently small upper bound on Bn=2

R
e dvolM .)

Case 3 Assume

A� c; c2B2n�c��1"2 <
1

4
:

Then we may choose r D " and obtain c2.ACB.2nc/�/"2 �
c
2

as before. Hence,
by (77), we have

c �
2c2

"n

Z
M

e dvolM :

Since ı� s� D 2" this gives

e.p0/D h.0/� h.s�/D c

�
ı� s�

ı

�n

D
2nc"n

ın
�

2nC1c2

ın

Z
M

e dvolM :

Thus in this case the estimate of Step 3 holds with c3 D 2nC1c2=ı
n . This proves the

theorem.

Appendix C A removable singularity theorem

Denote by B �R4 the unit ball with coordinates t D .t0; t1; t2; t3/ and by

Br WD ft 2R4
j jt j � rg; Sr WD ft 2R4

j jt j D rg;

the ball and sphere of radius r . Let X be a hyperkähler manifold with complex
structures I;J;K . Let wW B! Vect.X / and „D .�j

i /W B!R4�4 be smooth maps
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such that „.0/D 1 is the identity matrix and „.t/ is nonsingular for every t 2B . We
examine solutions of the equation

(78)
3X

iD0

�
�i

0.t/@iuC �
i
1.t/I@iuC �

i
2.t/J@iuC �

i
3.t/K@iu

�
Drw.t;u/:

Associated to Equation (78) is the elliptic operator

L WD

kX
i;jD0

aij@i@j C

3X
jD0

bj@j ; aij
WD

X
�

�i
��

j
� ; bj

WD

X
�;i

.@i�
j
� /�

i
� :

Theorem C.1 Assume X is a compact flat hyperkähler manifold (possibly with
boundary). If uW B n f0g !X is a solution of (78) on the punctured disc andZ

B

jduj2 D

3X
iD0

Z
B

j@iuj
2 <1

then u extends to a smooth function from B to X .

Remark C.2 In Theorem C.1 the condition that X is flat cannot be omitted. For
example, let f W S3!X be a nonconstant critical point of the hypersymplectic action
functional A. Such critical points are described in the introduction (compositions of
rational curves with Hopf fibrations) and they do not exist in the flat case, by Lemma
3.7. Identify S3 with the unit sphere in H and define uW H n f0g !X by

u.t/ WD f .jt j�1 t/:

Then u satisfies the equation @0u� I@1u� J@2u�K@3uD 0: Moreover, we have
jdu.t/j2 D jt j�2

jdf .jt j�1t/j2 and henceZ
Br

jduj2 D
r2

2

Z
S3

jdf j2 D r2A.f /

for every r > 0. However, the singularity of u at the origin cannot be removed.

Lemma C.3 Assume X is a compact flat hyperkähler manifold. Then there is a
constant C > 0 with the following significance. If uW B n f0g!X is a solution of (78)
then the function e D euW B! Œ0;1/ defined by

e.t/ WD
1

2

3X
jD0

ˇ̌̌̌
ˇ

3X
iD0

�i
j .t/@iu.t/

ˇ̌̌̌
ˇ
2

satisfies the inequality
Le � �C.1C e3=2/:
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Proof The proof uses word by word the same arguments as in Lemma 3.3 and will be
omitted.

The exponent 3
2
D

nC2
n

in Lemma C.3 is the critical exponent of Theorem B.1 for
nD 4. Hence every solution uW B nf0g!X of (78) satisfies an inequality of the form

(79) jt j D r H) jdu.t/j2 � cr2
C

c

r4

Z
B2r

jduj2

for r sufficiently small and a suitable constant c . Thus jt j4 jdu.t/j2 converges to zero
as t tends to zero.

It is convenient to introduce the 1–forms �1; �2; �3 and the vector fields v0; v1; v2; v3

on B by

�1 WD t0dt1� t1dt0� t2dt3C t3dt2;

�2 WD t0dt2� t2dt0� t3dt1C t1dt3;

�3 WD t0dt3� t3dt0� t1dt2C t2dt1;

v0 WD t0@0C t1@1C t2@2C t3@3;

v1 WD t0@1� t1@0� t2@3C t3@2;

v2 WD t0@2� t2@0� t3@1C t1@3;

v3 WD t0@3� t3@0� t1@2C t2@1:

Note that the vi are orthogonal and jvi.t/j D jt j. In particular, for t 2 Sr the vectors
r�1v1.t/; r

�1v2.t/; r
�1v3.t/ form an orthonormal basis of the tangent space TtSr D

t? . The energy and the hypersymplectic action of a smooth map uW Sr ! X are
defined by

Er .u/ WD
1

r2

Z
Sr

3X
iD1

jdu.vi/j
2 ; Ar .u/ WD

Z
Sr

X
i

�i ^u�!i :

Lemma C.4 The energy and hypersymplectic action satisfy the isoperimetric inequal-
ity

(80) Ar .u/� rEr .u/

and the energy identities

(81) Er .u/C
2

r
Ar .u/D

1

r2

Z
Sr

jIdu.v1/CJdu.v2/CKdu.v3/j
2 dvolSr
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for every smooth map uW Sr !X and

(82)
Z

Br

jduj2 DAr .u/C

Z
Br

j@0uC I@1uCJ@2uCK@3uj2

for every smooth map uW Br n f0g !X satisfying limt!0 jt j
4
jdu.t/j2 D 0.

Proof We have �i.vj /D r2ıij and so the standard volume form on Sr is dvolSr
D

r�3�1 ^ �2 ^ �3 . Hence �i ^u�!i D r�1u�!i.vj ; vk/ dvolSr
for every cyclic permu-

tation i; j ; k of 1; 2; 3. This implies

Ar .u/D
1

r

Z
Sr

�
u�!1.v2; v3/Cu�!2.v3; v1/Cu�!3.v1; v2/

�
dvolSr

and hence the isoperimetric inequality (80). The energy identity (81) is an adaptation
of Lemma 2.2 to the present notation. To prove (82) we assume that uW Br n f0g !X

satisfies limt!0 jt j
4
jdu.t/j2 D 0: Then it follows from (80) that lim�!0A�.u/D 0:

Moreover, by direct computation, we haveZ
Br nB�

�
jduj2� j@0uC I@1uCJ@2uCK@3uj2

�
DAr .u/�A�.u/

for 0 < � � r . The assertion follows by taking the limit � ! 0. This proves the
lemma.

Lemma C.5 Assume X is compact and fix any real number 0 < � < 4. Let
uW B n f0g !X be a solution of (78) satisfying limt!0 jt j

4
jdu.t/j2 D 0: Then there

are positive constants r0 and c such that

0< r � r0 H)

Z
Br

jduj2 � cr�:

Proof Since „.0/ is the identity matrix, there is a constant C > 0 such that every
solution of (78) satisfies the estimate

(83) j@0u.t/C I@1u.t/CJ@2u.t/CK@3u.t/j2 � C 2.jt j2 jdu.t/j2C 1/:

Combining this with (82) we obtainZ
Br

jduj2 DAr .u/C

Z
Br

j@0uC I@1uCJ@2uCK@3uj2

� Ar .u/CC 2r2

Z
Br

jduj2CC 2 Vol.B/r4:(84)
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Since

jdu.v0/C Idu.v1/CJdu.v2/CKdu.v3/j D r j@0uC I@1uCJ@2uCK@3uj

on Sr and r2 jduj2C 1� .r jdujC 1/2 , it follows also from (83) that

jdu.v0/j � jIdu.v1/CJdu.v2/CKdu.v3/j �C r2
jduj �C r;

jdu.v0/j
2
� jIdu.v1/CJdu.v2/CKdu.v3/j

2
� 6C r3

jduj2� 6C r2
jduj :

This impliesZ
Sr

jduj2 D
1

r2

Z
Sr

3X
iD0

jdu.vi/j
2
D Er .u/C

1

r2

Z
Sr

jdu.v0/j
2

� Er .u/C
1

r2

Z
Sr

jIdu.v1/CJdu.v2/CKdu.v3/j
2

� 6C r

Z
Sr

jduj2� 6C

Z
Sr

jduj

� 2Er .u/C
2

r
Ar .u/� 6C.r C ı/

Z
Sr

jduj2�
3C

2ı

Z
Sr

1:

Here we have dropped the volume form dvolSr
in the notation. The last step follows

from (81). Since Er .u/ � r�1Ar .u/ and the area of the 3–sphere is 4 Vol.B/ this
gives �

1C 6C.r C ı/
� Z

Sr

jduj2 �
4

r
Ar .u/�

6C Vol.B/r3

ı
:

On the other hand, by (84) we have

�
1�C 2r2

� Z
Br

jduj2 �Ar .u/CC 2 Vol.B/r4:

Combining these two inequalities we obtainZ
Br

jduj2 �
1C 6C.r C ı/

1�C 2r2

r

4

Z
Sr

jduj2C

�
C 2

1�C 2r2
C

3C

2ı

�
Vol.B/r4

for r < 1=C . Choose ı so small that .1C 6Cı/� < 4. Then, for r sufficiently small
and a suitable constant c > 0, we have

(85)
Z

Br

jduj2 � r��1

Z
Sr

jduj2C cr4:

Geometry & Topology, Volume 13 (2009)



Hypercontact structures and Floer homology 2615

Define the function �W .0; 1�!R by

�.r/ WD r��
Z

Br

jduj2C
�c

4��
r4��:

Then the derivative of � is

d

dr
�.r/D r��

Z
Sr

jduj2��r���1

Z
Br

jduj2C�cr3��

D �r���1

�
r��1

Z
Sr

jduj2�

Z
Br

jduj2C cr4

�
� 0:

The last inequality follows from (85) and holds for r sufficiently small, say for 0 <

r � r0 . Hence Z
Br

jduj2 � �.r/r� � �.r0/r
�

for 0< r � r0 . This proves the lemma.

Proof of Theorem C.1 Choose a real number � such that 2 < � < 4. Combining
Lemma C.5 with the inequality (79) we obtain

jdu.t/j2 �
c

jt j4��

for a suitable constant c > 0. For 4< p < 8=.4��/ this impliesZ
B

jdujp D

Z 1

0

Z
Sr

jdujp � 4 Vol.B/cp

Z 1

0

r3�.4��/p=2 dr <1:

That the integral is finite follows from the fact that 3� 1
2
.4��/p>�1. By the Sobolev

embedding theorem our function uW B n f0g !X is Hölder continuous and extends
to a W 1;p function on B . Now it follows from the standard elliptic bootstrapping
techniques that the extended function u is smooth. This proves the theorem.
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