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Abstract
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punctures. Using the branched covering of the genus two surface over the sphere
and results of Birman and Hilden, we prove that a reducible mapping class of
the genus two surface projects to a reducible mapping class on the sphere with
six punctures. The construction introduces “Brunnian” mapping classes of the
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1 Introduction

In 1985, R C Penner, D D Long, and J D McCarthy asked the following ques-
tion [7]: does there exist a nontrivial, normal subgroup of the mapping class
group of a surface, all of whose nontrivial elements are pseudo-Anosov? This
paper gives a positive answer for the case of a closed genus two surface and
for the case of the sphere with five or more punctures. The approach is to
construct a normal subgroup that avoids reducible and periodic elements; by
work of Thurston, the remaining elements must all be pseudo-Anosov.

A Brunnian link is defined to be a nontrivial link such that every proper sublink
is trivial. In section two we will define “Brunnian” mapping classes of the sphere
and “Brunnian” sphere braids. Roughly speaking, a Brunnian sphere braid is
analogous to a Brunnian link: it cannot “lose” a strand without becoming
trivial; similarly, “Brunnian mapping classes of the n–punctured sphere” are
those that become trivial if any of the punctures is “forgotten.” The subgroup
consisting of Brunnian mapping classes is a normal subgroup of the mapping
class group of the n–punctured sphere. In section four we show that for n ≥ 5,
this subgroup has no reducible or periodic elements, thus proving

Theorem 1.1 For n ≥ 5, The Brunnian subgroup Br(S2, n) is a nontrivial
subgroup of M(S2, n) all of whose nontrivial elements are pseudo-Anosov.

We use work of Birman and Hilden to lift the Brunnian subgroup of the mapping
class group of the 6–punctured sphere to a “Brunnian subgroup” of the mapping
class group of the closed genus two surface. We prove in section five that if
a genus two mapping class is reducible, then the projection to the punctured
sphere must also be reducible. The Brunnian subgroup for the genus two surface
thus has no reducible elements except for the involution that gives the branched
covering. To get rid of this element, we intersect with the kernel of the usual
Z3 homology representation.

Theorem 1.2 The intersection of the Brunnian subgroup Br(Σ2) and the ker-
nel of the Z3 homology representation, ρ : M(Σ2)→ Sp(4,Z3), is a nontrivial
normal subgroup of M(Σ2), all of whose nontrivial elements are pseudo-Anosov.

2 Background and definitions

Let Y be an orientable surface, possibly with boundary, and let {y1, . . . , yn}
be an n–element subset of Y . We begin by introducing a notation that will let
us easily distinguish between several different mapping class groups for Y .
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Definition 2.1 We define

F (Y, n) to be the group of all orientation preserving homeomor-
phisms h : Y → Y that induce the identity permutation on the
set of boundary components of Y and take the set of points
{y1, . . . , yn} to itself, and

M(Y, n) = π0(F (Y, n)) to be the corresponding mapping class
group,

F ∂(Y, n), with a superscript ∂ , to be the group of all orientation
preserving homeomorphisms h : Y → Y which fix the boundary
pointwise and take the set of points {y1, . . . , yn} to itself, and

M∂(Y, n) = π0(F ∂(Y, n) to be the corresponding mapping class
group,

Fp(Y, n), with a subscript p (in analogy with pure braids), to be the
group of all orientation preserving homeomorphisms h : Y → Y
that induce the identity permutation on the set of boundary
components of Y , and also fix the yi pointwise, ie, h(yi) = yi
for all 1 ≤ i ≤ n,

Mp(Y, n) = π0(Fp(Y, n)) to be the corresponding mapping class
group,

F ∂p (Y, n), with both a superscript ∂ and a subscript p, to be the
group of all orientation preserving homeomorphisms h : Y → Y
which fix the boundary pointwise and fix the yi pointwise, and

M∂
p (Y, n) = π0(F ∂p (Y, n)) to be the corresponding mapping class
group.

Note that the elements of these mapping class groups are not permitted to per-
mute the boundary curves. A superscript ∂ denotes that the homeomorphisms
and isotopies restrict to the identity on the boundary curves. A subscript p
denotes that the homeomorphisms do not permute the points y1, . . . , yn . If the
surface Y has no boundary, then M∂(Y, n) = M(Y, n); if there are no specified
points, then we write simply M(Y ) or M∂(Y ). The natural homomorphism
from M∂(Y, n) to M(Y, n) has kernel generated by Dehn twists along curves
parallel to the boundary curves.

The mapping class group most commonly found in the literature would have
M(Y ) as a subgroup; in these larger mapping class groups, mapping classes
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may permute the boundary components, and isotopies do not restrict to the
identity on the boundary components.

The notation [f ] is used to denote the mapping class represented by a member
f of any of these homeomorphism groups.

Theorem 2.1 (Thurston [4]) If Y is an orientable surface of negative Euler
characteristic, then a mapping class [h] of M(Y ) must be either

(i) periodic, ie, [h]n = 1 for some n 6= 0, or

(ii) reducible, ie, having a representative that leaves invariant a non-empty
collection of disjoint essential simple closed curves, none of which are
isotopic to boundary curves, or

(iii) pseudo-Anosov, ie, having a representative that leaves invariant a trans-
verse pair of singular foliations F s, F u with transverse measures µs, µu

such that h(F s, µs) = (F s, (1/λ)µs) and h(F u, µu) = (F u, λµu) for some
λ > 1.

In knot theory, a Brunnian link is defined to be a nontrivial link such that every
proper sublink is trivial [8, page 67]. In [6] Levinson introduces disk braids with
an analogous property: a “decomposable braid” is one such that if any single
arbitrary strand is removed, the remaining braid is trivial. We will define a
Brunnian sphere braid analogously: removal of any strand gives a trivial braid.
See Figure 1. Note that these braids must always be pure. Similarly, a Brunnian
mapping class of the sphere will be one where if we “forget” any of the points,
there is an isotopy to the identity fixing all of the other points. Note that in
order to “remove” a strand or “forget” a point in a well defined way, we need to
assume that the permutation induced by the mapping class actually fixes that
strand or point.

Figure 1: A Brunnian sphere braid with four strands

Formally, then, let

B(S2, n, yi) be the subgroup of B(S2, n) consisting of homeomor-
phisms such that h(yi) = yi , ie, the induced permutation of the
points leaves yi fixed, and let
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M(S2, n, yi) = π0(B(S2, n, yi)).

Note that M(S2, n, yi) is a subgroup of M(S2, n) of index n. Since a homeo-
morphism in B(S2, n, yi) leaves the set of n−1 points {y1, . . . , yn}\yi invariant,
there is a well defined inclusion

B(S2, n, yi)→ B(S2, n− 1),

which induces a homomorphism

L′i : M(S2, n, yi)→M(S2, n− 1).

We now consider the intersection of all n of these kernels,
⋂n
i=1 ker (L′i). This

is clearly a normal subgroup of M(S2, n). An element in this subgroup must
act as the identity permutation on the n points.

Alternatively, if we define Li to be the restriction of L′i to Mp(S2, n),

Li : Mp(S2, n)→Mp(S2, n− 1),

then
n⋂
i=1

ker (Li) =
n⋂
i=1

ker (L′i).

Definition 2.2 We will call the maps Li the forget yi maps, and define the
n–strand Brunnian subgroup of the sphere, Br(S2, n), to be

Br(S2, n) =
n⋂
i=1

ker (Li) =
n⋂
i=1

ker (L′i).

Elements of this subgroup will be called Brunnian mapping classes of M(S2, n).

We now define Brunnian mapping classes of the genus two torus. Let Σ2 be the
closed orientable genus two surface, and let M(Σ2) be its mapping class group.
There is a 2–fold branched covering π : Σ2 → S2 ; it has six branch points which
we will denote by y1, . . . , y6 ∈ S2 . The group of covering transformations is
generated by a hyper-elliptic involution i, and [i] is central in M(Σ2). Let
M(S2, 6) be the mapping class group of the sphere, with the branch points as
the specified points.

Lemma 2.2 (Birman and Hilden [1, pages 183–189]) There is an exact se-
quence

1→ 〈[i]〉 →M(Σ2)
p→M(S2, 6)→ 1

where p takes the standard generating Dehn twists [∆1], . . . , [∆5] to the stan-
dard generators of M(S2, 6), [σ1], . . . , [σ5], which switch adjacent branch points
on S2 .
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Definition 2.3 The Brunnian subgroup Br(Σ2) of M(Σ2) is the preimage of
the six strand Brunnian subgroup of the sphere:

Br(Σ2) = p−1(Br(S2, 6))

Elements of Br(Σ2) will be called Brunnian mapping classes of Σ2 . Note that
Br(Σ2) is a normal subgroup of M(Σ2).

Finally, we discuss homology with Z3 coefficients. Since H1(Σ2,Z3) = (Z3)4 ,
there is a representation

ρ : M(Σ2)→ Sp(4,Z3)

taking a mapping class to its induced map on homology.

We now restate the main theorem of this paper.

Theorem 1.2 The intersection of the Brunnian subgroup Br(Σ2) and the ker-
nel of the Z3 homology representation, ρ : M(Σ2)→ Sp(4,Z3), is a nontrivial
normal subgroup of M(Σ2), all of whose nontrivial elements are pseudo-Anosov.

Remark The methods used in this paper will not work to produce normal
all pseudo-Anosov subgroups for higher genus surfaces, since those mapping
class groups contain no central element to act as a covering transformation.
However, we conjecture that normal all pseudo-Anosov subgroups do exist for
higher genus surfaces.

3 Preliminary lemmas

We need the following fairly basic lemma, whose proof we include for the sake
of completeness.

Lemma 3.1 Given a closed orientable surface X with specified points
x1, . . . , xn , and a closed disk D ⊂ X containing xn but none of x1, ..., xn−1 ,
the map

Mp(X −D,n− 1)→Mp(X,n)

induced by inclusion is an isomorphism.

Proof Recall that Mp(X −D,n − 1) is defined to be the group of isotopy
classes of self homeomorphisms of X −D that fix each of x1, . . . , xn−1 . Any
homeomorphism or isotopy of X −D fixing x1, . . . , xn−1 can be extended to
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one on X fixing x1, . . . , xn . To prove that the above map is one-to-one, we
must show: given a homeomorphism f : X → X that fixes each of x1, . . . , xn−1

and leaves D invariant, and an isotopy ht : X → X fixing x1, . . . , xn and going
from the identity to f , there is an isotopy Ht : X −D → X −D going from
the identity on X −D to the restriction of f to X −D .

Choose a closed disk D′ such that D ⊂ intD′ , x1, . . . , xn−1 /∈ D′ , and further
ht(X −D′) ∩D = φ for all t. Let gt : D ∪ X −D′ → X be an isotopy that
is constant on D and agrees with ht on X −D′ . Using an isotopy exten-
sion theorem for topological manifolds [3], gt can be extended to an isotopy
Gt : X → X . G0 is the identity map; thus by construction, G1|X−D is trivial
in Mp(X −D,n− 1).

Unfortunately, G1|X−D may not agree with f |X−D . They are the same on
X −D′ , but f |D′−D may not equal G1|D′−D . However, on D′ −D , an annulus,
any two functions are isotopic to each other by an isotopy which fixes ∂D′

pointwise but can vary along ∂D . If we attach such an isotopy between G1|D′−D
and f |D′−D to the constant isotopy on X −D′ , we get an isotopy Jt : X −D →
X −D going from G1|X−D to f |X−D .

Lemma 3.2 (Birman [2, page 217]) Let X be a a closed orientable surface
with specified points x1, . . . , xn , and let Ln : Mp(X,n)→Mp(X,n− 1) be the
“forget xn map”. Then there is a long exact sequence ending

→ π1(Fp(X,n−1))→ π1(X\{x1, . . . , xn−1}) d→Mp(X,n) Ln→Mp(X,n−1)→ 1.

Moreover, ker d is contained in the center of π1(X \ {x1, . . . , xn−1}).

Remark Since π1(X \ {x1, . . . , xn−1}) has trivial center unless X = S2 and
n = 3, or X = T and n = 1, in all but these cases we get a short exact sequence

1→ π1(X \ {x1, . . . , xn−1})→Mp(X,n) Ln→Mp(X,n − 1)→ 1.

Proof The proof follows the lines of Lemmas 4.1.1 and 4.2.1 in [B]. Namely,
first one must show that the evaluation map

ε : Fp(X,n − 1)→ X \ {x1, . . . , xn−1}

taking h to h(xn) is a locally trivial fibering map with fiber Fp(X,n). The
exact sequence above is then the exact homotopy sequence of the fibering.
Finally, elements of ker d can be shown to commute with everything in
π1(X \ {x1, . . . , xn−1}).
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4 Periodic and reducible Brunnian mapping classes
of S2 are trivial

We first consider periodic maps in M(S2, n). Lemma 3.2 tells us that for n ≥ 4,
there is an exact sequence

1→ π1(S2 \ {x1, ..., x̂i, ..., xn})→Mp(S2, n) Li→Mp(S2, n − 1)→ 1

for each Li , the “forget about yi” map. Therefore, when n ≥ 4, the subgroup of
Brunnian sphere mapping classes is a free group, and has no nontrivial periodic
elements.

Definition 4.1 A reducible homeomorphism in F (S2, n) is one that leaves
invariant a collection of disjoint essential closed curves, none of which is isotopic
to a simple loop around a single point. A reducible element of M(S2, n) is one
with a reducible representative.

Theorem 4.1 For n ≥ 5, an element of Br(S2, n) that is also reducible must
be trivial.

Proof Let [g] be a reducible element of Br(S2, n), for some n ≥ 5, and let g
be a representative of [g] that leaves invariant a collection of disjoint essential
closed curves in S2 . Let E be one these curves. E separates the sphere into
two open hemispheres, each containing at least two of the n points y1, . . . , yn .
Some power h = gr leaves the curve E itself invariant. Since [h] is Brunnian, it
does not permute the n points, and so we can isotope h so that that it restricts
to the identity on E . We will show that [h] is trivial. Then, since Br(S2, n)
contains no nontrivial periodic elements, [g] must also be trivial.

Let D+ and D− be the closures of the two components of S2 \E . We will refer
to these as the upper and lower hemispheres, respectively. If a homeomorphism
h fixes E and the n points y1, . . . , yn , then it restricts to homeomorphisms of
D+ and D− . For convenience, we define the following notation: if h|D+ = f
and h|D− = g , we write h = (f, g). Similarly, given any two homeomorphisms
f and g on the hemispheres that fix the points and E , (f, g) denotes the
homeomorphism of the sphere gotten by attaching f and g along E .

As we are interested in Brunnian mapping classes, let us consider what happens
when we “forget” all but one of the points on the top hemisphere. Let k be the
number of the yi on the bottom hemisphere, so that there are n− k points on
the top hemisphere. Forgetting all but one of the yi from the top hemisphere
will leave a total of k + 1 points to be fixed under isotopies.
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Consider a Brunnian mapping class [h] with a representative h that fixes E .
When we forget all but one point of the upper hemisphere, the image of [h]
in Mp(S2, k + 1) must be trivial. Let h+ = h|D+ and h− = h|D− , so that
h = (h+, h−).

Claim 1 [(h+, h−)] = [(1, h−)] as elements of Mp(S2, k + 1).

Proof M∂(D+, 1) = 1, so there is an isotopy of the disk D+ , fixing the one
point and the boundary, taking h+ to the identity. Attach this isotopy to the
constant isotopy on D− .

Claim 2 The homomorphism j : M∂
p (D−, k) → Mp(S2, k + 1) taking [f ] →

[(1, f)] has kernel generated by a single Dehn twist [T∂D− ] along a simple closed
curve parallel to the boundary.

Proof Mp(S2, k+1) ∼= Mp(D−, k), by Lemma 3.1. However, the kernel of the
map M∂

p (D−, k) → Mp(D−, k) is generated by the Dehn twist along a curve
parallel to the boundary of D− .

Since [(1, h−)] = [(h+, h−)] = [h] = 1 as elements of Mp(S2, k + 1), [h−] is a
power of [T∂D− ] in M∂

p (D−, k), and so h− is isotopic to a power of T∂D− by
an isotopy fixing the boundary and all of the original yi that were on D− .

Since we were careful to choose E so that at least two points were on each
hemisphere, we can repeat this argument upside down to show that h+ is
isotopic to power of T∂D+ by an isotopy fixing the boundary ∂D+ and all of
the original yi on D+ . By joining these two isotopies of the hemispheres along
E = ∂D+ = ∂D− , we acquire a isotopy on the sphere fixing all n points. Thus

[h] = [(h+, h−)] = [(T r∂D+ , T
s
∂D−)] = [T r+sE ]

in Mp(S2, n), where TE is a Dehn twist along E , and r and s are integers.

To finish the proof of the lemma, we note that Mp(S2, 4) is a free group; if we
forget all but two points on each hemisphere, [TE ] is mapped to a generator of
Mp(S2, 4), and thus r+ s = 0. This is where we need that n ≥ 5, so that there
is point to be lost to obtain a trivial element of Mp(S2, 4).

We have shown that there are no nontrivial periodic or reducible elements in
Br(S2, n) for n ≥ 5. Thus all nontrivial elements must be pseudo-Anosov.
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5 Reducible and periodic mapping classes on the
genus two surface

We now consider what happens to mapping classes of Σ2 when they are pro-
jected to the sphere. Recall from section two that there is a branched covering
π : Σ2 → S2 with branch points y1, . . . , y6 , and that we have chosen these
points to be the six specified points for M(S2, 6). Also recall from Lemma
2.2 that there is a surjective map from M(Σ2) to M(S2, 6) whose kernel is
generated by [i], the mapping class of the covering involution. The Brunnian
subgroup Br(Σ2) is the preimage of Br(S2, 6) under this map.

Any periodic element of Br(Σ2) projects to a periodic element of Br(S2, 6),
which must be trivial. Thus, the only periodic element in Br(Σ2) is the invo-
lution [i].

Theorem 5.1 Reducible mapping classes in M(Σ2) project to reducible map-
ping classes in M(S2, 6).

Let x1, ..., x6 ∈ Σ2 be the preimages of the six branch points y1, .., y6 ∈ S2 . Let
C be a simple closed curve that is invariant under the involution i and contains
x1 and x2 . C will project down to a simple line segment connecting y1 and y2

on S2 . Let C ′ on S2 be a simple closed curve that is the boundary of a small
connected neighborhood of that line segment. See Figure 2.
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��
��

S′C′

(a) (b)

Figure 2: (a) Example of S and C (b) Example of S′ and C′

Let S be an essential separating simple closed curve that is also invariant under
i, does not intersect C , and which separates the branch cover points into sets
{x1, x2, x3} and {x4, x5, x6}. Let S′ on S2 be the image of S .

Note that although there are many choices for S and C , these choices differ
only by the action of elements of M(Σ2).
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Lemma 5.2 If f : Σ2 → Σ2 is a homeomorphism that leaves C invariant,
then p([f ]) has a representative fixing C ′ .

Proof The proof is to analyze what happens when we cut Σ2 along C and
then cap off one of the holes.

Let N(C) be an annular neighborhood of C . Then the closure of Σ2 \N(C) is
a genus one surface with two disjoint disks removed. We will call this surface
T − 2. Recall that M∂(T − 2) is the group of isotopy classes of the set of
homeomorphisms of T −2 that fix the boundaries pointwise. Inclusion of T −2
into Σ2 induces a well defined map

φ : M∂(T − 2)→M(Σ2).

Given an orientation preserving homeomorphism f that leaves C invariant, we
can assume that f or fi restricts to the identity on the annular neighborhood
N(C). Since we need only prove a fact about p([f ]), assume that f fixes the
annular neighborhood. Then f restricts to a homeomorphism f ′ : T−2→ T−2
that fixes the boundary components pointwise. Thus [f ′] is an element of
M∂(T − 2), and φ([f ′]) = [f ]; ie, [f ] is in the image of φ. To prove the lemma
it is enough to find generators for M∂(T − 2) and show that their images in
M(Σ2) satisfy the conclusion.

Recall that we define M(T − 2) to be the group of isotopy classes of the set of
homeomorphisms of T − 2 that may vary along the boundary components, but
do not switch them. There is an exact sequence

1→ 〈T∂1, T∂2〉 →M∂(T − 2)→M(T − 2)→ 1

where T∂1 and T∂2 are the twists about the boundaries.

If we cap off the holes of T − 2 with pointed disks, we obtain a genus one torus
T with two specified points, p1 and p2 . Recall that Mp(T, 2) is the group
of isotopy classes of the set of homeomorphisms of T that fix both p1 and
p2 . Lemma 3.1 tells us that the homomorphism from M(T − 2) to Mp(T, 2)
induced by the capping off will be an isomorphism.

M(T − 2) ∼= Mp(T, 2)

If L2 : Mp(T, 2) → M(T, 1) is the “forget p2” map, then by the Remark after
Lemma 3.2, the following sequence is exact.

1→ π1(T − p1)→Mp(T, 2) L2→M(T, 1)→ 1

All pseudo-Anosov subgroups

Geometry and Topology, Volume 4 (2000)

303



Definition 5.1 The image of a standard generator of π1(T − p1) in Mp(T, 2)
is a double Dehn twist, that is, a pair of Dehn twists in opposite directions on
curves immediately to either side of some simple closed curve representing the
generator [5].

Each of these double Dehn twists is isotopic to the identity by an isotopy which
fixes p1 but lets p2 move about; the tracks of p2 under these isotopies represent
the corresponding elements of π1(T − p1).

If we let a and b be the standard generators for π1(T − p1), then we define
[TTa] and [TTb] as the images of a and b.

M(T, 1) is generated by Dehn twists [Tm] and [Tl] along the meridian and lon-
gitude of the punctured torus. Thus Mp(T, 2) is generated by [TTa], [TTb], [Tm],
and [Tl]. See Figure 3. We will denote the preimages of these isotopy classes
in M∂(T − 2) by [T̂ T a], [T̂ T b], [T̂m], and [T̂l]. These, and [T∂1] and [T∂2],
generate M∂(T − 2).

We can easily see that the images of these mapping classes in M(Σ2) all project
down to mapping classes of the sphere with representatives that fix C ′ .

Lemma 5.3 If f : Σ2 → Σ2 is a homeomorphism that leaves S invariant, then
p([f ]2) has a representative fixing S′ .

Proof Again, we cut along S and analyze the result.

Let T1 − 1 and T2 − 1 be the closures of the components of Σ2 \ S . Then the
mapping class groups M∂(T1−1) and M∂(T2−1) are generated by Dehn twists
along their meridians and longitudes and by Dehn twists along their boundaries.
Again, there is a well defined map

φ : M∂(T1 − 1)×M∂(T2 − 1)→M(Σ2),

and the images of the generators project down to isotopy classes in M(S2, 6)
that have representatives fixing S′ .

Given a homeomorphism f that leaves S invariant, f either switches the two
components of Σ2 − S , or it does not. In either case, f2 cannot switch the
two components of Σ2 − S . Thus we can assume that f2 fixes an annular
neighborhood of S . Therefore f2 induces maps f ′ and f ′′ on T1−1 and T2−1
which fix the boundary, and hence [f ′] ∈ M∂(T1 − 1) and [f ′′] ∈ M∂(T2 − 1).
But then [f ]2 = φ([f ′]× [f ′′]).
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Figure 3: The four maps [TTa], [TTb], [Tm] , and [Tl] , and their images in M(Σ2) and
M(S2, 6)

Proof of Theorem 5.1 Let [f ] ∈M(Σ2) be a reducible mapping class. Then
[f ] is conjugate to a mapping class [g] which must fix one of the following
collections of nonintersecting simple closed curves:

(1) S

(2) S and C

(3) S,C , and another essential non-separating curve

(4) C

(5) C and one other essential non-separating curve

(6) C and two other essential non-separating curves
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In cases 1, 2, and 3, S must be left invariant, since it is the only separating
curve. Therefore p([g]2) has a representative leaving S′ invariant, by Lemma
5.3. In cases 4, 5, and 6, there is some nonzero power k so that gk has a
representative leaving C invariant. But then p([g]k) leaves C ′ invariant, by
Lemma 5.2. Nonzero powers of reducible, periodic, and pseudo-Anosov elements
are reducible, periodic, and pseudo-Anosov, repsectively. Therefore, by the
classification theorem, in all cases above p[g] is reducible, and so is p[f ].

We have shown that reducible elements of M(Σ2) project to reducible elements
of M(S2, 6). Therefore, since Br(S2, 6) has no nontrivial reducible elements,
Br(Σ2) also has no nontrivial reducible elements except the involution [i].

6 Nontriviality

In Section 4 we proved that Br(S2, n) has no nontrivial periodic or reducible
elements. Thus, all of its nontrivial elements are pseudo-Anosov. In Section
5, we proved that the only nontrivial element of Br(Σ2) that is not pseudo-
Anosov is the involution [i]. To rid ourselves of this element, we intersect with
the kernel of the usual Z3 homology representation, ρ : M(Σ2)→ Sp(4,Z3).

Theorem 6.1 (Long [7, page 83]) The intersection of two nontrivial, noncen-
tral normal subgroups of a mapping class group of a surface is nontrivial.

Since Br(Σ2) and ker ρ are not central, their intersection in M(Σ2) is non-
trivial. As an example of a nontrivial element of Br(Σ2) ∩ ker ρ, consider the
nested commutator

[∆6
1, [∆

6
2, [∆

6
3, [∆

6
4,∆

6
5]]]],

where ∆i are the standard generating Dehn twists on Σ2 . This mapping class
is Brunnian, since it projects to

[σ6
1 , [σ

6
2 , [σ

6
3 , [σ

6
4 , σ

6
5 ]]]],

which clearly reduces to the identity if any of the six points on the sphere is
forgotten. It also acts trivially on homology with Z3 coefficients, but it is not
null-homologous over Z, and so it is not trivial.

Other examples can be easily generated by taking commutators of Brunnian
mapping classes and null-Z3–homologous elements, or simply by using homol-
ogy to check that a given Brunnian mapping class is not [i]. This provides a
new source of pseudo-Anosov mapping classes of the genus two torus.
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