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DAVID ARISTOFF, SAMUEL T. CHILL AND GIDEON SIMPSON

Adaptive Kinetic Monte Carlo combines the simplicity of Kinetic Monte Carlo
(KMC) with a saddle point search algorithm based on Molecular Dynamics (MD)
in order to simulate metastable systems. Key to making Adaptive KMC effective
is a stopping criterion for the saddle point search. In this work, we examine a
criterion of S. T. Chill and G. Henkelman (J. Chem. Phys. 140 (2014), no. 21,
214110), which is based on the fraction of total reaction rate found instead of
the fraction of observed saddles. The criterion uses the Eyring–Kramers law
to estimate the reaction rate at the MD search temperature. We also consider
a related criterion that remains valid when the Eyring–Kramers law is not. We
examine the mathematical properties of both estimators and prove their mean
square errors are well behaved, vanishing as the simulation continues to run.

1. Introduction

An outstanding problem in theoretical materials science and chemistry is how to
reach laboratory time scales of microseconds (10−6 s) and longer using models,
based on Molecular Dynamics (MD), which resolve the atomistic time scale of
femtoseconds (10−15 s). Much of this scale separation is due to the presence of
metastable regions in the configuration space of the system. In such regions, often
defined by local minima of an energy landscape, the system stays close to a particular
configuration, such as a local minima, before crossing into some other metastable
region associated with a different configuration. Consequently, during much of a
direct MD simulation, the system is close to one metastable region or another. It
exhibits dynamics akin to a continuous time random walk on the set of metastable
states, with comparatively long waiting times.

Since much of the physical significance of these systems is characterized by the
sequence of visited metastable states and the time spent in each, there have been
a variety of efforts to systematically coarse grain the MD trajectory into a more
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computationally efficient continuous time random walk. A. F. Voter has proposed
three methods, Parallel Replica Dynamics, Hyperdynamics, and Temperature Ac-
celerated Dynamics, which can overcome metastability through intelligent usage of
the primitive Langevin dynamics [14; 16]. In recent years, significant effort has
been made to understand and quantify the approximations in these methods and
extend their applicability [2; 3; 1; 5; 11; 12; 15].

Another approach to the problem is Kinetic Monte Carlo (KMC), and this will
be the focus of this work. Let us assume our system is governed by a potential
energy V (x), x ∈Rd at inverse temperature β. Furthermore, we assume that we have
partitioned configuration space into an at most countable set of metastable states,�i ,
associated with local minima mi of V . The system can go from metastable state i
to metastable state j if there is a saddle point, si j , of V (x) joining �i and � j .
For conciseness, we will assume there is a single saddle point joining two given
adjacent metastable states, though, in general, there may be multiple pathways.

In traditional KMC, before a simulation is run, one must identify the metastable
states, their connectivity (i.e., which ones are joined by saddle points), and the
reaction rates of each such connection. Given all of this information, KMC is very
cheap to simulate. A single random number is generated and used to select one of
the possible reactions, the system migrates into the new metastable region, and the
algorithm repeats.

Unfortunately, such complete details of the metastable states and their connec-
tivity are, a priori, unavailable in all but the simplest low-dimensional systems.
This has motivated the development of Adaptive Kinetic Monte Carlo (AKMC)
[6; 17; 18]. In AKMC, the system starts in some metastable region �i . Saddle
points associated with �i are then sought via a saddle point search algorithm that
successively finds si j . Reaction rates for each such saddle can be estimated by the
Eyring–Kramers law [8]:

ki j = gi j exp[−β(V (si j )− V (mi ))], (1-1)

where, writing λ1 for the sole negative eigenvalue of ∇2V (si j ),

gi j =
|λ1|

π

√∣∣∣∣det∇2V (mi )

det∇2V (si j )

∣∣∣∣.
Once a sufficient number of saddles associated with �i have been identified, the
problem is treated by using traditional KMC with the thus far identified reactions
and their rates; this process then repeats in the next metastable region. Two things
are needed to proceed with AKMC:

(1) a saddle point search algorithm;

(2) a stopping criterion.
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In this work, we will consider the question of the stopping criterion, provided our
saddle point search algorithm satisfies certain assumptions. Our analysis will focus
on estimators similar to the one introduced by Chill and Henkelman [6]. We call
these Chill-type estimators.

In [6], the authors searched for saddle points out of each metastable state using
high-temperature MD. For concreteness, consider the Brownian dynamics in Rd :

d X t =−∇V (X t) dt +
√

2β−1 dWt . (1-2)

The aim is to model the dynamics at low temperature β = β lo. Starting at X0 ∈�i ,
integrate (1-2) at a higher temperature β = βhi (i.e., β lo > βhi) until the trajectory
leaves �i . Using the higher temperature βhi allows an escape to occur more quickly.
After the trajectory leaves �i , one of the saddle points si j is identified with this
pathway using, for instance, the nudged elastic band method [10; 9], and the
low-temperature reaction rate is computed using (1-1) with β = β lo. This is then
repeated, with a new initial condition chosen in �i . Throughout, the cumulative
simulation time is recorded.

Other saddle point search algorithms have been proposed, including the dimer
method and the string method [13; 7]. In our analysis, the key property that we
need to hold true for all of our search methods is the following. Let

Ni j (t)= Number of times saddle si j has been found by time t . (1-3)

Then for fixed i , during a saddle point search, the Ni j (t) are independent, with
respect to j , Poisson processes. We prove below that this holds for a carefully
performed saddle point search via integration of (1-2).

This article is organized as follows. We describe the saddle point search in
detail in Section 2, and prove some of its properties, including the above condition
on Ni j (t), in Section 3. In Section 4 we introduce stopping criteria for the saddle
point search, and in Section 5 we analyze these criteria. Section 6 contains proofs of
some of the estimates in Section 5. In Section 7 we make some concluding remarks.

2. Notation and saddle point search algorithm

Here and throughout (X t) is Brownian dynamics, that is, a stochastic process
satisfying (1-2). For simplicity we fix a single metastable set �≡�i and suppress
the index i in all of our notation from the introduction. For our purposes, V is
smooth, and � is an (open) basin of attraction of V with respect to the gradient
dynamics dy/dt =−∇V (y). We assume that ∂� is partitioned into finitely many
disjoint (measurable) subsets, called pathways and labeled 1, 2, . . . , N , such that
each pathway j contains a unique saddle point sj of V . When (X t) leaves �, it
must exit through one of the pathways 1, 2, . . . , N .
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The algorithm, as well as our analysis, depends heavily on the quasistationary
distribution (QSD) for (X t) in�, which we denote by ν. The QSD ν is a probability
measure that is locally invariant for (X t), in the sense that it is invariant conditionally
on the event that (X t) remains in �:

Definition 2.1. The QSD for (X t) in � is a probability measure ν supported in �
such that for all t > 0,

ν(·)= P(X t ∈ · | X0 ∼ ν, Xs ∈� for all s ∈ [0, t]).

Of course ν depends on �, but for simplicity we do not indicate this explicitly.
It has been shown [11] that ν exists, is unique, and satisfies

ν(A)= lim
n→∞

P(X t ∈ A | Xs ∈ A for s ∈ [0, t]), for all A ⊂�. (2-1)

Moreover this convergence is exponentially fast, uniformly in A. Equation (2-1)
leads to simple algorithms for sampling ν, based on the idea that a sample can be
obtained from the endpoint of a trajectory of (X t) that has remained in � for a
sufficiently long time; see [5] for details.

We are now ready to state the high-temperature saddle point search algorithm.
Versions of this algorithm have been used previously; see for instance [6] and
references therein. The search runs at a user-specified “high” (inverse) temperature
βhi. Below we write ν for the QSD in � at temperature β = βhi. We also write

H(t)=
{

0, t < 0,
1, t ≥ 0

for the Heaviside unit step function.

Algorithm 2.2. Set Nj (t) ≡ 0 for t ≥ 0 and j = 1, . . . , N . Let M be the current
cycle of the algorithm, and tsim the simulation clock. Initialize M = 1 and tsim = 0,
and iterate the following:

1. Generate a sample xM from ν. During this step tsim is stopped.

2. Starting at X0 = xM , evolve (X t) at β = βhi until it first leaves �, say at time
t = τ (M) through pathway I (M). The simulation clock tsim is running during
this step, and the stopping criterion is continuously checked. If at some time
tsim the criterion is met, the algorithm stops.

3. If I (M)= j , update Nj (t)= Nj (t)+H(t− tsim) for t ≥ 0 and record the saddle
point sj . Then update M = M + 1. During this step tsim is stopped.

It is not necessary to know N , and the pathways can be given labels according
to the order in which they are found. The simulation clock is cumulative, and it
only increases in Step 2. In particular, during the M-th cycle of the algorithm, tsim

increases by τ (M). The stopping criterion will be described in Section 4. Below
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we write tsim for the final value of the simulation clock in the algorithm, that is, its
value when the simulation is stopped. To refer to a generic simulation clock time
we write t . Thus, 0≤ t ≤ tsim and when the algorithm stops, Nj (t) is the number
of times an exit through pathway j has been observed by time t . Below we write
Nj (t) for its final value when the algorithm stops. We will also use the following
notation:

χ j (t)= 1Nj (t)≥1, N (t)=
N∑

j=1

Nj (t). (2-2)

That is, χ j (t)= 1 if an exit through pathway j has been observed at least once by
time t , and is 0 otherwise; N (t) is the total number of exits observed by time t .

3. Properties of the saddle point search

Our first result follows immediately from properties of the QSD established in [11].

Theorem 3.1. Suppose that in step 1 in the M-th cycle of Algorithm 2.2, xM is a
random variable with distribution ν. Then:

(i) τ (M) is exponentially distributed with mean κ−1: P(τ ( j) > t)= exp(−κt).

(ii) τ (M) and I (M) are independent.

Theorem 3.1 then leads to the following.

Theorem 3.2. Suppose that in step 1 of Algorithm 2.2, x1, x2, . . . are iid with
common distribution ν. Then:

(i) {N (t)}0≤t≤tsim is a Poisson process with parameter κ .

(ii) {Nj (t)}
j=1,...,N
0≤t≤tsim

are independent Poisson processes with parameters

κj := κpj , pj := P(I (1) = j). (3-1)

Proof. Let (Ñ (s))s≥0 be a Poisson process with parameter κ , which we denote by
Ñ (s) for brevity. Label each arrival time of Ñ (s) with a pathway j according to
the distribution pj , independently of the other arrival times, and let Ñj (s) be the
process with arrivals labeled by j . Then for r, s ≥ 0 and m1, . . . ,m N ≥ 0,

P

( N⋂
j=1

{
Ñj (r + s)− Ñj (r)= m j

})

= P

(
N (r + s)− N (r)=

N∑
j=1

m j

)(m1+· · ·+m N
m1, . . . ,m N

) N∏
j=1

pm j
j

=

N∏
j=1

e−κpj s(κpj s)m j

m j !
. (3-2)
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By summing over all mi ≥ 0 for i 6= j in the last expression above, we see that
for fixed r, s ≥ 0, the increment Ñj (r + s) − Ñj (r) is Poisson distributed with
mean κpj s. Ñj (s) also inherits independent increments from Ñ (s). This shows
that Ñj (s) is a Poisson process with parameter κj = κpj . Moreover, (3-2) shows
that Ñj (s), j = 1, . . . , N , are independent.

Let us now relate (Ñ (s))s≥0 with (N (s))0≤s≤tsim . For fixed s ∈ [0, tsim], the
time marginal N (s) is the largest m such that τ (1)+ · · ·+ τ (m) ≤ s. Together with
part (i) of Theorem 3.1, this shows that on [0, tsim], (N (s))0≤s≤tsim and (Ñ (s))s≥0

are Poisson processes with the same law. By part (ii) of Theorem 3.1, it follows
that the multivariate processes (Nj (s))

j=1,...,N
0≤s≤tsim

and (Ñj (s))
j=1,...,N
0≤s≤tsim

have the same
law. This establishes the result. �

4. Chill-type estimators and stopping criteria

The purpose of the high-temperature saddle point search (Algorithm 2.2) is to locate
“enough” of the low-temperature rate corresponding to the metastable set �. More
precisely, at a low temperature corresponding to β = β lo, the first exit time of X t

from � is approximately exponentially distributed with mean (k1+ · · · + kN )
−1,

where kj = klo
j is given by the Eyring–Kramers law (1-1) at β = β lo (recall the

subscript i has been suppressed). See [4] and references therein for rigorous results
in this direction. The kj are then exponential rates associated with leaving� through
pathway j at low temperature β lo. The proportion of low-temperature rate found
by time t in Algorithm 2.2 is

R(t) :=

∑N
j=1 χ j (t)kj∑N

j=1 kj
. (4-1)

The expected value of R(t) is

E[R(t)] = R(t) :=

∑N
j=1 pj (t)kj∑N

j=1 kj
, (4-2)

where
pj (t) := E[χ j (t)] = 1− exp(−κj t). (4-3)

Here κj is defined as in Theorem 3.2 at temperature β = βhi. The idea behind Chill-
type estimators is that when R(t) is sufficiently close to 1, the high-temperature
saddle point search can stop. There are two obstacles to this idea.

The first is that, at any time during Algorithm 2.2, it is unlikely that all saddle
points have been found. This problem is remedied by replacing kj in (4-1) with
χ j (t)kj , which is computable once pathway j has been found during the simulation.
The second obstacle is that an exact formula for pj (t) := E[χ j (t)] will not be known
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in practice. Chill-type estimators overcome the latter obstacle by using one of the
following approximations:

p̃j (t) := 1− exp[−khi
j t], khi

j given by Eyring–Kramers (1-1) at β = βhi,

p̂j (t) := 1− exp[−N̂j (t)], N̂j (t) :=
{

Nj (t), Nj (t)≥ 2,
0, else.

(4-4)

We have used the superscript hi to emphasize that the rate in (4-4) is computed at
temperature βhi (whereas kj is computed at low temperature β lo). Also note that
p̃j (t) is a physical estimate of E[χ j (t)] based on Eyring–Kramers, while p̂j (t) is
a (biased) Monte Carlo estimator. From (4-4) we obtain the following estimators
for R(t):

R̃(t) :=

∑N
j=1 p̃j (t)χ j (t)kj∑N

j=1 χ j (t)kj
, R̂(t) :=

∑N
j=1 p̂j (t)χ j (t)kj∑N

j=1 χ j (t)kj
. (4-5)

R(t), R̃(t), and R̂(t) are all random, while R(t) is deterministic. Both R̃(t) and
R̂(t) are explicitly computable at time t during the saddle point search. See [6] for
further discussion of R̃(t). To our knowledge R̂(t) has not appeared before in the
literature. We emphasize that R̂(t) may be used at any temperature βhi, while R̃(t)
is limited by the fact that it gives reasonable estimates of R(t) only at (relatively
low) temperatures where the Eyring–Kramers law holds.

After choosing R̃(t) or R̂(t) as the preferred estimator, the stopping criterion can
now be defined as follows: for a user-specified parameter ε > 0, stop Algorithm 2.2
in Step 3 if and only if

R̃(t) > 1− ε or R̂(t) > 1− ε, (4-6)

respectively. In Section 5 we give rigorous estimates of the bias and variance of the
estimators R̃(t) and R̂(t). These estimates show that, as t increases, when the algo-
rithm stops, on average at least (1−ε)% of the low-temperature rate has been found.

5. Analysis

The approximation p̃j (t) of pj (t) is usually considered valid when

βhi
� V (sj )− V (m),

with m the minimizer of V in �. To the authors’ knowledge, rigorous results are
scarce except when

sj = argmins1,...,sN
V (sj )− V (m);

see [4] and references therein. However, the following is a consequence of results
in [2]:
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Theorem 5.1. Suppose �= (a, b) is an interval and V is a Morse potential. Then
for each t > 0,

1− p̃j (t)
1− pj (t)

= 1+ O(1/βhi) as βhi
→∞, j = 1, 2. (5-1)

Proof. An examination of the proof of Theorem 4.1 of [2] shows that for j = 1, 2,

khi
j /κj = 1+ O(1/βhi) as βhi

→∞,

where khi
j is as in (4-4), and κj is as in Theorem 3.2 at temperature β = βhi. The

result follows. �

We next examine the approximation p̂(t) of p(t).

Theorem 5.2. Conditionally on N (t)≥ 1, N̂j (t) is an unbiased estimator for κj t :

E[N̂j (t) | N (t)≥ 1] = κj t. (5-2)

Also conditionally on N (t)≥ 1, p̂j (t) is a conservative estimate of pj (t):

E[ p̂j (t) | Nj (t)≥ 1] ≤ pj (t). (5-3)

Proof. Recall that Nj (t) is a Poisson process with parameter κj . Thus,

E[N̂j (t) | Nj (t)≥ 1] = (1− e−κj t)−1
∞∑

n=2

n
(κj t)ne−κj t

n!

=
κj t

1− e−κj t

∞∑
n=1

(κj t)ne−κj t

n!
= κj t.

Since x 7→ 1− e−x is a concave function, the second statement of the theorem
follows from Jensen’s inequality. �

The reason that we consider conditional expectations in Theorem 5.2 is that
Algorithm 2.2 cannot stop before N (t)≥ 1. Thus, we want estimates conditioned
on that event. We call p̂j (t) a conservative estimate for pj (t) because it is a lower
bound on average, so that using p̂j (t) in place of pj (t) leads to a larger average
stopping time for Algorithm 2.2.

Before proceeding we define, for real-valued random variables X and Y ,

Bias(X, Y ) := E[X − Y ], MSE(X, Y ) := Bias(X, Y )2+Var(X). (5-4)

Observe that the mean square error is not symmetric in its arguments.
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Theorem 5.3. Write q j (t) = 1− pj (t) = exp[−κj t] and K = k1+ · · · + kN . For
the estimator R̃(t),

|Bias(R̃(t), R(t))| ≤ N max
j
|Bias( p̃j (t), pj (t))| +

K
min j kj

R(t)max
j

q j (t),

Var(R̃(t))≤ 4 K 2

min j k2
j

R(t)2 max
j

q j (t),

MSE(R̃(t), R(t))≤ 2N 2 max
j

MSE( p̃j (t), pj (t))

+
K 2

min j k2
j

(
2 max

j
q j (t)+ 4

)
R(t)2 max

j
q j (t).

For the estimator R̂(t),

|Bias(R̂(t), R(t))| ≤ N max
j
|Bias( p̂j (t), pj (t))| +

K
min j kj

R(t)max
j

q j (t),

Var(R̂(t))≤ 2K 2

min j k2
j

R(t)2 max
j

q j (t)

+
(
1+ 2N 2 max

j
q j (t)

)
max

j
Var( p̂j (t)),

MSE(R̂(t), R(t))≤
(
1+ N 2

+ 2N 2 max
j

q j (t)
)

max
j

MSE( p̂j (t), pj (t))

+
4K 2

min j k2
j

R(t)2(1+max
j

q j (t))max
j

q j (t).

Here, all maxima and minima are taken over j ∈ {1, . . . , N }.

Proof. We give proofs in Section 6 below. �

We note that some of the bounds in Theorem 5.3 have been loosened so that
simpler expressions are obtained. This will become clear in the derivation of the
bounds in Section 6 below. We highlight that the bias is bounded by the bias
of the estimate of pj (t), together with another term representing an “inherent”
bias associated with R(t). This second term may be approximated by noting that
|R(t)|< 1 for all t and, due to Theorem 5.1, we expect q j (t) can be estimated by
the known function p̃j (t) or p̂j (t).

6. Estimates

In this section we give a proof of Theorem 5.3. Recall that q j (t) := 1− pj (t) and
K :=

∑N
j=1 kj is the total reaction rate. For brevity, we will sometimes suppress

the t dependence in our expressions. Also, all sums are over 1, . . . , N unless
otherwise indicated.
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6A. Preliminary calculations. Observe that

Bias(R̃(t), R(t))= Bias(R̃(t), R(t)), MSE(R̃(t), R(t))=MSE(R̃(t), R(t)),

and similarly for R̂(t); this fact will be used below without comment. There are a
few expressions that will show up repeatedly in the analyses of both R̃ and R̂. We
analyze them here for simplicity. Let

ξi = ki +
∑
m 6=i

kmχm (6-1)

We make the following calculations:

ki ≤ ξi ≤ K , (6-2a)

E[ξi ] = ki +
∑
m 6=i

pmkm = K −
∑
m 6=i

qmkm . (6-2b)

A lower bound on this can be obtained from Jensen’s inequality,

E[ξ−1
i ] ≥ E[ξi ]

−1
=

1
K−

∑
m 6=i qmkm

≥
1
K
+

1
K 2

∑
m 6=i

kmqm, (6-3)

while an upper bound can be obtained from the Edmundson–Madansky inequality,

E[ξ−1
i ] ≤

1
ki

K − E[ξi ]

K − ki
+

1
K

E[ξi ] − ki

K − ki
=

1
K
+

1
ki K

∑
m 6=i

kmqm . (6-4)

In the same way,

E[ξ−2
i ] ≥ E[ξi ]

−2
=

1(
K−

∑
m 6=i qmkm

)2 ≥
1

K 2 +
2

K 3

∑
m 6=i

qmkm, (6-5)

and

E[ξ−2
i ] ≤

1
k2

i

K − E[ξi ]

K − ki
+

1
K 2

E[ξi ] − ki

K − ki
=

1
K 2 +

K + ki

k2
i K 2

∑
m 6=i

qmkm . (6-6)

Therefore,

Var(ξ−1
i )≤

(K+ki

k2
i K 2
−

2
K 3

)∑
m 6=i

qmkm ≤
2

K k2
i

∑
m 6=i

qm(t)km, (6-7)

where we have lost some of the estimate in the last inequality for the sake of
conciseness.

6B. Estimates for R̃. Below it is useful to notice that

R̃(t)=
N∑

i=1

p̃i (t)χi (t)ki

ki +
∑

m 6=i χm(t)km
=

∑
i

p̃iχi ki

ξi
. (6-8)
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6B1. Bias. We begin with the direct calculation

E[R̃− R] =
N∑

i=1

E

[
χi p̃i ki

ξi
−
χi ki

K

]

=

N∑
i=1

( p̃i − pi )E

[
χi ki

ξi

]
+

N∑
i=1

E

[
χi pi ki

ξi
−
χi ki

K

]

=

N∑
i=1

( p̃i − pi )E

[
χi ki

ξi

]
+

N∑
i=1

E

[
K pi

ξi
− 1

]
︸ ︷︷ ︸

≡bi

pi ki

K
.

Using (6-3) and (6-4),

1
K

∑
m 6=i

kmqm − qi ≤ bi ≤
1
ki

∑
m 6=i

kmqm − qi .

Thus, ∣∣∣∣ N∑
i=1

bi
pi ki

K

∣∣∣∣≤ N∑
i=1

( N∑
j=1

kj

ki
q j

)
pi (t)ki

K
≤

K max j q j (t)
min j kj

R(t).

Combining the above expressions gives

|Bias(R̃(t), R(t))| ≤ N max
i
| p̃i (t)− pi (t)| +

K maxi qi (t)
mini ki

R(t). (6-9)

6B2. Variance. For the variance, we first write

R̃− E[R̃] =
N∑

i=1

(
χi

ξi
− E

[
χi

ξi

])
p̃i ki . (6-10)

Hence,

Var(R̃(t))=
N∑

i, j=1

ki kj p̃i p̃j Cov
(
χi

ξi
,
χ j

ξ j

)
︸ ︷︷ ︸

≡vi j

. (6-11)

Since vi j ≤
√
vi i
√
v j j , it will be sufficient for us to analyze the diagonal terms. By

Theorem 3.2, χi and ξi are independent. Thus

vi i = E[χi ]
2 Var(ξ−1

i )+ E[ξ−1
i ]

2 Var(χi )+Var(ξ−1
i )Var(χi ). (6-12)
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Using (6-6) and (6-7),

vi i ≤ pi Var(ξ−1
i )+ pi qi E[ξ

−2
i ]

≤ pi

(K+ki

k2
i K 2
−

2
K 3

)∑
m 6=i

qmkm + pi qi

( 1
K 2 +

K+ki

k2
i K 2

∑
m 6=i

qmkm

)
≤

pi qi

K 2 +
4pi

k2
i K

∑
m 6=i

qmkm ≤
4pi

k2
i

max
j

q j ≤
4
k2

i
max

j
q j (t)

≤
4

min j k2
j

max
j

q j (t). (6-13)

We have made some sacrifices in the last inequalities in order to obtain a more
concise expression. Consequently,

Var(R̃(t))≤
N∑

i, j=1

ki kj p̃i (t) p̃j (t)
√
vi i
√
v j j ≤

4K 2

mini k2
i

R(t)2 max
i

qi (t). (6-14)

6B3. MSE. Combining (6-9) and (6-14), we then obtain

MSE(R̃(t), R(t))≤ 2N 2 max
i
| p̃i (t)− pi (t)|2

+
K 2

mini k2
i

(
2 max

i
qi (t)+ 4

)
R(t)2 max

i
qi (t). (6-15)

In this calculation, we see that the mean square error may ultimately be dominated
by how well the p̃i approximate the pi .

6C. Estimates for R̂. We begin by noting that, since p̂j (t)= 0 if χ j (t) 6= 1,

R̂(t)=
∑

j

p̂j (t)kj

kj +
∑

m 6= j χm(t)kj
. (6-16)

6C1. Bias. We begin by writing

R̂− R =
N∑

i=1

( p̂i − pi )
ki

ξi
+

N∑
i=1

ki pi

ξi
−

ki pi

K
, (6-17)

so that, after taking an expectation,

E[R̂− R] =
∑
i=1

E

[
( p̂i − pi )

ki

ξi

]
+

N∑
i=1

(
E

[
K
ξi

]
− 1

)
ki pi

K
. (6-18)

Hence,

|Bias(R̂(t), R(t))| ≤ N max
i
|Bias( p̂i (t), p(t))| + K

mini ki
R(t)max

i
qi (t), (6-19)
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and we see that the observed bias is controlled by the biases of the approximate
probabilities, p̂i , and the inherent bias of the Chill-type estimators.

6C2. Variance. For the variance, we have

Var(R̂)=
N∑

i, j=1

ki kj Cov
(

p̂i

ξi
,

p̂j

ξ j

)
︸ ︷︷ ︸

≡v̂i j

. (6-20)

As before, we only need to study the diagonal entries, and use Theorem 3.2 to
obtain

v̂i i = E[ p̂i ]
2 Var(ξ−1

i )+ E[ξ−1
i ]

2 Var( p̂i )+Var( p̂i )Var(ξ−1
i )

≤ Var(ξ−1
i )+ E[ξ−2

i ]Var( p̂i )

≤
2

mini k2
i

max
i

qi +

( 1
K 2 +

2
mini k2

i
max

i
qi

)
Var( p̂i )

≤
2

mini k2
i

max
i

qi +

( 1
K 2 +

2
mini k2

i
max

i
qi

)
max

i
Var( p̂i ). (6-21)

We note that these estimates require full independence of Nj (t) for j = 1, . . . , N ,
not just independence of the χ j (t). Now,

Var(R̂(t))≤ 2K 2

mini k2
i

R(t)2 max
i

qi (t)+(1+2N 2 max
i

qi (t))max
i

Var( p̂i (t)). (6-22)

6C3. MSE. We can therefore express the mean square error of estimator R̂ as

MSE(R̂(t), R(t))≤ 4K 2

mini k2
i

R(t)2(1+max
i

qi (t))max
i

qi (t)

+
(
1+ N 2

+ 2N 2 max
i

qi (t)
)

max
i

MSE( p̂i (t), pi (t)). (6-23)

7. Discussion

We have considered three Chill-type estimators and shown them to be consistent.
Their biases are small, relative to their variances, and thus we have good estimators
of R(t), the true fraction of the observed rate in the system. They represent a
significant improvement over the original AKMC stopping criterion presented
in [17]. Indeed, these prior approaches attempted to estimate the fraction of the
saddles observed when, in fact, it is the fraction of the observed rate that is of
fundamental importance.

As an example, we will compare the accuracy of both estimators using a test
system that consists of saddle points sj corresponding to potential energy barriers
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Figure 1. Comparison of the Chill-type estimators R̃(t) and R̂(t) to the true expected
proportion of the low-temperature rate found, R(t), on a test system that can deviate from
the Eyring–Kramer law.
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Figure 2. Comparison of the expected value of the Chill-type estimators R̃(t) and R̂(t) to
the true expected proportion of the low-temperature rate found, R(t), on a test system that
can deviate from the Eyring–Kramer law.

V (sj )− V (m)= 1+ 4
19 j , for j = 0, . . . , 19. The test system has rates that obey a

modified Arrhenius equation with the form

k̃hi
j =

(
β lo

βhi

)n

g j exp[β(V (sj )− V (m))]. (7-1)

Compare to Equation (1-1) (recall the subscript i has been suppressed). The variable
n controls how the rates deviate from an unmodified Arrhenius rate law. When
n = 0 the modified rates k̃hi

j are equal to the unmodified rates khi
j , while when

βhi < β lo, the modified rates are larger (resp. smaller) than the unmodified rates if
n > 0 (resp. n < 0).

We use Algorithm 2.2 on the test system with modified rates k̃hi
j . This means

(Nj (t))
j=1,...,N
0≤t≤tsim

are independent Poisson processes with parameters k̃hi
j . To compute
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R(t), we use (4-1) and sample χ j (t) via (2-2). To compute R̃(t) we use the
unmodified Arrhenius rates khi

j in (4-4). For each of R(t), R̃(t) and R̂(t), the
low-temperature rates kj = klo

j used in (4-1) and (4-5) are the same. We take g j = 1
for all j and βhi

= 2.5, β lo
= 10.0. The variable n was varied to compare the cases

where the Eyring–Kramers rates khi
j underestimate

(
n = 1

2

)
, overestimate

(
n =− 1

2

)
,

and provide an exact estimate (n = 0) of the modified rates k̃hi
j . Results are shown

in Figures 1 and 2. The test system shows that R̃(t) can overestimate R(t) if the
Eyring–Kramers rate deviates from the true rate at βhi, while R̂(t) tends to provide
a conservative estimate of R(t).
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