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MARIUS BECEANU

We prove dispersive estimates in R?® for the Schrodinger evolution generated by the Hamiltonian H =
—A 4 V, under optimal decay conditions on V, in the presence of zero-energy eigenstates and resonances.
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1. Introduction

1A. Classification of exceptional Hamiltonians. Consider a Hamiltonian of the form H = —A 4+ V,
where V is a real-valued scalar potential on R3.

We assume V € L%’l CcL %, which is the predual of weak-L3 and a Lorentz space, L%’l CcL 3—e NL 3 +e.
for its definition and properties, see [Bergh and Lofstrom 1976]. By [Simon 1982], this is sufficient to
guarantee the self-adjointness of H = —A + V.

Let Ro(A) := (—A — A)~! be the free resolvent corresponding to the free evolution e ™2 and let
Ry (L) := (—A + V —1)~! be the perturbed resolvent corresponding to the perturbed evolution ¢ |
Explicitly, in three dimensions and for Im A > 0,

| eitx—yl

Ro((A+i0)*)(x,y) = i T (1-1)
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It will be shown below that, under reasonable assumptions, H has only finitely many negative eigenval-
ues. Then the Schrodinger evolution restricted to the continuous spectrum [0, 0o) has the representation
formula

i . 1
FH P — lim —
€—0 27I

o0
| R+ i) = Ry =i0) .

By the work of Ionescu and Jerison [2003] and Goldberg and Schlag [2004b], it is known that,
when V € L%, the perturbed resolvent Ry (A £i0) is uniformly bounded in B(Lg, L%) on any interval
A € [€g, 00), where €y > 0, and has no singularities in [0, co) except potentially at A = 0.

Observe that Ry = (I + RoV)™ ! Ry, so Ry has a singularity at zero precisely when I + Ry(0)V,
which is a compact perturbation of the identity, is not invertible.

We denote the null space of I + Ry(0)V by
M:={¢p e L®| ¢+ Ro(0)V¢ = 0}.

If M # @, we say that H is of exceptional type, while if M = @, we say that H is of generic type.

The sesquilinear form —(u, V'v) is an inner product on M; see Lemma 2.2. This pairing is well-defined
when V € L3*! because u,ve L3>*NL*® by Lemma 2.1.

Let £ := M N L? and P, be the orthogonal L? projection onto £. In Lemma 2.3, we provide a
characterization of £ and show that codimy £ < 1.

The set £ := £ N L also plays a special part in the proof. In Lemma 2.5, we give a characterization
of £; and prove that codimg &1 < 12.

A function ¢ € M \ € is called a zero-energy resonance of H. Following [Jensen and Kato 1979;
Yajima 2005], we classify exceptional Hamiltonians H as follows:

(1) H is of exceptional type of the first kind if it has a zero-energy resonance, but no zero-energy
eigenfunctions: {0} = & C M.

(2) H is of exceptional type of the second kind if it has zero-energy eigenfunctions, but no zero-energy
resonance: {0} € & = M.

(3) H is of exceptional type of the third kind if it has both resonances and eigenfunctions at zero energy:
{0} & M.

1B. Main result. When H is of exceptional type of the first kind, we let the canonical resonance be ¢ € M
such that (V, ¢) > 0 and —{¢p, V¢p) = 1 (one can make these choices by Lemmas 2.3 and 2.2, respectively).
Using the canonical resonance ¢ (x), we define a constant ¢ and a function {;(x) by

‘- LZP () = ¢ g ().

(V. )
We also define a function p;(x) by

ilx|2 i10x|2

- 1
/L;(x):=l—[ (e i —e"E ) db.
Ix] Jo
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Let the operators R(¢) and S(¢) be given by

_j3r

ae” 2
R(1) := $r(x) ® e (y),
V7 (1-2)
—i3z _ 2 _
S(t) == eﬁ (—iP0V| 24y| VP + e (x )| lVP + v = y|ut(y))
Note that

_1
IR@)ullps.c0 +1S(Oullps.00 S 172 [ul[L3/2.1.
Proposition 1.1 (main result). Assume that (x)>V € L2 and that H=—-A+V is exceptional of the
first kind. Then, for 1 < p < % andanyu € L> N L?,
e -1(-7)
Peu=Z0u+ RWOu, |[Z@Oulp,r St 237 2| flLe,

where p' is the dual exponent, that is, — + # = 1. Furthermore, assuming only that V € L%’l,
for 5<p=2

. 1_1 i _1
le™ T Peull . <1t G2 e, e " Peul| oo <072 |l ps2-

Assume that (x)*V e L2 and that H = —A+V is exceptional of the second or third kind. Then, for
1 §p<%andanyueL2ﬂLp,

w

. 3(1_ 1
e " Peu = Z(t)u+ ROu+ SOu, | ZOullpy S 3G lullze, (1-3)

where R(t) is missing if H is an exceptional Hamiltonian of the second kind.

In the case when all the zero-energy eigenfunctions of H are in L', one can omit S(t) from (1-3).

Assume that (x)*V € L3> and that H = —A+V is exceptional of the second or third kind. Then, for
3
5 < p E 27
2

. 1_1 _i _1
le™ H Peullpy St 3G ”/)”“”LP’ le™ ™ Peullps.co S 072 ullgss2

Note that, in terms of powers of x, the decay conditions on the potential correspond to |V| < (x) ™27,

[VI<(x)™* and [V] < (x)7".

Additionally, note that these decay estimates also imply a certain range of Strichartz estimates.

The rest of the paper is dedicated to proving this main result, which is a combination of Propositions 2.13,
2.15, 2.18, and 2.19. For brevity, we omit the proof in the case when H is an exceptional Hamiltonian of
the second kind, which is similar to the case when H is exceptional of the third kind.

1C. History of the problem. We study solutions to the linear Schrédinger equation in R® with potential
id;u+ Au—Vu=0, u(0)given.

By the RAGE theorem, every solution is the sum of a bound and a scattering component. The quantitative
study of scattering states began with Rauch [1978], who proved that if H = —A + gV, where g € C,
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with exponentially decaying V, then e/ P, has a local decay rate of t_%, with at most a discrete set of
exceptional g for which the decay rate is {~2. Here P, is the projection on the space of scattering solutions.

Threshold estimates in the presence of eigenvalues and resonances go back to the work of Jensen and
Kato [1979], who obtained an asymptotic expansion of the resolvent R(¢) = (H —¢)~! into

1 1
R(O)=—{'"B_y—i{ 2B_y + By +il2By+-+-

and similar ones for the spectral density and the S-matrix. The condition imposed on the potential was
polynomial decay at infinity of the form (1 + |x|‘3)V(x) € L%([R{3), where 8 > 2.

The possible singularities in this expansion are due to the presence of resonances or eigenstates at zero.
B_, is the L? orthogonal projection on the zero eigenspace, while B_; is given by

B_, =PV

Ix—ylzwD
B O_¢®¢’

4
where ¢ is the canonical zero resonance; see above.
Jensen and Kato also obtained an asymptotic expansion for the evolution ¢/* P, in two cases: if zero
is a regular point, then

GtH P, — _(4mi)y 273 By +o(t72),
and if there is only a resonance ¢ at zero then
MH P, = (i) 2172 @ +0(t72).

Murata [1982] extended these results by obtaining an asymptotic expansion to any order, for a more
general evolution, with or without singular points, and then proving that each term in the expansion is
degenerate. Murata’s expansion and proof are valid in weighted L? spaces.

Erdogan and Schlag [2004] obtained an asymptotic expansion of the evolution e/ P, in the pointwise
L'-to- L setting using the Jensen—Nenciu lemma [2001]. The condition assumed for the potential
was that |V(x)| < (x)7!127€. The same method works in the case of nonselfadjoint Hamiltonians (see
[Erdogan and Schlag 2006]) of the form

2 = —A+p+V |Z)
- —V2 A—/L—Vl ’

assuming that |V (x)| 4 | Va(x)] < (x)~107¢,
At the same time, Yajima [2005] proved a similar expansion for generic Hamiltonians H = —A + V

when |V (x)| < (x)_%_e, for singular Hamiltonians of the first kind when |V (x)| < (x)727¢, and of the

second and third kind when |V (x)| < (x)_%_e. His main result stated the following:
Theorem 1.2 [Yajima 2005, Theorem 1.3]. (1) Let V satisfy |V (x)| < C(x)~P for some p > % Suppose
that H is of generic type. Then, for any 1 < g <2 < p < oo such that % + é =1,

1_1

le™"H Peull, < sz_3(2 ) lully.  where ue L* N LY. (1-4)
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(2) Let V satisfy |V(x)| < C(x)" for some B > 171 Suppose that H is of exceptional type. Then the
following statements are satisfied:

(a) Estimate (1-4) holds when p and q are restricted to % <qg=<2=<p<3and % + é =1.

(b) Estimate (1-4) holds when p =3 and g = % provided that L*® and L3 are respectively replaced by
Lorentz spaces L* and L3,

(c) When3 < p<oocandl1 <gq< % are such that % + é = 1, there exists a constant Cpq such that, for
any u € L*N LY,

[ Pe— R() = S|, S Cpgt >33 u,.

If H is of exceptional type of the first kind, statement (2) holds under a weaker decay condition
V(x)| < Clx) P with B > 3.

However, note that, due to a mistake in the proof, the requirement g > % should be replaced by g > 8.

When the zero-energy eigenfunctions ¢ of H have enough decay, both R(¢) and S(¢) can be taken to
be zero. Indeed, Goldberg [2010] showed that if V € L27€N L27€ and the zero-energy eigenfunctions
are in L' then e 7"H Py oo < =2 ||| 1. We retrieve a similar result in our context.

Some of our results for exceptional potentials of the first kind hold under the same decay assumption
as those for generic potentials: V € L3, A similar fact was also recently noticed by Egorova, Kopylova,
Marchenko and Teschl [Egorova et al. 2014] in dimension one.

Several results [Journé et al. 1991; Goldberg and Schlag 2004a; Goldberg 2006; Beceanu and Goldberg
2012] address the issue of pointwise decay in the case of generic Hamiltonians — for L3 €nL3+e
potentials in [Goldberg 2006] and Kato-class potentials in [Beceanu and Goldberg 2012].

Results obtained in other dimensions include [Cardoso et al. 2009; Egorova et al. 2014; Erdogan et al.
2014; Erdogan and Green 2010; 2013a; 2013b; 2013c; Goldberg 2007; Goldberg and Green 2014; 2015;
Green 2012; Schlag 2005].

The current result, Proposition 1.1, represents an improvement on [Yajima 2005] by half a power of
potential decay for exceptional Hamiltonians of the first kind. We expect the rate of potential decay from
Proposition 1.1 to be optimal for this sort of result.

The same considerations apply in the case of exceptional Hamiltonians of the second and third kind,
also leading to similar improved results. These will constitute the subject of a separate paper.

Below we mostly follow the scheme of Yajima’s proof [2005], making the changes from Holder spaces
to Wiener spaces needed to improve the result. The proof method that we use here is the same as in
[Beceanu 2011; Beceanu and Goldberg 2012].

2. Proof of the statements

2A. Notations. We denote the usual Lebesgue spaces by L? and the Lorentz spaces by L?*, where
1 < p,q < oo. Note here that LP-P=L? [P is weak-L?, and LP91 C LP92 for g1 < ¢,. For the
definition and further properties, see [Bergh and Lofstrom 1976].
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Let Sobolev spaces be W*?, where s € R and 1 < p < oo, and denote weighted Lebesgue spaces by

SLP ={f(x)g(x)| g€ L?}.
Fix the Fourier transform to

fo=[ e rman fw=en [ e
Let Ro(A) := (—A —X1)" ! and for A € R,
Rog(h) := ll.(Ro(A +i0) — Ro(k — i0)).
Concerning the Fourier transform, resolvents, and the free evolution, note that with our definitions
¢ = (Roa(1)" (0).
Roa(V) = (")~ for A e R,
iRo(}) = (X[0.00) ()€™ H0) (1) for Im A < 0.
Likewise let Ry (A) := (=A 4+ V =)~ L.
Also, let
¢ x4 be the characteristic function of the set 4;
¢ M be the space of finite-mass Borel measures on R;
¢ §, denote Dirac’s measure at x;
(x) = (1 +1x2)2;
B(X,Y) be the Banach space of bounded operators from X to Y and 5(X ') be the Banach space of
bounded operators from X to itself;

e C be any constant (not always the same throughout the paper);

e a <bmean |a| < Clb|;

¢ S be the Schwartz space;

* 1 ® v mean the rank-one operator (-, v)u;

e K(x, y) denote the operator having K(x, y) as its integral kernel.
For a potential V, let V; = |V|% and V, = |V|% sgn V.

2B. Auxiliary results. Recall that M is the kernel of 7 + Ry(0)V in L°.

Lemma 2.1. Let V € L%’l; then M C L3, Conversely, any ¢ € L>™ that satisfies the equation
¢+ Ro(0)Vp = 0 must be in L°°, hence in M.
Proof of Lemma 2.1. Let V.= V! 4+ V2 where V! is smooth of compact support and ||V ?||;3/2.1 < 1.

Then, if ¢ solves the equation

¢ =—(I+ Ro(0)V?) ' Ro(0)V'¢

= _( Z(_1)k(R0(0)V2)k)RO(O)V1¢,

k=0
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where the inverse is the sum of a Neumann series, and thus is bounded on L3:* and on L°°.

If p € L, then V¢ € L'; hence Ry(0)V1¢p € L3, s0 ¢ € L3,

If ¢ € L3, then V'¢ € L3:!; hence Ro(0)V !¢ € L™, s0 ¢ € L. O
Lemma 2.2. The quadratic form —(u, V'v) is an inner product on M.
Proof. Suppose that u, v € M. By the definition of M, observe that —(u, Vv) = (u, —Av), where
ueL»*NL®byLemma2.1land —Av=VvelLln L3*!. Thus the pairing is well-defined.

Furthermore, Vit = VRy(0)Vu € L3 L3 C L2 and the same holds for Vv, so their pairing is
also well-defined and we can write (u#, —Av) = (Vu, Vv).

This expression is positively defined because, setting # = v, the equation (Vu, Vu) = 0 implies that u
is constant; hence, in view of the fact that u € L3 by Lemma 2.1, u = 0. O

Recall that £ = M N L2,

Lemma 2.3. Assume that V € L3, Then, for any ¢ € M, we have ¢(x) € (x)~1 L.
Assume that V € L' N L%’l. Then, for any ¢ € M, we have

o0~ )

47| x|
Thus ¢ € M is in & if and only if (¢, V) = 0; thus codim g € < 1. Also, £ C (x) 2L,

. 3 . . . .
Proof of Lemma 2.3. First, assume that V € L2!. Rewrite the eigenfunction equation

1 1
px)=—— | —=VOe()dy
4 Jgs |x — y|

e lx|7L3 N |x|TL® ¢ L2,

as

1 Cx—
xlp(x) + — / P =0y ) 16 () dy
4 Jiy=r 1x—=yllyl

1 1 x| —|x —y|
=1 A3 V(e (y)dy — EflylSR ———— V(e (y)dy.

|x —y|

Note that ‘|x| —|x —y” <|y| and limg— o HX|X|ZR(X)V(X)”L3/2’1 = 0. Then, for sufficiently large R,

we can invert
x| —[x =yl

(Top)(0) =4+ 7 [ V0 dy

=R X —=ylyl

as an operator in B(L>). Since ¢(y) € L3°° N L, the right-hand side is in L, so we obtain that
[x|p(x) € L*°.
Next, assume that V e L1 N L%’l. Start from
(9.V) 1 1 1
¢ (x)— = — 1 |V ) dy
lx—yl x|

dr|x| 4x R3
1 lx| —Ix =yl

=— — V(y)o(y)dy,
dm|x| Jrs  |x—yl

which is bounded in absolute value by

L[ Voo,

4mlx| Jps [x—yl
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Since ¢ € (x)"1L® and V € L' N L2"!, this expression is in x|~ LN [x|~' L3 ¢ (x)~1 L3 c L2.

Since whenever (¢, V) # 0 we have (¢, V)/(4r|x|) & L?, it follows that for ¢ to be in L? it is
necessary and sufficient that (¢, V) = 0.

The space £ is then the kernel of the rank-one map ¢ — (¢, V') from M to C, so it has codimension
at most 1.

Finally, we already know that £ C M C (x)~! L. The eigenfunction equation for a function ¢ € £
for which (¢, V') = 0, can be written as

1 X[ —Ix -yl

$0) = ——— Iy (g () dy.

a7 Jo =yl
We further rewrite it as

s Gxl=lx =) )
¥ ¢<x>+4n/||>R e VW Pow) dy
o _ 2
/ (x| =[x = YD V()9 () dy — / = =D g () ay.
4r Iy|<R |x —y]

The right-hand side is in L°° and, for sufficiently large R, the left-hand side is invertible, as above. This
shows that |x|2¢(x) € L. O

We can continue the asymptotic expansion of eigenfunctions to any order, but first we need the following
lemma.

Lemma 2.4. For x, y € R3,

1 1 2
—(—+ "ﬂ)‘ <M @-1)
Ix=yl \lxl x| Ix[?|x =yl
and , ) ;
1 1 3
_(_+ xy3 |yl 3_ (xy)5 )‘ < 3Iyl . (2-2)
Ix—=yl \lxl IxP 0 2lxP 20x] IxXPP|x =yl

More generally, it seems to be the case (one can prove by induction) that

k |N+1
(y,--~,y)’ N -
IX+y| Z IIN“IX vl
Proof of Lemma 2.4. Indeed, we start from
1 1 2xy |y]?
(x? +2xy + [p11)2 = ()2 = + : (2-3)
lx +yl+Ix] |x+ ]+ [x]
Then
2xy xy||xp(xl=Ix+yD | v
Ix+pl+Ixl Ixll [(x+pl+1xDIx ™ |x]
Therefore,

VP .

Xy
eyl == S
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Consequently,

Ix —yl- |X|+—+}xy(lxl v = yD| S P 1xl.

[ (1x] =[x = y)) = xplx = ]| < |x? ™

Dividing by |x|3|x — y|, we obtain (2-1).
We next perform a more detailed analysis of the same inequality. In (2-3), by (2-4) we have

xy(x|=lx+yD)  (xp)?
(Ix +yl+IxDixl — 21x]

Clxrxl =l 40D xp(xl=lx+pD| [ Ry

TlAx 4y xD x| 2|x|? 2|x|? x|
Furthermore, also in (2-3),
|yI? yI? _ Iyl
x + [+ x| 20x] ™ le2
Therefore,
PN I? el Lyl 2.5)
x| 20x] o 2fx P 7 |x]?
By (2-4) and (2-5), we then obtain (2-2). O

We can now establish the asymptotic expansion of eigenfunctions.

Lemma 2.5. Assume that V€ L' N L3!. Let ¢ € & be a zero-energy eigenfunction of H. Then

3
$(x)— Y (V, yk>| |3 € [x[TH(L>® N L™).
k=1
Further assume that V € (x)"'L1 N L3, Then
3

- Ske 3
B0~ V) s = 30 Vo) (515 - A ) el @i L),

3 5
P XA, 25’ 2]

In particular, ¢ € € is in L' if and only if (V, yi) =0and (V, yrye) =0 for 1 <k, £ <3.
Let & :=EN L. Then codimg & < 12.
Proof of Lemma 2.5. We start from the eigenfunction equation
1
P(x) = QT e~
Recall that (¢, V) = 0. Using (2-1), we obtain that
3 2
X 1 IFIV o) dy
b= 2 o |5 [ .
‘ 2 X3 1] Jgs X — |

k=1

V(y)g(y)dy.

Since ¢ € (x)"2L>® and V € L' N L?"!, the right-hand side is in |x|~2(L*% N L®).
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Using (2-2), we obtain instead that

3

d 8 1 3|y d
B =2V Z<¢V,ykye>( Kt 3xm)‘< /R PVl dy

3 3 5 ~ 3 _
P P A 2xF 2P )| Y ad x>l

Since ¢ € (x)"2L>® and V € (x)~'L' N L?!, the right-hand side is in |x|~3(L3%° N L>).
These estimates matter only in the region {x : |x| > 1}, since near zero, ¢ € L>® C L!({|x| < 1}). As
|x|73 L3 c L'({|x| > 1}) and
Xk Spe 3xpxyg
X" 2P 20

gL'

are linearly independent, it follows that ¢ € £ is in L! if and only if all the coefficients (V¢, y) and

(Vo, yrye) are zero.
Then &, is the kernel of a rank-12 map ¢|—>((¢V, Vi) (¢Va)’kye)) from & to C12, so codimg £ <12. O

2C. Wiener spaces.

Definition. For a Banach lattice X, let the space Vy consist of kernels 7'(x, y, o) such that, for each
pair (x, y), we have that T'(x, y, 0) is a finite measure in o on R and

M@Y= [ dIT G0
is an X -bounded operator.

Vx is an algebra under

(T} % Ty) (x, 2, 0) = [ Ti(x.y. T2 (y. 2.0 — p) dy ds.

Elements of V y have Fourier transforms
T(x,y, )= / eTOM AT (x, y, 0),
R

which are uniformly X -bounded operators, f(k) € LY°B(X), and, for every A € R, we have T (k)fz N =
(Ty * T)"(A).

The space Vx contains elements of the form 8¢ (0) T (x, y), whose Fourier transform is constantly the
operator T'(x, y) € B(X). In particular, rank-one operators 8o(0)¢(x) ® ¥ (y) are in Vx when ¥ € X*
and ¢ € X. More generally, f(0)T(x,y) € Vx if f € L' and T € B(X).

Moreover, for two Banach lattices X and Y of functions on R?, we also define the space Vyx,y of
kernels 7'(x, y, o) such that M (T)(x, y) is a bounded operator from X to Y. The category of such
operators forms an algebroid, in the sense that

1Ty *Tallvy , < Tillvy 2 T2llvy y-

For example, note that

(Ro((A +10)%))" € V321 poo NVp1 300 and (33 Ro((h +i0)%)" € Vi1 poo.
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Indeed, the Fourier transform in A is

(Ro((r +10)%))"(0)(x, y) = (470) " 16)5—,)(0),

so we have :
Ro((A+i0 . —
M((Ro(G:+100%)") =
Clearly 1/(4x|x — y|) is in B(L>*!, L®) N B(L', L3*).
Likewise,
(3 Ro (A +10)2))"(0)(x, ¥) = (47) i85, (0),
so we have

M ((3; Ro(( +10)))") = dm) 1 @1,

which is in B(L', L®).
A space that will repeatedly intervene in computations is

W= {L | LY € V322N Vy32, (0, L)Y € VLs/z.z,L&z}.

This space has the algebra property that L, L, e W => L{(A)L,(A) € W.
The following technical lemma will be useful:

eislx—yl
(=

oislx—yl
M
(( Ydx|x -y

M((Ro((S-HO) )= Ro(0)

Lemma 2.6 (Fourier transforms).

TR

1®1

M((RO((S—HO)) ZRO(O)—Z s18l
S

52

))-
) )=
))-%
M((a Ro((s+10)) RO(O))A) ol y|
))-
M((asRO((S—I—zO)) Ro(@)—is 4&) )

Proof. Let a > 0. Observe that the Fourier transform of ¢?*4 in X is 8,(¢). Then

ila a
-1 )
e - =/ elkb db,
l 0

o) ( ila 1)/(1)\)) = X[0,a](A). Also

ei}‘a—l—ika_ aei)ub_ldb
e _/0 A ’

823



824 MARIUS BECEANU

so (€™ —1—ira)/(iA?))" = (a—1)X[0.4(1)-
Note that

oislx—y]

Ro((s +i0)?) = ————
4 |x —y|
has the Fourier transform §|y_,(0) /(47 |x — y|). Thus

eislx—y| A B 5|x—y|(0)
dr|x—y|) — Aw|x—y|

Ro((s +i0)?)" = (

Integrating the absolute value in o, we obtain 1/(47x|x — y|).
Likewise,

(Ro((S +i0)%) — Ro(0) )A _iX[0,lx—y(0)
s C Amlx—y|

Integrating the absolute value in o, we get 1/(4n) = (1® 1)/(4m).
The Fourier transform of the derivative is

(a Ro((s +10)%) — Ro(0) ) 0 X0 x—y))(0)
s S B dr|x —y|

Integrating in o, we obtain |x — y|/(87).
Next,

(Ro((s +i0)2) — Ro(0) —is1 ® 1)A B (eislx—yl —1—is|x —y|)A
. =

s 4rs?|x — y|
_ (Ix=y1=9)xpo.x—yn (@) (2-6)
4r|x — y|
Integrating in o, we obtain |x — y|/(87).
The Fourier transform of the derivative is

5 Rolls +i0)%) — Ro(0) —is1@1\" _ o(1x = y[=0)X[0,1x—y1(0)

g 52 4|x — y| ’
Integrating in o', we obtain |x — y|?/(24x). O

2D. Regular points and regular Hamiltonians. Before examining the possible singularity at zero, we
study what happens at regular points in the spectrum.

Recall the notation V; = |V|% and V, = |V|% sgn V. The following two properties play an important
part in the study:

Lemma 2.7. Let

_ ax)i(y)

T(x,y,p)i=—————
dr|x —y|

5—|x—y|(p),
50 f(k) = VaRo((A + i0)?)Vy. Then:

(C1) limg ||XpZR(P)T(/0)||VL3/2,20VL3,2 =0.
(C2) For some N > 1, we have lim¢_,q | TN (p + €) — TN(,O)||VL3/2,20VL3,2 =0.
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Here the powers of T' mean repeated convolution. We refer the reader to similar properties that appear
in the proof of [Beceanu and Goldberg 2012, Theorem 5].

Proof of Lemma 2.7. Suppose V7 and V, are bounded functions with compact support in B(0, D). It
follows that for R > 2D, we have x(%)7 (1) = 0, so in particular

||XtZRT||VL3/2.2ﬂVL3,2 —0

as R — oo, and property (C1) is preserved by taking the limits of V; and V, in L3-2.
Next, fix p € (1, %] and assume that V; and V, are bounded and of compact support.
Since V; and V, are bounded and of compact support, 7" also has the local and distal properties

: Va(x)Vi(y)
lim | y < (|x — y|)) ————— =0,
€—>0 lx =yl B(L3/2:2)NB(L32)
. V5(x) V.
lim ‘X>R(|x—yl)M =0.
R—o0 |x - yl B(L3/2.2)NB(L3-2)

Combined with condition (C1), this implies that for any € > 0 there exists a cutoff function x compactly
supported in (0, co) such that

IX()T(P) =T (P)v, 3,220V, 3, <€

Thus, it suffices to show that condition (C2) holds for x(p)7 (p).
The Fourier transform of y(p)7 (p) has the form

eik|x—y|
(XD T (p)" ) = Va(x) ———x(Ix = yDV1 (). -7
4|x — y|
Such oscillating kernels have decay in the L? operator norm for p > 1. By [Stein 1993, Lemma on
p. 392], with p’ being the dual exponent, that is, we have % + # =1,
_3
| T (N M) f || r SA 71/ lILe- (2-8)

Taking into account the fact that (x(0)7 (p))” (1) has a kernel bounded in absolute value by

1 1
V)2V (y)|2
4m|x —y|

(where |V|% = V7 is bounded and has compact support by assumption), it follows that (x(0)7 (0))"())
is uniformly bounded in B(X, L?), B(L?, X), and B(L?) for all A, where X is L32or L32, Therefore,
by also using (2-8) for the middle factors,

A N _3WN-2)
(TN W)™ [y )™ 7 1flx.
For N > 2+ ZTP/, this shows that d,( x(P)T(p))N are uniformly bounded operators in B(X), where X is
either L3°2 or L32. Since (X(,o)T(,o))N has compact support in p, this in turn implies (C2).
For general V € L%’l, choose a sequence of bounded compactly supported approximations for which

(C2) holds, as shown above. By a limiting process, we obtain that (C2) also holds for V. O
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Lemma 2.8. Let f(k) VaRo((A +10)2)V;. Assume that V € L2 and let Ao # 0. Consider a cutoff
function x. Then, for € < 1, we have

x(A20)a + Toy T ew

The same holds for g = 0 if V is a generic potential.
Infinity has the same property: for R > 1, we have

O—%(%)y1+fOﬁ_levv

Proof of Lemma 2.8. Note that I + T'()o) is invertible in B(L?22) and in B(L32) for all Ay # 0, the
only issue being at zero.

Indeed, assume that 1 + T(ko) is not invertible in B(L%’z); then, by Fredholm’s alternative, there
exists a nonzero f € L3 such that

f==VaRo((ho +i0)*)V; f.

Let V1 = V1 + V2 and V, = V1 + V2 where V1 and V1 have compact support and are bounded with
||V12||L3.2, ||V2||L3.2 < 1. Then

[ =—(I+VaRo((ho +i0)H) V2 + V2 Ro((ho +i0)H) V) " V) Ro((ho +i0)) V] /£,

which implies that 1 € L?. Letting g = Ro((Ao +10)?)V; f, we obtain a nonzero L% solution g of
the equation
g =—Ro((ko +i0)*)Vg.

However, this is impossible for Ay % 0 due to the results of Ionescu and Jerison [2003] and Goldberg and
Schlag [2004b].

When 1o = 0, we have that g is a zero-energy eigenfunction or resonance for H = —A + V, which
cannot happen if V' is a generic potential.

Let

5e0) = x(A22) (T () = T Gho)).

A simple argument based on condition (C1) shows that lim¢_,¢ || S/ v, 372,20V, 3, =0. Then

x(220)a+ T =x(2) (1 + TG0 +x(25 “)(T(k) 7))

A—A = - S —1\k
= 1(20) T+ T (o)™ Z(—l)k(szemu + T
k=0
The Fourier transform of the series above converges for sufficiently small €, showing that
(X()\ )LO)(I + T()»)) ) €EVr322N Vo,
Concerning the derivative,

x(220)0, 1 + Toy = —x(220) ( + Ty on T o

SR+ T
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Here
)\-—)\.0 ~ -1 vV ~ y
(X( 2¢ )(1 +T() ) €Vys22NVps2 and  (T(X)Y €Vps2a gz
since
V. 1%
M((aAT(A))V):| 2(X)|f>| 1
T
Then -~ )
(X( _e 0>8A(1+T()»))_1) € V322 132

At infinity, for any real number L, one can express (1— x(%))7 () as the Fourier transform of

Sr(p) = (T = RIR) = T)(0) = [ RA(RO)[T(0)=T(p=0)] do.

Thanks to condition (C2), the norm of the right-hand side integral vanishes as L — oo. This makes it
possible to construct an inverse Fourier transform for

O R ) DB (B )

via this power series expansion, which converges for sufficiently large R.
Ifonly T N gsatisfies (C2) then one constructs an inverse Fourier transform for

(1-x(%))d = =¥y
in this manner and observes that
N-1
(1= (%)) + T = (1= (%)) = ToPN) " =DF T,
Finally, concerning the derivative in a neighborhood of infinity, we note It{hza(i
(1- X(%))axu +700) ™ =~ (1- x(%))(l + 7o) T (1 X(%))(I Loy
Here
1—y 24 (I + f()»))_l : €Vyr322NVy32 and (3kf()»))v €Vy3/22 132,
R
Therefore, v
(1-x(%))mt +700™") €vivea paa. 0

In the case when H is generic, we can cover the whole spectrum [0, 0o) by open neighborhoods of
regular points, plus an open neighborhood of infinity, and choose a subordinate partition of unity. We
retrieve a form of [Beceanu and Goldberg 2012, Theorem 2]:

Theorem 2.9. Let V € L>' be a real-valued potential for which the Schrodinger operator H =—A+V
has no resonances or eigenvalues at zero energy. Then

—i _3
le™ ™ Pe flloo S 1617211 11 (2-9)

In the context of the wave equation, again if the Hamiltonian H is generic, we retrieve the results of
[Beceanu and Goldberg 2014].
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Proof of Theorem 2.9. Consider a sufficiently large R such that
(1- X(%))(I LT Tew

by Lemma 2.8. Also by Lemma 2.8, for every A¢ € [-4R,4R] (including zero, since V is a generic
potential), there exists €(Ag) > 0 such that

A — %o 1
((M)(HT(A)) ew.

Since [-4 R, 4 R] is a compact set, there exists a finite covering
—4R.4R]| C U M —€(hi), hi +€(hp)).

Then we construct a finite partition of unity on R by smooth functions 1 = Z}cvzl Xk (X)) + Xoo (),
where supp oo C R\ (—2R,2R) and supp xx C [)»k —e(Ap), Ap + e()»k)]. By our construction, for
each 1 <k < N and for k = oo, we have x;(A)(1 + YA”()M))_1 € W, so summing up we obtain that
I+TO) ew.

By spectral calculus, we express the perturbed evolution as

P f= ﬁ / " (Ry (+10)-Ry (-i0) f d
:L/ ™ Ry (h+i0)?) fAdA
Tl 00
=% "™ (Ro((A+i0)2)~Ro((A+i0)) Vi (I+T (W)™ VaRo(A+i0)3)) fAd A
2% 295 (Ro((A+i0)2)=Ro((A4+i0)) Vi (I+T (1)~ Va Ro(h+i0)2)) fdA
-5/ ein(3x(Ro((k+i0)2)—Ro(()»+l'0)2)V1(“‘f()‘))_lVZRO(()""iO)z)))V(p)fd’O'

(2-10)
Since (I + ]A”()\))_1 € W, it follows that (8;\ I+ TA“()\))_I)V € Vp3/2.2 1 3.2. Taking into account that
Ro((A+i0)®)V; € Vit p32.2 and V2 Ro((A + i0)?) e V3.2 oo, We Obtain that

Ro((A+i0))Vi(I +T () " VaRo(A+1i0)%) € V1 poo.

By definition, this ensures a bound of |¢ |_% for this expression’s contribution to (2-10). The other terms
are handled similarly. O

We next consider the effect of singularities at zero.

2E. Exceptional Hamiltonians of the first kind. Let

1
PETH (T

1z

0=- (V2Ro(0)Vy —z1)
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and O = 1 — Q. Assuming that H = —A + V has only a resonance ¢ at zero, then (recalling that
—(¢, V¢) = 1), by the analytic Fredholm theorem,

0=-V0QV¢.

The resonance ¢ € M satisfies the equation ¢ = —R(0) V. Since ¢ € L3> N L, we have that
0 is bounded on L3 and on L32, so the constant family of operators Q is in W. Moreover, Q is in
B(L3:2, L3?) and in B(L32, L3:2).
Note that, since
M <min(1,Ax—y)) = M1 <A x— ),

one has
eiAx—yl

1
- |x_y|)V1(y)S V2 ()| A Vi (p)]. (2-11)

Vz(x)(
|x =yl

Thus, when V' € (x)_lL%’l,
I+TM) =1+ VaRo((A+i0)>)V;

is Lipschitz continuous in B(L?). This implies that, more generally, when V € L%’l, we have that YA”()»)
is continuous in B(L?) (the proof is by approximation).
In a similar manner, by approximating V € L2 with (x)_zL%’1 potentials, we obtain that f()\) is
continuous in B(L%’z) NB(L3?).
Let
K=(I+V,Re(0)V; +0Q)' 0.

Then K is the inverse of O (I + j\“(O))Q = Q(I+ VZRO(O)VI)Q in B(QL%’Z N QL*?), in the sense that
KO(I +V2Ro(0)V1)0 = Q(I + VaRo(0)V1) 0K = Q. (2-12)

By continuity, Q(I + VoRo((A+1i 0)2)V1)Q is also invertible for [A| < 1.
The following lemma, also known as the Feshbach lemma, is extremely useful in studying the singularity

at zero.

Lemma 2.10 (see [Yajima 2005, Lemma 4.7]). Let X = Xo + X1 be a direct sum decomposition of a
vector space X. Suppose that a linear operator L € B(X) is written in the form

Lo L01)
L =
(LIO Ly
with respect to this decomposition and that LO_O1 exists. Set C = L1 — LloLo_o1 L. Then, L1 exists if

and only if C~! exists. In this case,

-1 (Lo_ol + Lyl Lot C 7 Lyg Ly —LO_OILOIC_I)

—C7'LyoLy, c! (2-13)

By definition, an exceptional point A € C is one where I + V5 Ro(A)V] is not L>-invertible.
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Lemma 2.11. Assume that V € (x)_zL%’1 c(x)7'L'N L2 and that H = —A +V is exceptional of
the first type, with a resonance ¢ at zero. Let x be a fixed cutoff function. Then, for some € > 0,

A ES -1 1 (A dmi
((2)T+TONT =L -2 "4(2) s Ve @ Vig,
€ €/ |(V.9)?
where L € W.
Moreover, zero is an isolated exceptional point, so H = —A+V has finitely many negative eigenvalues.

The computations in the proof of this lemma parallel those in [Yajima 2005, Section 4.3]. The main
difference is using L1-related spaces instead of Holder spaces.

Proof of Lemma 2.11. We apply Lemma 2.10 to

QU+T()N0  QTWQ \ _ (Too®) Tor(M)
eTMC  QU+TG)e) \Ti®) Tuk))

Note that Tog(A) := O (I + VaRo((A +i0)?)V1)Q is invertible in B(OL3?)NB(OL>?) for |A| < 1
because

1+fay=<

Too(0) = O +T(0))0 = O(I + V2Ro(0)V1) 0

is invertible on QL%’z and on QL3’2 with inverse K (see (2-12)), and To(X) is continuous in the norm
of BLOL3%) N B(OL>?) (see (2-11) above).
Furthermore, start from

(Ro((A+i0)*)" € Vps/2a poo NVpi p300 and (B3 Ro((A +10)*)" € Vp1 foo.
We know that
V|2 e B(L22, LYY NB(L®, L3?) N B(L>®, L22)nB(L>2, L)),
Thus Vo Ro((A +i0)2)V; € W and Q preserves that. Then Too(A) € W as well.
Next, since Too(0) is invertible, for small € we have )((%)TO_O1 () € W. The proof is as follows: Let
AN = A~ P
Sc0):=x(5) 2T M -T©0)0.
A simple argument based on condition (C1) shows that lime—o S’ [V, 5/5.,nv, 5, = 0. Then
)1t =)0 ()70~ T
1(%) 7o' ) = x(%) (Too @ + x(32) 2T 1)~ T0) 0

= 1(2) 75 © 32 D (S0 Tgg! OV
k=0

The series above converges for sufficiently small €, showing that X(%)T 0_01 (A) €Vy322NVysa.
Concerning the derivative,

x(2)0 750 00 = —x(2

€

) Teo! (19 Too () (5) Ta' 1)
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. . _ \"
In this expression, ()((ZLG)TOO1 (k)) € V322N V32 and (03 Too(A))Y € Vp3/2.2 p3.2. Thus

(X(%)ak T()_o1 ()‘))V € V322 132,

This computation shows that (%) 75! (1) € W.

Let
T()— (VaRo(0) Vi +id(dm) " Vo @ V)
JA) = e
. VoRo((A + iO)Z)Vl — V2 Ry (0) V4 —i)x(47T)_1 Vo® W

)\.2
Then (recall that Q = —V52¢ ® Vi¢),
T1(M) = 0 +T(W)0 = QI + VaRo((+i0))V})0
= Q(VaRo((A +i0)*)Vi — V2Ro(0) V1) Q
=126 ® Vo (Ro((A +i0)*) — Ro(0)) Vo ® Vi ¢

V, 2
= (5 2E sz e. vl )0
1T
= (ra™' =27 (V19 M) V29)) O
=:Aco(M) 0. (2-14)
Note that ¢o(0) = a~! # 0. Recall that a = 4iw/|(V, $)|>.
By the third line of (2-14), ¢o(A) € L' if

oiMx=yl _
[, [ vesevmem) S| dxdy<cc.
R3 JR3 Ax =yl gy
For every x and y, by Lemma 2.6,
eiMx—yl _ 'X[O,lx—yl](t) 1
Mx =yl |z =yl ey

so it is enough to assume that Vg € L1, i.e., that V € L%’l, to prove that c¢o(A) € L'
In order for 9y co(A) to be in L', it suffices that

eiMx—yl _1
[, [ vesevmem|n S| dxay<cc.
R3 JR3 Alx —y| il
For every x and y, by Lemma 2.6,
5 eiklx—y| -1 _ ZX[O,lx—y\](l) _ |x — y|
AMx =yl gy Ix—yl 2

so dyco(h) € L' when Ve e (x)"'L1 ie,when V e L.
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Regarding J(A), if V € L! then

Ro((A+i0)%) — Ro(0)—ir(4m) 1 ®1
)\2

Moreover, when V € (x)~!L!, we know (9, J(A) V29, V ¢) € Z){
Furthermore, considering the fact that ¢ + R(0)V¢ = 0, let us define

M) = +TO)Vagp = (VaRo((A+i0)3)V —VaRo(0)V )¢
—A( £: 4® +AJ(A))V2¢
AR =T+ TNV = (ViRg((A + i0)%)V —ViRo(0)V)¢

- x( 18V +AJ*(A)) Vi
47

(V2. Vo) = ve)el @19

and

Note that x— |
MI0)") = V)| =2V )

is a bounded operator from L3210 L32, assuming that V e (x)_zL%’l. Thus J(A)Y € Vp3/22 3.2 and
the same goes for Ady J(A).
Moreover,

V V;

Thus (AJ(A))Y € V2 for V € L' and (AJ(A))Y € V3722 N V32 when V € (x)_zL%’l. Further note
that (3, (AJ () = (J(A) + A0 J(X))" € V322 p3.2. It follows that AJ(A) € W.
Then (recalling that Q = —V5¢ ® V1 ¢),

Toi(W):=0TMQ =0 +TO)NQ=UT+TM)0— 0 +T()0
= —AF(A) ® Vig —Aeo(M) O
= — AP Q) +coM)Vap) @ Vi .

Likewise,

Tio(k) = —AV29p ® (V* (L) +co(M) Vi9).

By our above computations, it follows that T1(A) = AE{(A) and T1o(A) = LE,(X) with Eq, E, € W.
Then _TIOO‘)TO_OI (M) To1(A) = A%c1(A)Q, where

c1(h) i=—(Y* (W) +eo M) Vig. To' () (W (M) +co(M) Vag))
(M ) gt 1o o

2f’ Vi +AJ(A)) Vad+co (A)V2¢)>

(2-16)
For example, one of the terms in (2-16) has the form

(AT*M)Vig, Ty MAT (M) V). (2-17)
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Since AJ (%) € W and x(%)T;;! (A) € W and since V¢, V¢ € L3210 L32, it immediately follows
that X( )(2 17) is in L' and its derlvatlve is alsoin L.
We then recognize from formula (2-16) that, for a cutoff function ¥,

X(%)cl(k) el! and X(%)akcl(A) el!

when V € (x)_zL%’l.
Let
C(A):=T11(A) — T1o(A) Tyo' (M) To1 (A).
Then
CA) = (Aa™' =22 (Vig, JW)Vag) + A%c1 (M) Q =: ha™ ' O + A%c2 (1) Q.

Thus C(A)/A is invertible for |A| < 1, and when V € (x)~ 21,3+ one has that

1

—1 _
¢ M= ra=! +2A2¢; (M) Q

1 1 1
- (ka‘l v +22e(A) Aa‘l)Q

_ (a B ca(A) )
—\a (a=' +rea(h))a! 0
=al'Q+ EM).

By our computations, such as (2-15), X( )62 1) € L' and X( )8Kcz 1) € L. Therefore for sufficiently
small €, as O € B(Lz’z) N B(L>2)NB(L32, L3?), it follows that x(2)ER) e w.
The inverse of I + T(k) is then given for small A by formula (2-13):

—1 —1 -1 -1 -1 -1
(I+T)_1 _ Too +Too To1 C™ TioTyy  —Too To1C .
_C_ITIOTO_QI c!
Three of the matrix elements belong to ¥V when localized by x(%). Indeed, recall that x(%) 7' (A) € W,
Tl()()\)=)\E1()\,) and T()l()x)=)\E2()x),Whlle C_l 1E3()\) with E1 E2 X( )E3 e W.

The fourth matrix element is C~! in the lower-right corner, which is the sum of the regular term
X(%)E (A) € W and the singular term

ah” X( )Q——ak X( )V2¢®Vl¢

As an aside, note that A~! (1 — x(%)) € L' and the same holds for its derivative. Thus we can also write
the singular term as aA~! Q.

Further note that (1 + T )~ ! is well-defined on a whole cut neighborhood of zero by formula (2-13)
above. Thus zero is an isolated exceptional point, so there are finitely many negative eigenvalues. [

The next lemma shows what happens in the case when the potential has the critical rate of decay.
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Lemma 2.12. Assume that V € L>! and that H = —A + V is exceptional of the first kind. Let x be a
standard cutoff function. Then

x(2)a+ TG =Ly +47 s,

with L(A) € W and S(A)Y € Vp3.2 13/2.2 for sufficiently small € > 0.
Furthermore, 0 is an isolated exceptional point, so H has finitely many negative eigenvalues.

Proof of Lemma 2.12. We again apply Lemma 2.10 to
0I+T()O  0T(MQ Too() To1(A)
0TMO QU +T()C) \T®) Tu®)

The proof of the fact that )((%)TO_O1 () € W is the same as in Lemma 2.11.
Then note that

1+f@y=<

T11(0) = QU + T(M)Q = O(I + VaRo((A +i0)*) V1) Q
= Q(VaRo((A +i0)*)Vi — VaRo(0) V1) Q
= V2 @ Vp(Ro((r +10)*) — Ro(0)) V§ ® V¢
=:co(1)0.

Observe that co(0) = a~! # 0. Recall that a = 4in/|(V, ¢)|?.
Note that co(A) € L! if

ihlx—yl _
L, [ vewevmem| Sr——|  dxdy <o
Ax =yl gy
For every x and y, by Lemma 2.6,
eiMx—yl _q . H X[0,|x—y|](t) _q
Mx =yl |z =yl ey

50 it is enough to assume that V¢ € L1, i.e., that V € L%’I, to prove that co(A) € L.
Furthermore, recalling that Q = —V,¢ ® V1 ¢,

Toi(\):=0T(M)Q =0 +TMW)Q=U+TH)0-0(U+T(*)Q
— (Va(Ro((x +i0)%) = Ro(0)) Vo + Aco(M) Vagp) ® Vip
. (V Ro((A +i0)2) — Ry (0)

3 Vo + Co()u)V2¢) QR Vig. (2-18)

Likewise,
Tio(A) = —V2¢ ® (Vi(R§((A +i0)*) — Ro(0)) Ve + Aco (M) V1)

RG((A +10)?) = Ro(0)
A

=-A\V20® (Vl Ve + CO_O»)V1¢)- (2-19)
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Thus T and T,); are both in Vy3/2.2 NV 3.2 — T} by the second line of (2-18) and 7y} by the first
line of (2-19)—when V € L3, Indeed, following the definition, this reduces to

/ V2Vl le ()]
R3

3,2
dye L2 NL3>2,
4l — ] VER

Next, —Tlo()\)To_ol M) To1(X) = Ac1(A)Q, where
c1(h) = —<V1 (RG((A+10)*) — Ro(0)) Ve + Aco (M) V1.

Ro((A +i0)*) — Ro(0)
A

7o (72
For example, one term from formula (2-20) has the form

Ro((A +10)%) = Ro(0)
A

Note that Vi (RE((A +i0)2) — Ro(0)) V2 and x(%) T3l () are in W, while

Vg + co(r) V2¢) > (2-20)

<V1 (R((A+i0)*) — Ro(0))VaVig, Too' (M V2 Vi V2¢>' (2-21)

Ro((A +i0)2) — Ry(0 V. 1% 3
(v, 0((A+1i0)%) — Ro( )V1 _ "o N e B(LE2, 13,
A 4
5 Ro((h+0)2) — Ro(0)
Vs 0 i 0 Vi€Vysna p3a.

Taking into account the fact that V¢, V¢ € L%’z, it follows that (2-21) is in L.
Thus we recognize from (2-20) that ¢; (A) € L' when Ve L3,
Further note that, since R ((A + i0)2) — Ry(0) = 0 when A = 0, we have ¢;(0) = 0.
Let
C() = Ty (0) — Tro (W) g () Tor (0),
Then
C(A) = A(co(2) +¢1(R)) Q.

Thus C(X)/A is invertible for [A| < 1 and C~1 (L) = A~ le, (1) Q, with ¢ locally in L. Consequently,
for small €, we have (X(%)AC_I (A))V €Vi32 13/2.2.
The inverse of I + YA"()\) is then given for small A by formula (2-13):

-1 -1 -1 —1 —1 -1
U+ = Tool + Too' To1 C™ 1 Tho Ty =Ty To1 €
—C7 Ty Ty c!
Since Ty,' € Wand Ty}, T\ € Vp3/2.2 N V3.2, while

k _ \2
(X(E)XC 1()\)) €Vr32 1322,
it immediately follows that

MUI+TON =Too (W) € Vpsapinn

and that (1 + YA“)_I, given by formula (2-13), exists on a whole cut neighborhood of zero. O
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Recall that by (1-2)

3

R() = "j% LB, L) = g,

Proposition 2.13. Assume that (x)*V € L3 and that H = —A + V is an exceptional Hamiltonian of
the first kind with canonical resonance ¢ at zero. Then, for 1 < p < % and R(t) as above,

—i

e "M Py = Z(t)u+ R(t)u,

1_ _1 .
G f e, 1Z@ulpsee <02 fllpsrnn.

3

1Z(@Oull <072
Furthermore, for % <p=<2,

. _3(1_1
le™ ™ Peull, <3G 7)) 1.

1 1 _
Here;+7—l.

Proof of Proposition 2.13. Write the evolution as
e MHp = %/ ~(Ro((A +i0)%) — Ro((h +i0)2) Vi T (W)™ Vo Ro((h +i0)%)) fA dA.
R

We consider a partition of unity subordinated to the neighborhoods of Lemmas 2.8 and 2.11. First, take a
sufficiently large R such that (1— X(%))(I +T (A))~! € W. Then for every A € [-4R, 4 R] there exists
€(Ag) > 0 such that

A— Ao _
(()\))(IJrT(k)) ew

if Ao # 0, while the conclusion of Lemma 2.11 holds when Ao = 0.
Since [-4 R, 4 R] is a compact set, there exists a finite covering

—4R,4R] C U M — €M), g + €(hg)).

Then we construct a finite partition of unity on R by smooth functions 1 = x¢(A) + Z}c\; X (M) + oo (1),
where supp xoo C R\ (2R, 2R), supp xo C [—€(0),€(0)], and supp xx C [Ax —€(Ai). Ak + €M) ]-
By Lemma 2.8, for any k # 0, we have y; (A)({ + 7/\“()\))_1 eW,so (1—xo(X))(I + T()\))_l ew.
By Lemma 2.11, Xo(k)f“(k) also decomposes into a regular term L € Y/ and a singular term
—2" 1 xo(M)aVap ® Vig.
Let Z; be given by the sum of all the regular terms in the decomposition:

Z1(0i= 7 [ ¢ (Ro(Go+0)) = Ro(GHi0) VAL V2 Ro (400

—(1=x0 (M) Ro((A+i0)*) V1 T (W) V2 Ro((A+i0)*)) A d

L / ¢T3, (Ro((A+i0)%)—Ro((A+i0)*)Vy L(A) Va Ro((A+i0)?)
R

2t
—(1=x0(A) Ro((A+i0)) V1 T (W) Va Ro((A+i0)?)) d
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_C e_i%(BA(Ro((k+i0)2)—R0((k+i0)2)V1L()\)VZRO(()»—HO)z)

e R y
—(1=x0(A) Ro((A+i0)*) V1 T (M) V2 Ro((A+i0)?))) () dp.

The fact that | Z(¢)u| poe S |z|_% lu| 1 follows by knowing that

(92 (Ro((A +i0)%) — Ro((A +i0)*)V; L(A) V2 Ro((A +0)?)
— (1= xoM))Ro((A +i0)) Vi T (M V2Ro((A +i0)?)))” € Vi1 foo.

The fact that || Z(#)u||z2 < ||ul|z2 follows by smoothing estimates. Indeed, the first term is bounded

~

since it represents the free evolution, and note that
IV2Ro(%10) /12 S0z
e (L(EVR) + (1 - Xo(iﬁ))f(iﬁ))|}L§oB(L2) < o0,

H/ Ro(h£i0)Vy F(x, ) d\
R

S|\ F .
PPN

X

Combining these three estimates, we obtain the 2 boundedness of Z;.

By interpolation between the two bounds, we obtain that, for % + % =1,withl <p=<2,

_3(1_1
12l <3670 o,

as well as
_1
”Zl ([)M”LS,OO s t 2 ||u||L3/2.1.

Let Z, be the term corresponding to the singular part of the decomposition from Lemma 2.11, given by

Z5(1) = % fR eIy W Ro((L +10)2) Ve @ VRo((h +i0)2) dA

iA|z2—y|

a _’[12 eiMx—zl| e
_ 4 / / ) VDV )P (a) S dzy dzy
I JR J(R3)2 47T|X—Zl| 47'[|Zz—y|

The subsequent Lemma 2.14 is the same as [Yajima 2005, Lemma 4.10], the only difference being the
space of potentials for which the result holds. For the sake of completeness, we repeat the proof given in

[Yajima 2005].
Lemma 2.14. For V e (x)~'L3,

I(Za(6) = R@)ullee S 2 ullpr, 1 Za@ulpseo 072 ull sz, (2-22)
Proof of Lemma 2.14. Let b = |x — z1| + |z, — y| and

1 . .
Clt.b) = — / L INAYY
R

LT
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We express Z,(t) as

Zz(z)=/ C(t’b)av(zl)¢(21)v(22)¢(22) dzy dzs.
(®3)? |x —z1]|z2 — |
Note that

e 13‘{’61'%

b
C(t,b) = 7(6 4’ Xo (S)) (2[)

Zol st [ o2 e

1

Then C(¢,b) St~ 2 and

dZ] d22

Clearly
1%
/ |V(Zl)¢(21)| Zl E L3,00 and / | (ZZ)¢(ZZ)| de €L3,00’

R3 R3

|21 — x| x 22— y] i

implying the second half of (2-22):
_1
| Z2(@)ullp3.00 St 2 ullp32.1.

‘We also have

P (L) 1| 2 (17 + 1),
It is easy to see, for

B =2(|x —zil|z1] + |22 = yllz2l + |x — z1]|z2 = p) + |21 |* + |22 |2,
that
B T B R D P B
44
It follows that
e—l 4 t(x2+y2)/4t

3
S(+b+B) 2.
— ( )

C(t,b) -

Then

T AT V(2 (20)V(z2)$(22) dzy dzy
Zz(l) — a
(R3)2 Nt |x —z1[|y — 22

<t_3/ (1+b+4 B)|V(z)¢(z1)V(22)9(22)|
~ (R3)2 |x —z1]]z2 — ¥

Now note that, for V e (x)~! L3 and ¢(x) < x|,

p [ Qb+ DIVEDsGyY (oG
(®R3)?

|x —z1]|z2 =yl

le de <o

and

fR3 V(z))g(z1) dz, — b,

|x —zq]

The first part of conclusion (2-22) follows.

dZ] d22
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Note that R(¢) also satisfies | R(¢)ul|13.00 S 1~z ||l f3/2.1, so the same holds for the difference:
_1
1(Z2(2) = R@)ullp3.00 St 2 ||ull3/2.0.

By interpolation with the L'-to- L estimate of Lemma 2.14, we obtain that, for I < p < 3,

1(Z2(0) = ROullyw <0367 o

Since the same is true for Z1, we obtain for 1 < p < % that

IZ@ullpr = |[(Z1() + Z2(6) = R@)u|| . < 267 il

where e ""H Py = Z(t)u + Z,(t)u = Z(t)u + R(t)u.
. _1 . i
Knowing that || Z; (t)u|  3.00 <t 2 ||| 3/2.1 leads to the conclusion that ||e 7“7 Pout|| ;3,00 <||tt]|p3/2.1.
Combining this with the L? estimate |e ™" P.u|| > < ||u]| 2, we obtain that, for % <p=<2,

i _3(1_1
e~ H Pl < 173G ) .
Thus we have proved all the conclusions of Proposition 2.13. O
Proposition 2.15. Assume that V € L2 and that H = —A + V' is an exceptional Hamiltonian of the

first kind. Then
. 1
le™ ™  Poul|ps.00 S 172 |ull 320,

and, for % <p=<2,
; _3(1_1
e Peull < 172G Jul .

1, 1 _
Herep—l—p,—l.

Proof of Proposition 2.15. Write the evolution as
. 1 . ~
e p = / eI (Ro((M +0)%) — Ro((h + i)V TV VaRo((h +i0)2)) fA dA.
It Jr

We consider a partition of unity subordinated to the neighborhoods of Lemmas 2.8 and 2.12. First, take
a sufficiently large R such that (1 — x(%))(Z + T'(A))~! € W. Then, for every Ao € [-4R,4R], there
exists €(Ag) > 0 such that

A—Ao I
x( o )(1 LT tew

if Ao # 0, while the conclusion of Lemma 2.12 holds when Ao = 0.
Since [-4 R, 4 R] is a compact set, there exists a finite covering

N

[—4R.4R] C | (b — (i) e + €(hi).
k=1

Then we construct a finite partition of unity on R by smooth functions 1 = yo(A) + Z,]C\;l XA+ oo (1),
where supp Yoo C R\ (—2R,2R), supp xo C [—€(0), €(0)], and supp xx C [kk —e(Ag), A + e(kk)].
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By Lemma 2.8, for any k # 0, we have xz (A)(1 + f(}h))_l eW,so (1—xo(A)(I + 7’\“()\))_1 eW. By
Lemma 2.12, xo(A\)(I + f(k))_l also decomposes into a regular term L € }V and a singular term A ~1.S,
with the property that SV € V3.2 13/2.2.

Let Z; be given by the sum of all the regular terms of the decomposition:

Zl(t)::%/ eI (Ro((A+10)2)~Ro (A +i0)%) V1 L() V2 Ro((A+i0)?)
R ~
—(1=x0o(M) Ro((A+i0))Vi T (M) V2 Ro((A+i0)*)) 1. d

:ﬁ / e85 (Ro((A+i0)*)— Ro((A+i0)2) Vi L(A) Va Ro((A+i0)?)
R

—(1=xo(W) Ro((A+i0))Vi T (1) Va Ro((A+i0)%)) d

=£3 e—"%(ax(Ro((x+i0)2)—Ro((x+i0)2)vlL(A)VZRO((HI'O)Z)

12 Jr R
~(I=xo (M) Ro((+i0)) Vi T (W) V2 Ro (2 +i0)%))) (p) dp.
The fact that | Z 1 (#)u|| g < |t|_% lue|| 1 follows by knowing that

(93 (Ro((h 4+i0)%) — Ro((A +i0)*)Vy L(A) V2 Ro((A +i0)?)
— (1= xo())Ro((A +i0))Vi T (M V2 Ro((A +10)?)))” € V1 poo.

Using smoothing estimates, it immediately follows that Z;(z) is L?-bounded; see the proof of
Proposition 2.13. Interpolating, we obtain the desired || Z1 (¢)u||f3.00 < 2 lue|| 3.1 estimate.
Let Z, be the singular part of the decomposition from Lemma 2.12, given by

Zs(t) = % /R eI RO+ 10)2)Vy S(M)VaRo((r 4 i0)?) d . (2-23)

Note that (Ro(()h'i‘l.O)z)Vl)VGVL3/2,2,L3,OO, S()»)VEVL3,2,L3/2.2, and (VzRo(()\+i0)2))V€VL3/2,1,L3,2.
Thus
Ro((A+i0)*)Vi(AS(A)VaRo((A +i0)*) € V321 p3.00.

By taking the Fourier transform in (2-23), this immediately implies the conclusion that || Z, (¢)u| 13.00 <
3 lleell 3721

Putting the two estimates for Z; and Z, together, we obtain that |e ™" P.u|;3.00 < |lullp3/2.1.
Interpolating with the obvious L? bound |e~** P.u|| > < ||u|| 2, we obtain the stated conclusion. [I

2F. Exceptional Hamiltonians of the third kind. We next consider the case in which H is exceptional
of the third kind; that is, there are both zero eigenvectors and zero resonances. Recall that T ) =
VaRo((A+1i0)*) V7.

Lemma 2.16. Suppose that V € ()c)_“L%’1 and H = —A 4V has both eigenvectors and resonances at
zero. Let x be a standard cutoff function. Then, for sufficiently small €,

A ~ M [ VaPoVi  iVoaPyVi]x—y|2VPyV 1% 1%
X(Z)(I‘I‘T()»))_l=L()\)+X(;)( 2PoVy V2 Po |x—y["VP Vi aV2¢® 1¢)’

A2 A A
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where L(L) € W and ¢ is a certain resonance for H =—A +V.
Furthermore, 0 is an isolated exceptional point for H, meaning that H has finitely many negative
eigenvalues.

The computations in the proof of this lemma parallel those in [Yajima 2005, Section 4.5]. The main
difference is in using the space }V instead of Holder spaces.

Proof of Lemma 2.16. We study (I + T(A))™" := (I + VaRo((A + i0)2)vl)‘1 near A = 0.

Let i
0=——o (VaRo(0)Vy —z1) " dz.
270 Jiz41)=6

Take the orthonormal basis {¢y, ..., ¢ N} with respect to the inner product —(Vu, v) for M so that
{¢2,...,¢N} is a basis of £ and (¢, V') > 0. This condition determines ¢ uniquely.

Define the orthogonal projections 7y onto CVi¢; and m, onto V; PyL? with respect to the inner
product —(sgn Vu,v),i.e., 7y = Vo1 ® Vi¢py and mp = — Zj\;z Vag; ® Vi¢j, and let

Qo=0:=1-0, 01:=0mQ. 0:=0m0Q.

The following identities hold in L?:

QjQk =8kl for j k=012, Qo+ 01+ 02=1,
(I +V2Ro(0)V1) Q1 = Q1(I + V2Ro(0) V1) =0,
(I +V2Ro(0)V1) Q2 = Q2(1 + V2Ro(0) V) =0,
0:(V2®V1)00=0, 02(12®V1)01 =0, 02(2®V1)02 =0,
Qo(V2®V1)02=0, 0:1(V2®V1)02=0.
These identities follow from Q,V, = 0 and Q3 V; = 0, which in turn follow from the fact that eigen-
vectors ¢y, are orthogonal to V, that is, (¢, V') =AO for2<k=<N.
We first apply Lemma 2.10 to invert Q(/ + T(1))Q in QL? for small A, after writing it in matrix
form with respect to the decomposition QL% = QL* + Q,L?:
Q\I+T0N01  O1TMO: \  (Tu(h) Tia(h)
02T (M) Q4 Qx1+f@»Q)‘“(nwm15ﬂm)‘
The inverse will be given by formula (2-13); that is,

QU+f@DQ=(

(2-24)

A~ 1 1+1 12 C 11 1 1 —1 11 C 1
1 12 21 12
(Q([ T() ))Q) ( 11 11 22 11 11 22 ,

-1 -1 -1
_sz T21T11 sz
where

Cyy = Toy — To1 T;;' Ty

As in the case of exceptional Hamiltonians of the first kind, let

T() = (VaRo(0) Vi +ir(dn)~ V2 @ V1)

JO) = >




842 MARIUS BECEANU

Then (recall that Q1 = —V>2¢1 ® Vi¢1),
T = 01 +T ()01 = Q1(I +VaRo((A +i0))11) 0,
= 01(VaRo((A +i0)) V1 = V2 Ro(0)V1) 0,
= V21 ® V1 (Ro((A +10)*) = Ro(0)) V1 ® Vi
V, 2
= ()\|<4L>| — 23 (Vig1, J()»)V2¢>1)) 0
in

=:(ha" ' +A%¢; (1) 0.
Here a = 4in/|(V,$1)|> # 0. As in the proof of Lemma 2.11, note that ¢;(A) € L! when V € L! and
d,c1(A) € L' when V e (x)~1L!.

It follows that 77 () is invertible for |A| < 1 in QL? and

1
ra=l+A2¢1(A)

_(a c1(A)
- (X (a ! +Ac1(x>>a—1)Q‘
=1"1a0+ EQ).

T (W) = 0,

Here and below we denote various regular terms by £ (X), i.e., terms with the property that x (%) E(1) e W
for sufficiently small €.
Likewise, since Q,(Vo, @ V) = (VL ® V1)0, =0,

T12(A) = Q1(1 + VaRo((A +i0)*)V1) 0,

I1®1
4

- Q1V2(Ro(()\ 1 i0)%) = Ro(0) —iA )Vle

x_
Z—AZQI(V2| T[.Vlvl +)\,V2€1()\.)V1)Q2
= —szlelx;ﬂVl 0,4+ E),
where
Ro((k +10)?) — Ro(0) —ia 121 4 3.2 5]
el()\,) = T T )
—A3
By Lemma 2.6,
x—y? x— )3
M((e;(AM)") = | 24y| and M ((dye1(M)) = |_y|_
T 967

Thus E(A) := Q1 Vae1(A) Vi Q2 € W when
/(.Rs)z V(x)$1(x)|x = yI*V(»)gx (v) dx dy < o0,

which takes place when V € (x)72L! (recall that |¢; (y)| < (»)™).
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Likewise we obtain | |
—Y

X
8

Tr1 (M) = =A% Q,V; V101 + A EQ);

hence, combining the previous results,

_ X — X —
T T3 T = Ra0:2 v 0,1, P =2y 0, 1 £,
Furthermore,
Tao(A) = Q2(1 + VaRo((A +i0)*)V1) 02
. LIl
= 0272 Ro((h-+10)) = Ry —iht 22 ) 110
_ Y
= —)xz Q2 (V2 |X yl V] + l)\Vz |X yl Vl —)LZV2€2(X)V1)Q2.
Here X
I1®1 — —
(M) = A‘4(R0((k+i0)2)—R0(O)—ik—® _pa sy )
41 8w 247
By Lemma 2.6,
|x =y |x —y|*
M(er(MD) = ———— M Ny = .
(e2(A)™) 96, nd ((Ore2(1))™) 1507

Thus E(A) := Q2 V2e2(M) V1 Q2 € W when
[ VBRI =V OI0) iedy < e,
which holds true when V € (x)2L! (recall that |¢x ()| < (¥)~2). Then

Ix — | Lo =yl
Vi iV
gp L TiIM T

Ty (A) = —szz(Vz Vl) 0>+ A E(). (2-25)

Let Py be the L? orthogonal projection onto the set £ spanned by ¢, . .., ¢n. By relation (4.38) of

[Yajima 2005],
-1

|x — y|
Vi0s ==V PyV1.

8

(Qsz

Also note that
VoPoViQor = Q2Vo PoVy = Vo PyVy.

By (2-25),
B —1
T5,'(A) = —)»_Z(szz |x8ny| i Qz)
o0 ) _ —1\k
S nt((rea o -izem ) (0 o) )
k=0

—y)?
241w

o0
:x—%@HﬂQE:(MVﬂx

1] —A2E(A)) Va Py V.
k=0
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Therefore, by grouping the terms by the powers of A, for |A| < 1,

|2
T3, () = A" 2Va PoVy +id~ VP0V| y'

VPV + E(A).

Then we write
Cao(A) = Taa (W) — Ta1 (W) Ty (W) T12(X)

= (I = T W T W T12(W) Tz (W) Taa ().

By our previous estimates, 751 () Tl_l1 (SYATICS) T2_21 (A) = AE(A), where E(X) € W. Then, by means
of a Neumann series expansion, we retrieve that

C' () = T55' ) 3 (T VT W T2 00 Ty ()
k=0

=T5' W)+ Ty W T2 M M T12(W) T, (M) + EQ,

S0
—1 ) | y|2
C22 ()\,) = V2POV1 +iA” V2POV VP()V]

v, P y|V1Q1V2|x ylVP0V1+E(A).
If we set

b = Pov X 8_y|V¢1eé’
then N | | |
xX—y X—=Yy ~ ~
Vo PyV - VioV, - VP Vi =—=Vap1 @ 1 V7.

Then we get that

Ix yl2

Cort () = A2V PoVy + i)™ Wy PV VP Vi — A" aVady @ 1 Vi + E(N).

Furthermore,

T )T ()l () = (A aQ1+E(A>>A2Q1(V2

|x—y|

V1+AE(A))Q2( T2V, PoVi+id T E(L))

=2"la(-V21®@Vig1) Vs VPyVi+E)

=—a)"'V2$1®¢1 Vi+E(M).
Likewise we obtain
—C3' W TaWT () = —ar ™ Vagy @ 1 Vi + E(),
T W TiaMCoy W) Ta (M T () = E().
By (2-24), we have that (Q(I + T'(1))Q) " is given in matrix form modulo E(X) € W by
(—a)\ W21 ®@ Vigy —ad "' Va1 @ Vi ) 226)

—aA " Wadi @ Vigr AT2VaPoVy +idT Va PV Ixzzrlz VPVi — A" aVagy & Vi
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Therefore, if we define the canonical resonance as ¢ = ¢; — q~51, we have that ¢ satisfies ¢ € M and
(¢,V)=1and

1_ V, Py V1 iV2P0V|x24J7;| VPy Vi _CIV2¢®V1¢
A? A A

(U +T())0)~ +EQ). (2-27)

We apply Lemma 2.10 again after writing / + YA‘(A) in matrix form with respect to the decomposition
L?* = QL?+ QL?, where QL? = Vo, M:

QU+T()0  OTMWQ '\ _ (Soo®) Sor(d)
OT(M0  QU+TMW)0)  \Sw®) Sum))
Next, let A(A) := Soo(A)~!. Then X( JA(L) € W for sufﬁ01ent1y small €. Indeed, it is easy to see

that Soo(A) € W. Furthermore, Sg0(0) is invertible on QL 320 0 L3*? of inverse K; see (2-12).
As in the proof of Lemma 2.11, let

1+?(A)=<

s = (%) 0T -T)0.

A simple argument based on condition (C1) shows that lime—¢ [|Se(A)[lv, 5,5 ,nv, 5, = 0. Then
AN o— A
x(2) 500 = 1(2) (So00) + 1(2) 0T 1) - T(0)2)

=x(%) 001<0)Z( DF (5200555 ©)".

This series converges for sufficiently small €, showing that ( (%) (k)) € V322N V32,
Concerning the derivative,

(k)aks ) = ()‘)S&)l (A)aksoo(x)x(z)‘—e)s&)l ).
In this expression,
(X(%)So_ol (k))v €Vr322NVr32 and (X(%)&ASOO(X))V €Vy3/2.2 132

since M ((9).T00(2)") = (IV2| ® |V1])/(47). Thus

(X(&)akso_ol (M)V €Vy3/22 132,

From this we infer that X( )A(A) € W, so A is a regular term.
We compute the inverse of 1 + T (A) by finding each of its matrix elements:

(2-28)

—C_ISI()A c!

ey = (145w a5

Here
C(A) = S11(A) = S10(AM) A(A)So1(1).



846 MARIUS BECEANU

S10(A)AA)Se1(A) = OT (M) A(A)T (L) QO may be written as

O TMAMT M1 0iTMAMTM)Q2) _ (P En() 2 En®)
02T (WAMT AN Q1 02T M AMT (M) 03 MEn() MEn))

Indeed, consider, for example, O, YA"()L)A()L)YA“()») 0,. It can be reexpressed as

(2-29)

02T (WAMT () Q>
M0V, Ro((k—i-io)z);ZRO(O)—ik% VAT, Ro((k+io)2);2130(0)—ik% ViOs (230
For this computation, we assume that V' € (x)_4L%’1. Taking a derivative of (2-30), we obtain terms
such as
0,Vai; (RO((A+10) )szO(O) irieL )V1 AV RO((Hio)z);ZRO(o)—M% Vi0s  (@3D)

Note that the range of Q, is spanned by functions V¢, with 2 <k < N, such that |¢x ()| < ()2
and V5 € (x)72L3%2, s0 Vo € (y)"*L32. Also

FM2Y) 1 1®1 A 2
M((Vza)\(RO(()\-HO)) Ro®) =% e )Vl)) |V|| y' Vil € B(L??, L32).

A2
Likewise

Ro((A +10)?) — Ro(0) —iAL8L \»
M((Vz o2 T R “”V)) v e s ie i),

This shows that (2-31) € Vy3/2.2 1 3.2. By such computations, we obtain that QZT(X)A(k)f(A)QZ =
A4 E, (M), where X( )E 22(A) € W for sufficiently small €. In this manner, we prove (2-29).
By (2-26), we have S| 11 ) = (QT(A) 0)7 ! is of the form

i (AMYEG) ATVEQ)
St )= ()FIE(A) k‘zE(A)) '

Then, letting N(A) := Sl_l1 (A)S10(A)A(A)Sp1 (1), by (2-29),
N(}) =S (M) S10M)Sge (M) So1 (1)

_ YE(W) ATE)Y (A E1i (V) AP Eq(0)
o ()»_IE()») )L_ZE()»)) ()\3E21()\) )\4E22(k))

_ (AE(A) AZE(A))

AE(L) A2E()
This shows that C(}) is invertible for A < 1:
C) = S11(A) = S10(A) A(A)So1(A) = S11(A)(1 = N(A)),

SO

C'M) =T -NR)'STI0
=S W) +UT=NO)'NQ)ST ). (2-32)
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- -1 —109Y .
A computation shows that (I — N(1))”"N(A)S[; (A) is a regular term:

o-vorwesior=so (18 250) (75 V50
=E).
By (2-32) and (2-27),
C'W) =S M)+ EQ)

|x — y|?

=AT2Vo Py Vi + il Vo Py V o

VP Vi —al™ Ve @ Vig + E(M).

One can then also write C ! as
_ ATTEQ) ATTE)
1 _
= (x—‘m) rzE(A)) |

We also have
So1(M) = QU +TM)Q =rE{(M) Q1+ A E2(M) 0,
with regular terms E, E, € W:

Ro((A+ 10)3 )— Ro(0) V0.

Ro((A+i0)2) = Ro(0) —irl ®1
)\2

Ei(A):=QV,

E>(A):= QV;

V10s.

Showing that £, E, € W requires assuming that V' € (x)_4L%’1.
Therefore, the following matrix element of (2-28) is regular near zero:

ATTE(L) ATVEQY)

Ao (0)C () = (AW E ) 124G E) (S 1) 52

) — E().

One shows in the same manner that the matrix element C =1 (1)S;0(A) A () of (2-28) is regular near zero.
Finally, the last remaining matrix element 4 + 4.Sy; C ~15,04 of (2-28) consists of the regular part A

and

AS01C7 S04 =EQ) (AE(A) A2E()) (A_IE(A) A_IE()\)) ()LEOL)

E(\

ATLEL) AT2ZEM) AZE(A)) ()
=AE).

Thus this is also a regular term. It follows by (2-28) that f(k)_l is up to regular terms given by

Ix — y|?
24
which was to be shown. O

A2V Po Vi +i A"V PV VPyVi—ar ' Vao ® V9,

We next prove a corresponding statement in the case when V' has an almost minimal amount of decay.
. . 143 . .
One can also obtain a resolvent expansion when V' € (x)~!L2°!, but it does not lead to decay estimates.
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Lemma 2.17. Suppose that V € (x)_zL%’1 and H = —A +V is an exceptional Hamiltonian of the third
kind. Let x be a standard cutoff function. Then, for sufficiently small €,

X(%)(I FT0) T = LY+ A7 1SO) + A2V, Py

where L(A) €W, S(A)Y €Vy3.2 13/2.2, and Py is the L? orthogonal projection on E.

Furthermore, 0 is an isolated exceptional point, so H has finitely many negative eigenvalues.
Proof of Lemma 2.17. We study (I + T (1))~ := (I + VaRo((x +i0)2)V;) ™" near A = 0.

Let 0 =0;+0,, Qo= 0,and Q; and Q5 be as in the proof of Lemma 2.16.

Also take again the orthonormal basis {¢1, ..., ¢} with respect to the inner product —(Vu, v) for M
so that {¢5,...,¢n} is a basis of £ and (¢, V) > 0.

We apply Lemma 2.10 to invert Q(I + T (A))Q in QL? for small A, after writing it in matrix form
with respect to the decomposition QL% = Q| L? 4+ Q,L?:

QI +T0NC1  TMQ: | _(Tu®) Ti()
0, TM01 021 +T(0)02) \Ta1(d) TaV))
The inverse will be given by formula (2-13), that is,

QU +T(M)Q = (

-1 -1 —1 —1 -1 -1
Ty + T Ty Ty T TG, ) (2-33)

7 —1
QU +T0)0) " = ( i -
where
Cy = Tay — T  T;;' Ty
Then (recall that Q1 = — Va1 ® Vi),
T11() = Q1 +T(W)Q1 = Q1 (I +V2Ro((A +i0)*)V1) 04
= Q1(VaRo((A +10)*)V; — V2 Ro(0)V1) Q4
= V261 ® Vo1 (Ro((h +i0)*) = Ro(0)) V1 ® Vi¢py
=:1Aco(A) Q1.
Here co(0) =a =4in/|(V,$1)|*> # 0. Note that c(1) € L' when

elAlx=yl _ 1
dx dy < oo.

/ / V0)$1 () V()1 (1)
R3 [R3

x =l |z

Since .
eiMx—yl _1

1
Lk

Alx =yl

it is enough to assume that V¢p; € L1, ie., that V L%’l, in view of the fact that ¢, € (x)~1L>,
It follows that 77y (X) is invertible for |A| < 1 in Q;L? and

T ) =2"teg ' )01 =2 EQ.
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Here X(%)CJ W) e L! for sufficiently small €.
Likewise, since Q,(Vo, ® V1) = (VL2 ® V)0, =0,
Ti2(0) = Q1(1 + VaRo((A +i0)*) V1) 0,
R 10)2) — Ro(0) —iA(4m) 11 ®1
_ 320,V o((A+10)) ;EO) iA(4r) ®

=1201e(2) 0s.

V10>

Since by Lemma 2.6
M((RO((A +i0)2) — Ro(0) —iA(4m) 11 ® 1)A) Cx—yl

’

A2 8
it follows that e(A) € L! if

/ / V()1 () V (2)gic (»)]x — y] < o0,
R3 JR3

thatis, if V € L.
Likewise we obtain T5;(A) = A2Q,e(A) Q1 hence, combining the previous results,

T (WT ) T12(0) = 4% 02e (1) Q5.
Furthermore,
T22(M) = Q2(1 4+ VaRo((A +i0)*) V1) 02
Ro((A +i0)%) — Ro(0) —ir 121
)\2

05+ )»Qze()»)Qz)-

=120V, Vi0»

|x — y|
8

=-2? (Qz Va
Again by Lemma 2.6, e(A) € LVif
[, ] vesevmsemls - P <.
R3 JR3

that is (taking into account that ¢y, ¢y < (x)72),if V e L.
Let Py be the L? orthogonal projection onto the set £ spanned by ¢, ..., ¢x. By relation (4.38) of
[Yajima 2005],

X — —1
(Qszl g y|V1Q2) =—-VoPyVy.
7
Then
Cao(A) = Taa (M) — Ta1 (W) Ty (W) T12(X)
x_

=200, 42202005

Therefore,

C2_21 ()\) = )\._ZVZPOV] + A1 Qze()u)Qz.
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Furthermore, we then obtain that
—T' M) T12(M)C55 (M) =271 01e(M) Q142 01e(A) 02172 Q2e(M) Q2
=1""01e(1)Q,.

Likewise we obtain
—C3' W WT' () =27 02e(M) 01,
T T2 (M) Co, (W T2 M T M) = Q1e(X) Q1.

By (2-33), we know that (Q(I + JA”()\))Q)_1 is given in matrix form by

A 1Q1e(M) 0y 17 101e(V) Q)
(QU+T1)0) =271 02e() Q1 A 2VaPoVy + 471 Q2e(1) 0 |, (2-34)
)\_IQQ()\)Q-i-)\_ZVzPon

where X(%)e(k) e L! for sufficiently small €.
We apply Lemma 2.10 again after writing 1 + YA“(X) in matrix form with respect to the decomposition
L?=QL?*+ QL?, where QL? = V) M:
0U+T(M)O  0TMQ ) -
QT(M)Q QU +T1)Q
Next, as in the proof of Lemma 2.16, let A(A) = So_ol (A). Then X(%)A(A) € W for sufficiently small €.

We compute the inverse of 1 + T (1) by finding each of its matrix elements:

A+ ASO]C_ISIOA AS()]C_I)

I+ F0) = ( (Soo()») 501()»)) ‘

S10(A) S11(A)

(2-35)

S
I+T@A) _( —C71S104 c!

Here
C(A) = S11(A) = S10(A) A(A)So1 (A).
S10(M)AM)So1 (M) = OT (M) A(M)T (L) O may be written as
(QlfmA(A)f(x)Ql Qlf@)A(x)T(k)Qz) _ (AZQIe(x)Ql A3Qle(k)Q2) 236
QT MAMWTMO1 0T MAMNT(M)02)  \R* 02601 2 02e(1)02)°
where e(A) € L.
Indeed, consider, for example, O »T (}\)A(}\)f(}h)Q ». It can be rewritten as

0T (M AMT (L) 02

SN2y o 10)2) —
Rl XD RO =B Ly, gy, KA =Ry, 039,

=120,V

Assuming that V' € (x)_ZL%’l,

(v Ro(l£107) = Ro® VI)A) UL
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Likewise

Ro((A +i0)2) — Rg(0) —iAL8L \A X — 3
(s S ) ) =l v e it L,

This implies that (2-37) = A3 Q5e0(1) Q5 and e (L) € L. In this manner, we prove (2-36).
By (2-34), we know that Sl_l1 ) = (Qf(k) 0)7 ! is of the form

A1Q1e(V) 04 )k_lQlé’()&)Qz)
A 02e(M) 01 A7202e(M)Q02)

Then, letting N(%) := S7;1(1)S10(A) A(1)So1 (1), by (2-36),

Sﬁl(X)=(

NQ) =S (M) S10(M)Seg (1) So1 (1)
_ ()‘_lQle()‘)Ql )‘_lQleO‘)Q2) ()»ZQ1€()L)Q1 )»3Q1€()\)Q2)
AT 026V Q1 AT202e(M)02) \W? Q2e(M) 01 A2 02e(1) 0,
_ (AQle()\)Ql Alee()&)Qz)
AQ2e(M)Q1 AQ2e(M) Q2 )
Therefore N (0) = 0. This shows that C(}) is invertible for A < 1:

CA) = S11(A) =S10(W)A(A)So1(A) = S11 (M = N(*)),

SO
C'M = -=NW)T'ST' )

=S W) +UT-NM) NS ). (2-38)

A computation shows that

A01e(M) 01 A2Q;e(r A101e(M) 01 A1 0qe(M
a-vay st e =0 (g o, P (i e, 20m001)
_ (Qle()»)Ql 01e(M) 0> )

02e(M) 01 A7 02e(M)02)°
By (2-38) and (2-34),
C'W =S M +1""0e)Q

=A"2V, PoVi + 271 0e(1) 0.

Note that
Sot(M) = QT(MQ =0 +T (W) Q
Ro((A+i0)*) — Ro(0)
A

where E1(1)Y € Vy3/2.2 when V € (x)~! L. Therefore,

=10V, V1Q =AE (),

AMSo1(WCTHR) = AMAEI (WA Qe(M)Q =271 S(),
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where S(A)Y € V3.2 13/2.2. Likewise S19(A) = AE»(A), where E5(A)Y € Vp3.2. Then
CT'MS10MAR) =278,

where S(A)Y € V032 13/2.2.
Finally, for the last remaining matrix element 4 + AS¢;C~!S;04 of (2-35), we use the fact that

AS1CTS104 = AGIAEI(MAT2 Qe(M) QA E2 (M A(L) = S(h),

where S(A)Y € V32 3/22. Also recall that A(A) € W.
We have thus analyzed all the terms in (2-35) and the conclusion follows. O

Recall that

R(t) =1 \/_ ) ® (). L) 1= e 5 p(x).
-3z _ 2 _
S(t) = e\/ﬁ (—iP0V| 24y| VPy+ t(x)' |VP + v - y';L,(y))
where
] 1 2 ox2
/Lt(X)IZl— (ei% e"‘4tI )do.
Ix| Jo

Although it is not immediately obvious, it is also true that
1
IS()ullp3.00 St 2| ullp3/2.0. (2-39)

Indeed, note that since (¢, V') = 0 for the eigenvectors ¢y, with 2 < k < N (recall that ¢ is the
resonance),

pe(X)|x = y[VPo = i (x)(|x — y[ = |x[)V Py,

which is bounded in absolute value by

Z |12 ()] / YTV bre ()| dy @ |pr (2)].

k=2

By definition, |u;(x)| < |x|~'. This leads to (2-39), since ¢y € (x)"2L® and V € L3,
We use Lemma 2.16 as the basis for the following decay estimate:

Proposition 2.18. Let V satisfy (x)*V(x) € L3, Suppose that H is of exceptional type of the third kind.
Then, for 1 < p <%andu el’nL?,

e " Py = Z(t)u+ R(t)u+ S(t)u, | Z(@)ullpr < z_%(l_ )||u||Lp. (2-40)

Here % + % = 1. If in addition all the zero-energy eigenfunctions ¢y, with2 <k < N, are in L', then
we can take S(t) = 0.
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Proof of Proposition 2.18. Write the dispersive component of the evolution as
S P f = % / ¢ (Ro((A +i0)%) — Ro((A +i0)) Vi T (W) VaRo((A +i0)?)) £ A dA.
R

We use the same method as in the proofs of Propositions 2.13 and 2.15. Consider a partition of unity
subordinated to the neighborhoods of Lemmas 2.8 and 2.16. First, following Lemma 2.8, take a sufficiently
large R such that

A 2 -1
(1 X(E))(I LT L ew.
Then, again by Lemma 2.8, for every Ag € [-4R, 4 R], there exists €(Ag) > 0 such that

A—Ao _
(()\))(IJrT(k)) eWw

if Ag # 0 while the conclusion of Lemma 2.16 holds when Ay = 0.
Since [-4 R, 4 R] is a compact set, there exists a finite covering

—4R,4R] C U M — €M), g +€(hg)).

Then we construct a finite partition of unity on R by smooth functions 1 = yo(A) + Z,]C\f:l Xie(A) + Xoo(X),
where supp Yoo C R\ (—2R,2R), supp xo C [—€(0), €(0)], and supp xx C [kk —e(Ag), A + e(kk)].

By Lemma 2.8, for any k # 0, we have xx(A\)(I + 7)1 € W, so (1 — xo)(I + T (1))~ e W.
By Lemma 2.16, for L € W,
V2P0V1 inPonx—y|2VP0V1 a

— =V Vig ).

2 T . S V208 Vi
Let Z; be the contribution of all the regular terms in this decomposition, such as the free resolvent,
(1= xo(G)NU +T())~", and L(A):

XoMWT + TN =LM) + Xo(k)(

zm::% /R e—””(RO((A+i0)2)—R0((x+i0)2)VlL(x)szo((HiO)z)

—~(1=x0(A) Ro((A+i0)) Vi T (M) Va Ro((h+i0)*)) A d &

_ |0 (Ro(h0))—Ro(hi0)) VA LK)V Ro((1-+0)°)

i —(1—x0 (M) Ro((A+i0)2) V1 T (M) Va Ro((A+i0)?)) d A
:% e_i%(8A(RO((A+i0)2)—R0((k+i0)2)V1L(A)VzRO((A+iO)2)
e —(1=x0 (W) Ro((A+i0)*) Vi T (3) Va Ro((1+i0)%)))” (o) dp.
The fact that || Z; ()ul| ;1 < |t|™2||ul| Lo follows by knowing that
(92 (Ro((h +i0)%) — Ro((A +i0)*)V L(A) V2 Ro((A +i0)?)
— (1= xo(A)Ro (A +i0))Vi T (M) VaRo((A +10)%)))" € V1 foo.
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By smoothing estimates, it also follows that Z;(¢) is L2-bounded; see the proof of Proposition 2.13. By
interpolation, we also obtain the estimate || Z1(t)u||13.00 < |t p3/2.1.
Let Z,(¢) be the contribution of the term aA ™! xo (1) Vo ® V;¢:

220)i= = [ T 0GR+ 102V © VgRo(Gh-+ 107) 1.
R
By Lemma 2.14,

_3 _1
[(Z2(t) = R()ullpee <t 2 ullpr, [ Z2(0)ullps.co S 172 ullp3/2..
We are left with the terms

|x —yl2

AT2Ro((n+i0)2) VP VR((A+i0)2) and A~ Ro((h+i0)2) VPV VPoVRo((h+i0)2).

Let their contributions be

| yl2

Xo(t) := %I/R _ltszo(()\-l-lO) YWPyV VP()VR()((A-FZO) )dA,

-1 .
X;3(t) := — lim eI RO+ i0)) VP VR (A +i0))A" " dA.
17T §—0 J|A|>$

By [Yajima 2005, Lemma 4.12],

_1
[ Xo(@)ullp3.00 St 2 |ullp3/2.0,
o 2-41)
et Ix —y|? (
Xo(t PyV VP,
H 2()u+l\/n— oV 0

This lemma has a proof similar to Lemma 2.14. It requires, in addition, that |¢; (x)| < |x|~2 for every

-3
St 2 ullp
LOO

eigenfunction ¢; € £, with 2 < j < N, which is guaranteed by Lemma 2.3.
By [Yajima 2005, Lemma 4.14],
o B |x =yl (2-42)

e —Jl _3
VPy+ PyV Stz .
| (B vre e B2 )) st

Loo
The proof of [Yajima 2005, Lemma 4.14] depends on (y)3V(y)$(») being integrable, which is also true
here since ()] < (¥)~" and (y)?V(y) € (y)"2L>! c L.

Combining the two results (2-41) and (2-42) and knowing that || S(¢)u| 7 3.c0 < 2 lee]| 73/2.1 by (2-39),
we obtain that

1
I X3(@OullLs.co St 2|ullps/2.0,

X3(2)

_3 _1
[(X2(0)+X3()=S@)ulpo St 2 lullpr,  [(X2@)+X3()=S@)ulps.c0 St 2|ullp3/2.0. (2-43)
Recall that

TP = Z1 (1) + Za(t) + Xa () + X3 () = Z(1) + R(1) + S(0).
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We obtain for Z(t) = Z1(t) + (Z2(t) — R(t)) + (X2(t) + X3(t) — S(¢)) that
_3 _1
Z@)ullpee St 2|ullpr, NZ@ullpseo St 2|ullg3/2..

Conclusion (2-40) follows by interpolation.

Finally, assume that all the eigenfunctions ¢y are in L! for 2 <k < N (recall that ¢ is the resonance).
Then, by Lemma 2.5, it follows that (Vg, v¢) = (Vég, veym) =0 forall  and m and all 2 <k < N.
As a consequence, we immediately see that

3
PoV|x—y[*VPo = PoV(Ix|* + |y)) Po—2 ) PoVxpyiVPo =0.
k=1
Since (¢x, V) = 0 and (Vy, y¢) = 0, we can also rewrite

Xy
el = 31VP = o) (b= 1= 31+ 32 v
Then note that |x| (|x —y|—|x|+ %) V Py is bounded in absolute value by

N
> [ RVl dy @ gl
=2 /B

which is bounded from L! to L® since ¢ € (x)"2L>® and V € (x)_lL%’l. Having gained a power of
decay in x, we use it by ‘ut(x)|x|_1| <t~!. Therefore,

[ 0 — yIVPou| oo < 173 lull 1.

Consequently, when ¢ € L' for 2 <k < N, we can remove S(¢) from (2-43). Hence we retrieve
conclusion (2-40) without S, as claimed. O

Proposition 2.19. Assume that V € (x)_zL%’1 and that H = —A + V is an exceptional Hamiltonian of
the third kind. Then
; 1
le™ ™ Peul| 300 <172 ull L3721

and, for 3op< 2,
f 250 : _Q(L_L)
le™ ™ Peull <7270 |lul| .

1, 1 _
Herep—l—p,—l.

The proof of this proposition parallels the proof of Proposition 2.15.

Proof of Proposition 2.19. Write the evolution as
. 1 . A~
e p = — / e—”“(Ro((A +i0)*) — Ro((A +i0)H VT (L)' VaRo((A +10)?)) fAdA.
T JrR

We consider a partition of unity subordinated to the neighborhoods of Lemmas 2.8 and 2.17. First, take a
sufficiently large R such that

(1- X(%))([ L) ew.
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Then, for every Aoy € [-4 R, 4 R], there exists €(A¢) > 0 such that

A —ho .
x( ) )(1+T(A)) ew

if Ag # 0, while the conclusion of Lemma 2.12 holds when Ay = 0.

Since [-4 R, 4 R] is a compact set, there exists a finite covering

N

[—4R. 4R C | (hx —€(hp). Ak + €(hp)).
k=1

Then we construct a finite partition of unity on R by smooth functions 1 = y¢(A) + Z}C\Izl XA+ oo (1),
where supp xoo C R\ (—2R,2R), supp xo C [—€(0), €(0)], and supp xx C [kk —e(Mp), A + e(kk)].

By Lemma 2.8, for any k # 0, we have y;(A)(I + 7’\“()\))_1 eW,so (1—xo(X))I + f(k))_l ew.
By Lemma 2.17,

oI +TA) ' =LA+ 27 'S + A2V, Py Yy,

where L € W and SVY € V32 p3/2.2.
Let Z; be given by the sum of all the regular terms of the decomposition:

Zl(t)iz%/e_’”z(Ro((K+i0)2)—Ro((k+i0)2)V1L(X)VzRo((K+i0)2)
R A~
—(1=x0o(M) Ro((A+i0))Vi T (M) V2 Ro((A+i0)*)) A d

L eIt g, (Ro((A+i0)*)—=Ro((A+i0)*)V; L(A) V2 Ro((A+i0)?)

- 2t
! (1= 10(1) Ro(( 02V T () Va Ro(h-+i0)2)) d

= 53 i (92 (Ro((A+i0)*)—Ro((A+i0)*) Vi L(A) V2 Ro((A+i0)?)
t2 JR A~ v
—(1=x0(A) Ro((A+i0)*) V1 T (W) V2 Ro((A+i0)))) " (p) dp.

The fact that | Z; (#)u|| o < |l|_% ||| 71 follows by knowing that

(91 (Ro((A +i0)%) — Ro((A +i0)*) Vi L(X)VaRo((A +i0)?)
— (1= o)) Ro((X +i0))V; T (M) V2 Ro((A +i0)%)))” € Vp1 foo.

Using smoothing estimates, it immediately follows that Z;(¢) is L2-bounded; see the proof of
Proposition 2.13. Interpolating, we obtain that || Z (¢)u||13.00 < 2 lleell 3.1
Let Z, be the following singular term in the decomposition of Lemma 2.17:

Z5(1) = % /Re—““Ro((x +i0)2) Vi S(M)VaRo((A +i0)*) dA

=5 [ (R4 107V SV R+ 107) () .

1
12
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Note that
(Ro(A+i0)) V1) €Vpsnn psce, SV €Vpsagsna and  (VaRo((A+i0)%)Y € Vs 3.

Thus
Ro((A +i0)) Vi (AS(W))VaRo((h +i0)%) € Vps/21 p3.00-

This immediately implies that || Z,()ul|13.00 S 2 lullp3/2.1.

We are left with the contribution of the term A2V, Py V;. This is the same as the term X3 from the
proof of Proposition 2.18. By (2-42), we have || X3(¢)u| 13.00 < = llullf3/2.1.

Putting the three estimates for Z;, Z,, and X3 together, we obtain that ||e ™/"H Pou||;3.00 < |lul13/2.1.
Interpolating with the obvious L? bound |e~** P.u|| > < ||u|| 2, we obtain the stated conclusion. [I
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