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LOCAL SPECTRAL ASYMPTOTICS
FOR METRIC PERTURBATIONS OF THE LANDAU HAMILTONIAN

TOMÁS LUNGENSTRASS AND GEORGI RAIKOV

We consider metric perturbations of the Landau Hamiltonian. We investigate the asymptotic behavior
of the discrete spectrum of the perturbed operator near the Landau levels, for perturbations of compact
support, and of exponential or power-like decay at infinity.

1. Introduction

Let
H0 := (−i∇ − A0)

2

with A0= (A0,1, A0,2) :=
1
2 b(−x2, x1) be the Landau Hamiltonian, self-adjoint in L2(R2), and essentially

self-adjoint on C∞0 (R
2). In other words, H0 is the two-dimensional Schrödinger operator with constant

scalar magnetic field b > 0, that is, the Hamiltonian of a two-dimensional, spinless, nonrelativistic
quantum particle subject to a constant magnetic field. As is well known, the spectrum σ(H0) consists of
infinitely degenerate eigenvalues 3q := b(2q + 1), q ∈ Z+ := {0, 1, 2, . . . }, called Landau levels (see,
e.g., [Fock 1928; Landau 1930]).

In the present article we consider metric perturbations of H0. Namely, let

m(x)= {m jk(x)} j,k=1,2, x ∈ R2,

be a Hermitian 2× 2 matrix such that m(x) ≥ 0 for all x ∈ R2. Throughout the article we assume that
m jk ∈ C∞b (R

2), j, k = 1, 2, i.e., m jk ∈ C∞(R2), and the entries m jk together with all their derivatives
are bounded on R2. Set

5 j := −i
∂

∂x j
− A0, j , j = 1, 2, (1-1)

so that H0 =5
2
1+5

2
2. On Dom H0, define the operators

H± :=
∑

j,k=1,2

5 j (δ jk ±m jk)5k = H0±W,

where W :=
∑

j,k=1,25 j m jk5k ; in the case of H−, we suppose additionally that supx∈R2 |m(x)| < 1.
Thus, the matrices g±(x)= {g±jk(x)} j,k=1,2 with g±jk := δ jk ±m jk are positive definite for each x ∈ R2.
Under these assumptions, the operators H± are self-adjoint in L2(R2), and essentially self-adjoint on
C∞0 (R

2) (see the Appendix).
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From a mathematical physics point of view, the operators H± are special cases of Schrödinger operators
with position-dependent mass, which have a long history (see, e.g., [Bastard et al. 1975; von Roos 1983]),
but have received increased attention during the last decade (see, e.g., [Midya et al. 2010; Gadella
and Smolyanov 2008; Killingbeck 2011]). We would like to mention especially [de Souza Dutra and
de Oliveira 2009], where the model considered is quite close to the operators H± discussed here.

The operators H± admit also a geometric interpretation, since they are related to the Bochner Laplacians
corresponding to connections with constant nonvanishing curvature (see, e.g., [Rosenberg 1997; Colin de
Verdière 1986]); we discuss this relation in more detail at the end of Section 2. Further, assume that

lim
|x |→∞

m jk(x)= 0, j, k = 1, 2. (1-2)

Thus m models a localized perturbation with respect to a reference medium. Under condition (1-2), the
resolvent difference H−1

± − H−1
0 is a compact operator (see the Appendix), and therefore the essential

spectra of H± and H0 coincide:

σess(H±)= σess(H0)= σ(H0)=

∞⋃
q=0

{3q}.

The spectrum σ(H±) on R \
⋃
∞

q=0{3q} may consist of discrete eigenvalues whose only possible accumu-
lation points are the Landau levels. Moreover, taking into account that W ≥ 0, and applying [Birman and
Solomjak 1987, Section 9.4, Theorem 7], we find that the eigenvalues of H+ (resp. H−) may accumulate
to a given Landau level 3q only from above (resp. from below). Fix q ∈Z+. Let {λ−k,q} be the eigenvalues
of H− lying on the interval (3q−1,3q) with 3−1 := −∞, counted with multiplicities and enumerated in
increasing order. Similarly, let {λ+k,q} be the eigenvalues of H+ lying on the interval (3q ,3q+1), counted
with multiplicities and enumerated in decreasing order.

The aim of the article is to investigate the rate of convergence of λ±k,q −3q as k→∞, with q ∈ Z+

fixed, for perturbations m of compact support, of exponential decay, or of power-like decay at infinity.
The properties of the discrete spectrum generated by perturbative second-order differential operators

with decaying coefficients have been considered also in [Alama et al. 1994; Boyarchenko and Levendorskiı̆
1997; Briet et al. 2009; Raikov 2015].

The article is organized as follows. In Section 2 we formulate our main results and briefly comment
on them. In Section 3 we reduce our analysis to the study of operators of Berezin–Toeplitz type, and
in Section 4 we establish several useful unitary equivalences for these operators. Section 5 contains the
proofs of our results in the case of rapid decay, i.e., of compact support or exponential decay, while the
proofs for slow, i.e., power-like decay, can be found in Section 6. Finally, in the Appendix we address
some standard issues concerning the domain of the operators H± and the compactness of the resolvent
difference H−1

0 − H−1
± .

2. Main results

First, we formulate our results concerning perturbations m of compact support. Denote by m<(x)
and m>(x), with m<(x)≤ m>(x), the two eigenvalues of the matrix m(x), x ∈ R2.
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Theorem 2.1. Assume that the support of the matrix m is compact, and its smaller eigenvalue m< does
not vanish identically. Fix q ∈ Z+. Then we have

ln (±(λ±k,q −3q))=−k ln k+ O(k), k→∞. (2-1)

Remarks. (i) Under additional technical hypotheses on m≷, we could make the asymptotic relation (2-1)
more precise. Namely, assume that there exists a nonincreasing sequence {s j } j∈N such that s j > 0, j ∈N,
lim j→∞ s j = 0, and the level lines

{x ∈ R2
| m<(x)= s j }, j ∈ N,

are bounded Lipschitz curves. In particular, the existence of such a sequence follows from the Sard lemma
(see, e.g., [Sternberg 1964, Chapter 2, Theorem 3.1]) if we assume that m< ∈ C2(R2). Further, denote
by C≷ the logarithmic capacities (see, e.g., [Landkof 1972, Chapter II, Section 4]) of supp m≷. Then we
have (

1+ ln
(

bC2
<

2

))
k+ o(k)≤ ln (±(λ±k,q −3q))+ k ln k ≤

(
1+ ln

(
bC2

>

2

))
k+ o(k) (2-2)

as k→∞. We omit the details of the proof of (2-2), which is inspired by [Filonov and Pushnitski 2006].

(ii) For q ∈ Z+ and λ > 0, set

N±q (λ) := #{k ∈ Z+ | ±(λ
±

k,q −3q) > λ}. (2-3)

Then, a less precise version of (2-1), namely

ln (±(λ±k,q −3q))=−k ln k (1+ o(1)), k→∞,

is equivalent to

N±q (λ)=
|ln λ|

ln |ln λ|
(1+ o(1)), λ ↓ 0. (2-4)

Further, we state our results concerning perturbations of exponential decay. Assume that there exist
constants β > 0 and γ > 0 such that

ln m≷(x)=−γ |x |2β + O(ln |x |), |x | →∞. (2-5)

Remark. In (2-5), we suppose that the values of γ and β are the same for m< and m>. Of course, the
remainder O(ln |x |) could be different for m< and m>.

Given β > 0 and γ > 0, set µ := γ (2/b)β , b > 0 being the constant magnetic field.

Theorem 2.2. Let m≷ satisfy (2-5). Fix q ∈ Z+.

(i) If β ∈ (0, 1), then there exist constants f j = f j (β, µ), j ∈ N, with f1 = µ, such that

ln (±(λ±k,q −3q))=−
∑

1≤ j<1/(1−β)

f j k(β−1) j+1
+ O(ln k), k→∞. (2-6)
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(ii) If β = 1, then

ln (±(λ±k,q −3q))=−(ln (1+µ))k+ O(ln k), k→∞. (2-7)

(iii) If β ∈ (1,∞), then there exist constants g j = g j (β, µ), j ∈ N, such that

ln (±(λ±k,q −3q))

=−
β − 1
β

k ln k+
(
β − 1− ln (µβ)

β

)
k−

∑
1≤ j<β/(β−1)

g j k(1/β−1) j+1
+ O(ln k), k→∞. (2-8)

Remarks. (i) Let us describe explicitly the coefficients f j and g j , j ∈N, appearing in (2-6) and (2-8)
respectively. Assume first that β ∈ (0, 1). For s > 0 and ε ∈ R, |ε| � 1, introduce the function

F(s; ε) := s− ln s+ εµsβ . (2-9)

Denote by s<(ε) the unique positive solution of the equation s = 1−εβµsβ , so that ∂F(s<(ε); ε)/∂s = 0.
Set

f (ε) := F(s<(ε); ε). (2-10)

Note that f is a real analytic function for small |ε|. Then f j := (1/j !) d j f (0)/dε j , j ∈ N.
Let now β ∈ (1,∞). For s > 0 and ε ∈ R, |ε| � 1, introduce the function

G(s; ε) := µsβ − ln s+ εs. (2-11)

Denote by s>(ε) the unique positive solution of the equation βµsβ = 1−εs, so that ∂G(s>(ε); ε)/∂s = 0.
Define

g(ε) := G(s>(ε); ε), (2-12)

which is a real analytic function for small |ε|. Then g j := (1/j !) d jg(0)/dε j , j ∈ N.

(ii) If, instead of (2-5), we assume that

ln m≷(x)=−γ |x |2β(1+ o(1)), |x | →∞, (2-13)

then we can prove less precise versions of (2-6), (2-7), and (2-8), namely

ln (±(λ±k,q −3q))=


−µkβ(1+ o(1)) if β ∈ (0, 1),

−(ln (1+µ))k(1+ o(1)) if β = 1,

−
β−1
β

k ln k (1+ o(1)) if β ∈ (1,∞),

k→∞,

which are equivalent to

N±q (λ)=


µ−1/β

|ln λ|1/β(1+ o(1)) if β ∈ (0, 1),
1

ln (1+µ)
|ln λ|(1+ o(1)) if β = 1,

β

β−1
|ln λ|

ln |ln λ|
(1+ o(1)) if β ∈ (1,∞),

λ ↓ 0. (2-14)
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Note that in (2-13), similarly to (2-5), we assume that the values of γ and β are the same for m< and m>.
However, since the coefficient in (2-14) with β > 1 does not depend on γ , in this case we could assume
different values of γ > 0 for m< and m>.

Finally, we consider perturbations m which admit a power-like decay at infinity. For ρ > 0 recall the
definition of the Hörmander class

S−ρ(R2) := {ψ ∈ C∞(R2) | |Dαψ(x)| ≤ cα〈x〉−ρ−|α|, x ∈ R2, α ∈ Z2
+
},

where 〈x〉 := (1+ |x |2)1/2, x ∈ R2. Let ψ : R2
→ R satisfy lim|x |→∞ ψ(x)= 0. Set

8ψ(λ) := |{x ∈ R2
| ψ(x) > λ}|, λ > 0, (2-15)

where | · | denotes the Lebesgue measure. Fix q ∈ Z+, and introduce the function

Tq(x) := 1
2(3q Tr m(x)− 2b Im m12(x)), x ∈ R2. (2-16)

Note that Tq(x)≥ 0 for any x ∈ R2 and q ∈ Z+.

Theorem 2.3. Let m jk ∈ S−ρ(R2), j, k = 1, 2, with ρ > 0. Fix q ∈ Z+. Suppose that there exists a
function 0< τq ∈ C∞(S1) such that

lim
|x |→∞

|x |ρTq(x)= τq

(
x
|x |

)
.

Then we have

N±q (λ)=
b

2π
8Tq (λ)(1+ o(1))� λ−2/ρ, λ ↓ 0, (2-17)

which is equivalent to

lim
λ↓0

λ2/ρN±q (λ)= Cq :=
b

4π

∫ 2π

0
τq(cos θ, sin θ)2/ρ dθ, (2-18)

or to

±(λ±k,q −3q)= Cρ/2q k−ρ/2(1+ o(1)), k→∞. (2-19)

Remarks. (i) Relation (2-17) could be regarded as a semiclassical one, although here the semiclassical
interpretation is somewhat implicit. In Propositions 4.1 and 4.3 below, we show that the effective
Hamiltonian, which governs the asymptotics of N±q (λ) as λ ↓ 0, is a pseudodifferential operator with
anti-Wick symbol wq,b := wq ◦Rb defined by (4-8) and (4-31). Under the assumptions of Theorem 2.3,
Tq,b :=Tq ◦Rb (see (2-16) and (4-31)) can be considered as the principal part of the symbol wq,b, while
the difference between the anti-Wick and the Weyl quantization is negligible. Then (1/2π)8Tq,b(λ)=

(b/2π)8Tq (λ) is just the main semiclassical asymptotic term for the eigenvalue counting function for a
compact pseudodifferential operator with Weyl symbol Tq,b.

(ii) There exists an extensive family of alternative sets of assumptions for Theorem 2.3 (see, e.g., [Ivrii
1998; Dauge and Robert 1987]). We have chosen here hypotheses which, for certain, are not the most
general ones, but are quite explicit and, hopefully, easy to absorb.
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Let us comment briefly on our results. Nowadays, there exists a relatively wide literature on the local
spectral asymptotics for various magnetic quantum Hamiltonians. Let us concentrate here on three types
of perturbations of H0 which are considered to be of particular interest (see, e.g., [Ivrii 1998; Mao 2012]):

• Electric perturbations H0+ Q where Q : R2
→ R plays the role of the perturbative electric potential.

• Magnetic perturbations (−i∇ − A0− A)2, where A = (A1, A2), and B := ∂A2/∂x1− ∂A1/∂x2 is
the perturbative magnetic field.

• Metric perturbations
∑

j,k=1,25 j (δ jk +m jk)5k , where m = {m jk} j,k=1,2 is an appropriate pertur-
bative matrix-valued function.

Typically, the perturbations Q, B, or m are supposed to decay in a suitable sense at infinity. Slowly
decaying Q, for example Q ∈ S−ρ(R2) with ρ > 0, were considered in [Raı̆kov 1990], and the main
asymptotic terms of the corresponding counting functions N±q (λ) as λ ↓ 0 were found, utilizing, in
particular, anti-Wick pseudodifferential operators. In [Ivrii 1998, Theorem 11.3.17], the case of combined
electric, magnetic, and metric slowly decaying perturbations was investigated; the main asymptotic terms
of N±q (λ) as λ ↓ 0, as well as certain remainder estimates were obtained. The semiclassical microlocal
analysis applied in [Ivrii 1998] imposed restrictions on the symbols involved, which, in some sense or
another, had to decay at infinity less rapidly than their derivatives. These restrictions excluded some rapidly
decaying perturbations, e.g., those of compact support, or of exponential decay with β ≥ 1

2 (see (2-5)).
Raikov and Warzel [2002] used a different approach based on the spectral analysis of Berezin–Toeplitz

operators and obtained the main asymptotic terms of N±q (λ) as λ↓0 in the case of potential perturbations Q
of exponential decay or of compact support. In particular, in [Raikov and Warzel 2002], formulas of the
type (2-4) or (2-14) appeared for the first time. Here, we essentially improve the methods developed
in [Raikov and Warzel 2002]. These improvements lead also to more precise results for certain rapidly
decaying electric perturbations. Namely, assume that Q ≥ 0 admits a decay at infinity which is compatible
in a suitable sense with the decay of m. Then the results of the article extend quite easily to operators of
the form

H±± Q, (2-20)

so that H±± Q are perturbations of H0 having a definite sign. We do not include these generalizations
just in order to avoid an unreasonable increase of the size of the article due to results which do not require
any really new arguments.

Combined perturbations of H0 by compactly supported B and Q were considered in [Rozenblum
and Tashchiyan 2008], where the main asymptotic terms of N±q (λ) as λ ↓ 0 were found. Note that the
magnetic perturbations of H0 are never of fixed sign, which creates specific difficulties, successfully
overcome in [Rozenblum and Tashchiyan 2008].

To our best knowledge, no results on the spectral asymptotics for rapidly decaying metric perturbations
of H0 appeared before in the literature. We also included in the article our result on slowly decaying
metric perturbations (see Theorem 2.3), since it is coherent with the unified approach of the article and is
proved by methods quite different from those in [Ivrii 1998].
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Finally, let us discuss briefly the relation of H± to the Bochner Laplacians. Assume that the elements
of m are real. In R2 introduce a Riemannian metric generated by the inverse of g±, and the connection
1-form

∑
j=1,2 A0, j dx j . Set γ± := (det g±)−1/2. Then the standard positive-definite Bochner Laplacian,

self-adjoint in L2(R2
; γ± dx), is written in local coordinates as

L± := γ
−1
±

∑
j,k=1,2

5 j g±jkγ±5k .

Let U± : L2(R2
; γ±dx)→ L2(R2

; dx) be the unitary operator defined by U± f := γ 1/2
± f . Then we have

U±L±U∗
±
= H±+ Q±, (2-21)

where

Q± :=
1
4

∑
j,k=1,2

(
g±jk

∂ ln γ±
∂xk

∂ ln γ±
∂x j

+ 2
∂

∂x j

(
g±jk

∂ ln γ±
∂xk

))
.

Generally speaking, the functions Q± do not have a definite sign coinciding with the sign of the operators
H±− H0; hence, the operators on the right-hand side of (2-21) are not exactly of the form of (2-20). The
fact that the symbol of a Toeplitz operator does not have a definite sign may cause considerable difficulties
in the study of the spectral asymptotics of this operator if the symbol decays rapidly, and, in particular,
when its support is compact (see, e.g., [Pushnitski and Rozenblum 2011]). Hopefully, we will overcome
these difficulties in a future work, where we would consider the local spectral asymptotics of L±.

3. Reduction to Berezin–Toeplitz operators

In this section we reduce the analysis of the functions N±q (λ) as λ ↓ 0 to the spectral asymptotics for
certain compact operators of Berezin–Toeplitz type. To this end, we will need some more notations, and
several auxiliary results from the abstract theory of compact operators in Hilbert space.

In what follows, we denote by 1M the characteristic function of the set M . Let T be a self-adjoint
operator in a Hilbert space,1 and I⊂ R be an interval. Set

NI(T ) := rank 1I(T ),

where, in accordance with our general notations, 1I(T ) is the spectral projection of T corresponding to I.
Thus, if I∩ σess(T )=∅, then NI(T ) is just the number of the eigenvalues of T lying on I and counted
with their multiplicities. In particular,

N−q (λ)= N(3q−1,3q−λ)(H−), q ∈ Z+, λ ∈ (0, 2b), (3-1)

N+q (λ)= N(3q+λ,3q+1)(H+), q ∈ Z+, λ ∈ (0, 2b), (3-2)

the functions N±q being defined in (2-3). Let T = T ∗ be a linear compact operator in a Hilbert space.
For s > 0, set

n±(s; T ) := N(s,∞)(±T );

1All the Hilbert spaces considered in the article are assumed to be separable.
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thus, n+(s; T ) (resp. n−(s; T )) is just the number of the eigenvalues of the operator T larger than s (resp.
smaller than −s), counted with multiplicities. If T j = T ∗j , j = 1, 2, are two linear compact operators
acting in a given Hilbert space, then the Weyl inequalities

n±(s1+ s2; T1+ T2)≤ n±(s1; T1)+ n±(s2; T2) (3-3)

hold for s j > 0 (see, e.g., [Birman and Solomjak 1987, Section 9.2, Theorem 9]).
Fix q ∈ Z+ and denote by Pq the orthogonal projection onto Ker(H0 − 3q). Since the operator

H−1
0 W H−1

0 is compact, the operator Pq W Pq =3
2
q Pq H−1

0 W H−1
0 Pq is compact as well. Similarly, the

operators H−1
0 W H−1/2

± are compact, and hence the operators

Pq W H−1
±

W Pq =3
2
q Pq(H−1

0 W H−1/2
± )(H−1/2

± W H−1
0 )Pq

are compact as well.

Proposition 3.1. Under the general assumptions of the article we have

n+((1+ ε)λ; Pq W Pq ∓ Pq W H−1
±

W Pq)+ O(1)

≤ N±q (λ)≤ n+((1− ε)λ; Pq W Pq ∓ Pq W H−1
±

W Pq)+ O(1), λ ↓ 0, (3-4)

for each ε ∈ (0, 1).

Proof. The argument is close in spirit to the proof of [Raikov and Warzel 2002, Proposition 4.1],
and is based again on the (generalized) Birman–Schwinger principle. However, since the operator
H−1/2

0 W H−1/2
0 is only bounded but not compact, we cannot apply the Birman–Schwinger principle to

the operator pair (H0, H±), and apply it instead to the resolvent pair (H−1
0 , H−1

± ). First of all, note that
there exist 3− and 3+ with 3− ∈ (0,30) if q = 0, 3− ∈ (3q−1,3q) if q ∈ N, and 3+ ∈ (3q ,3q+1)

if q ∈ Z+, such that

N−q (λ)= N(3−,3q−λ)(H−), λ ∈ (0,3q −3−), (3-5)

N+q (λ)= N(3q+λ,3+)(H+), λ ∈ (0,3+−3q). (3-6)

Further, evidently,

N(3−,3q−λ)(H−)= N((3q−λ)−1,3−1
− )
(H−1
−
)= N((3q−λ)−1,3−1

− )
(H−1

0 + T−), (3-7)

N(3q+λ,3+)(H+)= N(3−1
+ ,(3q+λ)−1)(H

−1
+
)= N(3−1

+ ,(3q+λ)−1)(H
−1
0 − T+), (3-8)

with T− := H−1
− − H−1

0 and T+ := H−1
0 − H−1

+ . Note that the operators T± are nonnegative and compact.
By the generalized Birman–Schwinger principle (see, e.g., [Alama et al. 1989, Theorem 1.3]) we have

N((3q−λ)−1,3−1
− )
(H−1

0 + T−)

=n+
(
1; T 1/2
− ((3q−λ)

−1
−H−1

0 )−1T 1/2
−

)
−n+(1; T

1/2
− (3−1

−
−H−1

0 )−1T 1/2
− )−dim Ker(H−−3−), (3-9)
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and

N(3−1
+ ,(3q+λ)−1)(H

−1
0 − T+)

=n+
(
1; T 1/2
+ (H−1

0 −(3q+λ)
−1)−1T 1/2

+

)
−n+(1; T

1/2
+ (H−1

0 −3
−1
+
)−1T 1/2

+ )−dim Ker(H+−3+). (3-10)

Since the operators T± are compact and 3± 6∈ σ(H0), we find that the two last terms on the right-hand
side of (3-9) and (3-10), which are independent of λ, are finite. Next, the Weyl inequalities (3-3) imply

n+
(
1+ε; T 1/2

− ((3q−λ)
−1
−H−1

0 )−1 Pq T 1/2
−

)
−n−

(
ε; T 1/2
− ((3q−λ)

−1
−H−1

0 )−1(I−Pq)T
1/2
−

)
≤ n+

(
1; T 1/2
− ((3q − λ)

−1
− H−1

0 )−1T 1/2
−

)
≤ n+

(
1− ε; T 1/2

− ((3q − λ)
−1
− H−1

0 )−1 Pq T 1/2
−

)
+ n+

(
ε; T 1/2
− ((3q − λ)

−1
− H−1

0 )−1(I − Pq)T
1/2
−

)
(3-11)

for any ε ∈ (0, 1). The operator T 1/2
− ((3q − λ)

−1
− H−1

0 )−1(I − Pq)T
1/2
− tends in norm as λ ↓ 0 to the

compact operator

T 1/2
−

( ∑
j∈Z+\{q}

(3−1
q −3

−1
j )
−1 Pj

)
T 1/2
− .

Therefore,

n±(ε; T
1/2
− ((3q − λ)

−1
− H−1

0 )−1(I − Pq)T
1/2
− )= O(1), λ ↓ 0, (3-12)

for any ε > 0. Next, for any s > 0 we have

n+
(
s; T 1/2
− ((3q − λ)

−1
− H−1

0 )−1 Pq T 1/2
−

)
= n+

(
s; ((3q − λ)

−1
−3−1

q )−1T 1/2
− Pq T 1/2

−

)
= n+(sλ(3q − λ)

−13−1
q ; Pq T−Pq). (3-13)

Hence, (3-9) and (3-11)–(3-13) yield

n+((1+ ε)λ(3q − λ)
−13−1

q ; Pq T−Pq)+ O(1)

≤ N((3q−λ)−1,3−1
− )
(H−1

0 + T−)≤ n+((1− ε)λ(3q − λ)
−13−1

q ; Pq T−Pq)+ O(1), λ ↓ 0, (3-14)

for any ε ∈ (0, 1). Similarly, (3-10) and the analogues of (3-11)–(3-13) for positive perturbations imply

n+((1+ ε)λ(3q + λ)
−13−1

q ; Pq T+Pq)+ O(1)

≤ N(3−1
+ ,(3q+λ)−1)(H

−1
0 − T+)≤ n+((1− ε)λ(3q + λ)

−13−1
q ; Pq T+Pq)+ O(1), λ ↓ 0. (3-15)

By the resolvent identity, we have T± = H−1
0 W H−1

0 ∓ H−1
0 W H−1

± W H−1
0 , so that

Pq T±Pq =3
−2
q (Pq W Pq ∓ Pq W H−1

±
W Pq).

Thus,

n+(s; Pq T±Pq)= n+(s32
q; Pq W Pq ∓ Pq W H−1

±
W Pq), s > 0. (3-16)

Putting together (3-5)–(3-8) and (3-14)–(3-16), we easily obtain (3-4). �
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4. Unitary equivalence for Berezin–Toeplitz operators

Our first goal in this section is to show that, under certain regularity conditions on the matrix m, the operator
Pq W Pq , q ∈Z+, with domain Pq L2(R2), is unitarily equivalent to P0wq P0 with domain P0L2(R2), where
wq is the multiplier by a suitable function wq : R

2
→ C. In fact, we will need a slightly more general

result, and that is why we introduce first the appropriate notations.
As usual, for x = (x1, x2) ∈ R2 we set z := x1+ i x2 and z̄ := x1− i x2, so that

∂

∂z
=

1
2

(
∂

∂x1
− i

∂

∂x2

)
,

∂

∂ z̄
=

1
2

(
∂

∂x1
+ i

∂

∂x2

)
.

Introduce the magnetic annihilation operator

a := −2ie−b|x |2/4 ∂

∂ z̄
eb|x |2/4

=−2i
(
∂

∂ z̄
+

bz
4

)
and the magnetic creation operator

a∗ := −2ieb|x |2/4 ∂

∂z
e−b|x |2/4

=−2i
(
∂

∂z
−

bz̄
4

)
with common domain Dom a = Dom a∗ = Dom H 1/2

0 . The operators a and a∗ are closed and mutually
adjoint in L2(R2). On Dom H0 we have [a, a∗] = 2b and

H0 = a∗a+ b = aa∗− b = 1
2
(aa∗+ a∗a). (4-1)

Moreover, on Dom H 1/2
0 we have

51 =
1
2
(a+ a∗), 52 =

1
2i
(a− a∗), (4-2)

the operators5 j , j=1, 2, being introduced in (1-1). Next, define the operator A :Dom H 1/2
0 → L2(R2

;C2)

by

Au :=
(

a∗u
au

)
, u ∈ Dom H 1/2

0 .

Then, (4-1) implies that H0 =
1
2 A∗A. Further, introduce the Hermitian matrix-valued function

� :=

(
ω11 ω12

ω21 ω22

)
with ω jk ∈ L∞(R2), j, k = 1, 2. Fix q ∈ Z+ and define the operator

PqA∗�APq =3q Pq H−1/2
0 A∗�AH−1/2

0 Pq , (4-3)

which is bounded and self-adjoint in Pq L2(R2). Utilizing (4-2), we easily find that

Pq W Pq =
1
2 PqA∗UAPq , (4-4)
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where

U := O∗mO, O :=
1
√

2

(
1 1
i −i

)
, (4-5)

so that

U =
(

u11 u12

u21 u22

)
with

u11 :=
1
2(Tr m− 2 Im m12),

u22 :=
1
2(Tr m+ 2 Im m12),

u12 = ū21 :=
1
2(m11−m22− 2i Re m12).

Introduce the Laguerre polynomials

L(m)q :=

q∑
j=0

(
q +m
q − j

)
(−t) j

j !
, t ∈ R, q ∈ Z+, m ∈ Z+; (4-6)

as usual, we write L(0)q = Lq , and for notational convenience we set qLq−1 = 0 for q = 0. By [Gradshteyn
and Ryzhik 1965, Equation 8.974.3] we have

q∑
j=0

L(m)j (t)= L(m+1)
q (t), t ∈ R, q ∈ Z+, m ∈ Z+. (4-7)

Proposition 4.1. Let� be a Hermitian 2×2 matrix-valued function with entries ω jk ∈C∞b (R
2), j, k=1, 2.

Fix q ∈ Z+. Then the operator PqA∗�APq with domain Pq L2(R2) is unitarily equivalent to the operator
P0wq P0 with domain P0L2(R2), where

wq = wq(�)

:=

2b(q + 1)Lq+1

(
−
1

2b

)
ω11+ 2bqLq−1

(
−
1

2b

)
ω22− 8 Re L(2)q−1

(
−
1

2b

)
∂2ω12
∂ z̄2 if q ≥ 1,

2bL1

(
−
1

2b

)
ω11 if q = 0,

(4-8)

and 1=
∑

j=1,2 ∂
2/∂x2

j , so that, in accordance with (4-6), L(m)s (−1/(2b)) with s ∈ Z+ and m ∈ Z+ is
just the differential operator

∑s
j=0

(s+m
s− j

)
1 j/( j !(2b) j ) of order 2s with constant coefficients.

Proof. Set

ϕ0,k(x) :=

√
b

2πk!

(b
2

)k/2
zke−b|x |2/4, x ∈ R2, k ∈ Z+,

ϕq,k(x) :=
√

1
(2b)qq!

(a∗)qϕ0,k(x), x ∈ R2, k ∈ Z+, q ∈ N.

Then {ϕq,k}k∈Z+ is an orthonormal basis of Pq L2(R2), sometimes called the angular momentum basis
(see, e.g., [Raikov and Warzel 2002] or [Bruneau et al. 2004, Section 9.1]). Evidently, for k ∈ Z+ we
have

a∗ϕq,k =
√

2b(q + 1)ϕq+1,k, q ∈ Z+, aϕq,k =

{√
2bqϕq−1,k, q ≥ 1,

0, q = 0.
(4-9)
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Define the unitary operator W : Pq L2(R2)→ P0L2(R2) by W : u 7→ v, where

u =
∑
k∈Z+

ckϕq,k, v =
∑
k∈Z+

ckϕ0,k, {ck}k∈Z+ ∈ `
2(Z+). (4-10)

We will show that

PqA∗�APq =W∗P0wq P0W. (4-11)

For V ∈ C∞b (R
2), m, s ∈ Z+, and k, ` ∈ Z+, set

4m,s(V ; k, `) := 〈Vϕm,k, ϕs,`〉,

where 〈 · , · 〉 denotes the scalar product in L2(R2). Taking into account (4-9) and (4-10), we easily find
that

〈PqA∗�APqu, u〉 = 2b
∑
k∈Z+

∑
`∈Z+

((q + 1)4q+1,q+1(ω11; k, `)+ q4q−1,q−1(ω22; k, `))ck c̄`

+ 2b
√

q(q + 1)2 Re
∑
k∈Z+

∑
`∈Z+

4q+1,q−1(ω21; k, `)ck c̄` (4-12)

if q ≥ 1, and

〈P0A∗�AP0u, u〉 = 2b
∑
k∈Z+

∑
`∈Z+

41,1(ω11; k, `)ck c̄`. (4-13)

Moreover,

〈P0wq P0v, v〉 =
∑
k∈Z+

∑
`∈Z+

40,0(wq; k, `)ck c̄`, q ∈ Z+. (4-14)

In [Bruneau et al. 2004, Lemma 9.2] (see also the remark after Equation (2.2) in [Bony et al. 2014]), it
was shown that

4m,m(V ; k, `)=40,0

(
Lm

(
−
1

2b

)
V ; k, `

)
, m ∈ Z+. (4-15)

Now (4-13), (4-15) with m = 1 and V = ω11, and (4-14) with q = 0 imply (4-11) in the case q = 0.
Assume q ≥ 1. By (4-15), we have

4q+1,q+1(ω11; k, `)=40,0

(
Lq+1

(
−
1

2b

)
ω11; k, `

)
, (4-16)

4q−1,q−1(ω22; k, `)=40,0

(
Lq−1

(
−
1

2b

)
ω22; k, `

)
. (4-17)

Let us now consider the quantity 4q+1,q−1(V ; k, `). Using (4-9), we easily find that, for q ≥ 2, we have

4q+1,q−1(V ; k, `)=
1

√
2b(q + 1)

4q,q−1([V, a∗]; k, `)+
√

q−1
q+1

4q,q−2(V ; k, `), (4-18)

4q,q−1([V, a∗]; k, `)=
1
√

2bq
4q−1,q−1

(
[[V, a∗], a∗]; k, `

)
+

√
q−1

q
4q−1,q−2([V, a∗]; k, `). (4-19)
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Moreover, [V, a∗] = 2i ∂V/∂z, and

[[V, a∗], a∗] = −4
∂2V
∂z2 . (4-20)

Using (4-19), it is not difficult to prove by induction that

4q,q−1([V, a∗]; k, `)=
1
√

2bq

q−1∑
j=0

4 j, j
(
[[V, a∗], a∗]; k, `

)
, q ≥ 1. (4-21)

Now (4-15), (4-20), and (4-7) imply

q−1∑
j=0

4 j, j
(
[[V, a∗], a∗]; k, `

)
=

q−1∑
j=0

40,0

(
−4L j

(
−
1

2b

)
∂2V
∂z2 ; k, `

)

=40,0

(
−4L(1)q−1

(
−
1

2b

)
∂2V
∂z2 ; k, `

)
. (4-22)

Setting

Dq := −4L(1)q−1

(
−
1

2b

)
∂2

∂z2 , q ∈ N, (4-23)

we find that (4-21) and (4-22) imply

4q,q−1([V, a∗]; k, `)=
1
√

2bq
40,0(Dq V ; k, `). (4-24)

Bearing in mind (4-18), (4-15), and (4-24), it is not difficult to prove by induction that

4q+1,q−1(V ; k, `)=
1

2b
√

q(q + 1)

q∑
s=1

40,0(Ds V ; k, `). (4-25)

Note that (4-7) and (4-25) imply

q∑
s=1

Ds =−4L(2)q−1

(
−
1

2b

)
∂2

∂z2 . (4-26)

Now, (4-25) and (4-26) entail

2b
√

q(q + 1)4q+1,q−1(ω21; k, `)=40,0

(
−4L(2)q−1

(
−
1

2b

)
∂2ω21

∂z2 ; k, `
)
. (4-27)

Finally, (4-12) and (4-14) combined with (4-16), (4-17), and (4-27) yield (4-11) with q ≥ 1. �

In the rest of the section we establish two other suitable representations for the operators Pq V Pq , q ∈Z+,
with V : R2

→ C.

Proposition 4.2. (i) [Fernández and Raikov 2004, Lemma 3.1; Bony et al. 2014, Section 2.3] Let
V ∈ L1

loc(R
2) satisfy lim|x |→∞ V (x)= 0. Then, for each q ∈ Z+, the operator Pq V Pq is compact.
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(ii) [Raikov and Warzel 2002, Lemma 3.3] Assume in addition that V is radially symmetric, i.e., there
exists v : [0,∞)→ C such that V (x)= v(|x |), x ∈ R2. Then the eigenvalues of the operator Pq V Pq with
domain Pq L2(R2), counted with multiplicities, coincide with the set

{〈Vϕq,k, ϕq,k〉}k∈Z+ . (4-28)

In particular, the eigenvalues of P0V P0 coincide with

1
k!

∫
∞

0
v
((2t

b

)1
2
)

e−t tk dt, k ∈ Z+. (4-29)

Remarks. (i) Let us recall that, if f is, say, a bounded function of exponential decay, then

(M f )(z) :=
∫
∞

0
f (t)t z−1 dt, z ∈ C, Re z > 0,

is sometimes called the Mellin transform of f . Some of the asymptotic properties as k →∞ of the
integrals (4-29), which we will later obtain and use in the proofs of Theorems 2.1 and 2.2, could possibly
be deduced from the general theory of the Mellin transform.

(ii) Combining Propositions 4.1 and 4.2, we find that, if the matrix-valued function� is radially symmetric
and diagonal, then the operator PqA∗�APq acting in Pq L2(R2) is unitarily equivalent to a diagonal
operator in `2(Z+). If� is just radially symmetric, then PqA∗�APq is unitarily equivalent to a tridiagonal
operator acting in `2(Z+).

The last proposition in this section concerns the unitary equivalence between the Berezin–Toeplitz
operator P0W P0 and a certain Weyl pseudodifferential operator. Let us recall the definition of Weyl
pseudodifferential operators acting in L2(R). Denote by 0(R2) the set of functions ψ : R2

→ C such that

‖ψ‖0(R2) := sup
(y,η)∈R2

sup
`,m=0,1

∣∣∣∣∂`+mψ(y, η)
∂y`∂ηm

∣∣∣∣<∞.
Then the operator Opw(ψ), defined initially as a mapping between the Schwartz class S(R) and its dual
class S′(R) by

(Opw(ψ)u)(y)= 1
2π

∫
R

∫
R

ψ
( y+y′

2
, η
)

ei(y−y′)ηu(y′) dy′ dη, y ∈ R,

extends uniquely to an operator bounded in L2(R). Moreover, there exists a constant c such that

‖Opw(ψ)‖ ≤ c‖ψ‖0(R2) (4-30)

(see, e.g., [Boulkhemair 1999, Corollary 2.5(i)]).

Remark. Inequalities of the type (4-30) are known as Calderón–Vaillancourt estimates.

Put

Rb := −b−1/2
(

0 1
1 0

)
, (4-31)
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and, for V : R2
→ C, define

Vb(x) := V (Rbx), x ∈ R2, b > 0.

Moreover, set G(x) := e−|x |
2
/π , x ∈ R2.

Proposition 4.3 [Pushnitski et al. 2013, Theorem 2.11, Corollary 2.8]. Let V ∈ L1(R2)+ L∞(R2). Then
the operator P0V P0 with domain P0L2(R2) is unitarily equivalent to the operator Opw(Vb ∗G).

Remark. The operator Opaw(ψ) := Opw(ψ ∗G) is called a pseudodifferential operator with anti-Wick
symbol ψ (see, e.g., [Shubin 2001, Section 24]).

5. Proofs of Theorems 2.1 and 2.2

In this section we complete the proofs of Theorems 2.1 and 2.2, concerning perturbations of compact
support and of exponential decay.

Let T = T ∗ be a compact operator in a Hilbert space such that rank 1(0,∞)(T ) = ∞. Denote by
{νk(T )}∞k=0 the nonincreasing sequence of the positive eigenvalues of T , counted with multiplicities.

Recall that m<(x)≤m>(x) are the eigenvalues of the matrix m(x) for x ∈R2. Since the matrix U (see
(4-5)) is unitarily equivalent to m, m≷ are also the eigenvalues of U . Next, we check that Proposition 3.1
implies the following:

Corollary 5.1. Under the general assumptions of the article, there exist constants 0< c±< ≤ c±> <∞ and
k0 ∈ Z+ such that

c±<νk+k0(PqA∗m<APq)≤±(λ
±

k,q −3q)≤ c±>νk−k0(PqA∗m>APq) (5-1)

for sufficiently large k ∈ N.

Proof. It is easy to see that
0≤ Pq W H−1

±
W Pq ≤ c±Pq W Pq (5-2)

with
c± := ‖H

−1/2
± W H−1/2

± ‖ ≤ sup
x∈R2

∣∣m(x)(I ±m(x))−1∣∣.
Note that 0≤ c− <∞ and 0≤ c+ < 1. Moreover, by (4-4) and the mini-max principle,

n+(2s; PqA∗m<APq)≤ n+(s; Pq W Pq)≤ n+(2s; PqA∗m>APq), s > 0. (5-3)

Now, (3-4), (5-2), and (5-3) imply that, for any ε ∈ (0, 1), we have

n+(2λ(1+ ε); PqA∗m<APq)+ O(1)≤ N−q (λ)≤ n+(2λ(1− ε); (1+ c−)PqA∗m>APq)+ O(1), (5-4)

n+(2λ(1− ε); PqA∗m>APq)+ O(1)≥ N+q (λ)≥ n+(2λ(1+ ε); (1− c+)PqA∗m<APq)+ O(1) (5-5)

as λ ↓ 0, and estimates (5-4)–(5-5) yield (5-1) with

c−< =
1

2(1+ ε)
, c−> =

1+ c−
2(1− ε)

, c+< =
1− c+

2(1+ ε)
, c+> =

1
2(1− ε)

,

and sufficiently large k0 ∈ N. �
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Let us now complete the proof of Theorem 2.1. Let ζ1 ∈ C∞0 (R
2), ζ1 ≥ 0, ζ1 = 1 on supp m>. Set

ζ2(x) := (maxy∈R2 m>(y))ζ1(x), x ∈ R2. Evidently, m> ≤ ζ2 on R2, so that

νk(PqA∗m>APq)≤ νk(PqA∗ζ2APq), k ∈ Z+. (5-6)

Further, by Proposition 4.1, the operator PqA∗ζ2APq is unitarily equivalent to the operator P0ζ3 P0, where

ζ3 := 2b
(
(q + 1)Lq+1

(
−
1

2b

)
+ qLq−1

(
−
1

2b

))
ζ2.

Therefore,

νk(PqA∗ζ2APq)= νk(P0ζ3 P0), k ∈ Z+. (5-7)

Let R> > 0 be so large that the disk BR>(0) of radius R> centered at the origin contains the support of ζ3.
Then,

νk(P0ζ3 P0)≤max
x∈R2
|ζ3(x)|νk(P01BR> (0)P0), k ∈ Z+. (5-8)

Putting together (5-6), (5-7), and (5-8), we find that there exists a constant K> <∞ such that

νk(PqA∗m>APq)≤ K>νk(P01BR> (0)P0), k ∈ Z+. (5-9)

On the other hand,

νk(PqA∗m<APq)≥ νk(Pqam<a∗Pq). (5-10)

Applying (4-9), we easily find that the operators Pqam<a∗Pq and 2b(q + 1)Pq+1m<Pq+1 are unitarily
equivalent. Hence,

νk(Pqam<a∗Pq)= 2b(q + 1)νk(Pq+1m<Pq+1), k ∈ Z+. (5-11)

Further, since m< is nonnegative, continuous, and does not vanish identically, there exist c0 > 0,
R< ∈ (0,∞), and x0 ∈ R2 such that m<(x)≥ c01BR< (x0)(x), x ∈ R2. Therefore,

νk(Pq+1m<Pq+1)≥ c0νk(Pq+11BR< (x0)Pq+1), k ∈ Z+. (5-12)

The operators Pq+11BR< (x0)Pq+1 and Pq+11BR< (0)Pq+1 are unitarily equivalent under the magnetic trans-
lation which maps x0 into 0 (see, e.g., [Raikov and Warzel 2002, Equation (4.21)]). Therefore,

νk(Pq+11BR< (x0)Pq+1)= νk(Pq+11BR< (0)Pq+1), k ∈ Z+. (5-13)

Combining (5-10)–(5-13), we find that there exists a constant K< such that

K<νk(Pq+11BR< (0)Pq+1)≤ νk(PqA∗m<APq), k ∈ Z+. (5-14)

By (5-9) and (5-14), it remains to study the asymptotic behavior as k→∞ of νk(Pm1BR(0)Pm), with
m ∈ Z+ and R ∈ (0,∞) fixed. This asymptotic analysis relies on the representation (4-28), and results
sufficient for our purposes are available in the literature. Namely, we have:
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Lemma 5.2 [Combes et al. 2004, Section 4, Corollary 2]. Let m ∈ Z+, R ∈ (0,∞), b ∈ (0,∞). Set
% := bR2/2. Then

νk(Pm1BR(0)Pm)=
e−%%−m+1k2m−1%k

m!k!
(1+ o(1)), k→∞. (5-15)

Now, asymptotic relation (2-1) follows from (5-1), (5-9), (5-14), (5-15), and the elementary fact that
ln k! = k ln k+ O(k) as k→∞.

In the remaining part of this section we prove Theorem 2.2 concerning perturbations m of exponential
decay. Assume that m satisfies (2-5). Then there exist δ≷ ∈ R, δ< ≤ δ>, and r > 1 such that

|x |δ<e−γ |x |
2β

1R2\Br (0)(x)≤m<(x)≤m>(x)≤ |x |δ>e−γ |x |
2β

1R2\Br (0)(x)+max
y∈R2

m>(y)1Br (0)(x), x ∈R2.

(5-16)
Let η≷,0 ∈ C∞(R2

; [0, 1]) be two radially symmetric functions such that η<,0 = 1 on R2
\ Br+1(0),

η<,0 = 0 on Br (0), and η>,0 = 1 on R2
\ Br (0), η>,0 = 0 on Br−1(0). For x ∈ R2 set

η<,1(x) := |x |δ<e−γ |x |
2β
η<,0(x),

η>,1(x) := |x |δ>e−γ |x |
2β
η>,0(x)+max

y∈R2
m>(y)(1− η<,0(x)).

Evidently, η≷,1 ∈ C∞b (R
2), and by (5-16),

η<,1(x)≤ m<(x), m>(x)≤ η>,1(x), x ∈ R2.

Therefore, for k ∈ Z+, we have

νk(PqA∗m<APq)≥ νk(PqA∗η<,1APq),

νk(PqA∗m>APq)≤ νk(PqA∗η>,1APq).
(5-17)

Further, set

η≷,2 := 2b
(
(q + 1)Lq+1

(
−
1

2b

)
+ qLq−1

(
−
1

2b

))
η≷,1.

According to Proposition 4.1, the operators PqA∗η≷,1APq , q ∈ Z+, and P0η≷,2 P0 are unitarily equivalent.
Therefore,

νk(PqA∗η≷,1APq)= νk(P0η≷,2 P0), k ∈ Z+. (5-18)

Next, a tedious but straightforward calculation shows that

η≷,2(x)= η≷,3(x)(1+ o(1)), |x | →∞, (5-19)

where

η≷,3(x) := Cq,β |x |δ≷e−γ |x |
2β
{

1 if β ∈
(
0, 1

2

]
,

|x |2(q+1)(2β−1) if β ∈
( 1

2 ,∞
)
,

x ∈ R2
\ {0},
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and Cq,β > 0 are some constants. Even though the exact values of Cq,β will not play any role in the
sequel, we indicate here these values for the sake of the completeness of the exposition:

Cq,β =


23q if β ∈

(
0, 1

2

)
,

2b
(
(q + 1)Lq+1

(
−
(2βγ )2

2b

)
+ qLq−1

(
−
(2βγ )2

2b

))
if β = 1

2 ,

(2βγ )2(q+1)

(2b)qq!
if β ∈

( 1
2 ,∞

)
.

Hence, by (5-19), there exists R ∈ (0,∞) such that for x ∈ R2 we have

η<,2 ≥
1
2η<,31R2\BR(0)− c<1BR(0) =: η<,4(x), (5-20)

η>,2 ≤
3
2η>,31R2\BR(0)+ c>1BR(0) =: η>,4(x) (5-21)

with c≷ :=maxy∈R2 |η≷,2(y)|. Thus, for any admissible k ∈ Z+, we have

νk(P0η<,2 P0)≥ νk(P0η<,4 P0), νk(P0η>,2 P0)≤ νk(P0η>,4 P0). (5-22)

In order to complete the proof of Theorem 2.2, we need a couple of auxiliary results. For β > 0, µ > 0,
and % > 0, set

Jβ,µ(k) :=
∫
∞

0
e−µtβ−t tk dt, E%(k) :=

∫ %

0
e−t tk dt, k >−1, (5-23)

and, for δ ∈ R, c0 > 0 and c1 ∈ R, put

L(k)= Lβ,µ,%,δ(k; c0, c1) :=
c0Jβ,µ(k+ δ)+ c1E%(k− δ−)

0(k+ 1)
, k >max{−1,−δ− 1},

where δ− :=max{0,−δ}.

Lemma 5.3. Let β > 0, µ > 0, % > 0, c0 > 0, and δ ∈ R, c1 ∈ R.

(i) The asymptotic relations

ln L(k)=


−
∑

1≤ j<1/(1−β) f j k(β−1) j+1
+ O(ln k) if β ∈ (0, 1),

− ln (1+µ)k+ O(ln k) if β = 1,

−
β−1
β

k ln k+ k
(
β−1−ln (µβ)

β

)
−
∑

1≤ j<β/(β−1) g j k(1/β−1) j+1
+ O(ln k) if β ∈ (1,∞),

(5-24)

hold true as k→∞, the coefficients f j and g j being introduced in the statement of Theorem 2.2.

(ii) We have L′(k) < 0 for sufficiently large k.

Proof. First, let δ = 0. Assume β ∈ (0, 1), k > 0, and make the change of variable t 7→ ks in the first
integral in (5-23). Thus we find that

Jβ,µ(k)= kk+1
∫
∞

0
e−k F(s;kβ−1) ds. (5-25)
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The function F(s; kβ−1) defined in (2-9) attains its unique minimum at s<(kβ−1), and we have
∂2 F(s<(kβ−1); kβ−1)/∂s2

= 1+ o(1), k→∞. Therefore, applying a standard argument close to the
usual Laplace method for asymptotic evaluation of integrals depending on a large parameter, we easily
find that ∫

∞

0
e−k F(s;kβ−1) ds = (2π)1/2e−k F(s<(kβ−1);kβ−1)k−1/2(1+ o(1)), k→∞. (5-26)

Bearing in mind that F(s<(kβ−1); kβ−1)= f (kβ−1) (see (2-10)), f (0)= 1, and

ln0(k+ 1)= k ln k− k+ 1
2 ln k+ O(1), k→∞, (5-27)

(see, e.g., [Abramowitz and Stegun 1964, Equation 6.1.40]), we find that (5-25)–(5-26) imply

ln
(

Jβ,µ(k)
0(k+ 1)

)
= k− k f (kβ−1)+ O(ln k)

= k− k
∑

0≤ j<1/(1−β)

1
j !

d j f
dε j (0)k

(β−1) j
+ O(ln k)

=−

∑
1≤ j<1/(1−β)

1
j !

d j f
dε j (0)k

(β−1) j+1
+ O(ln k)

=−

∑
1≤ j<1/(1−β)

f j k(β−1) j+1
+ O(ln k), k→∞. (5-28)

In the case β = 1, we simply have

Jβ,µ(k)
0(k+ 1)

=
1

0(k+ 1)

∫
∞

0
e−(µ+1)t tk dt = (µ+ 1)−k−1,

that is,

ln
(

Jβ,µ(k)
0(k+ 1)

)
=−(ln (1+µ))k+ O(1), k→∞. (5-29)

Now let β ∈ (1,∞). Making the change of variable t 7→ k1/βs with k > 0 in (5-23), we find

Jβ,µ(k) := k(k+1)/β
∫
∞

0
e−kG(s;k(1/β−1)) ds. (5-30)

The function G(s; k1/β−1) defined in (2-11), attains its unique minimum at s>(k1/β−1), and we have

∂2G
∂s2 (s>(k

1/β−1), k1/β−1)= β(µβ)2/β(1+ o(1)), k→∞.

Arguing as in the derivation of (5-26), we obtain∫
∞

0
e−kG(s;k1/β−1) ds =

√
2πβ (µβ)−1/βe−kG(s>(k1/β−1);k1/β−1)k−1/2(1+ o(1)), k→∞. (5-31)
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Bearing in mind that G(s>(k1/β−1); k1/β−1)= g(k1/β−1) (see (2-12)), and g(0)= (1+ ln (µβ))/β, we
find that (5-30), (5-31), and (5-27) imply

ln
(

Jβ,µ(k)
0(k+ 1)

)
=−

β − 1
β

k ln k+ k− kg(k1/β−1)+ O(ln k)

=−
β − 1
β

k ln k+ k− k
∑

0≤ j<β/(β−1)

1
j !

d jg
dε j (0)k

(1/β−1) j
+ O(ln k)

=−
β − 1
β

k ln k+ k(1− g(0))−
∑

1≤ j<β/(β−1)

1
j !

d jg
dε j (0)k

(1/β−1) j+1
+ O(ln k)

=−
β − 1
β

k ln k+ k
(
β − 1− ln (µβ)

β

)
−

∑
1≤ j<β/(β−1)

g j k(1/β−1) j+1
+ O(ln k), (5-32)

as k→∞. Let us now consider general δ ∈ R. By (5-27),

ln
(
0(k+ δ+ 1)
0(k+ 1)

)
= δ ln k+ O(1), k→∞. (5-33)

Putting together (5-28), (5-29), (5-32), and (5-33), we find that

ln
(

Jβ,µ(k+ δ)
0(k+ 1)

)
− ln

(
Jβ,µ(k)
0(k+ 1)

)
= O(ln k), k→∞. (5-34)

Finally, by (5-15), we easily find that, for each fixed δ ∈ R, we have

E%(k− δ−)
0(k+ 1)

= o
(

Jβ,µ(k+ δ)
0(k+ 1)

)
, k→∞. (5-35)

The combination of (5-28), (5-29), (5-32), (5-34), and (5-35) implies (5-24).
For (ii), we have

L′(k)= c0

(
J′β,µ(k+ δ)

0(k+ 1)
−
0′(k+ 1)
0(k+ 1)2

Jβ,µ(k+δ)
)
+c1

(
E′%(k− δ−)

0(k+ 1)
−
0′(k+ 1)
0(k+ 1)2

E%(k−δ−)
)
,

J′β,µ(k)=
∫
∞

0
e−µtβ−t tk ln t dt, E′%(k)=

∫ %

0
e−t tk ln t dt,

(5-36)

and
0′(k+ 1)
0(k+ 1)

= ln k+
1

2k
+ O(k−2), k→∞,

(see, e.g., [Abramowitz and Stegun 1964, Equation 6.3.18]). Performing an asymptotic analysis similar to
the one in the proof of the first part of the lemma, we find that there exists a function 9 =9β,µ,δ such
that 9(k) < 0 for k large enough, and

J′β,µ(k+ δ)

0(k+ 1)
−
0′(k+ 1)
0(k+ 1)2

Jβ,µ(k+ δ)=9(k)(1+ o(1)), (5-37)

E′%(k− δ−)

0(k+ 1)
−
0′(k+ 1)
0(k+ 1)2

E%(k− δ−)= o(9(k)) (5-38)
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as k →∞. Putting together (5-36), (5-37), and (5-38), we conclude that L′(k) < 0 for sufficiently
large k. �

Taking into account the definition of the functions η≷,4 in (5-20)–(5-21), the mini-max principle,
representation (4-29), as well as Lemma 5.3(ii), we find that there exist constants c j,≷ > 0, j = 0, 1,
δ̃≷ ∈ R, and k0 ∈ Z+ such that

νk(P0η<,4 P0)≥ Lβ,µ,%,δ̃<
(k+ k0; c0,<,−c1,<)

νk(P0η>,4 P0)≤ Lβ,µ,%,δ̃>
(k; c0,>, c1,>),

(5-39)

for µ= γ (2/b)β , % = bR2/2, and sufficiently large k ∈ Z+.
Putting together (5-1), (5-17), (5-18), (5-22), (5-39), and (5-24), we obtain (2-6)–(2-8).

6. Proof of Theorem 2.3

Estimates (3-4) combined with the Weyl inequalities (3-3) and the mini-max principle entail

n+(λ(1+ ε); Pq W Pq)+ O(1)

≤ N−q (λ)≤ n+(λ(1− ε)2; Pq W Pq)+ n+(λε(1− ε); Pq W H−1
−

W Pq)+ O(1), (6-1)

and

n+(λ(1+ ε)2; Pq W Pq)− n+(λε(1+ ε); Pq W H−1
+

W Pq)+ O(1)

≤ N+q (λ)≤ n+(λ(1− ε); Pq W Pq)+ O(1) (6-2)

as λ ↓ 0. It is easy to check that we have

Pq W H−1
±

W Pq ≤ C1,±PqA∗〈 · 〉−2ρAPq

with

C1,± := ‖H
1/2
0 H−1/2

± ‖
2( sup

x∈R2
〈x〉ρm>(x)

)2
.

Therefore, for any s > 0,

n+(s; Pq W H−1
±

W Pq)≤ n+(s;C1,±PqA∗〈 · 〉−2ρAPq). (6-3)

Further, by Proposition 4.1, the operator Pq W Pq (resp. PqA∗〈 · 〉−2ρAPq) is unitarily equivalent to
1
2 P0wq(U )P0 (resp. P0wq(〈 · 〉

−2ρ I )P0). Hence, for any s > 0,

n+(s; Pq W Pq)= n+(2s; P0wq(U )P0), (6-4)

n+(s; PqA∗〈 · 〉−2ρAPq)= n+(s; P0wq(〈 · 〉
−2ρ I )P0)≤ n+(s;C2 P0〈 · 〉

−2ρP0) (6-5)

with C2 := supx∈R2〈x〉2ρ |wq(〈x〉−2ρ I )|. Now, write

1
2wq(U )= Tq + T̃q ,
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the symbol Tq being defined in (2-16), and note the crucial circumstance that T̃q ∈ S−ρ−2(R2). Then the
Weyl inequalities (3-3) entail

n+(s(1+ ε); P0Tq P0)− n−(sε; P0T̃q P0)≤ n+(2s; P0wq(U )P0)

≤ n+(s(1− ε); P0Tq P0)+ n+(sε; P0T̃q P0) (6-6)

for any s > 0 and ε ∈ (0, 1). Evidently,

n±(s; P0T̃q P0)≤ n+(s;C3 P0〈 · 〉
−ρ−2 P0), s > 0, (6-7)

with C3 := supx∈R2〈x〉ρ+2
|T̃q(x)|. Recalling Proposition 4.3, we find that we have reduced the asymptotic

analysis of N±q (λ) as λ↓ 0 to the eigenvalue asymptotics for a pseudodifferential operator with elliptic anti-
Wick symbol of negative order. The spectral asymptotics for operators of this type has been extensively
studied in the literature since the 1970s. In particular, we have the following:

Proposition 6.1. Let 0 ≤ ψ ∈ S−ρ(R2), ρ > 0. Assume that there exists 0 < ψ0 ∈ C∞(S1) such that
lim|x |→∞ |x |ρψ(x)= ψ0(x/|x |). Then we have

n+(λ;Opaw(ψ))= (2π)−18ψ(λ)(1+ o(1)), λ ↓ 0, (6-8)

which is equivalent to

lim
λ↓0

λ2/ρn+(λ;Opaw(ψ))= C(ψ0) :=
1

4π

∫ 2π

0
ψ0(cos θ, sin θ)2/ρ dθ.

Proof. Evidently, for each ε ∈ (0, 1) there exist real functions ψ±,ε ∈ C∞(R2) such that

ψ−,ε(x)≤ ψ(x)≤ ψ+,ε(x), x ∈ R2,

ψ±,ε(x)= (1∓ ε)−1
|x |−ρψ0

(
x
|x |

)
, x ∈ R2, |x | ≥ R,

for some R ∈ (0,∞). Applying the monotonicity of the anti-Wick quantization with respect to the symbol
(see, e.g., [Shubin 2001, Proposition 24.1]), the mini-max principle, and the Weyl inequalities, we obtain

n+((1+ ε)λ;Opw(ψ−,ε))− n−
(
ελ; (Opaw(ψ−,ε)−Opw(ψ−,ε))

)
≤ n+(λ;Opaw(ψ))≤ n+((1− ε)λ;Opw(ψ+,ε))+ n+

(
ελ; (Opaw(ψ+,ε)−Opw(ψ+,ε))

)
. (6-9)

By [Dauge and Robert 1987], we have the semiclassical result

n+(λ;Opw(ψ±,ε))= (2π)−18ψ±,ε(λ)(1+ o(1)), λ ↓ 0. (6-10)

Further, by [Shubin 2001, Theorem 24.1] the differences Opaw(ψ±,ε)−Opw(ψ±,ε) are pseudodifferential
operators of lower order than Opw(ψ±,ε), so that we easily obtain

lim
λ↓0

λ2/ρn±
(
ελ; (Opaw(ψ±,ε)−Opw(ψ±,ε))

)
= 0, ε > 0. (6-11)

Now, (6-9)–(6-11) imply

(1+ ε)−4/ρC(ψ0)≤ lim inf
λ↓0

λ2/ρn+(λ;Opaw(ψ))≤ lim sup
λ↓0

λ2/ρn+(λ;Opaw(ψ))≤ (1− ε)−4/ρC(ψ0)
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for ε ∈ (0, 1). Letting ε ↓ 0, we obtain (6-8). �

By Propositions 4.3 and 6.1, we have

n+(λ; P0Tq P0)= n+(λ;Opaw(Tq,b))=
1

2π
8Tq,b(λ)(1+o(1))= b

2π
8Tq (λ)(1+o(1)), λ↓ 0, (6-12)

with Tq,b = Tq ◦Rb, Rb being defined in (4-31). Finally, for ρ0 > ρ, we have

n+(λ; P0〈 · 〉
−ρ0 P0)= O(λ−2/ρ0)= o(8Tq (λ)), λ ↓ 0. (6-13)

Now, (2-17) easily follows from (6-1)–(6-8), (6-12), and (6-13). The equivalence of (2-18) and (2-19)
can be checked by arguing as in the proof of [Shubin 2001, Proposition 13.1].

Appendix: Compactness of the resolvent differences

A priori, the operators H0 and H±, self-adjoint in L2(R2), could be defined as the Friedrichs extensions
of the operators

∑
j=1,25

2
j and

∑
j,k=1,25 j g±jk5k defined on C∞0 (R

2). Such a definition implies
immediately that

Dom H 1/2
0 = Dom H 1/2

± = {u ∈ L2(R2) |5 j u ∈ L2(R2), j = 1, 2},

and that the operators H 1/2
± H−1/2

0 and H 1/2
0 H−1/2

± are bounded. By [Gérard et al. 1991, Proposition A.2],
the operators H0 and H± are essentially self-adjoint on C∞0 (R

2) and have a common domain

Dom H0 = Dom H± = {u ∈ L2(R2) |5 j5ku ∈ L2(R2), j, k = 1, 2}.

Let us now prove the compactness of the operator H−1
0 − H−1

± in L2(R2). Since we have

H−1
0 − H−1

±
=±H−1

0 W H−1
±
=±H−1

0 W H−1
0 H0 H−1

±
,

it suffices to prove the compactness of H−1
0 W H−1

0 . The operators H−1
0 W H−1

0 =
1
2 H−1

0 A∗UAH−1
0 and

1
2 H−1

0 A∗m>AH−1
0 are bounded, self-adjoint, and positive. Moreover,

H−1
0 A∗UAH−1

0 ≤ H−1
0 A∗m>AH−1

0 . (A-1)

On the other hand,

H−1
0 A∗m>AH−1

0 = H−1
0 a∗m>aH−1

0 + H−1
0 am>a∗H−1

0 . (A-2)

By (A-1) and (A-2), it suffices to prove the compactness of the operator m1/2
> a∗H−1

0 . We have

m1/2
> a∗H−1

0 = m1/2
> H−1/2

0 (H−1/2
0 a∗+ 2bH−1/2

0 a∗H−1
0 ).

The operator H−1/2
0 a∗ + 2bH−1/2

0 a∗H−1
0 is bounded, so that it suffices to prove the compactness of

m1/2
> H−1/2

0 which follows from m> ∈ L∞(R2), lim|x |→∞m>(x)= 0, and the diamagnetic inequality (see,
e.g., [Avron et al. 1978, Theorem 2.5]).
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