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LARGE-TIME BLOWUP FOR A PERTURBATION
OF THE CUBIC SZEGŐ EQUATION

HAIYAN XU

We consider the following Hamiltonian equation on a special manifold of rational functions:

i@tuD….juj
2u/C˛.uj1/; ˛ 2 R;

where … denotes the Szegő projector on the Hardy space of the circle S1. The equation with ˛ D 0 was
first introduced by Gérard and Grellier as a toy model for totally nondispersive evolution equations. We
establish the following properties for this equation. For ˛ < 0, any compact subset of initial data leads
to a relatively compact subset of trajectories. For ˛ > 0, there exist trajectories on which high Sobolev
norms exponentially grow in time.

1. Introduction

The study on the long time behavior of solutions of Schrödinger type Hamiltonian equations is a central
issue in the theory of dispersive nonlinear partial differential equations. For instance, Colliander, Keel,
Staffilani, Takaoka, and Tao [Colliander et al. 2010] studied the cubic defocusing nonlinear Schrödinger
equation,

i@tuC4uD˙juj
2u; .t; x/ 2 R�T2: (1-1)

In that paper, they constructed solutions with small H s norm at the initial moment, which present a large
Sobolev H s norm at a sufficiently long time T . Guardia and Kaloshin [2012] improved this result by
refining the estimates on the time T . Zaher Hani [2014] studied a version of the nonlinear Schrödinger
equation obtained by canceling the least resonant part, and showed the existence of unbounded trajectories
in high Sobolev norms. Hani, Pausader, Tzvetkov, and Visciglia [Hani et al. 2013] studied the nonlinear
Schrödinger equation (1-1) on the spatial domain R�Td , and obtained global solutions to the defocusing
and focusing problems (for any d � 2) with infinitely growing high Sobolev norms H s .

Gérard and Grellier [2012a] achieved a related result by considering the following degenerate half
wave equation on the one-dimensional torus:

i@tu� jDjuD juj
2u: (1-2)
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They found solutions with small Sobolev norms at initial time which become much larger as time grows.
More precisely, there exist sequences of solutions un and tn such that kun0kH r ! 0 for any r , but

kun.tn/kH s � kun0kH s

�
log

1

kun0kH s

�2s�1
; s > 1:

This result is a consequence of studies on the so-called cubic Szegő equation, introduced by Gérard and
Grellier [2010; 2012b] as a model of nondispersive dynamics:

i@tuD….juj
2u/: (1-3)

The above equation turns out to be the resonant part of the half wave equation (1-2). The operator …,
called the Szegő operator, is defined as a projector onto the nonnegative frequencies. If u 2 D0.S1/ is a
distribution on the circle S1 D fz 2 C W jzj D 1g, then

….u/D…

�X
k2Z

Ou.k/eik�
�
D

X
k�0

Ou.k/eik� : (1-4)

Notice that, on the Hilbert space L2.S1/ endowed with the inner product

.ujv/D
1

2�

Z �

��

u.eix/v.eix/ dx; (1-5)

… is the orthogonal projector on the subspace L2
C
.S1/ defined by the conditions

Ou.k/D 0 for all k < 0:

Gérard and Grellier [2010; 2012b] studied the Szegő equation on the space

H
1=2
C

.S1/ WDH 1=2.S1/\L2C.S
1/

and displayed two Lax pair structures for this completely integrable system. Moreover, they established
an explicit formula of every solution with rational initial data [Gérard and Grellier 2013] and illustrated
the large-time behavior of Sobolev norms of the solutions; for instance:

Theorem 1.1 [Gérard and Grellier 2010]. Every solution u of (1-3) on

zM.1/ WD

�
uD

aC bz

1�pz
W 0¤ a 2 C; b 2 C; p 2 C; jpj< 1; aC bp ¤ 0

�
satisfies

sup
t2R

ku.t/kH s <1 for all s > 1
2
:

However, there exists a family of Cauchy data u"0 in zM.1/ which converges in zM.1/ for the C1.S1/
topology as "! 0, and K > 0 such that the corresponding solutions of (1-3) u" satisfy the following
condition, for all " > 0:

for some t" > 0; ku".t"/kH s �K.t"/2s�1 as t"!1 for all s > 1
2
:
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Another result on this Szegő equation was obtained by Pocovnicu [2011b; 2011a], who studied this
equation by replacing the circle S1 with the real line and got a polynomial growth of high Sobolev norms
[Pocovnicu 2011a, Corollary 4], which says that there exists a solution u of the Szegő equation and a
constant C > 0 such that ku.t/kH s � C jt j2s�1 for sufficiently large jt j.

The aim of this article is to study the properties of global solutions for the following Hamiltonian
equation on L2

C
.S1/, which is the cubic Szegő equation with a linear perturbation:�

i@tuD….juj
2u/C˛.uj1/; ˛ 2 R;

u.0; x/D u0.x/:
(1-6)

In view of (1-5),

.uj1/D
1

2�

Z �

��

u.eix/ dx

is the average of u on S1.
Equation (1-6), called the ˛-Szegő equation, inherits three formal conservation laws:

mass: Q.u/ WD

Z
S1
juj2

d�

2�
D kuk2

L2
;

momentum: M.u/ WD .Duju/; D WD �i@� D z@z;

energy: E˛.u/ WD
1

4

Z
S1
juj4

d�

2�
C
1

2
˛j.uj1/j2:

Slight modifications of the proof of the well-posedness result in [Gérard and Grellier 2010] lead to the
result that the ˛-Szegő equation is globally well posed in H s

C
.S1/DH s.S1/\L2

C
.S1/ for s � 1

2
:

Theorem 1.2. Given u0 2 H
1=2
C

.S1/, there exists a unique global solution u 2 C.RIH 1=2
C

/ of (1-6)
with u0 as the initial condition. Moreover, if u0 2 H s

C
.S1/ for some s > 1

2
, then u 2 C1.RIH s

C
/.

Furthermore, if u0 2H s
C
.S1/ with s > 1, the Wiener norm of u is bounded uniformly in time:

sup
t2R

ku.t/kW WD sup
t2R

1X
kD0

jbu.t/.k/j � Csku0kH s : (1-7)

Now we present our main results. In our case with a perturbation term, it turns out that if ˛ < 0, the
Sobolev norm stays bounded uniformly in time, while if ˛ > 0, it may grow exponentially fast:

Theorem 1.3. Let u0 D b0C c0z=.1�p0z/, c0 ¤ 0, jp0j< 1.
For ˛ < 0, the Sobolev norm of the solution will stay bounded:

ku.t/kH s � C; C does not depend on time t , s � 0: (1-8)

For ˛ > 0, the solution u of the ˛-Szegő equation (1-6) has a Sobolev norm growing exponentially in
time:

ku.t/kH s ' eC˛;s jt j; s > 1
2
; C˛;s > 0; jt j !1 (1-9)

if and only if
E˛ D

1
4
Q2C 1

2
˛Q: (1-10)
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Remark 1.4. (1) Together with the results in [Gérard and Grellier 2010; 2012b], we now have a complete
picture for the high Sobolev norm of the solutions to the ˛-Szegő equation. For ˛ < 0, it stays bounded
(uniformly on time). For ˛ > 0, it turns out to have an exponential growth for some initial data satisfying
the condition in Theorem 1.3. Finally, for ˛ D 0, the trajectories of the Szegő equation with rational
initial data are quasiperiodic with instability of the H s norm as in Theorem 1.1.

(2) Our result is in strong contrast with Bourgain’s [1996] and Staffilani’s [1997] results for the dispersive
equations, which say that the dispersive equations admit polynomial upper bounds on Sobolev norms.
Here, we give an example of exponential growth of Sobolev norms for a nondispersive model.

(3) The solutions to the ˛-Szegő equation admit an exponential upper bound of the Sobolev norms.
Assuming s > 1, it is easy to solve (1-6) locally in time. More precisely, one has to solve the integral
equation

u.t/D u0� i

Z t

0

�
….juj2u/C˛.uj1/

�
dt 0:

Thus

ku.t/kH s � ku0kH s C c

Z t

0

.1Cku.t 0/k2W /ku.t
0/kH s dt 0;

since, by Theorem 1.2, the Wiener norm is uniformly bounded. Then, by Gronwall’s inequality, we have

ku.t/kH s � ku0kH sect :

This shows that (1-9) is the worst that can happen.

This paper is organized as follows. In Section 2, we prove that there exists a Lax pair for the ˛-Szegő
equation based on Hankel operators. Then we define the manifolds L.k/ WD fu W rkKu D k; k 2 ZCg

with the shifted Hankel operator Ku. These manifolds are proved to be invariant by the flow and can be
represented as sets of rational functions. In this paper we will just consider the solutions u 2L.1/. We
plan to address the other cases in a forthcoming work. In Section 3, we prove the large-time blowup result
and the boundedness of the Wiener norm to show that our result is optimal. Furthermore, we provide an
example which describes the energy cascade. Finally, we present some perspectives in Section 4.

2. The Lax pair structure

For u 2E � D0.S1/, we define EC by canceling the negative Fourier modes of u:

EC D fu 2E W for all k < 0; Ou.k/D 0g:

In particular, L2
C

is the Hardy space of L2 functions which extend to the unit disc D D fz 2 C W jzj< 1g

as holomorphic functions

u.z/D
X
k�0

Ou.k/zk;
X
k�0

j Ou.k/j2 <1:
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An element of L2
C

can therefore be seen either as a square integrable function uD u.ei� / on the circle
with only nonnegative Fourier modes, or a holomorphic function uD u.z/ on the unit disc with square
summable Taylor coefficients.

Using the Szegő projector defined as (1-4), we first introduce two important classes of operators on
L2
C
.S1/, namely, the Hankel and Toeplitz operators.

Given u 2H 1=2
C

.S1/, a Hankel operator Hu W L2C! L2
C

is defined by

Hu.h/D….u Nh/:

Notice that Hu is C-antilinear and symmetric with respect to the real scalar product Re.ujv/. In fact, it
satisfies

.Hu.h1/jh2/D .Hu.h2/jh1/:

Moreover, Hu is a Hilbert-Schmidt operator with

Tr.H 2
u /D

1X
nD0

.nC 1/j Ou.n/j2:

Given b 2 L1.S1/, a Toeplitz operator Tb W L2C! L2
C

is defined by

Tb.h/D….bh/:

Tb is C-linear, bounded, and self-adjoint if and only if b is real valued.
The cubic Szegő equation was proved to admit two Lax pairs as follows:

Theorem 2.1 [Gérard and Grellier 2010, Theorem 3.1]. Let u 2 C.R;H s.S1// for some s > 1
2

. The
cubic Szegő equation

i@tuD….juj
2u/ (2-1)

has two Lax pairs .Hu; Bu/ and .Ku; Cu/, namely, if u solves (2-1), then

dHu

dt
D ŒBu;Hu�;

dKu

dt
D ŒCu; Ku�; (2-2)

where

Bu D
i

2
H 2
u � iTjuj2 ; Ku WD T

�
z Hu; Cu D

i

2
K2u � iTjuj2 :

Corollary 2.2. The perturbed Szegő equation (1-6) with ˛ ¤ 0 still has one Lax pair .Ku; Cu/.

Proof of Corollary 2.2. We need an identity from [Gérard and Grellier 2013, Lemma 1]:

H….juj2u/ D Tjuj2HuCHuTjuj2 �H
3
u : (2-3)

Using (1-6) and (2-3),

dHu

dt
DH�i….juj2u/�i˛.uj1/ D�i.Tjuj2HuCHuTjuj2 �H

3
u /� i˛.uj1/H1:
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Using the antilinearity of Hu, we deduce that

dHu

dt
D ŒBu;Hu�� i˛.uj1/H1; (2-4)

which means that .Hu; Bu/ is no longer a Lax pair. Fortunately, we have T �z H1 D 0, which leads to the
identity

dKu

dt
D ŒCu; Ku�: �

An important consequence of this Lax pair structure is the existence of finite dimensional submanifolds
of L2

C
.S1/, which are invariant by the flow of (1-6). To describe these manifolds, Gérard and Grellier

[2010, Appendix 4] proved a Kronecker-type theorem to the effect that the Hankel operator Hu is of
finite rank k if and only if u is a rational function of the complex variable z with no poles in the unit disc
and of the form u.z/DA.z/=B.z/ with A 2Ck�1Œz�, B 2CkŒz�, B.0/D 1, degAD k�1 or degB D k,
A and B having no common factors, and B.z/¤ 0 if jzj � 1. In fact, we can prove a similar theorem for
our case.

Definition 2.3. Letting k be a positive integer, we define

L.k/ WD fu 2H
1=2
C

.S1/ W rkKu D kg: (2-5)

Due to the Lax pair structure, the manifolds L.k/ are invariant by the flow.

Theorem 2.4. The elements of L.k/ are the rational functions uD A.z/

B.z/
, where

A;B 2 CkŒz�; A^B D 1; degAD k or degB D k; B�1.f0g/\D D∅: (2-6)

Here A^B D 1 means A and B have no common factors.

Proof. Gérard and Grellier [2010, Appendix 4] proved that

M.kC 1/D fu W rkHu D kC 1g

D

�
u.z/D

A.z/

B.z/
W A 2 CkŒz�; B 2 CkC1Œz�; B.0/D 1;

degAD k or degB D kC 1; A^B D 1; B�1.0/\D D∅
�
:

For u 2M.kC1/ we have dim ImHuD kC1. Then u; T �z u; : : : ; .T
�
z /
kC1u are linearly dependent, that

is, there exist C`, not all zero, such that
PkC1
`D0 C`.T

�
z /
`uD 0. We get

kC1X
`D0

C` Ou.`Cn/D 0 for all n� 0:

This is a recurrence equation for the sequence Ou, and can be solved by using linear algebra. Define

P.X/D

kC1X
`D0

C`X
`
D C

Y
p2P

.X �p/mp ;
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where PD fp 2 C W P.p/D 0g and mp is the multiplicity of p. Then . Ou.n//n�0 is a linear combination
of the sequences

n`pn�`; p ¤ 0; 0� `�mp � 1 and ınm; p D 0; 0�m�m0� 1:

Recall that
u.z/D

X
n�0

Ou.n/zn for jzj< 1:

Thus u is a linear combination of terms 1

.1�pz/`C1
with 0 < jpj< 1 and 0� `�mp � 1, and terms z`

for 0� `�m0� 1.
Consequently, u.z/D A.z/=B.z/ with

degA� k; degB D kC 1 if 0 … P;

degAD k; degB � k if 0 2 P:

But 0 2 P is equivalent to 1 2 ImHu, or again to kerKu \ ImHu ¤ f0g, since Ku D T �z Hu and
rkHu� 1� rkKu � rkHu. For u 2 L.k/ we have rkKu D k. Thus uD A.z/=B.z/ with

degA� k� 1; degB D k if rkHu D rkKu D k;

degAD k; degB � k if rkHu D rkKuC 1D kC 1:

The proof of the converse is similar. It follows that L.k/D fu W rkKu D kC 1g contains precisely the
quotients uD A=B , with A and B as in (2-6). �

3. Proof of the main theorem

We will now prove that the ˛-Szegő equation (1-6) has a large-time blowup as in Theorem 1.3. We also
give an example to describe this phenomenon in terms of energy transfer to high frequencies. We start by
proving the boundedness of the Wiener norm as in Theorem 1.2.

Proposition 3.1. Assume u0 2 H s
C
.S1/ with s > 1 and let u be the corresponding unique solution of

(1-6). Then
ku.t/kW � Csku0kH s for all t 2 R:

Proof. By Peller’s theorem [2003], the regularity of u ensures that Hu is trace class and the trace norm of
Hu is equivalent to the B11;1 norm of u. Recall the definition of Bsp;q.S

1/.
Let � 2 C1.RC/ satisfy �jt<1.t/ D 1, �jt>2.t/ D 0, 0 � � � 1. Set  as  0.t/ D 1 � �.t/,

 j .t/D �.2
�jC1t /��.2�j t /. Define the operator �j for f 2 D0.S1/ as

�jf D
X
k2Z

 j .k/ Of .k/e
ik� :

Then the Besov space is defined as

Bsp;q.S
1/ WD fu 2 D0.S1/ W 2jsk�jf kLp 2 l

q
j ; 1� p; q �C1; 0� j �C1g;
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with norm

kukBsp;q.S1/ D

�C1X
jD0

.2jsk�jf kLp /
q

�1=q
:

Observe that there exist C , Cs > 0 such that

kukB11;1
D

C1X
jD0

2j k�jukL1 � C

C1X
jD0

2j k�jukL2

� C

�C1X
jD0

22jsk�juk
2
L2

�1=2�C1X
jD0

22j.1�s/
�1=2
� CskukH s for all s > 1: (3-1)

So, for u 2H s with s > 1, Hu is trace class, and

Tr.jHuj/� CskukH s :

Since Ku D T �z Hu, we have K2u D H
2
u � . � ju/u, and so Tr.jKuj/ � Tr.jHuj/. Due to the Lax pair

structure, we conclude thatKu.t/ is isospectral toKu0 , an in particular Tr.jKu.t/j/DTr.jKu0 j/. Therefore

Tr.jKu.t/j/� Csku0kH s :

Since kukW D j Ou.0/jC
P
n�1 j Ou.n/j and j Ou.0/j � kukL2 , we just need to show thatX

n�1

j Ou.n/j � C Tr.jKuj/:

Let feng be an orthonormal basis of L2
C

. Then, for any bounded operator B ,X
n

j.Kuen jBen/j � Tr.jKuj/kBk:

Then we see that
P
n�1

j Ou.2n/jC
P
n�1

j Ou.2nC1/j �Tr.jKuj/ by taking B DTz and B D Id. This completes
the proof. �

Remark 3.2. In fact, to prove the global well-posedness, it is natural to use the Brezis–Gallouët type
estimate from [Gérard and Grellier 2010, Appendix 2]: for s > 1

2
,

kukW � CskukH1=2

�
log
�
1C

kukH s

kukH1=2

�� 1
2

:

This leads to a growth doubly exponential on time for the Sobolev norm of u. Fortunately, by the estimate
in Proposition 3.1, we know the H s norm of the solutions will admit an exponential on time upper bound
for s > 1 (see Remark 1.4).

Now, let us start the large-time blowup theorem.

Theorem 3.3. For ˛ > 0, we consider the solution of the Szegő equation (1-6) with initial data u0 2L.1/.
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(1) If the trajectory issued from u0 is not relatively compact in L.1/, thenˇ̌̌̌
bC

Npc

1� jpj2

ˇ̌̌̌
D
p
˛; (3-2)

or, equivalently,
E˛ D

1
4
Q2C 1

2
˛Q: (3-3)

(2) If (3-2) holds, then

ku.t/kH s ' eC˛;s jt j; s > 1
2
; C˛;s > 0; jt j !1: (3-4)

Thus the equality (3-3), which is invariant by the flow, is a necessary and sufficient condition to cause
large-time blowup.

Proof. First, since the trajectory of the solution is not relatively compact in L.1/, the level set L.u0/ WD
fu 2 L.1/ WQ.u/DQ.u0/; M.u/DM.u0/; E˛.u/DE˛.u0/g is not compact in L.1/.

We rewrite u 2 L.1/ as

uD bC
cz

1�pz
:

Then the conservation laws under the coordinates b; p; c are given as

QD kuk2
L2
D
jcj2

1� jpj2
Cjbj2;

M D .Duju/D
jcj2

.1� jpj2/2
;

E˛ D
1
4
kuk4

L4
C
1
2
˛j.uj1/j2 D

1

4

�
jbj4C

4jbj2jcj2

1� jpj2
C
jcj4.1Cjpj2/

.1� jpj2/3
C
4jcj2 Re.bp Nc/
.1� jpj2/2

�
C
1
2
˛jbj2:

Now, u 2 L.1/ stays in a compact of L.1/ if and only if jbj � C , 1=C � jcj � C , and jpj � k < 1
with some constant C and k. Otherwise, due to the formulas of mass Q and momentum M , there exist
tn!1 such that jc.tn/j and 1� jp.tn/j2 tend to 0 at the same order. Using the formula of Q and E˛,
we have

jb.tn/j
2
!Q; 1

4
jb.tn/j

4
C
1
2
˛jb.tn/j

2
!E˛:

Since the limit should be unique,
E˛ D

1
4
Q2C 1

2
˛Q:

Using the formula of mass and energy, (3-3) can be rewritten under coordinates of b; p; c as

jbj2C
jcj2jpj2

.1� jpj2/2
C 2Re

bp Nc

1� jpj2
D ˛:

Simplifying the left hand side, we get ˇ̌̌̌
bC

Npc

1� jpj2

ˇ̌̌̌
D
p
˛:
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Now we turn to proving that (3-2) is sufficient to cause the exponential growth of Sobolev norms.
Writing, as before,

u.t/D b.t/C
c.t/z

1�p.t/z
;

the terms @tu, ….juj2u/, .uj1/ can be represented as linear combinations of 1, z

1�pz
, z2

.1�pz/2
:8̂̂̂̂

ˆ̂̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂:

@tuD @tbC @tc
z

1�pz
C @tp

z2

.1�pz/2
;

….juj2u/D jbj2bC
2bjcj2

1� jpj2
C
jcj2c Np

1� jpj2

C

�
2jbj2cC

2bjcj2p

1� jpj2
C
1Cjpj2

1� jpj2
jcj2c

�
z

1�pz
C

�
c2 NbC

jcj2cp

1� jpj2

�
z2

.1�pz/2
;

.uj1/D b:

Then (1-6) reads 8̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

i@tb D jbj
2bC

2bjcj2

1� jpj2
C
jcj2c Np

.1� jpj2/2
C˛b;

i@tc D 2jbj
2cC

2bjcj2p

1� jpj2
C

jcj2c

.1� jpj2/2
;

i@tp D c NbC
jcj2p

1� jpj2
:

(3-5)

Using the second equation of (3-5), we obtain

d jcj

dt
D

2jcj

1� jpj2
Im.bp Nc/: (3-6)

This equality together with (3-2) gives us�
d jcj

jcjdt

�2
D
4. Im.bp Nc//2

.1�jpj2/2
D

4jbp Ncj2

.1�jpj2/2
�
4.Re.bp Nc//2

.1�jpj2/2

D
4jbp Ncj2

.1�jpj2/2
�

�
˛�jbj2�

jcj2jpj2

.1�jpj2/2

�2
D

4jbp Ncj2

.1�jpj2/2
�

�
˛�jbj2�

jcj2

.1�jpj2/2
C
jcj2

1�jpj2

�2
D

4jbp Ncj2

.1�jpj2/2
�

�
˛�Q�MC2

jcj2

1�jpj2

�2
D

4jbp Ncj2

.1�jpj2/2
�

4jcj4

.1�jpj2/2
�

4jcj2

1�jpj2

�
˛�jbj2�

jcj2

.1�jpj2/2
�
jcj2

1�jpj2

�
�.˛�Q�M/2

D
4jbj2jcj2

.1�jpj2/2
C

4jcj4

.1�jpj2/3
�˛

4jcj2

1�jpj2
�.˛�Q�M/2

D 4

�
jbj2C

jcj2

1�jpj2

�
jcj2

.1�jpj2/2
�˛

4jcj2

1�jpj2
�.˛�Q�M/2

D 4QM �4˛
p
M jcj�.˛�Q�M/2:
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Thus �
d log jcj
dt

�2
D�4˛

p
M jcjC 4QM � .˛�M �Q/2:

Since 0� jcj � 1, it follows that c˛;M;Q �
�
d log jcj
dt

�2
� C˛;M;Q, which leads to exponential decay

in time for jcj:
jcj.t/' jc.0/je�C jt j

with the positive constant C depending on ˛ and M , Q.
Notice that Ou.k; t/D cpk�1 for k � 1. Using Fourier expansion, we obtain, as jpj approaches 1,

kuk2H s '
jcj2

.1� jpj2/2sC1
:

Since M.u/ D jcj2=.1� jpj2/2 D constant, we get kuk2H s ' jcj
�.2s�1/ ' eC.2s�1/jt j, which has an

exponential growth as s > 1
2

. This completes the proof. �

Corollary 3.4. We do not have the growth of H s norms for small data in L.1/. In other words, if
ku.0/k

H
1=2
C

�
p
˛, the higher Sobolev norm will never grow to infinity.

Proof. ku.0/k
H
1=2
C

�
p
˛. Thenˇ̌̌̌
bC

c Np

1� jpj2

ˇ̌̌̌
�
p
QC
p
M . ku.0/k

H
1=2
C

�
p
˛:

According to the necessary and sufficient condition (3-2), there is no norm explosion. �

Remark 3.5. Consider a family of Cauchy data given by

u"0 D zC "; " 2 C and "¤
p
˛:

For the case ˛ D 0, Gérard and Grellier got the following instability of H s norms:

ku".t"/kH s ' "�.2s�1/; s > 1
2
:

However, we do not have such an instability result for ˛ > 0. In fact, using Theorem 3.3, we know there
exists a constant C D C.˛/ such that

sup
"¤
p
˛

sup
t2R

ku".t/kH s < C:

Now we give an example to display the energy cascade in Theorem 3.3.

Theorem 3.6. Given ˛ > 0, �
i@tuD….juj

2u/C˛.uj1/;

ujtD0 D zC
p
˛; z 2 S1:

(3-7)

For all s > 1
2

, the above equation is globally well posed in H s and the solution satisfies

ku.t/kH s ' e.2s�1/
p
˛t ; t !1:
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Proof. Since u0 D zC
p
˛, the conserved quantities are Q D 1C ˛, M D 1, E˛ D 1

4
.1C ˛/.1C 3˛/.

Thus u0 2 L.1/. So, by the proof of Theorem 3.3,�
d

dt
jcj

�2
D 4˛jcj2.1� jcj/:

Together with the initial condition jcj.0/D 1, we get, for t > 0 (same strategy for t < 0),

d

dt
jcj D �2

p
˛jcj

p
1� jcj; (3-8)

and then

jcj.t/D
4e2
p
˛t

.1C e2
p
˛t /2

:

By (3-2), we get Re.bp Nc/D jcj2�jcj, and, by (3-6) and (3-8), we have Im.bp Nc/D�
p
˛jcj

p
1� jcj, so

bp Nc D Re.bp Nc/C i Im.bp Nc/D jcj2� jcj � i
p
˛jcj

p
1� jcj:

The second equation of (3-5) can be simplified as follows:�
i@tc D .1C 2˛� 2i

p
˛
p
1� jcj/c;

c.0/D 1:

Thus

c.t/D
4e2
p
˛t

.1C e2
p
˛t /2

e�i.1C2˛/t : (3-9)

Now we turn to calculating b and p. In fact, we only need to calculate their angles. Let us denote

b D jbjei�.t/ D
p
1C˛� jcjei�.t/; p D jpjei�.t/ D

p
1� jcjei�.t/:

Then, using the differential equation on p, we get

@t� jpj D jcjjpjCRe.c Nbe�i� /D jcjjpjCRe
�
c Nb Np

jpj

�
D jcjjpjC

1

jpj
.jcj2� jcj/D 0;

which means
�.t/D �.0/:

Since

bp D
c.bp Nc/

jcj2
D .jcj � 1� i

p
˛
p
1� jcj/e�i.1C2˛/t

D
p
.1C˛� jcj/.1� jcj/

�
�

p
1� jcjp

1C˛� jcj
� i

p
˛p

1C˛� jcj

�
e�i.1C2˛/t ;

ei.�C�/ D

�
�

p
1� jcjp

1C˛� jcj
� i

p
˛p

1C˛� jcj

�
e�i.1C2˛/t ;

and ei�.0/ D 1, we get
ei�.t/ D ei�.0/ D ei.�.0/C�.0// D�i:
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Then

ei�.t/ D

�
�i

p
1� jcjp

1C˛� jcj
C

p
˛p

1C˛� jcj

�
e�i.1C2˛/t :

Finally, we have

p.t/D�i
p
1� jcj D �i

e2
p
˛t � 1

e2
p
˛t C 1

;

b.t/D

�
p
˛� i

e2
p
˛t � 1

e2
p
˛t C 1

�
e�i.1C2˛/t :

(3-10)

Now we get the explicit formula for the solution u.t/D b.t/C c.t/z=.1�p.t/z/:8̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

b.t/D

�
p
˛� i

e2
p
˛t � 1

e2
p
˛t C 1

�
e�i.1C2˛/t ;

c.t/D
4e2
p
˛t

.1C e2
p
˛t /2

e�i.1C2˛/t ;

p.t/D�i
e2
p
˛t � 1

e2
p
˛t C 1

:

(3-11)

In this case, M.u/D jcj2=.1� jpj2/2 D 1 and we get, for t !C1,

ku.t/k2H s ' jcj
�.2s�1/

' Ce2.2s�1/
p
˛t : �

Remark 3.7. One can illustrate this instability of Sobolev norms from the viewpoint of transfer of energy
to high frequencies. The Fourier coefficients for uD bC cz=.1�pz/ are

Ou.k/D c.t/p.t/k�1 for all k � 1:

Then

M.u/D 1D
X
k�1

jkjj Ou.k/j2 D
X
k�1

jkjjc.t/j2jp.t/j2.k�1/:

With (3-11), we have

X
k�1

ˇ̌̌̌
1� e�2

p
˛t

1C e�2
p
˛t

ˇ̌̌̌2k
16jkj

j.1C e�2
p
˛t /.1� e�2

p
˛t /j2

D 1:

As t !1, we get X
k�1

4jkje�2
p
˛t exp .�4jkje�2

p
˛t /� 1

4
;

so the main part of the summation is on the ks satisfying

jkj � e2
p
˛t :

So as time increases, the main part of the energy concentrates on the Fourier modes as large as e2
p
˛t .
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On the other hand, from the viewpoint of the space variable, we find that as time grows to infinity, the
energy will concentrate on one point. In fact, rewriting z D eix , we getˇ̌̌̌

u.t; x/�
p
˛� i

1� e�2
p
˛t

1C e�2
p
˛t

ˇ̌̌̌
D

jc.t/j

j1�p.t/zj
D
1� jp.t/j2

j1�p.t/zj
�
1� jp.t/j

j1�p.t/zj

�
1q

2.e4
p
˛t � 1/.1� sin x/C 4

;

which tends to 0 as t !1 if and only if x ¤ �=2. Therefore, as time tends to infinity, the value of juj
will concentrate on the point i 2 S1.

This example shows that the radius of analyticity of the solution of (1-6) may decay exponentially.
This shows the optimality of the result in [Gérard et al. 2013].

Now, let us turn to the case ˛ < 0.

Theorem 3.8. In the case ˛ < 0, for any given initial data u0 2 L.1/, let uD .azC b/=.1�pz/ be the
corresponding solution of (1-6). Then there exists a constant C D C.˛/ such that, for all t ,

ku.t/kH s < C; s � 1
2
;

where the constant C > 0 is uniform for u0 in a compact subset of L.1/.

Proof. Assume for a contradiction that u.tn/ leaves any compact subset of L.1/. Then Theorem 3.3 leads
to (3-3), or equivalently to the equality

ku0k
4
L2
�ku0k

4
L4
D 2˛.j.u0 j1/j

2
�ku0k

2
L2
/:

Via the Cauchy–Schwarz inequality and ˛ < 0, we get

ku0kL2 D kukL4 and j.u0 j1/j D ku0kL2 :

Then u0 is a constant, which contradicts the fact that u0 2 L.1/. �

4. Further studies and open problems

In this paper, we just considered the data on the (complex) three-dimensional manifold

L.1/ WD fu W rkKu D 1g:

It is of course natural to consider the higher-dimensional case, which will probably be much more
complicated. Since we also have enough conservation laws for the case rkKu D 2, we have a conjecture
that the system stays completely integrable for rkKu � 2. It would be interesting to know how the results
of this paper extend to this bigger phase space. In particular, do small data generate large-time blowup of
high Sobolev norms?
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