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NICOLAS BURQ

The purpose of this note is to investigate the high-frequency behavior of solutions to linear Schrödinger
equations. More precisely, Bourgain (1997) and Anantharaman and Macià (2011) proved that any weak-∗
limit of the square density of solutions to the time-dependent homogeneous Schrödinger equation is
absolutely continuous with respect to the Lebesgue measure on R×Td . The contribution of this article is
that the same result automatically holds for nonhomogeneous Schrödinger equations, which allows for
abstract potential type perturbations of the Laplace operator.

1. Introduction

In this note we are interested in understanding the high-frequency behavior of solutions of linear
Schrödinger equations on tori, Td

= Rd/Zd . Consider a sequence of initial data (u0,n), bounded in
L2(Td) and denote by (un) the sequence of solutions to the Schrödinger equation and by (νn) their
concentration measures given by

un = ei t1u0,n, νn = |un|
2(t, x) dt dx .

The sequence νn on Rt ×Td is bounded (in mass) on any time interval (0, T ) by T supn‖u0,n‖
2
L2(Td )

. The
following result was proved in [Bourgain 1997, Remark, page 108] and later, using a completely different
approach that follows a more geometric path, in [Anantharaman and Macià 2011, Theorem 1]. (See also
[Jakobson 1997; Macià 2011; Burq and Zworski 2004; 2005;Aïssiou et al. 2011] for related works.)

Theorem 1. Any weak-∗ limit of the sequence (νn) is absolutely continuous with respect to the Lebesgue
measure dt dx on Rt ×Td .

Remark 1.1. Actually, in [Anantharaman and Macià 2011] a more precise description of the possible
limits is given and the result is proved in the case of Schrödinger operators1+V (t, x), if V ∈ L∞(Rt×T2)

is also continuous except possibly on a set of (spacetime) Lebesgue measure 0.

The purpose of this note is to show that the result in Theorem 1 extends to the case of solutions to the
nonhomogeneous Schrödinger equation, and, consequently, to the case of Schrödinger operators 1+ V
where V ∈ L1

loc(Rt ;L(L2(Td))) (we also give as an illustration an application to a simple nonlinear
equation). Let us emphasize that our approach uses no particular property of the Laplace operator on tori
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other than selfadjointness (to get L2 bounds for the time evolution) and the fact that Theorem 1 holds,
which is used as a black box, and establishes an abstract link between the study of weak-∗ limits of
solutions of the homogeneous and inhomogeneous Schrödinger equations.

2. Inhomogeneous Schrödinger equations

Definition 2.1. Let T > 0. For any sequence (un) bounded in L2((0, T )×Td), we say that the sequence
(un) satisfies property (ACT ) if any weak-∗ limit ν of (νn) is absolutely continuous with respect to the
Lebesgue measure on (0, T )×Td .

Theorem 2. Let (un,0) and ( fn) be two sequences bounded in L2(Td) and L1
loc(Rt ; L2(Td)), respectively.

Let un be the solution of

(i∂t +1)un = fn, un|t=0 = un,0, un = ei t1un,0+
1
i

∫ t

0
ei(t−s)1 fn(s) ds.

Then, for any T > 0, the sequence (un), which is clearly bounded in L2((0, T )×T2) by

T 1/2 sup
n
(‖un,0‖L2(Td )+‖ fn‖L1((0,T );L2(Td ))),

satisfies property (ACT ).

Corollary 2.2. Let V ∈ L1
loc(Rt ;L(L2(T2))) (for example, V can be a potential in L1

loc(Rt ; L∞(T2))

acting by pointwise multiplication). For any sequence (un,0)n∈N bounded in L2(T2), let (un) be the
sequence of the unique solutions in C0(R; L2(T2)) of

(i∂t +1+ V (t))un = 0, un|t=0 = un,0.

Then the sequence (un) satisfies the property (ACT ) for any T > 0.

Indeed, since

d
dt
‖un‖

2
L2(Td )

= 2<(∂t u, u)L2(Td ) = 2<(i1u+ iV u, u)L2(Td ) =−2=(V u, u)L2(Td ),

by Gronwall’s inequality, we obtain

‖un(t)‖2L2(Td )
≤ ‖un,0‖

2
L2(Td )

e
∫ t

0 ‖V (s)‖L(L2(Td ) ds
,

and, consequently, the sequence ( fn)= (−V (t)un) is clearly bounded in L1
loc(Rt ; L2(Td)) and we can

apply Theorem 2.

Remark 2.3. Any time independent V ∈ L(L2(Td)) satisfies the assumptions above, and, consequently,
if (un) is a sequence of L2 normalized eigenfunctions of 1+ V , it follows from Corollary 2.2 that any
weak-∗ limit of |un|

2(x) dx is absolutely continuous with respect to the Lebesgue measure on Td . The
proof we present below seems to be intrinsically time-dependent. However, it would be interesting to
obtain a proof of this result avoiding the detour via the study of the time-dependent Schrödinger equation.
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Proof of Theorem 2. If (un) satisfies property (ACT ), then the sequence (un+vn) satisfies property (ACT )
if and only if the sequence (vn) satisfies property (ACT ). This is because if |un|

2 dt dx and |vn|
2 dt dx

converge weakly to ν and µ, respectively, then, according to the Cauchy–Schwarz inequality, any weak-∗
limit of |un + vn|

2 dt dx is absolutely continuous with respect to ν+µ. The following result shows that
the set of sequences satisfying property (ACT ) is closed in some weak-strong topology.

Lemma 2.4. Consider (un) bounded in L2((0, T )×T2). Assume that there exists for any k ∈N a sequence
(u(k)n )n∈N such that

(1) for any k, the sequence (u(k)n )n∈N satisfies property (ACT );

(2) the sequences (u(k)n )n∈N are approximating the sequence (un) in the sense that

lim
k→+∞

lim sup
n→+∞

‖un − u(k)n ‖L2((0,T )×T2) = 0. (2-1)

Then the sequence (un)n∈N satisfies property (ACT ).

Proof. Indeed, for any ε > 0, let k0 be such that, for any k ≥ k0,

lim sup
n
‖un − un,k‖L2((0,T )×T2) < ε.

Then, if ν and ν(k) are weak-∗ limits of the sequences (un)n∈N and (u(k)n )n∈N, respectively, associated to
the same subsequence n p→+∞, we have, for any f ∈ C0((0, T )×T2) and large n,∫

(0,T )×T2
|un p |

2χ dx dt ≤
∫
(0,T )×T2

2(|un p − u(k)n p
|
2
+ |u(k)n p

|
2) dx dt

≤ 2ε2
+ 2

∫
(0,T )×T2

2|u(k)n p
|
2)χ dx dt. (2-2)

Passing to the limit p→+∞, we obtain

〈ν, χ〉 ≤ 2ε2
+ 2〈ν(k), χ〉.

On the other hand, according to the Riesz theorem (see, for example, [Rudin 1987, Theorem 2.14]), the
measures ν, ν(k) which are defined on the Borelian σ -algebra, M, are regular, and, consequently,

∀E ∈M, ν(E)= sup
Fclosed, F⊂E

ν(U )= inf
Uopen, E⊂U

ν(U ),

∀E ∈M, ν(k)(E)= sup
Fclosed, F⊂E

ν(k)(U )= inf
Uopen, E⊂U

ν(k)(U ).
(2-3)

For any E ∈M, taking Fp ⊂ E and E ⊂ Op such that

lim
p→+∞

ν(Fp)= ν(E), lim
p→+∞

ν(k)(Op)= ν
(k)(E)

and χp ∈ C0((0, 1)×Td
; [0, 1]) is equal to 1 on Fp and supported in Op, we obtain, according to (2-2),

ν(E)≤ 2ε2
+ 2ν(k)(E).
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Now consider E a subset of (0, T )×Td-Lebesgue measure 0. Since by assumption ν(k) is absolutely
continuous with respect to the Lebesgue measure, we have ν(k)(E) = 0, and hence ν(E) ≤ 2ε2. Con-
sequently, since ε > 0 can be taken arbitrarily small, we have ν(E) = 0, which proves that ν is also
absolutely continuous with respect to the Lebesgue measure. �

We come back to the proof of Theorem 2 and fix T > 0. According to Duhamel’s formula,

un = ei t1u0,n +
1
i

∫ t

0
ei(t−s)1 fn(s) ds.

According to the remark above, since we know that the sequence (ei t1u0,n) satisfies property (ACT ), it is
enough to prove that the sequence (vn)= (

∫ t
0 ei(t−s) fn(s) ds) satisfies property (ACT ). The key point of

the analysis is that if instead of vn we had

ṽn =

∫ T

0
ei(t−s)1V un(s) ds = ei t1gn, gn =

∫ T

0
e−is1V eis(1+V )un,0(s) ds,

we could conclude using Theorem 1, because ṽn is a solution to the homogeneous Schrödinger equation
with initial data the bounded sequence (gn). To pass from ṽn to vn , we adapt an idea borrowed from
harmonic analysis (the Christ–Kiselev Lemma [2001]) in the simple form written in [Burq and Planchon
2006] (see also [Burq 2011]). Here the idea is to show that the sequence (vn) can be approximated by
other sequences (v(k)n ) in the sense of (2-1) (actually, we get a stronger convergence, as we can replace the
lim sup in (2-1) by a sup), where each (v(k)n ) is a finite sum of solutions of the homogeneous Schrödinger
equation, properly truncated in time, and hence satisfy property (ACT ). Let

‖ fn‖L1((0,T );L2(T2)) = cn ≤ C.

We decompose the interval (0, T ) into dyadic pieces on which the L1((0, T ); L2(Td))-norm of fn is
equal to 2−qcn . For this, we recursively construct (on the index q ∈ N) certain sequences (tp,q,n)q∈N

p=1,...,2q
such that

• 0= t0,q,n < t1,q,n < · · ·< t2q ,q,n = T ,

• ‖ fn‖L1((tp,q,n,tp+1,q,n);L2(T2)) = 2−qcn ,

• t2p,q,n = tp,q−1,n for any p = 0, . . . , 2q−1.

Notice that if the function

Gn : t ∈ [0, T ] 7→ ‖ fn‖L1((0,t);L2(Td )) ∈ [0, cn]

is strictly increasing, the points tp,q,n are uniquely determined by the relation Gn(tp,q,n)= p2−qcn , and
the last condition above is automatic. In the general case, the function Gn (which is clearly nondecreasing)
can have some flat parts, and, consequently, the points tp,q,n may not be unique anymore. The last
condition above ensures that the choice made at step q + 1 is consistent with the choice made at step q.
For j = 0, . . . , 2q

− 1, let

I j,q,n = [t2 j,q,n, t2 j+1,q,n[, J j,q,n = [t2 j+1,q,n, t2 j+2,q,n[, Q j,q,n = J j,q,n × I j,q,n.
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Figure 1. Decomposition of a triangle as a union of disjoint squares.

Notice that

{((t, s) ∈ [0, T [2; s ≤ t} =
+∞⊔
q=0

2q
−1⊔

j=0

Q j,q,n⇒ 1s≤t =

+∞∑
q=0

2q
−1∑

j=0

1Q j,q,n (t, s).

Now (if we are able to prove that the series in q converges) we have

vn =

∫ t

0
ei(t−s)1 fn(s) ds =

∫ T

0
1s≤t ei(t−s)1 fn(s) ds

=

+∞∑
q=0

2q
−1∑

j=0

1t∈J j,q,n

∫ T

0
ei(t−s)11s∈I j,q,n fn(s) ds =

+∞∑
q=0

2q
−1∑

j=0

1t∈J j,q,n ei t1g j,q,n ds, (2-4)

with

g j,q,n(x)=
∫ T

0
e−is11s∈I j,q,n fn(s) ds =

∫ t2 j+1,q,n

t2 j,q,n

e−is1 fn(s) ds,

‖g j,q,n‖L2(Td ) ≤ ‖ fn‖L1((t2 j,q,n,t2 j+1,q,n T );L2(Td )) = 2−qcn.

(2-5)

Let

v(k)n =

k∑
q=0

2q
−1∑

j=0

1t∈J j,q,n ei t1g j,q,n ds.

Noticing that if a sequence (wn) satisfies property(ACT ), then, for any sequences 0≤ t1,n < t2,n ≤ T , the
sequence (1t∈(t1,n,t2,n)wn) satisfies property(ACT ), we see that for any k ∈N, the sequence (v(k)n ) satisfies
property (ACT ). On the other hand, since for j 6= j ′, 1t∈J j,q,n and 1t∈J j ′,q,n

have disjoint supports, we get,
according to (2-5),∥∥∥∥2q

−1∑
j=0

1t∈J j,q,n ei t1g j,q,n

∥∥∥∥
L∞((0,T );L2(Td ))

≤ sup
0≤ j≤2q−1

‖1t∈J j,q,n ei t1g j,q,n‖L∞((0,T );L2(Td ))

≤ sup
0≤ j≤2q−1

‖g j,q,n‖L2(Td )) ≤ 2−qcn. (2-6)
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As a consequence, we get that the series (2-4) is convergent and

‖vn − v
(k)
n ‖L2((0,T )×Td ) ≤

√
T cn2−k

≤ C2−k,

which, according to Lemma 2.4, concludes the proof of Theorem 2. �

3. An illustration

We consider here the nonlinear Schrödinger equation

(i∂t +1)u+ V (u, t)u = 0 on Td , u|t=0 = 0 (3-1)

where the function z ∈ C 7→ V (z, t)z ∈ C is globally Lipschitz with respect to the z variable, with a
time-integrable Lipschitz constant; that is, there exists C ∈ L1

loc(R) such that C(t) > 0 for all t and

|V (z, t)z− V (z′, t)z′| ≤ C(t)|z− z′| for all z, z′ ∈ C.

Notice, for example, that the choice V (u, t)= |u|2/(1+ ε|u|2) satisfies these assumptions for any ε > 0.

Proposition 3.1. For any u0 ∈ L2(Td), there exists a unique solution u ∈C(R; L2(Td)) to (3-1). Further-
more, there exists a continuous increasing function, F(t), such that, for any u0 ∈ L2(Td), the solution u
satisfies

‖u‖L2(Td )(t)≤ F(t)‖u0‖L2(Td ). (3-2)

Corollary 3.2. For any sequence of initial data (u0,n) bounded in L2(Td), the sequence (un) of solutions
to (3-1) satisfies

‖V (un, t)un‖L2(Td ) ≤ C(t)‖un‖L∞((0,t);L2(Td )) ≤ C(t) f (t)‖u0,n‖L2(Td ) ∈ L1
loc(Rt),

and, consequently, the sequence (un) satisfies property (ACT ) for any T > 0.

Proof of Proposition 3.1. Let

K : u ∈ L∞((0, T ); L2(Td)) 7→ ei t1u0+
1
i

∫ t

0
ei(t−s)(V (u(s), s)u(s)) ds.

We have

‖K (u)− ei t1u0‖L∞((0,T );L2(Td )) ≤

∫ T

0
C(s) ds‖u‖L∞((0,T );L2(Td )),

‖K (u)− K (v)‖L∞((0,T );L2(Td )) ≤

∫ T

0
C(s) ds‖u− v‖L∞((0,T );L2(Td )).

(3-3)

We obtain that the map K has a unique fixed point on the ball centered on ei t1u0 with radius ‖u0‖L2(Td )

in L∞((0, T ); L2(Td)), as soon as
∫ T

0 C(s) ds ≤ 1
2 . This proves the local existence claim. To obtain

existence on any time interval [0, T̃ ], we write [0, T̃ ] =
⋃N

j=1[t j , t j+1], where we choose t j recursively
such that

∫ t j+1
t j

C(s) ds ≤ 1
2 . Taking

∫ t j+1
t j

C(s) ds = 1
2 for all j < N − 1 gives the bound

N ≤ 1+ 2
∫ T̃

0
C(s) ds. (3-4)
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Then applying the first step recursively gives a solution on [0, T̃ ] that, according to (3-4), satisfies

‖u‖L2(Td )(T̃ )≤ 2N
‖u0‖L2(Td ) ≤ 21+2

∫ t
0 C(s) ds

‖u0‖L2(Td ).

The uniqueness claim in Proposition 3.1 follows now from standard methods. �
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