
ANALYSIS & PDE

msp

Volume 6 No. 6 2013

DAVID CHIRON

STABILITY AND INSTABILITY FOR SUBSONIC TRAVELING
WAVES

OF THE NONLINEAR SCHRÖDINGER EQUATION IN DIMENSION
ONE



ANALYSIS AND PDE
Vol. 6, No. 6, 2013

dx.doi.org/10.2140/apde.2013.6.1327 msp

STABILITY AND INSTABILITY FOR SUBSONIC TRAVELING WAVES
OF THE NONLINEAR SCHRÖDINGER EQUATION IN DIMENSION ONE

DAVID CHIRON

We study the stability/instability of the subsonic traveling waves of the nonlinear Schrödinger equation
in dimension one. Our aim is to propose several methods for showing instability (use of the Grillakis–
Shatah–Strauss theory, proof of existence of an unstable eigenvalue via an Evans function) or stability. For
the latter, we show how to construct in a systematic way a Liapounov functional for which the traveling
wave is a local minimizer. These approaches allow us to give a complete stability/instability analysis in
the energy space including the critical case of the kink solution. We also treat the case of a cusp in the
energy-momentum diagram.

1. Introduction

This paper is a continuation of our previous work [Chiron 2012], where we consider the one-dimensional
nonlinear Schrödinger equation

i
@‰

@t
C @2x‰C‰f .j‰j

2/D 0: (NLS)

This equation appears as a relevant model in condensed matter physics: Bose–Einstein condensation
and superfluidity (see [Roberts and Berloff 2001; Ginzburg and Pitaevskiı̆ 1958; Gross 1963; Abid
et al. 2003]); nonlinear optics (see, for instance, the survey [Kivshar and Luther-Davies 1998]). Several
nonlinearities may be encountered in physical situations: f .%/D˙% gives rise to the focusing/defocusing
cubic NLS; f .%/ D 1� % to the so-called Gross–Pitaevskii equation; f .%/ D �%2 (see [Kolomeisky
et al. 2000] for Bose–Einstein condensates); more generally a pure power; the “cubic-quintic” NLS (see
[Barashenkov and Panova 1993]), where

f .%/D�˛1C˛3%�˛5%
2

and ˛1, ˛3 and ˛5 are positive constants such that f has two positive roots; and in nonlinear optics, we
may take (see [Kivshar and Luther-Davies 1998])

f .%/D�˛%��ˇ%2� ; f .%/D�
%0

2

�
1�

1C 1
%0

��� 1�
1C %

%0

���; f .%/D�˛%

�
1C
 tanh

%2�%20
�2

�
; (1)
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where ˛, ˇ, 
 , �, � > 0 are given constants (the second one, for instance, takes into account saturation
effects), etc. As a consequence, as in [Chiron 2012], we shall consider a rather general nonlinearity f ,
with f of class C2. In the context of Bose–Einstein condensation or nonlinear optics, the natural condition
at infinity appears to be

j‰j2! r20 as jxj !C1;

where r0 > 0 is such that f .r20 /D 0.

For solutions ‰ of (NLS) which do not vanish, we may use the Madelung transform

‰ D A exp.i�/

and rewrite (NLS) as an hydrodynamical system with an additional quantum pressure(
@tAC 2@x�@xACA@

2
x� D 0;

@t�C .@x�/
2�f .A2/�

@2xA

A
D 0

or

(
@t�C 2@x.�u/D 0;

@tuC 2u@xu� @x.f .�//� @x

�
@2x.
p
�/

p
�

�
D 0;

(2)

with .�; u/� .A2; @x�/. When neglecting the quantum pressure and linearizing this Euler system around
the particular trivial solution ‰ D r0 (or .A; u/D .r0; 0/), we obtain the free wave equation�

@t NAC r0@x NU D 0;

@t NU � 2r0f
0.r20 /@x

NAD 0;

with associated speed of sound

cs �
q
�2r20f

0.r20 / > 0;

provided f satisfies the defocusing assumption f 0.r20 / < 0 (that is, the Euler system is hyperbolic in the
region �' r20 ), which we will assume throughout the paper. Concerning the rigorous justification of the
free wave regime for the Gross–Pitaevskii equation (in arbitrary dimension), see [Béthuel et al. 2010].
The speed of sound cs enters in a crucial way in the question of existence of traveling waves for (NLS)
with modulus tending to r0 at infinity (see, e.g., [Chiron 2012]).

The nonlinear Schrödinger equation formally preserves the energy

E. /�

Z
R

j@x j
2
CF.j j2/ dx;

where F.%/�
R r20
% f . Since

F.%/�
c2s
8r20

.%� r20 /
2
�

c2s
2
.
p
%� r0/

2

when %! r20 , it follows that the natural energy space turns out to be the space

Z�
˚
 2 L1.R/; @x 2 L

2.R/; j j � r0 2 L
2.R/

	
� Cb.R;C/;

endowed with the distance

dZ. ; Q /� k@x � @x Q kL2.R/Ckj j � j Q jkL2.R/Cj .0/� Q .0/j:
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The Cauchy problem was shown to be locally well posed in the Zhidkov space f 2L1.R/; @x 2L2.R/g
by P. Zhidkov [2001] (see also the work by C. Gallo [2004]). For global well-posedness results, see
[Gallo 2008; Gérard 2008]. More precisely, the local well-posedness we shall use is the following.

Theorem 1 [Zhidkov 2001; Gallo 2004]. Let ‰in 2 Z. Then, there exists T� > 0 and a unique solution ‰
to (NLS) such that ‰jtD0 D‰in and ‰�‰in 2 C.Œ0; T�/;H

1.R//. Moreover, E.‰.t// does not depend
on t .

The other quantity formally conserved by the Schrödinger flow, due to the invariance by translation, is
the momentum. The momentum is not easy to define in dimension one for maps that vanish somewhere
(see [Béthuel et al. 2008a; 2008b]). However, if  does not vanish, we have a lifting  DAei� , and then
the correct definition of the momentum is given by [Kivshar and Yang 1994]

P. /�

Z
R

hi j@x i

�
1�

r20
j j2

�
dx D

Z
R

.A2� r20 /@x� dx;

where h � j � i denotes the real scalar product in C. We define

Zhy � fv 2 Z; infR jvj> 0g;

which is the open subset of Z in which we have lifting and where the hydrodynamical formulation (2) of
(NLS) is possible through the Madelung transform. It turns out that, if the initial datum belongs to Zhy,
the solution of (NLS) provided by Theorem 1 remains in Zhy for small times, and that the momentum is
indeed conserved on this time interval (see [Gallo 2004]).

1A. The traveling waves and energy-momentum diagrams. The traveling waves with speed of propa-
gation c are special solutions of (NLS) of the form

‰.t; x/D U.x� ct/:

The profile U has then to solve the ODE

@2xU CUf .jU j
2/D ic@xU (TWc)

together with the condition jU.x/j ! r0 as x!˙1. These particular solutions play an important role
in the long-time dynamics of (NLS) with nonzero condition at infinity. Possibly conjugating (TWc), we
see that we may assume that c � 0 without loss of generality. Moreover, we shall restrict ourselves to
traveling waves which belong to the energy space Z (so that jU j ! r0 at ˙1 by the Sobolev embedding
H 1.R/ ,! C0.R;C/ � fh 2 C.R;C/; lim˙1 h D 0g). For traveling waves Uc 2 Z that do not vanish
in R, hence that may be lifted to Uc D Acei�c , the ODE (TWc) can be transformed (see, e.g., [Chiron
2012]) into the system

@x�c D
c

2
�

�c

�c C r
2
0

; 2@2x�c CV0c.�c/D 0; with �c � A2c � r
2
0 ;

and where the function Vc is related to f by the formula

Vc.�/� c
2�2� 4.r20 C �/F.r

2
0 C �/:
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To a nontrivial traveling wave Uc is associated (see [ibid.]) some �c ��r20 such that Vc.�c/D 0 6DV0c.�c/

and Vc is negative between �c and �r20 , and �c varies between 0 and �c ; that is, finfR jUcj; supR jUcjg D

fr0;
p
r20 C �cg. Moreover, the only traveling wave solution (if it exists) that vanishes somewhere is for

c D 0 and is called the kink: it is an odd solution (up to a space translation) and then �0 D 0.
We have also seen in [ibid.] that any traveling wave in Z with speed c > cs is constant, and also that any

nonconstant traveling wave in Z of speed c� 2 .0; cs/ belongs to a unique (up to the natural invariances:
phase factor and translation) local branch c 7! Uc defined for c close to c�.

In [ibid.], we have investigated the qualitative behaviors of the traveling waves for (NLS) with nonzero
condition at infinity for a general nonlinearity f . A particular attention has been payed in [ibid.] to
the transonic limit, where we have an asymptotic behavior governed by the Korteweg–de Vries or the
generalized Korteweg–de Vries equation. In order to illustrate the very different situations we may
encounter when we allow a general nonlinearity f , we give now some energy-momentum diagrams we
have obtained (one is taken from the appendix in [Chiron and Scheid 2012], where we have performed
numerical simulations in dimension two for the model cases we have studied in [Chiron 2012]):

� The Gross–Pitaevskii nonlinearity: f .%/D 1� % (see Figure 1).

� A cubic-quintic-septic nonlinearity: f .%/D�.%� 1/C 3
2
.%� 1/2� 3

2
.%� 1/3 (see Figure 2).

� A cubic-quintic-septic nonlinearity: f .%/��4.%�1/�36.%�1/3 or f .%/��4.%�1/�60.%�1/3.
For these two nonlinearities, the graph of E and P vs. speed c is given in Figure 3, but the .E; P /
diagrams are, respectively, those in Figure 4.

� A cubic-quintic-septic nonlinearity: f .%/��1
2
.%� 1/C 3

4
.%� 1/2� 2.%� 1/3 (see Figure 5).

� A degenerate case: f .%/��2.%�1/C3.%�1/2�4.%�1/3C5.%�1/4�6.%�1/5 (see Figure 6).

� A perturbation of the previous degenerate case: f .%/��2.%�1/C.3�10�3/.%�1/2�4.%�1/3C
5.%� 1/4� 6.%� 1/5 (see Figure 7).

� A saturated NLS: f .%/� exp..1� %/=%0/� 1 with %0 D 0:4 (see Figure 8).

� Another saturated NLS: f .%/� 1
2
%0
�
1=.1C %=%0/

2�1=.1C 1=%0/
2
�
, with %0D0:08 (see Figure 9).

� The cubic-quintic nonlinearity: f .%/��.%� 1/� 3.%� 1/2 (see Figure 10).

Through the study (in [Chiron 2012]) of these model cases, we have shown that, if the energy-momentum
diagram is well-known for the Gross–Pitaevskii equation, the qualitative properties of the traveling wave
solutions can not be easily deduced from the global shape of the nonlinearity f . In particular, even if
we restrict ourselves to smooth and decreasing nonlinearities (as is the Gross–Pitaevskii one), we see
that we may have a great variety of behaviors: multiplicity of solutions, branches with diverging energy
and momentum, nonexistence of traveling waves for some c0 2 .0; cs/, branches of solutions that cross,
existence of sonic traveling waves, transonic limit governed by the mKdV or more generally by the gKdV
solitary wave equation instead of the usual KdV one, existence of cusps, etc.
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Figure 1. (a) Energy (dashed curve) and momentum (full curve) vs. speed; (b) .E; P / diagram.
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Figure 2. (a) Energy (dashed curve) and momentum (full curve) vs. speed; (b) .E; P / diagram.
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Figure 3. Energy (dashed curve) and momentum (full curve) vs. speed.
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P
0

E
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+
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0
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0
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P
0

E

c−> cs
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+

0

0

0
E= c P + E

0

c−> c
−−

c−> 0

Figure 4. The two .E; P / diagrams.
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Figure 5. (a) Energy (dashed curve) and momentum (full curve) vs. speed; (b) .E; P / diagram.
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Figure 6. (a) Energy (dashed curve) and momentum (full curve) vs. speed; (b) .E; P / diagram.



STABILITY FOR SUBSONIC TRAVELING WAVES OF THE NONLINEAR SCHRÖDINGER EQUATION 1333

s
c

 

c

��
��
��
��

P

E

0

c=0

 

 

c−>cs

Figure 7. (a) Energy (dashed curve) and momentum (full curve) vs. speed; (b) qualitative
.E; P / diagram.

������������������������������������������������������������������������
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
0

c
cc0 s

�
�
�
�

��
��
��
��

c−> cs

c−> 0

P

E

0

c−> c

c−> c

s

0

Figure 8. (a) Energy (dashed curve) and momentum (full curve) vs. speed; (b) .E; P / diagram.

We investigate now the behavior at infinity of the nontrivial traveling waves, which depends on whether
c D cs or not. We denote by N the set of nonnegative integers and N� the set of positive integers. We
consider for m 2 N the following assumption:

(Am) f is of class CmC3 near r20 . Moreover, for 1� j < mC 2, we have

f .j /.r20 /

.j C 1/Š
r
2j
0 D .�1/

jC1 c
2
s

4
but

f .mC2/.r20 /

.mC 3/Š
r
2.mC2/
0 6D .�1/mC3

c2s
4

(note that, for j D 1, equality always holds by definition of the speed of sound cs D
q
�2r20f

0.r20 /).

Proposition 2. Let Uc 2 Z be a nonconstant traveling wave of speed 0� c � cs .
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Figure 9. (a) Energy (dashed curve) and momentum (full curve), (b) .E; P / diagram.
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Figure 10. (a) Energy (dashed curve) and momentum (full curve), (b) .E; P / diagram.

(i) If c D 0, then there exists �0 2 R such that ei�0U0 is a real-valued function and there exist two real
constants M0 6D 0 (depending only on f and �0) and x0 such that, as x!˙1,

ei�0U0.x/�r0�M0 exp.�csjx�x0j/ if �0D�r20 ; ei�0U0.x/�r0�M0 exp.�csjx�x0j/ if �0 6D�r20 :

(ii) If 0 < c < cs , then Uc does not vanish, and hence can be lifted: Uc D Acei�c . Furthermore, there
exist four real constants Mc , ‚c (depending only on f , c and �c), x0 and �0 such that, as x!˙1,

jUc.x/j
2
� r20 D �c.x/�

2r20
c
@x�.x/�Mc exp

�
�

q
c2s � c

2jx� x0j
�
;

and

�.x/��0�‚c ��sgn.x/
cMc

2r20

p
c2s � c

2
exp

�
�

q
c2s � c

2jx� x0j
�
:
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(iii) If c D cs then Ucs does not vanish, and hence can be lifted: Ucs D Acse
i�cs . We assume that there

exists m 2 N such that (Am) is satisfied and define

ƒm �
4

r
2.mC1/
0

�
r
2.mC2/
0

.mC 3/Š
f .mC2/.r20 /C .�1/

mC2 c
2
s

4

�
6D 0:

Then, we have, as x!˙1,

jUcs .x/j
2
� r20 D �cs .x/�

2r20
cs
@x�.x/� sgn.�cs /

�
4

.mC 1/2jƒmjx2

� 1
mC1

and

�.x/�
cs sgn.�cs /
2r20

�
4

.mC 1/2jƒmj

� 1
mC1

8<:sgn.x/ lnjxj if mD 1;
mC 1

m� 1
sgn.x/jxj

m�1
mC1 if m� 2;

and, if mD 0, there exist ‚cs 2 R and �0 2 R such that

�.x/��0�‚cs � sgn.�cs /
2cs

r20 jƒ0jx
:

In particular, since we impose Ucs 2 Z, we must have m 2 f0; 1; 2g.

For the Gross–Pitaevskii nonlinearity (f .%/D 1� %), we may compute explicitly the traveling waves
for 0 < c < cs D

p
2 (see [Tsuzuki 1971; Béthuel et al. 2008a]):

Uc.x/D

s
2� c2

2
tanh x

p
2� c2

2
� i

c
p
2
;

up to the invariances of the problem: translations and multiplications by a phase factor. On this explicit
formula, the decay of the phase and modulus can be checked. In particular, as x!˙1, we have

Uc.x/!˙

s
1�

c2

cs
� i

c

cs
:

Remark 3. In the above statements, the constants �0 and x0 reflect the gauge and translation invariance.
In the spirit of the model cases proposed in [Chiron 2012], for

f .%/��2.%� 1/C 3.%� 1/2� 4.%� 1/3C 5.%� 1/4� 12.%� 1/5;

we obtain a smooth decreasing nonlinearity tending to �1 at C1 (thus qualitatively similar to the
Gross–Pitaevskii nonlinearity) for which we have r0 D 1, cs D 2, and Vcs .�/ D �4�

4 � 8�5. For
this nonlinearity f , there exists a nontrivial sonic traveling wave of infinite energy (corresponding to
�cs D�1=2), since mD 3.

The aim of this paper is to investigate the stability of the traveling waves for the one-dimensional NLS.
We recall the definition of orbital stability in a metric space .X; dX/ for which we have a local in time
existence result.
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Definition 4. Let 0 � c � cs and Uc 2 Z be a nontrivial traveling wave of speed c. We say that Uc is
orbitally stable in .X; dX/, where X � Z, if, for any � > 0, there exists ı > 0 such that, for any initial
datum ‰in 2 X such that dX.‰

in; Uc/ � ı, any solution ‰ to (NLS) with initial datum ‰in is global in
X and

sup
t�0

inf
y2R
�2R

dX.‰.t/; e
i�Uc. � �y//� �:

In the sequel, Uc will always stand for a nontrivial traveling wave, and we freeze the translation
invariance by imposing that jUcj is even. Moreover, the solutions of (NLS) we consider will always be
those given by Theorem 1.

1B. Stability and instability in the case 0 < c < cs.

1B1. Stability for the hydrodynamical and the energy distances. The first stability result for the traveling
waves for (NLS) with nonzero condition at infinity is due to Z. Lin [2002]. The analysis relies on the
hydrodynamical form of (NLS), which is valid for solutions that never vanish. The advantage is to work
with a fixed functional space since .�; u/D .A2�r20 ; @x�/2H

1.R/�L2.R/, whereas the traveling waves
have a limit r0e˙i‚c (up to a phase factor) at ˙1 depending on the speed c. Lin’s result establishes
rigorously the stability criterion found in [Bogdan et al. 1989; Barashenkov 1996].

Theorem 5 [Lin 2002]. Assume that 0 < c� < cs is such that there exists a nontrivial traveling wave Uc� .
Then, there exists some small � > 0 such that Uc� belongs to a locally unique continuous branch of
nontrivial traveling waves Uc defined for c�� � � c � c�C � .

(i) Assume
dP.Uc/

dc jcDc�
< 0:

Then, Uc� D A�e
i�� is orbitally stable in the sense that, for any � > 0, there exists ı > 0 such that, if

‰in D Ainei�
in
2 Z satisfies

kAin
�A�kH1.R/Ck@x�

in
� @x��kL2.R/ � ı;

then the solution ‰ to (NLS) such that ‰jtD0 D‰in never vanishes, can be lifted to ‰ D Aei� , and we
have

sup
t�0

inf
y2R

˚
kA.t/�A�. � �y/kH1.R/Ck@x�.t/� @x��. � �y/kL2.R/

	
� �:

(ii) Assume
dP.Uc/

dc jcDc�
> 0:

Then, Uc� D A�e
i�� is orbitally unstable in the sense that there exists � > 0 such that, for any ı > 0,

there exists ‰in D Ainei�
in
2 Z verifying

kAin
�A�kH1.R/Ck@x�

in
� @x��kL2.R/ � ı;
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but such that, if ‰ denotes the solution to (NLS) with ‰jtD0 D‰in, then there exists t > 0 such that ‰
does not vanish on the time interval Œ0; t � but

inf
y2R

˚
kA.t/�A�. � �y/kH1.R/Ck@x�.t/� @x��. � �y/kL2.R/

	
� �:

By the one-dimensional Sobolev embedding H 1.R/ ,! C0.R/, it is clear that, since Uc� does not
vanish in R, by imposing kj‰inj � jUc� jkH1.R/ D kA

in�A�kH1.R/ small, ‰in does not vanish in R and
thus can be lifted.

Remark 6. We point out that [Gallo 2004] fills two gaps in the proof from [Lin 2002]: the first one
concerns the local in time existence for the hydrodynamical system (see (15) in Section 3C) and the
second one is about the conservation of the energy and the momentum. Furthermore, we make two
additional remarks on the proof from [Lin 2002] in Section 3C.

Theorem 5 is stability or instability in the open set Zhy � Z for the hydrodynamical distance

dhy. ; Q /� kA� QAkH1.R/Ck@x� � @x Q�kL2.R/C

ˇ̌̌̌
arg
�
 .0/

Q .0/

�ˇ̌̌̌
;  D Aei� ; Q D QAei

Q� ;

which is not the energy distance. Here, arg W C�! .��;C�� is the principal argument. For the stability,
it suffices to consider the phase � 2 R such that arg

�
‰.t/=.ei�Uc�. � �y//

�
is zero at x D 0, where y is

the translation parameter. For the instability, the phase � 2 R does not matter. The result of [Lin 2002] is
based on the application of the Grillakis–Shatah–Strauss theory [Grillakis et al. 1987] (see also [Bona
et al. 1987; Souganidis and Strauss 1990]) to the hydrodynamical formulation of (NLS) (see Section 3C).
One difficulty is to overcome the fact that the Hamiltonian operator @x is not onto.

On the energy-momentum diagrams, the stability can be checked either on the graphs of E and P with
respect to c, or on the concavity of the curve P 7! E. Indeed, we have seen in [Chiron 2012] that the
so-called Hamilton group relation

c D
dE

dP
; or

dE.Uc/

dc
D c

dP.Uc/

dc
;

holds, where the derivative is computed on the local branch. Therefore,

d2E

dP 2
D

d

dP

dE

dP
D
dc

dP
:

This means that we have stability when P 7! E is concave, that is, d2E=dP 2 < 0, and instability if
P 7!E is convex, i.e., d2E=dP 2 > 0.

Actually, the proof of [Grillakis et al. 1987; Lin 2002] provides an explicit control, as shown in the
following lemma.

Lemma 7. Under the assumptions of Theorem 5 and in the case (i) of stability, we have, provided
dhy.‰

in; Uc�/ is small enough,

sup
t�0

inf
y2R

˚
kA.t/�A�. � �y/kH1.R/Ck@x�.t/� @x��. � �y/kL2.R/

	
�K

q
jE.‰in/�E.Uc�/jC jP.‰

in/�P.Uc�/j; (3)



1338 DAVID CHIRON

as well as the control

sup
t�0

inf
y2R
�2R

dhy.‰.t/; e
i�Uc�. � �y//�Kdhy.‰

in; Uc�/: (4)

Remark 8. The second estimate (4) is not a simple consequence of the control (3), but relies on a
comparison to Uc for some c close to c� instead of a comparison to Uc� (this idea has also been used in
[Weinstein 1986]). It follows that, in the definition of stability for Uc� , one can take ı D O."/.

Let us stress that Z. Lin’s result (Theorem 5) is given in terms of the hydrodynamical distance dhy,
which is not the energy distance dZ. As a matter of fact, the Madelung transform

M W .Zhy; dZ/ 3 U 7!

�
�; u;

U.0/

jU.0/j

�
2H 1.R;R/�L2.R;R/�S1;

where U D Aei� , �D A2� r20 and uD @x�, is not so well behaved.

Lemma 9. (i) The mapping M W .Zhy; dZ/!H 1.R;R/�L2.R;R/�S1 is an homeomorphism.

(ii) There exists ��2C2.R;R/ such that @x��2L2.R/ and a sequence .�n/n�1 of functions inH 1.R;R/

such that, when n!C1,

0 < dhy.e
i�� ; ei��ei�n/! 0 but

dZ.e
i�� ; ei��ei�n/

dhy.ei�� ; ei��ei�n/
!C1:

Therefore, M�1 is not locally Lipschitz continuous in general. However, for the stability issues, we
compare the dZ and the dhy distances to some fixed traveling wave U�, which enjoys some nice decay
properties at infinity. Let us now stress the link between the two distances dhy and dZ in this case.

Lemma 10. Let 0� c� � cs and assume that U� 2 Z is a nonconstant traveling wave with speed c� that
does not vanish. If c� D cs , we further assume that assumption (A0) is satisfied. Then, there exists some
constantsK and ı > 0, depending only on U�, such that, for any  2Z verifying dZ. ; U�/� ı, we have

1

K
dhy. ; U�/� dZ. ; U�/�Kdhy. ; U�/:

An immediate corollary of Lemma 10 is that Theorem 5 is also a stability/instability result in the
energy distance. If one wishes for only a stability/instability result, it is sufficient to invoke the fact that
the mapping M is an homeomorphism. However, the use of Lemma 10 provides a stronger explicit control
similar to the one obtained in Lemma 7 (see (3)). In particular, in the definition of stability for Uc� in
.Z; dZ/, one can take ı D O."/.

Corollary 11. Assume that 0 < c� < cs is such that there exists a nontrivial traveling wave Uc� . Then,
there exists some small � > 0 such that Uc� belongs to a locally unique continuous branch of nontrivial
traveling waves Uc defined for c�� � � c � c�C � .

(i) If .dP.Uc/=dc/jcDc� < 0, then Uc� D A�e
i�� is orbitally stable in .Z; dZ/. Furthermore, if ‰.t/ is

the (global) solution to (NLS) with initial datum ‰in, then we have, for some constant K depending
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only on Uc� and provided dZ.‰
in; Uc�/ is sufficiently small,

sup
t�0

inf
y2R
�2R

dZ.‰.t/; e
i�Uc�. � �y//�K

q
jE.‰in/�E.Uc�/jC jP.‰

in/�P.Uc�/j;

as well as the control

sup
t�0

inf
y2R
�2R

dZ.‰.t/; e
i�Uc�. � �y//�KdZ.‰

in; Uc�/:

(ii) If .dP.Uc/=dc/jcDc� > 0, then Uc� D A�e
i�� is orbitally unstable in .Z; dZ/.

For the Gross–Pitaevskii nonlinearity (f .%/D 1� %), the stability (for the energy distance dZ) of the
traveling waves with speed 0 < c < cs was proved by F. Béthuel, P. Gravejat and J.-C. Saut [Béthuel et al.
2008a] through the variational characterization that these solutions are minimizers of the energy under
the constraint of fixed momentum. However, in view of the energy momentum diagrams in Section 1A,
this constraint minimization approach can not be used in the general setting we consider here. Indeed,
this method provides only stability, but there may exist unstable traveling waves. Moreover, it follows
from the proof of Theorem 5 that stable waves are local minimizers of the energy at fixed momentum but
not necessarily global minimizers. Finally, we emphasize that the spectral methods allow us to derive an
explicit (Lipschitz) control in case of stability.

1B2. Stability via a Liapounov functional. Another way to prove the orbital stability is to find a Liapounov
functional. By Liapounov functional, we mean a functional which is conserved by the (NLS) flow and for
which the traveling wave Uc is a local minimum (for instance, a critical point with second derivative � ı Id
for some ı > 0). Such a Liapounov functional always exists in the Grillakis–Shatah–Strauss theory when
.dP.Uc/=dc/jcDc� < 0, as shown by Theorem 26 in Appendix A. Its direct application to our problem
leads us to define the functional in Zhy

L. /�E. /� c�P. /C
M

2
.P. /�P.Uc�//

2;

where M is some positive parameter. It turns out that L is such a Liapounov functional when M is
sufficiently large. Since the proof relies on the Grillakis–Shatah–Strauss framework, we have to work in
the hydrodynamical variables. However, by Lemma 10, we recover the case of the energy distance.

Theorem 12. Assume that, for some c� 2 .0; cs/ and � > 0 small, .0; cs/� Œc���; c�C��3 c 7!Uc 2Z

is a continuous branch of nontrivial traveling waves with .dP.Uc/=dc/jcDc� < 0. If

M >
1

�
dP.Uc/
dc jcDc�

> 0;

there exist � > 0 and K, depending only on Uc� , such that, for any  2 Z with

inf
y2R; �2R

dhy. ; e
i�Uc�. � �y//� �;
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we have
inf
y2R
�2R

d2hy. ; e
i�Uc�. � �y//�K.L. /�L.Uc�//;

and analogously with dhy replaced by dZ. Consequently, Uc� D A�e
i�� is orbitally stable in .Zhy; dhy/

and in .Z; dZ/. Furthermore, if ‰.t/ is the (global) solution to (NLS) with initial datum‰in, then we have

sup
t�0

inf
y2R
�2R

dhy.‰.t/; e
i�Uc�. � �y//�K

q
L.‰in/�L.Uc�/�Kdhy.‰

in; Uc�/;

provided dhy.‰
in; Uc�/ is sufficiently small, and analogously with dhy replaced by dZ.

For the traveling waves for (NLS) in dimension one, this type of Liapounov functional appears for the
first time in the paper by I. Barashenkov [1996]. However, there, the problem is treated directly on the
wave function ‰, whereas the correct proof holds on the hydrodynamical variables, in particular because
of the gauge invariance .�;‰/ 7! ei�‰. For instance, that work suggests that we have stability for H 1

perturbations, whereas it holds only for perturbations in the energy space. Finally, we fill some gaps in
the proof of [Barashenkov 1996].

1B3. Instability via the existence of an unstable eigenvalue. In the Grillakis–Shatah–Strauss theory
[Grillakis et al. 1987], the instability is not shown by proving the existence of a unstable eigenvalue for
the linearized (NLS) and then a nonlinear instability result (see however [Grillakis et al. 1990] when the
Hamiltonian skew-adjoint operator is onto). There exist, however, some general results that prove the
existence of unstable eigenvalues. For the instability of bound states for (NLS) (and also for the nonlinear
Klein–Gordon equation), that is, solutions of the form ei!tU!.x/, M. Grillakis [1988] shows that the
condition d=d!

�R
Rd
jU! j

2
�
j!D!�

> 0 is sufficient for the existence of such an unstable eigenvalue.
However, the proof relies on the fact that the bound states are real-valued functions (up to a phase factor)
and it is not clear whether it extends to the case of traveling waves we are studying. Indeed, since we have
to work in hydrodynamical variables in order to have a fixed functional space, the linearized operator does
not have (for c 6D 0) the structure required for the application of [Grillakis 1988]. Another general result
is due to O. Lopes [2002] but it assumes that the linearized equation can be solved using a semigroup.
This is not the case for our problem once it is written in hydrodynamical variables (see below). Finally,
Z. Lin [2008] proposes an alternative approach for the existence of unstable eigenvalues. The method has
the advantage of allowing pseudodifferential equations (like the Benjamin–Ono equation). However, the
results are given for three model equations involving a scalar unknown, and it is not clear whether the
proof can be extended to the case of systems.

The linearization of (NLS) near the traveling wave Uc� in the frame moving with speed c� is

i
@ 

@t
� ic�@x C @

2
x C f .jUc� j

2/C 2h jUc�if
0.jUc� j

2/Uc� D 0; (5)

and, thus, searching for exponentially growing modes  .t; x/D e�tw.x/ leads to the eigenvalue problem

i�w� ic�@xwC @
2
xwCwf .jUc� j

2/C 2hwjUc�if
0.jUc� j

2/Uc� D 0; (6)
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with Re.�/ > 0 and w 6D 0. For one-dimensional problems, the linear instability is commonly shown
through the use of Evans functions (see the classical paper [Pego and Weinstein 1992] and also the review
article [Sandstede 2002]). For our problem, we look for an unstable eigenvalue for the equation written
in hydrodynamical variables; namely we look for exponentially growing solutions .�; u/ of the linear
problem (written in the moving frame)8̂̂̂̂

<̂
ˆ̂̂:
@t�� c�@x�C 2@x..r

2
0 C ��/uC �u�/D 0;

@tu� c�@xuC 2@x.u�u/� @x.f
0.r20 C ��/�/

� @x

�
1

2
p
r20 C ��

@2x

�
�

p
r20 C ��

�
�
�@2x

�p
r20 C ��

�
2.r20 C ��/

3=2

�
D 0;

(7)

where .��; u�/ is the reference solution. The advantage is here again to work with a fixed functional
space in variables .�; u/. Due to the term

@x

�
1

2
p
r20 C ��

@2x

�
�

p
r20 C ��

��
;

this equation can not be solved using a semigroup, except in the trivial case where �� is constant; hence
the result of [Lopes 2002] does not apply. However, system (7) is a particular case of the Euler–Korteweg
system for capillary fluids (see [Benzoni-Gavage 2010a] for a survey on this model). We may then use a
linear instability result already shown for the Euler–Korteweg system with the Evans function method, as
in work by K. Zumbrun [2008] for a simplified system, and more recently by S. Benzoni-Gavage [2010b]
for the complete Euler–Korteweg system.

Theorem 13. Assume that, for some c� 2 .0; cs/ and � > 0 small,

.0; cs/� Œc�� �; c�C �� 3 c 7! Uc 2 Z

is a continuous branch of nontrivial traveling waves with

dP.Uc/

dc jcDc�
> 0:

Then, there exists exactly one unstable eigenvalue 
0 2 fRe> 0g for (6) and 
0 2 .0;C1/; that is, (NLS)
is (spectrally) linearly unstable.

Once we have shown the existence of an unstable eigenvalue for the linearized NLS equation (5), we
can prove a nonlinear instability result as in [Henry et al. 1982; de Bouard 1995]. Note that, here, we no
longer work in the hydrodynamical variables, where the high-order derivatives involve nonlinear terms,
but on the semilinear NLS equation.

Corollary 14. Under the assumptions of Theorem 13, Uc� is unstable in Uc� CH
1.R;C/ (endowed with

the natural H 1 distance): there exists � such that, for any ı > 0, there exists ‰in 2 Uc� CH
1.R/ such

that k‰in�Uc�kH1.R/ � ı, but, if ‰ 2 Uc�CC.Œ0; T �/;H 1.R// denotes the maximal solution of (NLS),
then there exists 0 < t < T � such that k‰.t/�Uc�kH1.R/ � �.
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Since the proof is very similar to the one in [Henry et al. 1982; de Bouard 1995], we omit it. We may
actually prove a stronger instability result, since the above one is not proved by tracking the exponentially
growing mode. In [Di Menza and Gallo 2007], a spectral mapping theorem is shown and used to show
the nonlinear instability by tracking this exponentially growing mode, which is a natural mechanism
of instability. In Appendix B, we show that this spectral mapping theorem holds for a wide class of
Hamiltonian equations. The direct application of Corollary B.6 in Appendix B gives the following
nonlinear instability result.

Corollary 15. We make the assumptions of Theorem 13, so that there exists an unstable eigenmode
.
0; w/ 2 .0;C1/ � H

1.R/, kwkH1 D 1. There exists M > 0 such that, for any solution  2
C.RC;H

1.R;C// of the linearized equation (5), we have the growth estimate of the semigroup

k .t/kH1.R/ �M e
0tk .0/kH1.R/ for all t � 0:

Moreover, Uc� has also the following instability property: there exist K > 0, ı > 0 and "0 > 0, such that,
for any 0 < ı < ı0, the solution ‰.t/ to (NLS) with initial datum ‰in D Uc� C ıw 2 Uc� CH

1.R/ exists
at least on Œ0; 
�10 ln.2"0=ı/� and satisfies

k‰.t/�Uc� � ıe

0twkH1.R/ �Kı

2e2
0t :

In particular, for t D 
�10 ln.2"0=ı/ and � � "0=K, we have

inf
y2R
kj‰.t/j � jUc� j. � �y/kL2.R/ � � and inf

y2R
kj‰.t/j � jUc� j. � �y/kL1.R/ � �;

which implies
inf
y2R
�2R

k‰.t/� ei�Uc�. � �y/kH1.R/ � �

as well as

inf
y2R
�2R

dhy.‰.t/; e
i�Uc�. � �y//� � and inf

y2R
�2R

dZ.‰.t/; e
i�Uc�. � �y//� �:

With the above result, we then show the nonlinear instability also in the energy space, and thus recover
the instability result of Z. Lin but this time by tracking the unstable growing mode.

1B4. Instability at a cusp. In this section, we investigate the question of stability in the degenerate case
dP=dc D 0. In [Grillakis et al. 1987] (see also [Grillakis et al. 1990]), a stability result for the wave of
speed c� is shown when the action c 7! S.c/DE.Uc/� cP.Uc/ (on the local branch) is such that, for
instance, d2S=dc2 D�dP=dc is positive for c 6D c� but vanishes for c D c�. In the energy-momentum
diagrams of Section 1A, the situation is different since dP=dc changes sign at the cusps, or, equivalently,
the action c 7!S.c/DE.Uc/�cP.Uc/ (on the local branch) changes its concavity at the cusp. A. Comech
and D. Pelinovsky [2003] show that, for the nonlinear Schrödinger equation, a bound state associated with
a cusp in the energy-charge diagram is unstable. The proof relies on a careful analysis of the linearized
equation, which is spectrally stable, but linearly unstable (with polynomial growth for the linear problem).
A similar technique was used by A. Comech, S. Cuccagna and D. Pelinovsky [2007] for the generalized
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Korteweg–de Vries equation. Then, M. Ohta [2011] also proved the nonlinear instability of these “bound
states” using a Liapounov functional as in [Grillakis et al. 1987]. However, in [Ohta 2011], it is assumed
that J D T 0.0/ and that J is onto, which are both not true here (and there are further restrictions due to the
introduction of an intermediate Hilbert space). M. Maeda [2012] has extended the above instability result,
removing some assumptions in [Ohta 2011]. We show the instability of traveling waves associated with
a cusp in the energy-momentum diagram in the generic case where d2P=dc2 6D 0. Our approach follows
the lines of [Maeda 2012], but with some modifications since our problem does not fit exactly the general
framework of this paper. In particular, we can not find naturally a space “Y ”, and some functions appearing
in the proof do not lie in the range of the skew-adjoint operator @x involved in the Hamiltonian formalism.
We overcome this difficulty using an approximation argument (similar to the one used in [Lin 2002]).

Theorem 16. Assume that, for some c� 2 .0; cs/ and � > 0 small, .0; cs/� Œc���; c�C��3 c 7!Uc 2Z

is a continuous branch of nontrivial traveling waves with

dP.Uc/

dc jcDc�
D 0 6D

d2P.Uc/

dc2 jcDc�
;

and assume in addition that f is of class C2. Then, Uc� is orbitally unstable in .Z; dZ/.

1C. Stability in the case c D 0.

1C1. Instability for the bubbles. When c D 0, we have two types of stationary waves: the bubbles, when
�0 > �r

2
0 , are even functions (up to a translation) that do not vanish, and the kinks, when �0 D�r20 , are

odd functions (up to a translation). The instability of stationary bubbles has been shown by A. de Bouard
[1995] (and is true even in higher dimension). The proof there relies on the proof of the existence of
an unstable eigenvalue for the linearized NLS, and then the proof of a nonlinear instability result. An
alternative proof of the linear instability of the bubbles is given in [Pelinovsky and Kevrekidis 2008,
Theorem 3.11(ii)].

Theorem 17 [de Bouard 1995]. Assume that there exists a bubble, that is, a nontrivial stationary (c D 0)
wave U0 which does not vanish. Then, U0 is (linearly and nonlinearly) unstable in U0CH 1.R/ (endowed
with the naturalH 1 metric); that is, there exists � such that, for any ı > 0, there exists ‰in 2U0CH

1.R/

such that k‰in � U0kH1.R/ � ı, but, if ‰ 2 U0 C C.Œ0; T �/;H 1.R// denotes the maximal solution
of (NLS), then there exists 0 < t < T � such that k‰.t/�U0kH1.R/ � �.

Actually, in the same way that Corollary 15 is a better instability result than Corollary 14, we have the
following stronger instability result, which is a direct consequence of Corollary B.6 in Appendix B.

Proposition 18. Assume that there exists a bubble, that is, a nontrivial stationary (c D 0) wave U0 which
does not vanish. Then, U0 is (nonlinearly) unstable in U0CH 1.R/, .Z; dZ/ and .Zhy; dhy/ in the same
sense as in Corollary 15.

Finally, we would like to emphasize that we may recover the instability result for bubbles from the
proof of Theorem 5, relying on the hydrodynamical form of (NLS), which holds true here since bubbles
do not vanish. Our result holds in the energy space and for the hydrodynamical distance.
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Theorem 19. Assume that there exists a bubble, that is, a nontrivial stationary (c D 0) wave U0 which
does not vanish. Then, there exists some small � > 0 such that U0 belongs to a locally unique continuous
branch of nontrivial traveling waves Uc defined for 0 � c � � . Then, c 7! P.Uc/ has a derivative at
c D 0,

dP.Uc/

dc jcD0
> 0

and U0 D A�ei�� is orbitally unstable for the distances dZ and dhy.

Proof. We give a proof based on the argument of [Lin 2002], which is possible since U0 is a bubble, hence
does not vanish, and the spectral decomposition used there still holds when cD 0. Moreover, it is clear that
the mapping c 7! .�c ; uc/2H

1�L2 is smooth up to cD 0, using the uniform exponential decay at infinity
near c D 0 and arguing as in [Chiron 2012]. Therefore, it suffices to show that .dP.Uc/=dc/jcD0 > 0.
From the expression of the momentum given in [ibid., Subsection 1.2], we have, for 0� c � � ,

P.Uc/D c sgn.�c/
Z �c

0

�2

r20 C �

d�p
�Vc.�/

D c

ˇ̌̌̌Z �0

0

�2

r20 C �

d�p
�V0.�/

ˇ̌̌̌
C o.c/

since �0 > �r20 . Indeed, we are allowed to pass to the limit in the integral once it is written with the
change of variables � D t�c :Z �c

0

�2

r20 C �

d�

�Vc.�/
D

Z 1

0

�3c t
2

r20 C t�c

dtp
�Vc.t�c/

;

since �0 > �r20 . Therefore,

dP.Uc/

dc jcD0
D

ˇ̌̌̌Z �0

0

�2

r20 C �

d�p
�V0.�/

ˇ̌̌̌
> 0

since �0 6D 0 (U0 is not trivial). The conclusion follows then from the proof of Theorem 5. �

When we know that .dP.Uc/=dc/jcD0 > 0, we may also use the Evans function as in Theorem 13 to
show the existence of an unstable eigenmode. However, due to the fact that the kink U0 is real-valued,
we can use the arguments in [de Bouard 1995; Pelinovsky and Kevrekidis 2008].

1C2. Stability analysis for the kinks. We now turn to the case of the kinks (�0D�r20 and U0 is odd up to
a translation). Since U0 vanishes at the origin, the hydrodynamical form of (NLS) can not be used. The
stability of the kink has attracted several recent works. L. Di Menza and C. Gallo [2007] have investigated
the linear stability through the Vakhitov–Kolokolov function VK, defined by

VK.�/�
Z

R

�
Œ�@2x �f .U

2
0 /���

�1.@xU0/
�
.@xU0/ dx;

whereU0 is the kink, for �2 .��; 0/ for some ��<0. They show that the Vakhitov–Kolokolov function VK
has a limit VK0 when �! 0�. If VK0 > 0, then the linearization of (NLS) around the kink has an
unstable real positive eigenvalue. When VK0 < 0, the linearization of (NLS) around the kink has a
spectrum included in iR (spectral stability). Note that the approach of [Lin 2002] (extending [Grillakis
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et al. 1987]) does not give directly unstable eigenvalues in the case dP=dc > 0. Recently, the link between
the quantity dP=dc and the sign of VK0 has been given by D. Pelinovsky and P. Kevrekidis [2008] (proof
of Lemma 3.10 there, the factor

p
2 coming from the coefficients of the NLS equation in [Pelinovsky and

Kevrekidis 2008]):

2
p
2VK0 D lim

c!0

dP.Uc/

dc
; (8)

and they also prove, in a different way from [Di Menza and Gallo 2007], that we have spectral stability
when limc!0 dP=dc < 0 and existence of an unstable eigenvalue (in R�

C
) if limc!0 dP=dc > 0. It is

shown in [Pelinovsky and Kevrekidis 2008] that the limit limc!0 dP.Uc/=dc does exist. Actually, it is
proved there that the function Œ0; c0/ 3 c 7! P.Uc/ is of class C1 and that the derivative at c D 0 is also
given by (see (8))

lim
c!0

dP.Uc/

dc
D 2
p
2VK0 D 2

p
2 lim
�!0�

Z
R

�
Œ�@2x �f .U

2
0 /���

�1.@xU0/
�
.@xU0/ dx

D 2
p
2

Z
R

Im
�
@Uc

@c jcD0

�
@xU0 dx: (9)

Our next lemma gives an explicit formula of the expression (9), involving only the nonlinearity f .

Lemma 20. Assume that U0 is a kink. Then, there exists c0 2 .0; cs/ such that U0 belongs to the (locally)
unique branch Œ0; c0/ 3 c 7! Uc 2 Z. Moreover, P.Uc/! r20� as c! 0 and the continuous extension
Œ0; c0/ 3 c 7! P.Uc/ has a derivative at c D 0 given by

dP.Uc/

dc jcD0
D�

8r30

3
p
F.0/

C
1

2

Z r20

0

.%� r20 /
2

%3=2

�
1p
F.%/

�
1p
F.0/

�
d%:

The advantage of the formula given in Lemma 20 compared to (9) is that it allows a direct computation of
.dP.Uc/=dc/jcD0 when f is known, which does not require computing numericallyU0 and .@Uc=@c/jcD0.
For instance, it is quite well adapted to the stability analysis as in [Fakau and Karval’u 2009]. Let us observe
that it may happen that a kink is unstable (see [Kivshar and Krolikowski 1995; Di Menza and Gallo 2007]).

In the case of linear instability, [Di Menza and Gallo 2007] shows that, then, nonlinear instability holds.
Actually, a stronger result is proved there, showing that the L1 norm (and not only the H 1 norm) does
not remain small.

Theorem 21 [Di Menza and Gallo 2007]. Assume that there exists a kink, that is, a nontrivial stationary
(c D 0) wave U0 vanishing somewhere, and satisfying .dP.Uc/=dc/jcD0 > 0. Then, U0 is (linearly and
nonlinearly) unstable in the sense that there exists � such that, for any ı >0, there exists‰in2U0CH

1.R/

such that k‰in�U0kH1.R/� ı, but, if‰2U0CC.Œ0; T �/;H 1.R// denotes the maximal solution of (NLS),
then there exists 0 < t < T � such that k‰.t/�U0kL1.R/ � �.

The proof in [Di Menza and Gallo 2007] relies on the tracking of the exponentially growing eigenmode.
One may actually improve slightly the result as this was done in Corollary 15. As a matter of fact, this
was the result in Theorem 21 that has motivated us for Corollary 15.
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We focus now on the nonlinear stability issue when there is linear (spectral) stability, that is, when
.dP.Uc/=dc/jcD0 < 0. Concerning the Gross–Pitaevskii nonlinearity (f .%/D 1�%), for which we have
.dP.Uc/=dc/jcD0 < 0, we quote two papers on this question. The first one is the work of P. Gérard
and Z. Zhang [2009] where the stability is shown by inverse scattering, hence in a space of functions
sufficiently decaying at infinity. The analysis then relies on the integrability of the one-dimensional GP
equation. The other work is by F. Béthuel, P. Gravejat, J.-C. Saut and D. Smets [Béthuel et al. 2008b].
They prove the orbital stability of the kink of the Gross–Pitaevskii equation by showing that the kink is a
global minimizer of the energy under the constraint that a variant of the momentum is fixed (recall that
the definition of the momentum has to be clarified for an arbitrary function in the energy space), and that
the corresponding minimizing sequences are compact (up to space translations and phase factors). In this
approach, it is crucial (see [Béthuel et al. 2008a; 2008b]) that Ekink < csPkinkD csr

2
0� in order to prevent

the dichotomy case for the minimizing sequences. However, since the energy of the kink is equal to

Ekink D 4

Z 0

�r20

F.r20 C �/p
�V0.�/

d� D 2

Z 0

�r20

s
F.r20 C �/

r20 C �
d� D 2

Z r20

0

s
F.%/

%
d%;

whereas its momentum is always equal to r20� , it is clear that the condition Ekink < csPkinkD csr
2
0� does

not hold in general, as shown in the following example.

Example. For � � 0, consider

f .%/� 1� %C �.1� %/3;

which is smooth and decreases to �1 as the Gross–Pitaevskii nonlinearity. We have r0 D 1, cs D
p
2,

F.%/D .1� %/2=2C �.1� %/4=4 and

Ekink D 2

Z r20

0

s
F.%/

%
d%D 2

Z r20

0

s
2.1� %/2C �.1� %/4

4%
d% > csr

2
0� D �

p
2

for � large (the left-hand side tends to C1), and numerical computations show that it is the case for
� � 14. Furthermore, Lemma 20 gives

p
F.0/

dP.Uc/

dc jcD0
D�

8

3
C
1

2

Z 1

0

.%� 1/2

%3=2

�s
F.0/

F.%/
� 1

�
d%: (10)

Since F.0/=F.%/D .2C �/=.2.%� 1/2C �.%� 1/4/, it can be easily checked that the right-hand side
of (10) is a decreasing function of � tending to

�
8

3
C
1

2

Z 1

0

.%� 1/2

%3=2

�
1

.%� 1/2
� 1

�
d%D�1

when �!C1 (by monotone convergence). In particular, for any � � 0, we have .dP.Uc/=dc/jcD0 < 0;
that is, the kink is always (linearly) stable. The energy-momentum diagram for this type of nonlinearity
with � large is as in the right part of Figure 4 (the left part correspond to � smaller).
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In comparison with the constraint minimization approach as in [Béthuel et al. 2008a; 2008b], which
allows us to establish a global minimization result, the spectral methods as in [Grillakis et al. 1987; Lin
2002] allow us to put forward locally minimizing properties, which turn out to be useful for the stability
analysis in dimension one.

In the stability analysis of the kink, one issue is the definition of the momentum P , which was up
to now given only for maps in Zhy, that is, for maps that never vanish, but the kink vanishes at the
origin. In [Béthuel et al. 2008b], the notion of momentum was extended to the whole energy space Z,
hence including maps vanishing somewhere, as a quantity defined mod 2� , and was called “untwisted
momentum”. This notion will be useful for our stability result.

Lemma 22 [Béthuel et al. 2008b]. If  2 Z, the limit

P. /� lim
R!C1

�Z CR
�R

hi j@x i dx� r
2
0

�
arg. .CR//� arg. .�R//

��
exists in R=.2�r20Z/. The mapping P WZ!R=.2�r20Z/ is continuous and, if  2Z satisfies infR j j>0

(i.e.,  2 Zhy), then P. /D P. / mod 2�r20 . Finally, if ‰ 2 C.Œ0; T /;Z/ is a solution to (NLS), then
P.‰.t// does not depend on t .

Proof. For the sake of completeness, we recall the proof of [Béthuel et al. 2008b]. Let  2 Z and let us
verify the Cauchy criterion. Since j j ! r0 > 0 at ˙1, we have a lifting  D A˙ei�˙ in .�1;�R0/
and in .CR0;C1/ for some R0 sufficiently large. For R0 >R >R0, we thus have in R=.2�r20Z/�Z CR0
�R0
hi j@x i dx� r

2
0

�
arg. .CR0//� arg. .�R0//

��
�

�Z CR
�R

hi j@x i dx� r
2
0

�
arg. .CR//� arg. .�R//

��
D

Z R0

R

hi j@x i dxC

Z �R
�R0
hi j@x i dx

� r20
�
arg. .R0//� arg. .R//

�
C r20

�
arg. .�R0//� arg. .�R//

�
D

Z R0

R

A2C@x�C dxC

Z �R
�R0

A2�@x�� dx� r
2
0

�
�C.R

0/��C.R/
�
C r20

�
��.�R

0/���.�R/
�

D

Z R0

R

.A2C� r
2
0 /@x�C dxC

Z �R
�R0

.A2�� r
2
0 /@x�� dx:

The absolute value of each term is � K
R
˙x�˙Rj@x j

2 C .j j � r0/
2 dx and thus tends to zero if

R!C1. Thus, P. / is well-defined. The proof of the continuity follows the same lines, and allows
us to show that P is actually locally Lipschitz continuous. Let  2 Z. If Q 2 Z and dZ. Q ; / is small
enough, we have kj Q j � j jkL1 as small as we want. In particular, if R0 > 0 is large enough so that
j j � 3r0=4 for jxj �R, we have j Q j � r0=2 for jxj �R0. As a consequence, writing  DA˙ei�˙ and



1348 DAVID CHIRON

Q D QA˙e
i Q�˙ in .�1;�R0/ and in .CR0;C1/, we have, in R=.2�r20Z/ and for R >R0,�Z CR

�R

hi j@x i dx�r
2
0

�
arg. .CR//�arg. .�R//

��
�

�Z CR
�R

hi Q j@x Q i dx�r
2
0

�
arg. Q .CR//�arg. Q .�R//

��
D

Z CR0
�R0

hi. � Q /j@x iChi Q j@x. � Q /i dxC

Z R

R0

A2C@x�C�
QA2C@x

Q�C dx�r
2
0

�
�C.CR/� Q�C.CR/

�
C

Z �R0
�R

A2�@x���
QA2�@x

Q�� dxCr
2
0

�
��.�R/� Q��.�R/

�
D

Z CR0
�R0

hi. � Q /j@x iChi Q j@x. � Q /i dxCr
2
0

�
�C.CR0/� Q�C.CR0/

�
Cr20

�
��.�R0/� Q��.�R0/

�
C

Z R

R0

.A2C�r
2
0 /@x�C�.

QA2C�r
2
0 /@x

Q�C dxC

Z �R0
�R

.A2��r
2
0 /@x���.

QA2��r
2
0 /@x

Q�� dx:

We now estimate all the terms. For the last line, we use the Cauchy–Schwarz inequality to get
j
R R
R0
.A2
C
� r20 /@x�C dxj �K. /kAC � r0kL2.R/kAC@x�CkL2.R/ �K. /dZ. ; Q /, and similarly for

the other terms. Moreover, using that . � Q /.x/D . � Q /.0/C
R x
0 @x. �

Q /, we get, by the Cauchy–
Schwarz inequality, k � Q kC0.Œ�R0;CR0�/� j. �

Q /.0/jC
p
R0k@x �@x Q kL2.R/�K.R0/dZ. ; Q /.

Thus, the terms of the second line can be estimated by K. ;R0/dZ. ; Q /, and those of the first line can
also be bounded by K. ;R0/dZ. ; Q /. Passing to the limit as R!C1 then gives

jP. /�P. Q / mod 2�r20 j �K. ;R0/dZ. ; Q /:

This completes the proof for the definition of P. To show that P is constant under the (NLS) flow, we
use that ‰ 2‰.0/CC.Œ0; T /;H 1/ and the approximation by smoother solutions (see Proposition 1 in
[Béthuel et al. 2008b]). �

For the stability of the kink, we can no longer use the Grillakis–Shatah–Strauss theory applied to the
hydrodynamical formulation of (NLS), since the kink vanishes at the origin. Therefore, it is natural to
consider the Liapounov functional L introduced in Section 1B2, which becomes, in the stationary case
c D 0,

L. /DE. /C
M

2
.P. /�P.U0//

2:

Since the momentum P is not well-defined in Z, we have to replace it by the untwisted momentum P,
which is defined modulo 2�r20 . Consequently, it is natural to define the functional in Z

K. /�E. /C 2Mr40 sin2
P. /� r20�

2r20
;

which is well-defined and continuous in Z since sin2 is �-periodic. In addition, K is conserved by the
(NLS) flow as E and P.
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Theorem 23. Assume that there exists a kink, that is, a nontrivial stationary (c D 0) wave U0 which is
odd. Assume also that

dP.Uc/

dc jcD0
< 0:

Then, there exists some small �� > 0 such that U0 is a local minimizer of K. More precisely, defining

V�� � f 2 Z; infRj j< ��g;

we have, for any  2 V��n fe
i�U0. � �y/; � 2 R; y 2 Rg,

K. / > K.U0/DE.U0/:

The crucial point in this result is to prove that the functional K. / controls the infimum infRj j.
As we shall see in the proof (Section 6B), the key idea is to study the infimum of the functional K at
fixed infRj j (small), and then to prove (see Proposition 6.2) that, for  2 V�� , there holds, for some
constant K depending only on f ,

K. /� K.U0/C
.infRj j/

2

K
:

This will be achieved by a fine analysis of some minimizing sequences. From this locally minimizing
property of the kink when .dP.Uc/=dc/jcD0 < 0, we infer its orbital stability, provided we can prove
some compactness on the minimizing sequences. A main step here is the control on infRj j. Our method
allows to infer a control on the distance of the solution to (NLS) to the orbit of the kink, but it is much
weaker than those obtained by spectral methods in Lemma 7 or Corollary 11 for instance.

Theorem 24. Assume that there exists a kink, that is, an odd nontrivial stationary (c D 0) wave U0, and
that .dP.Uc/=dc/jcD0 < 0. Then, U0 is orbitally stable in .Z; dZ/. Moreover, if ‰.t/ is the (global)
solution to (NLS) with initial datum ‰in, we have the control

sup
t�0

inf
y2R
�2R

dZ.‰.t/; e
i�U0. � �y//�K

8

q
K.‰in/�E.U0/�K

4

q
dZ.‰in; U0/

provided that the right-hand side is sufficiently small.

This result settles the nonlinear stability under the condition .dP.Uc/=dc/jcD0 < 0 for a general
nonlinearity f . In particular, it may be applied to the nonlinearity f given in the example above. It shows
that the stability of the kink holds with ı D O."4/. We do not claim that the exponent 1=8 is optimal.

For a complete study of the stability of the traveling waves, it would remain to investigate the case
of the sonic (c D cs) traveling waves (when they exist). The methods we have developed do not apply
directly, and we give in Section 7 some of the difficulties associated with this critical situation.

2. Decay at infinity (proof of Proposition 2)

For simplicity, we shall define

V.�/� Vcs .�/D c2s �
2
� 4.r20 C �/F.r

2
0 C �/:
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We freeze the invariance by translation by imposing jUcj (hence also @x�) even, so that we can use the
formulas in [Chiron 2012]. In particular, it suffices to show the asymptotics for x ! C1: the case
x!�1 follows by symmetry. We start with the proof of case (iii). Under assumption (Am) and since
F 0 D�f , we infer the Taylor expansion

V.�/D c2s �
2
C 4.r20 C �/

�
1

2Š
f 0.r20 /�

2
C � � �C

1

.mC 2/Š
f .mC1/.r20 /�

mC2

C
1

.mC 3/Š
f .mC2/.r20 /�

mC3
CO.�mC4/

�
D

4r20
.mC 3/Š

f .mC2/.r20 /�
mC3
C

4

.mC 2/Š
f .mC1/.r20 /�

mC3
CO.�mC4/

D
4

r
2.mC1/
0

�
r
2.mC2/
0

.mC 3/Š
f .mC2/.r20 /C .�1/

mC2 c
2
s

4

�
�mC3CO.�mC4/Dƒm�

mC3
CO.�mC4/;

since, when (Am) holds, all the terms O.�mC2/ cancel out. The coefficient ƒm is not zero by assumption.
Note that the existence of a nontrivial sonic wave, which depends on the global behavior of V, imposes
that ƒm�mC3 < 0 when � is small and has the sign of �cs . Therefore, from the formula (following from
the Hamiltonian equation 2@2x�c CV0.�c/D 0; see [Chiron 2012] for example)

x D�sgn.�cs /
Z �cs .x/

�cs

d�p
�V.�/

and since we have, as �! 0 (with the sign of �cs ),Z �

�cs

d�p
�V.�/

D

Z �

�cs

d�p
�ƒm�mC3

C

Z �

�cs

V.�/�ƒm�
mC3p

�V.�/
p
�ƒm�mC3

�p
�V.�/C

p
�ƒm�mC3

� d�
D�

2 sgn.�cs /
mC 1

�
1p

�ƒm�mC1
�

1q
�ƒm�

mC1
cs

�
C

8<:
O.1/ if mD 0;
O.jlnj�jj/ if mD 1;
O.��

m�1
2 / if m� 2

(here, we use that the last integrand is O.��.mC1/=2/ as �! 0), it follows that, as x!C1,

�cs .x/D sgn.�cs /
�

4

.mC 1/2jƒmj

� 1
mC1 1

x
2

mC1

C

8̂̂<̂
:̂

O.1=x3/ if mD 0;

O.ln.x/=x2/ if mD 1;

O.1=x
4

mC1 / if m� 2:

This shows the asymptotics for the modulus, or �cs . The asymptotic expansion for @x�cs is easily deduced
from the equation on the phase 2@x�cs D cs�cs=.r

2
0 C �cs /, and the phase �cs is then computed by

integration, which completes the proof of case (iii).
The proof of (ii) is easier. Indeed, in this case, the function V has the expansion

V.�/D c2s �
2
� 4.r20 C �/F.r

2
0 C �/D O.�3/I
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hence

Vc.�/D V.�/� .c2s � c
2/�2 D�.c2s � c

2/�2CO.�3/:

As a consequence, the result follows from the expansion, for �! 0,Z �

�c

d�p
�V.�/

D

Z �

�c

d�p
.c2s �c

2/�2
C

Z �

�c

V.�/p
�Vc.�/

p
.c2s �c

2/�2
�p
�Vc.�/C

p
.c2s �c

2/�2
� d�

D sgn.�c/
ln.�=�c/p
c2s �c

2
C

Z 0

�c

V.�/p
�Vc.�/

p
.c2s �c

2/�2
�p
�Vc.�/C

p
.c2s �c

2/�2
� d�CO.�/

since the integrand for the last integral is continuous at � D 0. This yields the desired expansion for the
modulus:

�c.x/D �c exp
�
�x

q
c2s�c

2�

Z 0

�c

V.�/p
��2Vc.�/

�p
�Vc.�/C

p
.c2s�c

2/�2
� d��CO

�
exp

�
�2x

q
c2s�c

2
��

DMc exp
�
�x

q
c2s�c

2
�
CO

�
exp

�
�2x

q
c2s�c

2
��
;

with

Mc � �c exp
�
�

Z 0

�c

V.�/p
��2Vc.�/

�p
�Vc.�/C

p
.c2s � c

2/�2
� d�� 6D 0;

and hence for the phase by similar computations to those above. The proof of case (i) is similar, separating
the case �0D�r20 of the kink (even solution) from the case �0 6D �r20 of the bubble (odd solution), and is
omitted. �

3. Stability results deduced from the hydrodynamical formulation of (NLS)

3A. Proof of Lemma 9. (i) The mapping M is an homeomorphism. Let DAei� , . nDAnei�n/n2 Z

such that  n!  for dhy. Then, An�A! 0 in H 1, @x�n! @x� in L2 and we may assume (possibly
adding some multiple of 2� to �n), that �n.0/!�.0/. We write, using the embeddingH 1.R/ ,!L1.R/

for the second-to-last line,

dZ. n;  /

D k@x n�@x kL2Ckj nj� j jkL2Cj n.0/� .0/j

D kei�n@xAnC iAne
i�n@x�n� ei�@xA� iAe

i�@x�kL2CkAn�AkL2CjAn.0/e
i�n.0/�A.0/ei�.0/j

� k.ei�n � ei�/@xAkL2Cke
i�.@xAn�@xA/kL2Ck.An�A/e

i�n@x�nkL2CkA.e
i�n � ei�/@x�kL2

CkAei�n.@x��@x�n/kL2CkAn�AkL2Cj.An.0/�A.0//e
i�n.0/jC jA.0/.ei�n.0/� ei�.0//j

� k.ei�n � ei�/@xAkL2CKkAn�AkH1Ck.An�A/kH1k@x�nkL2CkAkL1k.e
i�n � ei�/@x�kL2

CkAkL1k@x��@x�nkL2CkAkL1 je
i�n.0/� ei�.0/j (11)

D k.ei�n � ei�/@xAkL2CkAkL1k.e
i�n � ei�/@x�kL2Con!C1.1/;



1352 DAVID CHIRON

from the convergences we have. Now observe that

�n.x/D �n.0/C

Z x

0

@x�n.t/ dt ! �.0/C

Z x

0

@x�.t/ dt D �.0/

pointwise; hence, by the dominated convergence theorem, k.ei�n � ei�/@xAkL2 ! 0, and similarly for
the other term. Therefore, dZ. n;  /! 0 as wished.

Let now  D Aei� , . n D Anei�n/n 2 Z such that  n!  for dZ. Then, An�AD j nj � j j ! 0

in L2, @x n ! @x in L2 and  n.0/!  .0/. Since j � j is 1-Lipschitz continuous, we infer for the
modulus

k@xAn� @xAkL2 D k@xj nj � @xj jkL2 � k@x n� @x kL2 :

Moreover,  n.0/!  .0/ and this implies arg. n.0/= .0//! 0. Therefore, it suffices to show that
@x�n! @x� in L2. We use the formula A2@x� D hi j@x i, which yields

@x�n� @x� D
hi nj@x ni

A2n
�
hi j@x i

A2

D hi nj@x ni

�
1

A2n
�
1

A2

�
C
hi nj@x. � n/i

A2
�
hi. � n/j@x i

A2
I

hence
k@x�n� @x�kL2

�
k nkL1kAkL1

.infRA2/.infRA2n/
kAn�AkL2 C

k nkL1

infRA2
k@x � @x nkL2 C

1

infRA2
kj n� j@x kL2 : (12)

The first two terms tend to zero as n ! C1. For the last term, we use here again the dominated
convergence theorem since  n.x/D  n.0/C

R x
0 @x n.t/ dt !  .0/C

R x
0 @x .t/ dt D  .0/ pointwise.

This concludes the proof of (i).

Proof of (ii). Let us define �� W R! R by ��.x/� 1
2
.ln x/21x�1. Then, straightforward computations

give @x��.x/D ..ln x/=x/1x�1 2 L2.R/ and, for X � e, by monotonicity of @x��,Z 2X

X

.@x��/
2 dx �X

ln2.2X/
.2X/2

�
.lnX/2

4X
: (13)

We now consider �n W R! R defined by �n.x/D 0 if x � 0 or x � 3n� , �n.x/D x=n if 0 � x � n� ,
�n.x/D � if n� � x � 2n� and �n.x/D 3� � x=n if 2n� � x � 3n� . Then, we easily obtain

dhy.e
i�� ; ei��Ci�n/D k@x�nkL2 D

r
2�

�n

n2
D

r
2�

n
! 0:

Moreover,

dZ.e
i�� ; ei��Ci�n/D k@x��e

i�� � .@x��C @x�n/e
i��Ci�nkL2 � k@x��.e

i�n � 1/kL2 �k@x�nkL2 ;

and, by our choice of �n and using (13),

k@x��.e
i�n � 1/k2

L2
�

Z 2n�

n�

4.@x��/
2 dx �

.lnX/2

X jXDn�
�
.lnn/2

n�
:
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Since .lnn/=
p
n��

p
2�=nD dhy.e

i�� ; ei��Ci�n/, it follows that, as wished,

dZ.e
i�� ; ei��Ci�n/�

lnn
p
n�
.1C o.1//�

r
2�

n
D dhy.e

i�� ; ei��Ci�n/:

We do not know whether the mapping M is locally Lipschitz, but it is probably not.

3B. Proof of Lemma 10. Note first that, since U� does not vanish, if ı is sufficiently small and
dZ. ; U�/ � ı, then kj j � jU�jkL1 � .1=2/ infR jU�j; hence j j � .1=2/ infR jU�j > 0 in R; thus  
does not vanish, may be lifted to  D A exp.i�/, and we may further assume �.0/���.0/ 2 .��;C��.
In (11), we can easily check that the terms leading to the “o.1/” are indeed controlled byK. /dhy. n;  /.
In other words, we have

dZ. ; U�/� k.e
i�
� ei��/@xA�kL2 CkA�kL1k.e

i�
� ei��/@x��kL2 CK.U�/dhy. ; U�/;

provided dhy. ; U�/ is small enough. In order to bound the two remaining terms, we write, for x 2 R,

�.x/���.x/D �.0/���.0/C

Z x

0

@x�.y/� @x��.y/ dy;

which implies, using that R 3 � 7! ei� is 1-Lipschitz and the Cauchy–Schwarz inequality,

j1� ei.��.x/��.x//j � j�.0/���.0/jC
p
jxjku�u�kL2 : (14)

Consequently,

k.ei� � ei��/@xA�kL2 � j�.0/���.0/jk@xA�kL2 Cku�u�kL2


pjxj@xA�

L2

and
k.ei� � ei��/@x��kL2 � j�.0/���.0/jk@x��kL2 Cku�u�kL2



pjxj@x��

L2 :
Both terms are � K.U�/dhy. ; U�/. Indeed, U� 2 Z is a traveling wave; hence A�, @xA�, @x�� are
bounded functions which decay at infinity exponentially if 0� c < cs (cf. part (i) or (ii) of Proposition 2). If
cD cs , since assumption (A0) is satisfied, we invoke Proposition 2(iii), which ensures that @x�� and @xA�
decay at the rate O.jxj�2/ (@xA� decays faster actually). Therefore,

p
jxj@x�� 2 L

2. Gathering these
estimates provides

dZ. ; U�/�K.U�/dhy. ; U�/:

On the other hand, from (12) and the estimate kA�A�kH1 � dZ. ; U�/ (see the proof of (i)), we infer

dhy. ; U�/�K.U�/dZ. ; U�/C
1

infRA2
kj �U�j@xU�kL2 :

Using here again the estimate j .x/�U�.x/j � j�.0/���.0/jC
p
jxjk@x �U�kL2 , we deduce

dhy. ; U�/�K.U�/dZ. ; U�/:

The proof is complete. �
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3C. Two remarks on the proof of Theorem 5. We would like to point out two minor points concerning
the proof of Theorem 5 by Z. Lin. We recall that the proof of [Lin 2002] relies on the Grillakis–Shatah–
Strauss theory [Grillakis et al. 1987] once we have written (NLS) under the hydrodynamical form (2),
defining  D Aei� , .�; u/� .j j2 D A2; @x�/:8<:@t�C 2@x.�u/D 0;@tuC 2u@xu� @x.f .�//� @x

�
@2x.
p
�/

p
�

�
D 0;

or, more precisely, with �� ��r20 D j j
2�r20 and denoting by ıE=ı�, ıE=ıu the variational derivatives,

@

@t

�
�

u

�
D J

0B@
ıE

ı�
ıE

ıu

1CA ; J �

�
0 @x
@x 0

�
: (15)

We first remark that the scalar product in the Hilbert spaceXDH 1�L2 can not be ..�; u/; . Q�; Qu//H1�L2DR
R
� Q�Cu Qudx as used in [Lin 2002], but the natural one is ..�; u/; . Q�; Qu//H1�L2D

R
R
� Q�C@x�@x Q�Cu Qudx.

This requires us to make some minor changes in the proof, especially not to identify .H 1/� with H 1.
For instance, a linear mapping B is associated with the momentum through the formula

Phy.�; u/�

Z
R

�u dx D 1
2
.B.�; u/; .�; u//H1�L2 with B �

�
0 1

1 0

�
for the (nonhilbertian) scalar product ..�; u/; . Q�; Qu//H1�L2 D

R
R
� Q�C u Qudx. The correct definition is

actually

Phy.�; u/D

Z
R

�u dx D 1
2
hB.�; u/; .�; u/iX�;X with B �

�
0 ��

� 0

�
;

where � WH 1 ,! L2 is the canonical injection. As already mentioned in Section 1B, the two points in the
proof of [Lin 2002] that have been completed in [Gallo 2004] are that: Lin uses a local in time existence
for the hydrodynamical system (15) in H 1�L2, and not only in f� 2L1; @x� 2L2g�L2; and that the
energy and the momentum are indeed conserved for the local solution if the initial datum does not vanish.

The second point is that, in the proof of stability (Theorem 3.5 in [Grillakis et al. 1987]), it is used that,
if U 2X and .Un/n2N 2X is a sequence such that E.Un/!E.U/ and Phy.Un/! Phy.U/, then there
exists a sequence . QUn/n2N 2X such that Un�

QUn! 0 in X , E. QUn/!E.U/ and Phy. QUn/D Phy.U/.
In the context of bound states, the existence of such a sequence . QUn/n2N 2X follows by simple scaling
in space, since then the momentum or charge is simply

R
Rd

U2
n dx. However, for the one-dimensional

traveling waves for (NLS), the momentum P is scaling invariant. We do not know if the existence of
such a sequence holds in a general framework, but, for the problem we are studying, we can rely on
the following lemma, which is an adaptation of Lemma 6 in [Béthuel et al. 2008a] (see also lemma in
[Béthuel et al. 2008b]).
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Lemma 3.1. There exist p0 > 0 and K > 0, depending only on f , such that, for any p 2 .�p0;Cp0/ and
� 2 R with j�j � jpj, there exists w D aei' 2H 1.Œ0; 1=.2jpj//;C/ verifying

w.0/D w

�
1

2jpj

�
; jw.0/j D r0C�;

Z 1=.2jpj/

0

.a2� r20 /@x' dx D p;Z 1=.2jpj/

0

j@xwj
2
CF.jwj2/ dx �Kjpj:

Proof. If pD 0, we simply take w D r0. We then assume 0 < p < p0, since the case �p0 < p < 0 will
follow by complex conjugation. We then define, for some small ı to be determined later,

w.x/�

q
r20 � ıC 2p.1� j8px� 1j/C expŒi.1� j4px� 1j/C�D aei' :

It is clear that w 2H 1.Œ0; 1=.2p/�;C/ and that w.0/Dw.1=.2p//D
p
r20 � ı; thus jw.0/j D r0C� pro-

vided we choose ıD��2�2r0�D O.j�j/. Moreover, since the phase ' has compact support Œ0; 1=.2p/�,Z 1=.2p/

0

.a2� r20 /@x' dx D

Z 1=.2p/

0

f�ıC 2p.1� j8px� 1j/Cg@x.1� j4px� 1j/C dx

D 2p

Z 1=.2p/

0

.1� j8px� 1j/C@x.1� j4px� 1j/C dx

D 2p

Z 1=.2p/

0

.1� j8px� 1j/C@x.1� j4px� 1j/C dx:

For the last integral, the first factor is equal to 0 if x � 1=.4p/ and the second factor is equal to 4p when
x � 1=.4p/. Hence, direct computation givesZ 1=.2p/

0

.a2� r20 /@x' dx D 2p

Z 1=.4p/

0

.1� j8px� 1j/C � 4p dx D p:

For the energy part, notice first that

ja2� r20 j D j� ıC 2p.1� j8px� 1j/Cj � jıjC 2p0

is as small as we want if jıj and p0 are chosen sufficiently small. Therefore,

F.jwj2/�K.a2� r20 /
2:

By simple computations, we haveZ 1=.2p/

0

j@xwj
2
CF.jwj2/ dx

�K

Z 1=.2p/

0

p2j@x.1� j8px� 1j/Cj
2
Cj@x.1� j4px� 1j/Cj

2
C .�ıC 2p.1� j8px� 1j/C/

2 dx

�Kp3CKpCK
ı2C p2

p
�Kp

since ı D O.j�j/D O.p/, which concludes the proof. �
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We then consider a sequence Un D .�n; un/ 2 X DH
1 �L2 and show the existence of the desired

sequence QUn D . Q�n; Qun/ 2X . We recall that Un (respectively, U) is associated with a mapping  n 2 Z

(respectively, U�) that does not vanish. We have Phy.Un/D P. n/! P.U�/; thus, for n large enough,
jP. n/�P.U�/j � p0. For n fixed, we now pick Rn > 0 large enough so thatZ C1

Rn

j@x nj
2
C .j nj � r0/

2 dx � ŒP. n/�P.U�/�
2:

In particular, by the Sobolev embedding,

ˇ̌
j nj.Rn/�r0

ˇ̌
�kj nj�r0kL1.ŒRn;C1//�

sZ C1
Rn

j@xj njj2C .j nj � r0/2 dx� jP. n/�P.U�/j:

We are now in position to apply (for n large) Lemma 3.1 with .p; �/D .P.U�/�P. n/; j nj.Rn/� r0/.
This provides the mapping wn 2 H 1.Œ0; 1=.2jpj//;C/. Since j nj.Rn/� r0 ! 0, for n large enough,
there exists �n 2 R such that  n.Rn/D ei�n j nj.Rn/D ei�n.r0C�/D ei�nwn.0/. We then consider
the mapping Q n 2 Z defined by

Q n.x/�

8̂̂̂̂
<̂̂
ˆ̂̂̂:
 n.x/ if x �Rn;

ei�nwn.x�Rn/ if Rn � x �RnC
1

2jP. n/�P.U�/j
;

 n

�
x�

1

2jP. n/�P.U�/j

�
if x �RnC

1

2jP. n/�P.U�/j
:

From the construction of wn and the phase factor �n, Q n is well-defined and continuous. It is clear that

P. Q n/D P. n/C

Z 1=.2p/

0

.a2n� r
2
0 /@x'n dx D P. n/C pD P.U�/

for every (large) n, and that

E. Q n/DE. n/C

Z 1=.2p/

0

j@xwj
2
CF.jwj2/ dx

DE.U�/C o.1/CO.jpj/DE.U�/C o.1/CO.jP.U�/�P. n/j/

converges to P.U�/ as n!C1. Denoting by QUn 2X the hydrodynamical expression of Q n, it remains
to show that Un�

QUn! 0 in X DH 1 �L2. We thus compute, with the definition of Q n,

kUn�
QUnk

2
X D

Z C1
Rn

ˇ̌
@xj nj�@xj Q nj

ˇ̌2
C.j nj�j Q nj/

2
C.un� Qun/

2 dx

� 2

Z C1
Rn

j@xj njj
2
Cj@xj Q njj

2
C.j nj�r0/

2
C.j Q nj�r0/

2
Cu2nC Qu

2
n dx

� 4K

Z C1
Rn

j@x nj
2
C.j nj�r0/

2 dxC2

Z 1=.2jP.U�/�P. n/j/

0

j@xwnj
2
C.jwnj

2
�r20 /

2 dx

� 4KŒP. n/�P.U�/�
2
CKjP. n/�P.U�/j ! 0:
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For the second-to-last inequality, we have used that, for jxj �Rn,  n has modulus uniformly close to r0;
hence j@xj njj2C u2n � Kj@x nj

2. Note that the construction still holds for the energy distance, the
computations being similar.

3D. Proof of Lemma 7. Proof of estimate (3). Instead of concluding the stability proof as in [Grillakis
et al. 1987], we can notice that we have actually the bound

Ehy.U/�Ehy.Uc�/�
1

K
inf
y2R
kU�Uc�. � �y/k

2 (16)

as soon as P.Uc�/D Phy.Uc�/D Phy.U/ and U 2 O" � fV 2 X; infy2R kV�Uc�. � � y/kX < "g for
some small ". If ‰in does not have momentum equal to Phy.Uc�/, we use Lemma 3.1 to infer that
there exists Q‰.t/, with momentum equal to Phy.Uc�/D P.Uc�/, and such that E. Q‰.t//�E.‰.t//D
O.jP.‰.t//�P.Uc�/j/ and dhy.‰.t/; Q‰.t//� O.

p
jP.‰.t//�P.Uc�/j/. Therefore, for t � 0, denoting

by ‰hy.t/ 2X and Q‰hy.t/ 2X the hydrodynamical variables for ‰ and Q‰.t/,

inf
y2R
k‰hy.t/�Uc�. � �y/k � inf

y2R

�
k Q‰hy.t/�Uc�. � �y/kCk‰hy.t/� Q‰hy.t/k

�
�
p
K

q
E. Q‰.t//�E.Uc�/CO

�p
jP.‰.t//�P.Uc�/j

�
�K

hq
jE.‰.t//�E.Uc�/jCjP.‰

in/�P.Uc�/jC

q
jP.‰in/�P.Uc�/j

i
;

which yields (3).

The above estimate is optimal when P.‰in/ D P.Uc�/ since Uc� is a critical point of the action
E � c�P . This bound shows that, in the definition of stability, one has to take ı D O."2/ in general. The
estimate (3) shows that one can actually take ı D O."/.

Proof of estimate (4). The point is to compare ‰.t/ to Uc with c' c� such that P.Uc/DP.‰in/ instead
of comparing to Uc� . In other words, we replace Q‰.t/ by Uc . Note first that, since .dP=dc/jcDc� < 0,
there exists, by the implicit function theorem, such a c ' c�. We then proceed as follows. Let ‰in 2 Z

be close to Uc� . Then, there exists c D c.‰in/ ' c� such that P.Uc/ D P.‰in/. Moreover, since
.dP=dc/jcDc� 6D 0, it follows

kUc �Uc�k �Kjc � c�j �KjP.Uc/�P.Uc�/j DKjP.‰
in/�P.Uc�/j

�Kk‰in
hy�Uc�k �Kdhy.‰

in; Uc�/: (17)

From (16), we have

Ehy.U/�Ehy.Uc/�
1

K
inf
y2R
kU�Uc. � �y/k

2

as soon as Phy.U/D Phy.Uc/. The fact that the constant K can be taken to be uniform with respect to c
for c close to c� comes directly from the proof in [Grillakis et al. 1987]. Therefore, for t � 0,

inf
y2R
k‰hy.t/�Uc�. � �y/k � inf

y2R

�
k‰hy.t/�Uc. � �y/kCkUc. � �y/�Uc�. � �y/k

�
�
p
K
p
E.‰.t//�E.Uc/CO.jP.‰in/�P.Uc�/j/:
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Using that P.‰.t//D Phy.‰hy.t//D Phy.Uc/ and that Uc is a critical point of the action Ehy � cPhy,
we infer E.‰.t//�E.Uc/D ŒEhy� cPhy�.‰

in
hy/� ŒEhy� cPhy�.Uc/D O.k‰in

hy�Uck
2/. Consequently,

inf
y2R
k‰hy.t/�Uc�. � �y/k �K

�
k‰in

hy�UckCk‰
in
hy�Uc�k

�
�Kdhy.‰

in; Uc�/CKkUc �Uc�k �Kdhy.‰
in; Uc�/;

by (17). This gives (4).

4. Instability result for cusps: Proof of Theorem 16

In this section, we set Fc �Ehy� cPhy and we assume

�
d2Fc.Uc/

dc2 jcDc�
D
dP.Uc/

dc jcDc�
D 0 and 0 6D RP� �

d2P.Uc/

dc2 jcDc�
D�

d3Fc.Uc/

dc3 jcDc�
:

The approach is reminiscent of the proof of [Maeda 2012]. Several modifications are necessary since, for
the skew-adjoint operator J D @x , we can not find the required Hilbert space Y . More degenerate cases
can probably be considered as in [Maeda 2012].

We shall denote by I W X ! X� and IH1 W H 1 ! .H 1/� the Riesz isomorphisms and define U D

.�; u/t 2X DH 1.R;R/�L2.R;R/ and H � L2.R;R/�L2.R;R/, endowed with its canonical scalar
product. They are the corresponding Hilbert spaces needed in [ibid.]. We consider the symmetric matrix

B�

�
0 1

1 0

�
;

which is such that B2 D Id2 and 2Phy.U/D .BU;U/H .
Our assumption .dP.Uc/=dc/jcDc�D 0 6D .d

2P.Uc/=dc
2/jcDc� will simplify a little the computations

in [Maeda 2012]. The functions �1 and �2 used there become now

�1.
/D Fc�C
 .Uc�C
 /�Fc�.Uc�/� 

dFc.Uc/

dc jcDc�
��


3

6
RP�

and

�2.
/D
d�1

d

D�P.Uc�C
 /CP.Uc�/��


2

2
RP�:

In order to clarify the dualities used by Maeda, we provide some elements of the proof adapted to our
context.

Lemma 4.1. There exists 
0 > 0 small and � W .�
0;C
0/! R with �.
/ � �
2 RP�=.2kU�k2H / and
such that, for any 
 2 .�
0;C
0/,

Phy.Uc�C
 C �.
/BUc�C
 /D Phy.U�/:

Proof. We have

Phy.Uc�C
 C �BUc�C
 /D
1
2
.BUc�C
 C �Uc�C
 ;Uc�C
 C �BUc�C
 /H

D Phy.Uc�C
 /C �kUc�C
k
2
H C �

2Phy.Uc�C
 /:
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Since kU�k2H 6D 0, the conclusion follows from an easy implicit function argument near � D 
 D 0. In
[Maeda 2012], the linear mapping B is seen from X to X�, but, here, there is no confusion in defining
Uc�C
 C �BUc�C
 2H D L

2 �L2. �

We define, for 
 2 .�
0;C
0/,

W.
/�Uc�C
 C �.
/BUc�C
 ;

which then satisfies Phy.W.
//D Phy.U�/ by construction.

Lemma 4.2. As 
 ! 0, we have Fc�.W.
//�Fc�.Uc�/��.

3=6/ RP�.

Proof. Using that F0c�C
 .Uc�C
 / D 0, Phy.W.
// D Phy.Uc�/ D �.dFc.Uc/=dc/jcDc� and �.
/ D
O.
2/, we have by the Taylor expansion

Fc�.W.
//�Fc�.Uc�/D Fc�C
 .Uc�C
 C �.
/BUc�C
 /�Fc�.Uc�/C 
Phy.W.
//

D Fc�C
 .Uc�C
 /�Fc�.Uc�/� 

dFc.Uc/

dc jcDc�
CO.
4/��


3

6
RP�;

as wished. �

We recall that we have defined the tubular neighborhood O"D fV 2X; infy2R kV�U�. � �y/kX < "g.

Lemma 4.3. For " > 0 small enough, there exist four C1 mappings N
 , ˛, Ny W O"! R and # W O"! X ,
satisfying, for U 2 O",

U. � � Ny.U//DW. N
.U//C#.U/C˛.U/BUc�CN
.U/

and the orthogonality relations

.#.U/; @xUc�CN
.U//H D .#.U/; Œ@cUc�jcDc�C N
.U//H D .#.U/;BUc�C N
.U//H D 0:

Finally, I�1 N
 0 2H 2 �H 1 and I�1
H1@ N
=@� 2H

4.

Proof. We consider the mapping G WX �R� .�
0;C
0/�R! R3 defined by

G.U; y; 
; ˛/�

0@ .U. � �y/�W.
/�˛BUc�C
 ; @xUc�C
 /H
.U. � �y/�W.
/�˛BUc�C
 ; Œ@cUc�jcDc�C
 /H
.U. � �y/�W.
/�˛BUc�C
 ;BUc�C
 /H

1A :
Then G.U�; 0; 0; 0/ D 0 since W.0/ D U�. In order to show that G is of class C1, we have to pay
attention to the translation term U. � �y/, since differentiation in y requires U 2H 1 �H 1 whereas we
only have U 2X DH 1 �L2. It thus suffices to write

G.U; y; 
; ˛/D

0@ .U; @xUc�C
 . � Cy//H � .W.
/C˛BUc�C
 ; @xUc�C
 /H
.U; Œ@cUc�jcDc�C
 . � Cy//H � .W.
/C˛BUc�C
 ; Œ@cUc�jcDc�C
 /H

.U;BUc�C
 . � Cy//H � .W.
/C˛BUc�C
 ;BUc�C
 /H

1A
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to see that G is indeed of class C1 on X �R� .�
0;C
0/�R since c 7!Uc is smooth. Moreover, using
that @
Wj
D0 D Œ@cUc�jcDc� , we infer

@G

@.y;
;˛/
.U�;0;0;0/D

0@ .U�;@
2
xU�/H �.Œ@cUc�jcDc� ;@xU�/H �.BU�;@xU�/H

�.U�;@xŒ@cUc�jcDc�/H �kŒ@cUc�jcDc�k
2
H �.BU�; Œ@cUc�jcDc�/H

�.U�;B@xU�/H �.Œ@cUc�jcDc� ;BU�/H �kBU�k
2
H

1A:
At this stage, the argument in [Maeda 2012] is to use that

.Œ@cUc�jcDc� ; @xU�/H D�.@xŒ@cUc�jcDc� ;U�/H D 0;

which is assumption 2(iii) there. This equality holds true for us since we have chosen Uc even for any
c (close to c�). Furthermore, .U�; @2xU�/H D �k@xU�k

2
H by integration by parts, .BU�; @xU�/H D

.U�;B@xU�/H D 0 since B@x D J is skew-adjoint, and .BU�; Œ@cUc�jcDc�/H D @cŒPhy.Uc/�jcDc� D 0

by hypothesis. Therefore,

@G

@.y; 
; ˛/
.U�; 0; 0; 0/D

0@�k@xUc�k
2
H 0 0

0 �kŒ@cUc�jcDc�k
2
H 0

0 0 �kBU�k
2
H

1A
is invertible; thus the implicit function theorem provides three real-valued functions y, 
 and ˛, defined
near U� (in X) and with y.U�/ D 
.U�/ D ˛.U�/ D 0, such that G.U; y.U/; 
.U/; ˛.U// D 0.
These functions are extended to O" (for " small enough) by the formulas Ny.U/ � y.U. � � y//C y,
N
.U/� 
.U. � �y// and ˛.U/� ˛.U. � �y// for any y 2R such that U. � �y/ lies in the neighborhood
of U� where y, 
 and ˛ are defined. Consequently, the mapping

#.U/�U. � � Ny.U//�W. N
.U//� N̨ .U/BUc�CN
.U/

is orthogonal in H to @xUc�C N
.U/, Œ@cUc�jcDc�CN
.U/ and BUc�CN
.U/, as desired. Since f is assumed of
class C2, we have Uc 2H

4 and the regularities I�1 N
 0 2H 2�H 1 and I�1
H1@ N
=@� 2H

4 follow easily. �

Remark 4.4. We would like to point out that, in [ibid., Lemma 3], it is claimed that “w.u/” is orthogonal
to “@!�!Cƒ.u/” (we refer to the notations there). However, since “T .�.u// � ‰.ƒ.u//” is already
orthogonal to “@!�!Cƒ.u/” by construction, this is equivalent to “hB�!Cƒ.u/; @!�!Cƒ.u/i D 0”, or
“@!0 ŒQ.�!0/�D 0” at “!0D!Cƒ.u/”. We have not understood why this should happen since, in general,
for the function !0 7!Q.�!0/, the point ! is the only local critical point. For this reason, we have added
a component to the original mapping G in [ibid.]. Let us observe that, then, Lemma 3 in [ibid.] uses the
assumption “d 00.!/D 0”. On the other hand, the derivative of G in [ibid.] assumes “u 2D.T 0.0//”, for
otherwise the expression “G1;1.u; �;ƒ/D hT 0.0/T .�/u; T 0.0/�!Cƒi”, for instance, is meaningless. We
have therefore given some details showing clearly the smoothness of G.

We now prove a lemma which shows that the quadratic functional associated with F00� gives a good
control on #.U/ thanks to the orthogonality conditions on this function. This result is in the spirit of
Lemma 7 in [Ohta 2011].
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Lemma 4.5. There exist 0 < 
1 � 
0 and K0 > 0 such that, if 
 2 .�
1;C
1/ and if # 2X satisfies

.#; @xUc�C
 /H D .#; Œ@cUc�jcDc�C
 /H D .#;BUc�C
 /H D 0;

then hF00c�C
 .Uc�C
 /#; #iX�;X �K0k#k
2
X .

Proof. As a first step, we prove that, if # 2X satisfies # 6D 0,

.#; @xU�/H D .#; Œ@cUc�jcDc�/H D .#;BU�/H D 0;

then hF00�.U�/#; #iX�;X > 0. Indeed, assume that hF00�.U�/#; #iX�;X � 0. Let � 2 X be a negative
eigenvector of F00�. We claim that we can not have ..#; �/H ; .Œ@cUc�jcDc� ; �/H / D .0; 0/. Otherwise,
.#; �/H D0 implies that # isL2-orthogonal to �, which is the eigenvector associated with the only negative
eigenvalue ��0 of F00� seen as an unbounded operator on L2; thus hF00�.U�/#; #iX�;X � 0, and, since we
assume equality, this means that # belongs to the kernel of F00�.U�/, which is spanned by U� D @xU�,
but the condition .#; @xU�/H D 0 then implies # D 0, a contradiction. Therefore, there exists .a; b/ 2R2

such that .a; b/ 6D .0; 0/ and .aŒ@cUc�jcDc�Cb#; �/H D 0. The nonzero vector p� aŒ@cUc�jcDc�Cb#

then satisfies .p; �/H D 0 and .p; JU�/H D a.Œ@cUc�jcDc� ; JU�/H C b.#; JU�/H D 0, so that
hF00�.U�/p; piX�;X > 0. Here, we have used once again that .Œ@cUc�jcDc� ; JU�/H D 0 since the
left vector is an even function and the right vector an odd function. However, in view of the equality
hF00�.U�/Œ@cUc�jcDc� ; �iX�;X D .BU�; �/H , valid for any � 2X (which follows from differentiation of
E 0hy.Uc/D cP

0
hy.Uc/D c.BUc ; � /H at c D c�), we have

hF00�.U�/Œ@cUc�jcDc� ; #iX�;X D .BŒ@cUc�jcDc� ; #/H D 0:

As a consequence,

0 < hF00�.U�/p; piX�;X D a
2
hF00�.U�/Œ@cUc�jcDc� ; Œ@cUc�jcDc�iX�;X C b

2
hF00�.U�/#; #iX�;X

D a2.BU�; Œ@cUc�jcDc�/H C b
2
hF00�.U�/#; #iX�;X D b

2
hF00�.U�/#; #iX�;X ;

since .BU�; Œ@cUc�jcDc�/H D @cŒPhy.Uc/�jcDc� D 0 in our situation. We reach a contradiction since the
right-hand side is supposed � 0.

We now prove the lemma by contradiction, and then assume that there exist sequences .#n/n�1 2X
and .
n/n�1 2 .0; 
0/ such that 
n! 0, k#nk2X D 1 and

.#n; @xUc�C
n/H D .#n; Œ@cUc�jcDc�C
n/H D .#n;BUc�C
n/H D 0; (18)

but hF00c�C
n.Uc�C
n/#n; #niX�;X! 0. Possibly passing to a subsequence, we may assume the existence
of some # D .�; �/ 2 X such that #n � .�n; �n/ * # in X D H 1 � L2. We then show the lower
semicontinuity of hF00�.U�/#; #iX�;X . This is roughly a verification of part of assumption (A3) in [Ohta
2011], used in Lemma 7 there. By the compact Sobolev embedding, we may assume �n! � in L1loc.R/.
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A straightforward computation gives

hF00c�C
 .Uc�C
 /#; #iX�;X D

Z
R

.@x�/
2

2.r20 C �c�C
 /
�
@x�@x�c�C


.r20 C �c�C
 /
2
C

�2.@x�c�C
 /
2

4.r20 C �c�C
 /
3

C 2.r20 C �c�C
 /�
2
C 2.2uc�C
 � .c�C 
//�� �f

0.r20 C �c�C
 /�
2 dx:

Since r20 C�c�C
n remains bounded away from zero uniformly and �c�C
n! �c� in W 1;1.R/\H 1.R/

as n!C1, the weak convergence �n* � in H 1 impliesZ
R

.@x�/
2

2.r20 C �c�/
�
@x�@x�c�

.r20 C �c�/
2
C

�2.@x�c�/
2

4.r20 C �c�/
3
dx

� lim
n!C1

Z
R

.@x�n/
2

2.r20 C �c�C
n/
�
@x�n@x�c�C
n

.r20 C �c�C
n/
2
C

�2n.@x�c�C
n/
2

4.r20 C �c�C
n/
3
dx: (19)

For the remaining terms, we write, for some R > 0 to be determined later,Z
R

2.r20 C �c�C
n/�
2
n C 2.2uc�C
n � .c�C 
n//�n�n�f

0.r20 C �c�C
n/�
2
n dx

D

Z
R

2

�
.r20 C �c�C
n/

1=2�nC
.2uc�C
n � .c�C 
n//�n

2.r20 C �c�C
n/
1=2

�2
dx

C

Z
jxj�R

C

Z
jxj�R

1

2

�
�
.2uc�C
n � .c�C 
n//

2

r20 C �c�C
n
� 2f 0.r20 C �c�C
n/

�
�2n dx:

For the first integral, we may use that .�n; �n/ * .�; �/ in L2 �L2 and the fact that .�c�C
n ; uc�C
n/
converges to .��; u�/ uniformly to deduce

.r20 C �c�C
n/
1=2�nC

.2uc�C
n � .c�C 
n//�n

2.r20 C �c�C
n/
1=2

* .r20 C ��/
1=2�C

.2u�� c�/�

2.r20 C ��/
1=2

in L2I (20)

hence,Z
R

2

�
.r20 C ��/

1=2�C
.2u�� c�/�

2.r20 C ��/
1=2

�2
dx

� lim
n!C1

Z
R

2

�
.r20 C �c�C
n/

1=2�nC
.2uc�C
n � .c�C 
n//�n

2.r20 C �c�C
n/
1=2

�2
dx: (21)

Since �n! � in L1.Œ�R;CR�/ and .uc�C
n ; �c�C
n/! .u�; ��/ uniformly, it follows thatZ
jxj�R

1

2

�
�
.2u�� c�/

2

r20 C ��
� 2f 0.r20 C ��/

�
�2 dx

D lim
n!C1

Z
jxj�R

1

2

�
�
.2uc�C
n � .c�C 
n//

2

r20 C �c�C
n
� 2f 0.r20 C �c�C
n/

�
�2n dx:

For the last integral, we have to use the decay at infinity of �c�C
 and uc�C
 uniformly for j
 j small.
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This gives

�
.2uc�C
n � .c�C 
n//

2

r20 C �c�C
n
� 2f 0.r20 C �c�C
n/!

c2s � c
2
�

r20

as jxj ! C1, uniformly in n. Since 0 < c� < cs , there exist some small ı > 0 and some R > 0 large
such that, for any n and any x with jxj �R,

�
.2uc�C
n � .c�C 
n//

2

r20 C �c�C
n
� 2f 0.r20 C �c�C
n/� ı:

In particular, since �n* � in L2,

1jxj�R

�
�
.2uc�C
n�.c�C
n//

2

r20C�c�C
n
�2f 0.r20C�c�C
n/

�1=2
�n* 1jxj�R

�
�
.2u��c�/

2

r20C��
�2f 0.r20C��/

�1=2
�

in L2; thusZ
jxj�R

1

2

�
�
.2u�� c�/

2

r20 C ��
� 2f 0.r20 C ��/

�
�2 dx

� lim
n!C1

Z
jxj�R

1

2

�
�
.2uc�C
n � .c�C 
n//

2

r20 C �c�C
n
� 2f 0.r20 C �c�C
n/

�
�2n dx: (22)

Combining these three lim inequalities, we deduce

hF00�.U�/#; #iX�;X � lim
n!C1

hF00c�C
n.Uc�C
n/#n; #niX�;X D 0: (23)

Turning back to our sequence .#n; 
n/, we may pass to the limit in (18):

.#; @xU�/H D .#; Œ@cUc�jcDc�/H D .#;BU�/H D 0:

Comparing with (23), we deduce from our first claim that # D 0. This means that we must have equality in
all the above lim inequalities. In particular, the weak convergence (22) is actually strong; thus �n! � D 0

in L2.R/ (the strong convergence in fjxj �Rg being already known since �n! � in L1loc.R/). Going back
to the equality in (19) thus provides @x�n! @x� D 0 in L2.R/, since r20 C �c�C
n remains uniformly
bounded away from zero, and by weak convergence,

0D

Z
R

�2.@x�c�/
2

4.r20 C �c�/
3
dx D lim

n!C1

Z
R

@x�n@x�c�C
n

.r20 C �c�C
n/
2
dx:

Finally, the equality in (21) means that (20) is actually a strong convergence; that is, �n! � D 0 in L2

since �n! � in L2. The contradiction then follows: 1Dk#nk2X Dk�nk
2
L2
Ck@x�nk

2
L2
Ck�nk

2
L2
! 0. �

Remark 4.6. This result is also Lemma 7 in [Maeda 2012], and is said to be Lemma 7 in [Ohta 2011].
However, the hypotheses of Lemma 7 in [Ohta 2011] are not satisfied, and in particular assumption (B3)
there. It is natural to believe that this assumption is satisfied is most physical situations, but it is not clear
whether it always holds true in the general framework of [Maeda 2012] without further hypothesis.

The next lemma provides a control for ˛.U/.
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Lemma 4.7. Assume " > 0 small enough. Then, there exists K > 0 such that, for any U 2 O" satisfying
Phy.U/D Phy.U�/, we have

j˛.U/j �K
�
N
2.U/k#.U/kX Ck#.U/k

2
X

�
:

Proof. It is the same as in [Maeda 2012, Lemma 8], but we give it for completeness. We expand and use
that B2 D Id2 and the definition W.
/�Uc�C
 C �.
/BUc�C
 for the second line:

Phy.U�/D Phy.U/D Phy.U. � � Ny.U///D Phy
�
W. N
.U//C#.U/C˛.U/BUc�C N
.U/

�
D Phy.W. N
.U///CPhy.#.U//C˛

2.U/Phy.BUc�CN
.U//C˛.U/.B#.U/;BUc�CN
.U//H

C .BUc�C N
.U/; #.U//H C˛.U/.BUc�CN
.U/;BUc�CN
.U//H

C �. N
.U//.Uc�C N
.U/; #.U//H C �. N
.U//˛.U/.Uc�C N
.U/;BUc�C N
.U//H :

Since Phy.W. N
.U///D Phy.U�/, we infer

�˛.U/ŒkU�k
2
H C o.1/�D �. N
.U//.Uc�C N
.U/; #.U//H CPhy.#.U//

and the conclusion follows since �.
/D O.
2/ by Lemma 4.1. �

Now, we give a lemma useful to estimate #.U/.

Lemma 4.8. Assume " > 0 small enough. Then, there exists K > 0 such that, for any U 2 O" satisfying
Phy.U/D Phy.U�/ and F�.U/�F�.U�/ < 0, we have

k#.U/k2X �Kj N
.U/j
3:

In particular, j˛.U/j �Kj N
.U/j3.

Proof. It is the same as in [Maeda 2012, Lemma 9]. Note first that the last assertion is a direct consequence
of the first one and Lemma 4.7. Next, we argue by contradiction and assume that there exists a sequence
Un!U� in X such that F�.Un/�F�.U�/ < 0 and k#.Un/k

2
X � j N
.Un/j

3. For simplicity, we define
N
nD N
.Un/, #nD #.Un/, ˛nD ˛.Un/. Then, by Lemma 4.7, we have j˛nj �K. N
2nk#nkXCk#nk

2
X /�

K.k#nk
7=3
X Ck#nk

2
X /D O.k#nk

2
X /. Therefore, by the Taylor expansion and Lemma 4.3, we have

F�.Un/�F.U�/D F�.Un. � � Nyn//�F.U�/D F�.W. N
n/C#nC˛nBUc�CN
n/�F.U�/

D F�.W. N
n//�F.U�/ChF
0
�.W. N
n//; #nC˛nBUc�CN
niX�;X

C
1
2
hF00�.W. N
n//#n; #niX�;X C o.k#.Un/k

2
X /: (24)

However, by Lemma 4.2, Fc�.W.
//�Fc�.Uc�/DO.j
 j3/, and, since F0�.W.
//DF0�.W.0//Co.1/D

F0�.U�/ C o.1/ D o.1/, we have hF0�.W. N
n//; ˛nBUc�C N
niX�;X D o.k#nk
2
X /. Furthermore, using

F0� DF0c�C N
nC N
nB, the third orthogonality condition in Lemma 4.3 and that �.
/D O.
2/, we deduce

hF0�.W. N
n//; #niX�;X D hF
0
c�CN
n

.W. N
n//; #niX�;X C N
n.BW. N
n/; #n/H

D hF0c�CN
n.Uc�CN
n/C �. N
n/BUc�CN
n ; #niX�;X C N
n�. N
n/.Uc�CN
n ; #n/H

D O. N
2nk#nkX /CO.j N
nj
3
k#nkX /D o.k#nk

7=3
X /D o.k#nk

2
X /:
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For the last line, we have used another Taylor expansion with F0c�C N
n.Uc�C N
n/D 0. Finally, Lemma 4.5
yields hF00c�CN
n.Uc�CN
n/#n; #niX�;X �K0k#nk

2
X . Reporting these expansions in (24) yields

F�.Un/�F.U�/�
K0

4
k#nk

2
X C o.k#nk

2
X /�

K0

8
k#nk

2
X

for n sufficiently large, which contradicts our assumption. �

We now need to find an extension of the functionals “A” and “P ” used in [Maeda 2012] (and also in
[Ohta 2011]). In these works, these functionals are built on what should be here “J�1@cUcDB@�1x @cUc”,
but, unfortunately, @c�c does not have vanishing integral over R (for instance, @c�c has constant sign).
We rely instead on a construction of a suitable approximation of “J�1@cUc”. A similar construction is
used in [Lin 2002].

Lemma 4.9. For any 0 < � < 1, there exists a C2 mapping ‡� W .�
1;C
1/! X such that, for any

 2 .�
1;C
1/, ‡�.
/ 2H 2 �H 1 is an odd function verifying

kJ‡�.
/� Œ@cUc�jcDc�C
kX � �:

Proof. We fix an even function ‚0 2 C1c .R/ such that
R

R
‚0 dx D 1. For T > 0 to be fixed later, but

independent of 
 and �, we set t� � T=�2 > 0 and

‡�.
/.x/� B

Z x

0

�
Œ@cUc�jcDc�C
 .y/�

1

t�
‚0

�
y

t�

�Z
R

Œ@cUc�jcDc�C
 .z/ dz

�
dy:

It is clear that ‡�.
/ 2 C1.R/ and that, since J D @xB and B2 D Id2,

J‡�.
/� Œ@cUc�jcDc�C
 D
1

t�
‚0

�
�

t�

�Z
R

Œ@cUc�jcDc�C
 .z/ dz:

In particular,

kJ‡�.
/� @cŒUc�jcDc�C
k
2
X D

�
1

t�
k‚0k

2
L2
C
1

t3�
k@x‚0k

2
L2

��Z
R

Œ@cUc�jcDc�C
 .z/ dz

�2
� �2

if we choose T D T .c�;U�; ‚0/ > 0 sufficiently large and 
1 smaller if necessary. Moreover, ‡�.
/ is
odd since Uc and ‚0 are even. In addition, the even function

y 7! Œ@cUc�jcDc�C
 .y/�
1

t�
‚0

�
y

t�

�Z
R

Œ@cUc�jcDc�C
 .z/ dz

decays exponentially at infinity (since ‚0 has compact support and @cUc decays exponentially), and has
zero integral (since ‚0 has integral equal to one); hence

‡�.
/.x/D�B

Z C1
x

�
Œ@cUc�jcDc�C
 .y/�

1

t�
‚0

�
y

t�

�Z
R

Œ@cUc�jcDc�C
 .z/ dz

�
dy
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and decays exponentially at infinity. It follows easily from these two equalities that 
 7!‡�.
/2L
2�L2

is well-defined and continuous; hence also 
 7! ‡�.
/ 2H
2 �H 1. By the same type of arguments,

@‡�

@

.
/.x/D B

Z x

0

�
Œ@2cUc�jcDc�C
 .y/�

1

t�
‚0

�
y

t�

�Z
R

Œ@2cUc�jcDc�C
 .z/ dz

�
dy

is well-defined and is a continuous function of 
 with values in H 2 �H 1, and similarly for the second
derivative. �

We now define, in the tubular neighborhood O" of U�, the functional (corresponding to “A” in [Maeda
2012])

��.U/� .U. � � Ny.U//; ‡�. N
.U///H D .U; ‡�. N
.U//. � C Ny.U///H

depending on � 2 .0; 1/, which will be determined later. The first properties of �� are given below.

Lemma 4.10. For any 0 < � < 1, �� W O"! R is of class C1. In addition, there exists some bounded
mapping N N
 W O"!X such that, if ‰hy 2 C1.Œ0; T /; X/ is a solution to (15) that remains in O", then

d

dt
��.‰hy.t//D„�.‰hy.t//;

where „� W O"! R is defined by

„�.U/��
˝
F0c�CN
.U/.U/;

˚
J‡�. N
.U//. � C Ny.U//C .U; @
‡�. N
.U//. � C Ny.U///HN N
 .U/

	˛
X�;X

:

Proof. The fact that�� is of class C1 follows directly from the second expression and the fact that Ny and N

are C1 (in [Maeda 2012, formula (3.11)], the same remark as for the smoothness of G after Lemma 4.3
holds, since it requires “u2D.T 0.0//”). If ‰hyD .�; u/2C1.Œ0; T /; X/ is a solution to (15) that remains
in O", we therefore have, defining N
.t/D N
.‰hy.t// and Ny.t/D Ny.‰hy.t//,

d

dt
��.‰hy.t//D .@t‰hy.t/; ‡�. N
.t//. � C Ny.t///H

C .‰hy.t/; @x‡�. N
.t//. � C Ny.t///H h Ny
0.‰hy.t//; @t‰hy.t/iX�;X

C .‰hy.t/; @
‡�. N
.t//. � C Ny.t///H h N

0.‰hy.t//; @t‰hy.t/iX�;X : (25)

We now observe that the invariance of �� by translation provides by differentiation the equality, for
U 2 O",

0D
d

dy
��.U. � �y//jyD0 D .U; @x‡�. N
.U//. � C Ny.U///H

D .BU; J‡�. N
.U//. � C Ny.U///H D hP
0
hy.U/; J‡�. N
.U//. � C Ny.U//iX�;X : (26)
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In particular, the second term in (25) vanishes. In addition, since ‰hy D .�; u/ 2 C1.Œ0; T /; X/ is a
solution to (15) that remains in O", we have, denoting by ıEhy=ı‰ the variational derivative,�
@t‰hy.t/; ‡�. N
.t//. � C Ny.t//

�
H

D

�
J
ıEhy

ı‰hy
.‰hy.t//; ‡�. N
.t//. � C Ny.t//

�
H

D�

�
ıEhy

ı‰hy
.‰hy.t//; J‡�. N
.t//. � C Ny.t//

�
H

D�
˝
E 0hy.‰hy.t//; J‡�. N
.t//. � C Ny.t//

˛
X�;X

D�hF0
c�CN
.t/

.‰hy.t//; J‡�. N
.t//. �C Ny.t//iX�;X�.c�CN
.t//
˝
P 0hy.‰hy.t//; J‡�. N
.t//. �C Ny.t//

˛
X�;X

D�hF0c�C N
.t/.‰hy.t//; J‡�. N
.t//. � C Ny.t//iX�;X ;

by (26). In addition, since ıPhy=ı‰hy D B‰hy and JBD @x ,

h N
 0.‰hy.t//; @t‰hy.t/iX�;X

D

�
N
 0.‰hy.t//; J

ıEhy

ı‰hy
.‰hy.t//

�
X�;X

D

�
N
 0.‰hy.t//; J

ıFc�CN
.U/

ı‰hy
.‰hy.t//

�
X�;X

C .c�C N
.U//h N

0.‰hy.t//; @x‰hy.t/iX�;X :

The second term vanishes since N
 is invariant by translation (by definition; see the proof of Lemma 4.3).
As a consequence,

h N
 0.‰hy.t//; @t‰hy.t/iX�;X

D

�
J
ıFc�CN
.t/

ı‰hy
.‰hy.t//; I

�1
N
 0.‰hy.t//

�
X

D�

�
ıFc�CN
.t/

ı‰hy
.‰hy.t//; J I�1 N
 0.‰hy.t//

�
X

D�

�
ıFc�CN
.t/

ı‰hy
.‰hy.t//; J I�1 N
 0.‰hy.t//

�
H

�

�
@x
ıFc�CN
.t/

ı�
.‰hy.t//; @xJ I�1

H1

@ N


@�
.‰hy.t//

�
L2
:

The first term is simply �hF0
c�CN
.U/

.‰hy.t//; J I�1 N
 0.‰hy.t//iX�;X . We then define N N
 W O"! X by
N N
 .U/ � J I�1 N
 0.U/� .@2xJ I�1

H1.ı N
=ı�/.U/; 0/ 2 X D H
1 �L2 (see the regularity shown for N
 0 in

Lemma 4.3), so that integration by parts yields

h N
 0.‰hy.t//; @t‰hy.t/iX�;X D�hF
0
c�C N
.U/

.‰hy.t//;N N
 .‰hy.t//iX�;X :

Inserting these relations into (25) then gives

d

dt
��.‰hy.t//

D�
˝
F0c�C N
.t/.‰hy.t//;

˚
J‡�. N
.t//. � C Ny.t//C .‰hy.t/; @
‡�. N
.t//. � C Ny.t///HN N
 .‰hy.t//

	˛
X�;X

;

which is the desired equality.
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If‰hy 2C0.Œ0; T /; X/ is just a continuous in time solution to (15) that remains in O", then the integrated
relation

��.‰hy.t//D��.‰
in
hy/C

Z t

0

„�.‰hy.�// d�

holds, as can be seen by using the continuity of the flow and the approximation of such a solution by
smoother ones (see [Gallo 2004]). �

We now compute the asymptotics of „�.W.
// for 
 ! 0 and small �.

Lemma 4.11. We have

„�.W.
//D�

2 RP�

2
C o.
;�/!.0;0/.


2/:

Proof. The proof follows the one of Lemma 5 in [Maeda 2012]. As a first step, notice that N
.W.
//D 
 ,
Ny.W.
// D 0, as can be seen from the equality G.W.
/; 0; 0; 0/ D 0 and the local uniqueness of the
solution to G D 0. Therefore, since F0c�C
 .Uc�C
 /D 0 and �.
/��
2 RP�=.2kU�k2H /,

F0c�C N
.W.
//.W.
//D F0c�C
 .Uc�C
 C �.
/BUc�C
 /D �.
/F
00
c�C


.Uc�C
 /ŒBUc�C
 �C o
!0.

2/

D�

2 RP�

2kU�k
2
H

F00�.U�/ŒBU��C o
!0.

2/:

In addition, since Uc is even and ‡�.
/ is odd, we deduce�
W.
/. � C Ny.W.
///; @
‡�.
/

�
H
D
�
Uc�C
 C �.
/BUc�C
 ; @
‡�.
/

�
H
D 0:

Consequently,

„�.W.
//D

2 RP�

2kU�k
2
H

hF00�.U�/ŒBU��; J‡�.
/iX�;X C o
!0.

2/;

where “o
!0.
2/” does not depend on �. Moreover, by Lemma 4.9, kJ‡�.
/� Œ@cUc�jcDc�C
kX � �

independently of 
 2 .�
1;C
1/; hence

„�.W.
//D

2 RP�

2kU�k
2
H

hF00�.U�/ŒBU��; Œ@cUc�jcDc�C
 iX�;X C o.
;�/!.0;0/.

2/

D

2 RP�

2kU�k
2
H

hF00�.U�/ŒBU��; Œ@cUc�jcDc�iX�;X C o.
;�/!.0;0/.

2/:

Finally, using once again the equality (for � 2X ) hF00�.U�/Œ@cUc�jcDc� ; �iX�;X D .BU�; �/H and that
F00� is self-adjoint, we infer

hF00�.U�/ŒBU��; Œ@cUc�jcDc�iX�;X D hF
00
�.U�/.Œ@cUc�jcDc�/;BU�iX�;X D kBU�k

2
H D kU�k

2
H ;

and reporting this into the previous expression gives the result. �

We now compute the asymptotics of „� for more general functions.
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Lemma 4.12. Let ">0 be small enough. If U2O" satisfies Phy.U/DPhy.U�/ and F�.U/�F�.U�/<0,
then, we have

„�.U/D�
N
2.U/ RP�

2
C o. N
2.U//

uniformly for 0 < � � j N
.U/j3.

Proof. First, we may apply Lemma 4.8 and infer that k#.U/k2XCj˛.U/jDO.j N
3.U/j/. We write„�.U/D
„�.U. � � Ny.U///D„�.W. N
.U//C#.U/C˛.U/BUc�CN
.U//D„�.W. N
.U//C#.U//CO.j N
.U/j3/

and, recalling the expression

„�.U/D�
˝
F0c�CN
.U/.U/;

˚
J‡�. N
.U//. � C Ny.U//C .U; @
‡�. N
.U//. � C Ny.U///HN N
 .U/

	˛
X�;X

;

we wish to make a Taylor expansion. First, note that

F0c�C N
.U/.U/D F0c�C N
.U/.W. N
.U///CF00c�CN
.U/.W. N
.U///Œ#.U/�CO.j N
.U/j3/

D F0c�C N
.U/.W. N
.U///CF00c�CN
.U/.Uc�C N
.U//Œ#.U/�CO.j N
.U/j3/I

hence, since F0c�CN
 .Uc�C N
 /D 0 and (Lemma 4.1) �.
/D O.
2/, we have W. N
/DUc�C N
CO.
2/; thus

„�.U/�„�.W. N
.U///D O.j N
.U/j3/�
D
F00c�CN
.U/.Uc�CN
.U//Œ#.U/�;˚

J‡�. N
.U//. � C Ny.U//C .U; @
‡�. N
.U//. � C Ny.U///HN N
 .U/
	E
X�;X

:

Now, in the bracket term, we may replace U by W. N
.U//CO.k#.U/kX / (since k#.U/k2X D O.j N
.U/j3/).
By the computations of Lemma 4.11 and the equalities N
.W.
//D 
 , Ny.W.
//D 0, this gives

„�.U/�„�.W. N
.U///D O.j N
.U/j3/�
˝
F00c�CN
.U/.Uc�C N
.U//Œ#.U/�; J‡�. N
.U//

˛
X�;X

D O.j N
.U/j3/�
˝
F00c�CN
.U/.Uc�CN
.U//Œ#.U/�; f@cUcgjcDc�C N
.U/

˛
X�;X

CO.�/

D O.j N
.U/j3/�
˝
F00c�CN
.U/.Uc�CN
.U//Œf@cUcgjcDc�CN
.U/�; #.U/

˛
X�;X

CO.�/

using Lemma 4.9 and the self-adjointness of F00
c�CN
.U/

. Choosing 0 < � � j N
.U/j3 and from the equality
(for � 2X ) hF00c.Uc/Œ@cUc�; �iX�;X D .BUc ; �/H , we infer

„�.U/�„�.W. N
.U///D O.j N
.U/j3/� .BUc�C N
.U/; #.U//H D O.j N
.U/j3/;

by the orthogonality condition in Lemma 4.5. Inserting the expansion of „�.W.
// given in Lemma 4.11
yields the conclusion. �

Proof of Theorem 16. We have to show that there exists " > 0 such that, for any ı > 0, we can choose
an initial datum at distance � ı from U� but that escapes from O". Since W.
/! U� in X , we shall
take the initial datum to be W.
/ for some small 
 , and denote by ‰hy.t/ the corresponding solution. In
view of Lemma 4.2, we have F�.W.
//�F�.U�/��


3 RP�=6; hence we can choose 
 with the sign of
RP� 6D 0 so that

F�.W.
//�F�.U�/��j
 j
3
j RP�j=6 < 0:
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We now assume that ‰hy.t/ is globally defined and remains in O", where " is as in Lemma 4.8. By conser-
vation of energy and momentum and the construction of W.
/, we deduce Phy.‰hy.t//D Phy.W.
//D

Phy.U�/, and F�.‰hy.t//�F�.U�/ D F�.W.
//�F�.U�/ < 0. The first step is to have a control
on N
.t/� N
.‰hy.t//. We define ˛.t/D ˛.‰hy.t//, Ny.t/D Ny.‰hy.t// and #.t/D #.‰hy.t//. Applying
Lemma 4.8, we obtain k#.t/k2X Cj˛.t/j D O.j N
3.t/j/. In addition, Lemma 4.2 and a Taylor expansion
give

F�.‰hy.t//�F�.U�/

D F�.W. N
.t//C#.t/C˛.t/BUc�CN
.t//�F�.U�/

D F�.W. N
.t///�F�.U�/ChF
0
�.W. N
.t///; #.t/iX�;XC

1
2
hF00�.W. N
.t///#.t/; #.t/iX�;XCo.j N


3.t/j/

D�
N
3.t/ RP�

6
ChF0�.W. N
.t///; #.t/iX�;XC

1
2
hF00�.W. N
.t///#.t/; #.t/iX�;XCo.j N


3.t/j/;

where we have used that F0�.W. N
.t//D o.1/ (for the terms involving ˛.t/) and Lemma 4.2. Furthermore,
by the orthogonality relations in Lemma 4.3 and using that �.
/D O.
2/ and F0c.Uc/D 0, we have

hF0�.W. N
.t///; #.t/iX�;X D hF
0
c�CN
.t/

.W. N
.t///; #.t/iX�;X C N
.t/.BW. N
.t///; #.t//H

D hF0c�CN
.t/.Uc�C N
.t/C �. N
.t///BUc�C N
.t/; #.t/iX�;X D O.j N
7=2.t/j/:

In addition, by Lemma 4.5, the second-to-last term is�K0k#.t/k2X=2. As a consequence, by conservation
of F�.‰hy.t//, we infer, for small 
 ,

0 > �j
 j3j RP�j=3 > F�.W.
//�F�.U�/D F�.‰hy.t//�F�.U�/� �
N
3.t/ RP�

6
C o.j N
3.t/j/;

In particular, this forces N
.t/ to always be of the sign of RP� and to satisfy j N
.t/j � j
 j=2 (provided "
and 
 are small enough).

Since, now, we have a good upper bound for j N
.t/j, we can choose � D �.
/� 
3=8, which is such
that, for any t � 0, � � j N
.t/j3. In particular, we can apply Lemma 4.12 and get

„�.‰hy.t//D�
N
.t/2 RP�

2
C o. N
.t/2/:

With this choice � D �.
/, we deduce from Lemma 4.10 that

d

dt
��.
/.‰hy.t//D„�.‰hy.t//D�

N
.t/2 RP�

2
C o. N
.t/2/:

Since j N
.t/j � j
 j=2, it follows that, when RP� < 0 (the case RP� > 0 is analogous),

d

dt
��.
/.‰hy.t//� �


2 RP�

8
> 0I

hence ��.
/.‰hy.t// is unbounded as t goes to C1. However, by definition of �� , we have by the
Cauchy–Schwarz inequality j��.
/.U/j � kUkHk‡�.
/kH � C.
/ for U 2 O". We have reached a
contradiction. The proof of Theorem 16 is complete. �
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5. The linear instability (0 < c� < cs)

5A. Proof of Theorem 13. Existence of at least one unstable eigenvalue. The proof of the existence
of at least one unstable eigenvalue relies on the Evans function technique, as in [Zumbrun 2008; Benzoni-
Gavage 2010b]. We shall actually use Theorem 1 in [Benzoni-Gavage 2010b] when observing (see, e.g.,
[Benzoni-Gavage 2010a]) that the Euler–Korteweg system�

@t�C 2@x.�u/D 0;

@tuC 2u@xu� @x.f .�//� @x
�
K.�/@2x�C

1
2
K 0.�/.@x�/

2
�
D 0;

(EK)

where K W .0;C1/! .0;C1/ is the (smooth enough) capillarity, reduces to (2) (where, we recall,
‰ D Aei� , �D A2 and uD @x�); namely,(

@t�C 2@x.�u/D 0;

@tuC 2u@xu� @x.f .�//� @x

�
@2x.
p
�/

p
�

�
D 0;

for the capillarity K.%/ D 1=.2%/, as can be shown by straightforward computations. The associated
eigenvalue problem in the moving frame is8̂̂̂̂

<̂
ˆ̂̂:
�� � c�@x�C 2@x..r

2
0 C ��/�C �u�/D 0;

�� � c�@x�C 2@x.u��/� @x.f
0.r20 C ��/�/

� @x

�
1

2
p
r20 C ��

@2x

�
�

p
r20 C ��

�
�
�@2x

�p
r20 C ��

�
2.r20 C ��/

3=2

�
D 0:

(27)

The link with the original eigenvalue problem (6) is done through the formula

w D U�

�
�

2
C i

Z x

�1

�

�
; (28)

since this corresponds to

‰ D Uc� C D Uc� C e�tw.x/D .Ac� C e�t�.x// exp
�
i�c� C ie

�t

Z x

�1

�

�
:

Notice indeed that the second equation in (27) gives
R

R
� dx D 0. It then follows from Theorem 1 in

[Benzoni-Gavage 2010b] that, under the assumption .dP.Uc/=dc/jcDc� > 0, there exists at least one
unstable eigenvalue 
0 2 .0;C1/.

Existence of at most one unstable eigenvalue. The fact that there exists at most one unstable eigenvalue
follows from arguments as in [Benzoni-Gavage et al. 2005, Appendix B] and is a direct consequence of
Theorem 3.1 in [Pego and Weinstein 1992], that we recall now.

Theorem 25 [Pego and Weinstein 1992]. Let J and L be two operators on a real Hilbert space X , with L

self-adjoint and J skew-symmetric. Then, the number of eigenvalues, counting algebraic multiplicities, of
ŒJL�C in the right half-plane fRe> 0g is less than or equal to the number of negative eigenvalues of L,
counting multiplicities.
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In order to apply this result to our problem, let us write the eigenvalue problem (27) under the form

�

�
�

�

�
D�@x

�
0 1

1 0

�
L

�
�

�

�
;

where M is the self-adjoint Sturm–Liouville operator

M��f 0.r20 C ��/�
1

2
p
r20 C ��

@2x

�
�

p
r20 C ��

�
C
@2x
�p
r20 C ��

�
2.r20 C ��/

3=2

(which is bounded from below) on H� L2 �L2 and with

L�

�
M 2u�� c�

2u�� c� 2.r
2
0 C ��/

�
:

We are in the setting of Theorem 25 with JD�@x
�
0
1
1
0

�
skew-symmetric and L self-adjoint. We thus

show that L has at most one negative eigenvalue. Since r20 C �� remains bounded away from zero, it is
clear that, for � < 0 and .�; �/ given, L.�; �/t D �.�; �/t if and only if

M�� �
.c�� 2u�/

2

2.r20 C ��/
�

�

2.r20 C ��/� �
� D ��; with M�

�M�
.c�� 2u�/

2

2.r20 C ��/
; (29)

since we may express � in terms of � with the second equation. We observe that the translation
invariance shows that @x.��; u�/t belongs to the kernel of L; that is, using once again the relation
2uc D 2@x�c D c�c=.�c C r

2
0 /, M�@x�� D 0. Furthermore, M� has the same continuous spectrum as its

constant coefficient limit as x!˙1, namely

�
1

2r20
@2xC

c2s � c
2
�

2r20
I

that is, �ess.M
�/D Œc2s � c

2
�;C1/ � .0;C1/, since 0 < c� < cs . Since @x�� has exactly one zero (at

x D 0), it follows from standard Sturm–Liouville theory that M� has precisely one negative eigenvalue
� < 0 and that the second eigenvalue is 0. Taking the scalar product with (29) yields

hM��; �iL2 �

Z
R

�.c�� 2u�/
2�2

2.r20 C ��/Œ2.r
2
0 C ��/� ��

dx D �k�k2
L2
:

Now, for s � 0, we consider the self-adjoint operator

M�
s �M�

�
.c�� 2u�/

2

2.r20 C ��/
�

s

2.r20 C ��/� s
:

Clearly, M
�
sD0 D M�, �ess.M

�
s / � Œc

2
s � c

2
�;C1/ � .0;C1/, and R� 3 s 7! M

�
s is decreasing. Let us

assume now that the self-adjoint operator L has at least two negative eigenvalues. Then, we denote
by �1 < �2 < 0 the two smallest eigenvalues of L (necessarily simple), and �1, �2 two associated
eigenvectors. Since L is self-adjoint, h�1; �2iL2 D 0. Furthermore, hM�

sD�1�1; �1iL2 D �1k�2k
2
L2
< 0;

hence, by monotonicity, hM�
s�2; �2iL2 < 0 for any �1 � s � 0. Therefore, M

�
s has at least one negative

eigenvalue for �1� s�0. We denote by �min.s/ the smallest eigenvalue of M
�
s . Then, �min.sD0/D�<0
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and �min decreases in Œ�1; 0�. Moreover, we may choose a positive eigenvector �s for the eigenvalue �1.s/,
with �1 D ��1 . Since �.M�/\RC D f�; 0g, it follows from the monotonicity that, for any �1 � s < 0,
we have �.M�

s /\R� D f�min.s/g. When s D �2 2 .�1; 0/, we then have �2 2 �.M
�
sD�2/\R�, and thus

�2 D �min.�2/, which implies that we may choose �2 > 0 without loss of generality. Similarly, if s D �2,
we see that we may choose �2 > 0. We obtain a contradiction since then h�1; �2iL2 > 0 and thus �1 and �2
cannot be orthogonal in L2. We have thus shown that L has at most one negative eigenvalue, and then
Theorem 25 shows that JL has at most one eigenvalue in fRe> 0g, as wished.

5B. Resolvent and semigroup estimates (proof of Corollary 15). In this section, we drop the “�” for
the traveling wave we are considering. When linearizing the NLS equation in the moving frame with
speed c, we obtain

i
@ 

@t
� ic@x C @

2
x C f .jU j

2/C 2h ;U if 0.jU j2/U D 0; (30)

or

@

@t

�
 1
 2

�
D

�
c@x � 2f

0.jU j2/U1U2 �@2x �f .jU j
2/� 2f 0.jU j2/U 22

@2xCf .jU j
2/C 2f 0.jU j2/U 21 c@xC 2f

0.jU j2/U1U2

��
 1
 2

�
D

�
0 1

�1 0

��
�@2x �f .jU j

2/� 2f 0.jU j2/U 21 �c@x � 2f
0.jU j2/U1U2

c@x � 2f
0.jU j2/U1U2 �@2x �f .jU j

2/� 2f 0.jU j2/U 22

��
 1
 2

�
:

We wish to show that this linear equation can be solved using a continuous semigroup. In order to
handle later the nonlinear terms, we work in H 1.R;C2/ instead of L2.R;C2/. Therefore, we consider
the unbounded operator A WD.A/DH 3.R;C2/�H 1.R;C2/!H 1.R;C2/ on H 1.R;C2/ defined by

A�

�
c@x � 2f

0.jU j2/U1U2 �@2x �f .jU j
2/� 2f 0.jU j2/U 22

@2xCf .jU j
2/C 2f 0.jU j2/U 21 c@xC 2f

0.jU j2/U1U2

�
:

It follows easily that, for  D
�
 1
 2

�
2H 1.R;C2/,

Re.hA j iH1.R;C2//

D Re
�
h�2f 0.jU j2/U1U2 1;  1iH1.R;C/Ch�2f

0.jU j2/U1U2 2;  2iH1.R;C/

ChŒf .jU j2/C 2f 0.jU j2/U 21 � 1;  2iH1.R;C/� hŒf .jU j
2/C 2f 0.jU j2/U 21 � 2;  1iH1.R;C/

�
�Kk k2

H1.R;C2/
:

Moreover, the spectrum of A is included in the half-space fRe� �0g; hence A generates a continuous
semigroup etA on H 1.R;C2/.

In order to estimate the growth of the semigroup etA on H 1.R;C2/, we could try to use the same
approach as [Di Menza and Gallo 2007], which relies on the proof of the spectral mapping theorem in
[Gesztesy et al. 2000]. However, our situation is slightly different since, in these studies, the reference
solution is real-valued (it is a bound state in [Gesztesy et al. 2000] and the kink in [Di Menza and Gallo
2007]). Therefore, U2 D 0 and A has no diagonal term, and the system is much more decoupled than in
our situation. As a matter of fact, it is not very clear whether the arguments of [Gesztesy et al. 2000]
carry over to our problem. We thus have chosen to use the general approach given in Appendix B. We
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thus verify the assumptions of Theorem B.5 (see also Corollary B.6) there, which are easy: A generates
a semigroup in H 1.R;C2/ and the spectrum of A is of the form iR [ f�
0;C
0g, where iR is the
essential spectrum and ˙
0 two simple eigenvalues. Moreover, the eigenvector associated with 
0
belongs to H 3.R;C2/DD.J /. Therefore, Theorem B.5 in Appendix B applies and the growth estimate
for the linearized problem follows. For the nonlinear instability result, we argue as for Corollary B.6 in
Appendix B, since the manifold MD fjU�j. � � y/; y 2 Rg is transverse to the curve � 7! jU�C �wj
in r0 CH 1.R/. Indeed, it follows from (28) that jU� C �wj D A� C �� C OH1.�2/. Assume that
� D ˛@xjU�j, with ˛ 2 R. Then, integration of the first equation of (27) provides

�.jU�j � r0/� c�@xjU�jC 2..r
2
0 C ��/�Cu��/D 0I

hence, using that jU�j D
p
r20 C �� and the equality 2u� D c��=.r20 C ��/, we infer

�C˛

�
�
jU�j � r0

r20 C ��
C

c�r
2
0

4.r20 C ��/
3=2
@x��

�
D 0:

Since
R

R
� D 0 and jU�j � r0 has constant sign in R, integrating over R then implies ˛ D 0, which

in turn yields � D � D 0 and w� D 0, a contradiction. Consequently, � 62 R@xjU�j and the manifold
MD fjU�j. � �y/; y 2 Rg is indeed transverse to the curve � 7! jU�C �wj in r0CH 1.R/.

6. Stability analysis for the kink .c D 0/

6A. Proof of Lemma 20. Let us recall that the momentum P.Uc/, for c > 0, has the expression

P.Uc/D c

Z 0

�c

�2

r20 C �

d�p
�Vc.�/

;

since sgn.�c/D�1. Therefore, we decompose P.Uc/ with two integrals:

P.Uc/D c

Z 0

�c

�2

r20 C �

d�p
�V0c.�c/.� � �c/

Cc

Z 0

�c

�2

r20 C �

�
1p
�Vc.�/

�
1p

�V0c.�c/.� � �c/

�
d�: (31)

Using the change of variables � D t�c , the second integral in (31) is equal to

�3c

Z 0

1

t2

r20 C t�c

�
1p

�Vc.t�c/
�

1p
��cV0c.�c/.t � 1/

�
dt

D .�r20 /
3

Z 0

1

t2

r20 � t r
2
0

�
1q

�V0.�t r
2
0 /

�
1q

�4r20F.0/.t � 1/

�
dt C oc!0.1/

D

Z 0

�r20

�2

r20 C �

�
1p
�V0.�/

�
1q

4F.0/.�C r20 /

�
d�C oc!0.1/:

The passage to the limit c! 0 being justified by the dominated convergence theorem since the absolute
value of the integrand is � Kt for 0 � t � 1=2 for small c and for 1=2 � t � 1, since �c > �r20 ,
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r20 C t�c � r
2
0 .1� t / and hence is equal to

D

ˇ̌̌̌
ˇ t2

r20 C t�c
�

Vc.t�c/� �cV0c.�c/.t � 1/p
�Vc.t�c/

p
��cV0c.�c/.t � 1/

�p
�Vc.t�c/C

p
��cV0c.�c/.t � 1/

� ˇ̌̌̌ˇ
�K

.1� t /2

.1� t /
p
1� t
p
1� t
p
1� t

D
K
p
1� t

2 L1..1=2; 1//:

Furthermore, letting � D �c C .r20 C �c/t
2, t � 0, the first integral in (31) is equal to

1
p
r20 C �c

Z q
��c=.r

2
0C�c/

0

.�c C .r
2
0 C �c/t

2/2

1C t2
�

2 dtp
�V0c.�c/

D
2

p
r20 C �c

p
�V0c.�c/

�
r40

�
�

2
� arctan

s
r20 C �c

��c

�
� 2r20 .r

2
0 C �c/

s
��c

r20 C �c

C .r20 C �c/
2

�s
��c

r20 C �c
C
1

3

s
��c

r20 C �c

3��
;

by direct computation. Since �c '�r20 is a simple zero of Vc.�/D c
2�2�4.r20 C �/F.r

2
0 C �/, we have

�c D�r
2
0 C

c2r40
4F.0/

C
c4r60
4F.0/

�
r20f .0/

F.0/
� 2

�
C oc!0.c

4/D�r20 C
c2r40
4F.0/

COc!0.c
4/I

thus

�V0c.�c/D 4F.0/COc!0.c
2/ and

2
p
r20 C �c

p
�V0c.�c/

D
2

r20 c
COc!0.c/:

As a consequence, the first integral in (31) is equal to

r20�

c
C

�
�

r30p
F.0/

�
2r30p
F.0/

C
r30

3
p
F.0/

�
COc!0.c/D

r20�

c
�

8r30

3
p
F.0/

COc!0.c/:

Gathering these two relations, we obtain

P.Uc/D r
2
0� C c

�
�

8r30

3
p
F.0/

C

Z 0

�r20

�2

r20 C �

�
1p
�V0.�/

�
1

p
4F.0/.�C r20 /

�
d�

�
C oc!0.c/;

as wished.

6B. Proof of Theorem 23. Since we have a kink solution U0 for c D 0, this implies that V0.�/ D

�4.r20 C�/F.r
2
0 C�/ is negative in .�r20 ; 0/ and that �r20 is a simple zero of V0; that is, F.0/ > 0. Then,

F > 0 in Œ0; r20 / and
F.%/' .c2s=.4r

2
0 //.%� r

2
0 /
2

for %! r20 , and it follows that there exists K0 > 0 such that

F.%/�
1

K0
.%� r20 /

2:
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We consider for �� 0 the quantity

Kmin.�/� inf
˚
K.u/; u 2 Z; infR juj D �

	
:

The study of Kmin.0/ is easy.

Proposition 6.1. We have
Kmin.0/DE.U0/:

More precisely, for any U 2 Z,

E.U /� 4

Z r0

infR jU j

p
F.s2/ ds and E.U0/D 4

Z r0

0

p
F.s2/ ds:

Finally, if U 2 Z, infR jU j D 0 and K.U / D E.U0/, then there exist y 2 R and � 2 R such that
U D ei�U0. � �y/.

Proof. Taking U0 as a comparison map, we see that Kmin.0/ � E.U0/. Moreover, if U 2 Z and
infR jU j D �� 0, we may assume, up to a translation, that �D jU j.0/. Then, defining

G.r/� 2

Z r

r0

p
F.s2/ ds;

we have the inequalitiesZ C1
0

j@xU j
2
CF.jU j2/ dx �

Z C1
0

j@xjU jj
2
CF.jU j2/ dx � 2

Z C1
0

ˇ̌p
F.jU j2/@xjU j

ˇ̌
dx

D

Z C1
0

j@xŒG.jU j/�j dx �

ˇ̌̌̌Z C1
0

@xŒG.jU j/� dx

ˇ̌̌̌
D
ˇ̌
G.jU j.C1//�G.jU j.0//

ˇ̌
D jG.r0/�G.�/j D 2

Z r0

�

p
F.s2/ ds:

Arguing similarly in .�1; 0/, we get

E.U /� 4

Z r0

�

p
F.s2/ ds:

For the kink U0, which is real-valued, we have the first integral j@xU0j2 D F.U 20 /; hence, using the
change of variables s D U0.x/,

E.U0/D 4

Z C1
0

F.U 20 / dx D 4

Z r0

0

p
F.s2/ ds:

If �D 0, we have then E.U /�E.U0/; hence K.U /�E.U /�E.U0/ as wished.
Assume finally that U 2Z satisfies infR jU j D 0 and K.U /DE.U0/. Then �D 0 and all the above in-

equalities are equalities. In particular, we must have j@xU jDj@xjU jj and equality in j@xjU jj2CF.jU j2/�
2j
p
F.jU j2/@xjU jj, which means that j@xjU jj D

p
F.jU j2/. Combining this ODE with the condi-

tion jU j.0/ D 0, we see that jU j D jU0j, since jU0j solves @xU0 D
p
F.U 20 /. Finally, the fact that
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j@xU j D j@xjU jj implies that the phase is constant in .�1; 0/ and in .0;C1/: there exist two constants
�˙ 2R satisfying U.x/D ei�˙ jU0j.x/ for˙x� 0. Therefore, P.U /D r20 .�C���/ mod 2�r20 , and then

E.U0/D K.u/DE.U0/C 2Mr40 sin2
�C� ����

2

implies �C� �� D � mod 2� ; that is, U D ei�CU0 in R, which is the desired result. �

We recall the expansion P.Us/ D r20� C s
PP0 C o.s/ as s ! 0, where PP0 � .dP.Us/=ds/jsD0.

From the Hamilton group relation dE.Us/=ds D sdP.Us/=ds, we also infer by integration E.Us/ D
E.U0/C

1
2
s2 PP0Co.s

2/. As a first step, we define the small parameter �� > 0. The key point is to prove
the following result.

Proposition 6.2. There exist some constant K > 0 and a small �� > 0 such that, for any 0 < �� ��,

Kmin.�/D inf
˚
K.U /; U 2 Z; infR juj D �

	
�E.U0/C

�2

K
:

Proof. Notice first that, for c > 0 small, there exists Uc traveling wave of speed c, and that infR jUcj Dp
r20 C �c with �c a smooth function in c such that �c D�r20Cc

2r40=.4F.0//CO.c4/; hence infR jUcj D

cr20=.2
p
F.0//CO.c2/ and is smooth. Therefore, there exists, for 0� �� �� small, a unique ��, with

�� D 2�
p
F.0/=r20 CO.�2/, such that �D infR jU�� j. In particular, taking U�� as a comparison map

in Kmin.�/, we have

Kmin.�/� K.U��/DE.U��/C 2Mr40 sin2
P.U��/� r

2
0�

2r20

DE.U0/C
�2�

2
PP0C o.�

2
�/C 2Mr40 sin2

�� PP0C o.��/

2r20

DE.U0/C
�2�

2
. PP0CM PP

2
0 /C o.�

2
�/:

In particular, it follows that, for some positive constant K and for �� small enough,

Kmin.�/�E.U0/CK�
2
�
11
10
E.U0/: (32)

Consider now c small, a bounded open interval .x�; xC/ and � a solution to the Newton equation

2@2x�CV0c.�/D 0

in .x�; xC/, with @x�.xC/� 0� @x�.x�/, �.xC/� �r20 C�
2
� and �.x�/� �r20 C�

2
�. As c! 0, Vc

converges to V0 in C1.Œ�r20 ; 0�/. Moreover, V0 is negative in .�r20 ; 0/ and has a simple zero at �r20 .
Therefore, if c and �� > 0 are sufficiently small, we must have

R xC
x�
F.r20 C �/ dx �

1
2

R
R
F.U 20 / dx.

Consequently, if v D Aei' solves (TWc) on a bounded interval .x�; xC/, satisfies 2@x' D c�=.r20 C �/
(�� A2� r20 ) and if jvj is � �� at xC and at x�, with @xjvj.xC/� 0� @xjvj.x�/, thenZ xC

x�

j@xvj
2
CF.jvj2/ dx � 1

2
E.U0/: (33)
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Here, we use that the Newton equation on the modulus jV j actually holds true in .x�; xC/. Since F >0 in
Œ0; r20 / and F.%/' r20 .%�r

2
0 /
2 when %! r20 , there exist K >0 and � > 0 such that F.%/� .%�r20 /

2=K

for 0� %� r20 .1C �/
2. Hence, if infR jvj � � > 0, then

jP.v/j �
K

�
E.v/: (34)

Moreover, arguing as in the proof of Proposition 6.1, we show that there exists ~ > 0 such that, if U 2 Z

and jU j takes values � �� and � r0.1C �/, then

E.U /�E.U0/.1C ~/:

In particular, since Kmin.�/ � E.U0/CO.�2/, we may choose �� sufficiently small so that, if U 2 Z

and K.U /�Kmin.�/C��, then jU j � r0.1C �/. This means that, for the mappings we are considering,
F.%/� .%� r20 /

2=K.

Step 1: Construction of a suitable minimizing sequence. There exists a sequence .Vn/n�0 in Z such
that infR jVnj D �D jVnj.0/, Vn D Anei�n , P.Vn/ 2 Œ0; �r20 �,

2A2n@x�n D cn.A
2
n� r

2
0 /; cn �Mr20 sin

r20� �P.Vn/

2r20
� 0 and lim

n!C1
K.Vn/D Kmin.�/:

Since � > 0, the maps V we consider may be lifted to V D Aei� . Therefore (with uD @x�),

Kmin.�/D inf
�Z

R

.@xA/
2
CF.A2/ dxC inf

�Z
R

A2u2 dxC 2Mr40 sin2
R

R
.A2� r20 /u dx� r

2
0�

2r20
;

u 2 L2.R;R/

�
; A 2 r0CH

1.R;R/; infRAD �

�
: (35)

The infimum in u may be written

inf
p2R

inf
�Z

R

A2u2 dxC 2Mr40 sin2
p� r20�

2r20
; u 2 L2.R;R/ s.t.

Z
R

.A2� r20 /u dx D p

�
:

For each p 2 R, we minimize in u a quadratic functional on an affine hyperplane, with minimizer given
by

up D p

�Z
R

.A2� r20 /
2

A2
dx

��1A2� r20
A2

:

As a consequence, the infimum in u in (35) is

inf
p2R

�Z
R

A2u2p dxC2Mr40v sin2
p�r20�

2r20

�
D inf
p2R

�
p2
�Z

R

.A2�r20 /
2

A2
dx

��1
C2Mr40 sin2

p��r20

2r20

�
:

It is clear that this last infimum is achieved only for p inside Œ��r20 ;C�r
2
0 �. Indeed, the second

term is 2�r20 -periodic, and, if p > �r20 , then p � 2�r20 is a better competitor. Moreover, the function
p 7! sin2..p��r20 /=.2r

2
0 // is continuous and even; hence we may consider some p 2 Œ0; �r20 � (depending
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on A), which is a minimizer for this last infimum. The corresponding up is then a minimizer for the
infimum in u in (35). Writing that

d

dp

�
p2
�Z

R

.A2� r20 /
2

A2
dx

��1
C 2Mr40 sin2

p��r20

2r20

�
D 2p

�Z
R

.A2� r20 /
2

A2
dx

��1
C 2Mr20 sin

p��r20

2r20
D 0;

we deduce the relations

2A2uD c.A2� r20 /; c �Mr20 sin
p��r20

2r20
:

We conclude by considering a minimizing sequence .An/ in (35), and translating in space so that
infRAn D �D jAnj.0/.

Since F � 0 in RC, we have Z
R

j@xVnj
2 dx � K.Vn/�

12
10
E.U0/

for n large. Therefore, by the compact Sobolev embedding H 1.Œ�R;CR�/ ,! L1.Œ�R;CR�/, we may
assume, up to a possible subsequence, that there exists V 2H 1

loc.R/ such that, for any R > 0, Vn*V in
H 1.Œ�R;CR�/ and Vn! V uniformly on Œ�R;CR�. Moreover, by lower semicontinuity and Fatou’s
lemma, E.V / � limn!C1E.Vn/. Since jVnj � � > 0 in R, we have jV j � � > 0 in R and thus a
lifting V D Aei� . Furthermore, infRAn D �D jVnj.0/; hence infRAD �D jV j.0/. We also know that
P.Vn/ 2 Œ0; r

2
0�� for all n; hence we may assume, up to another subsequence, that P.Vn/ converges to

some P1 2 Œ0; r20��. We also set

c � lim
n!C1

cn DMr20 sin
P1��r

2
0

2r20
:

In view of Step 1, and the convergence An!A uniformly on any compact interval Œ�R;CR�, it follows
that

2A2@x� D c.A
2
� r20 / and @x�n! @x� in L1loc.R/: (36)

Note that Z
R

j@xV j
2
C
1

K
.jV j2� r20 /

2 dx �E.V / <C1I

hence jV j ! r0 at ˙1. In particular, there exist �1 < R� � 0 � RC < C1 such that jV j > � in
.�1; R�/ and in .RC;C1/ and jV j.R˙/D �.

Step 2. There exist �1< z� � 0� zC <C1 such that

A.x/D Ac.x�RCC zC/ for x �RC and A.x/D Ac.x�R�C z�/ for x �R�:

We work for x �RC, the other case being similar. We consider � 2 C1c..RC;C1/;C/, t 2 R small such
that V tn � vnC t� satisfies jV tn j > � in .RC;C1/. This is possible since infSupp.�/ jVnj > �. Then,
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jV tn j � � in R and jV tn j.0/D �; hence V tn is then a comparison map for Kmin.�/, and, in view of the
equality P.V tn /D P.Vn/C 2t

RC1
RC
hi@xVnj�i dxCO.t2/, it follows that

Kmin.�/� K.V tn /

D Kmin.�/C on!C1.1/C 2t

Z C1
RC

h@xVn; @x�i dxC t
2

Z C1
RC

j@x�j
2 dx

� 2t

Z C1
RC

f .jVnj
2/hVn; �i dxCMt sin

P.Vn/��r
2
0

r20

Z C1
RC

hi@xVn; �i dxCOt!0.t
2/:

Letting n!C1 and using the weak and strong convergences for Vn, we infer

0� 2t

Z C1
RC

h@xV; @x�i dx� 2t

Z C1
RC

f .jV j2/hV; �i dx

�Mt sin
r20� �P1

2r20

Z C1
RC

hi@xV; �i dxCOt!0.t
2/:

Dividing by t 6D 0 and letting t ! 0C and then t ! 0�, we deduce that V solves (TWc) in .RC;C1/
and V has finite energy. Moreover, jV j.RC/D� is small; thus V D ei�CUc. � �RCCzC/ in .RC;C1/
for some constants zC and �C, and the speed c is such that infRAcD

p
r20 C �c��; hence c��.�/�K�.

Since jV j has finite energy in R and solves (TWc) in .RC;C1/, V is C1 in ŒRC;C1/. Moreover, jV j
reaches a minimum at xDRC; thus we must have @Cx jV j.RC/� 0, which imposes zC� 0. Note that, Ac
being even, it is possible to translate V so that R � RC D �R� and z � zC D �z�. Observe that
�D Ac.z/� A0.z/; hence z �K�. This yieldsZ

jxj�R

j@xV j
2
CF.jV j2/ dx D

Z
jxj�z

j@xUcj
2
CF.jUcj

2/ dx �E.U0/�K�: (37)

In particular, we deduce from (32)

2RF.�2/�

Z
jxj�R

j@xV j
2
CF.jV j2/ dx �K�I

hence R �K� for � small (F.0/ > 0).

Step 3. We prove that AD � in .R�; RC/D .�R;CR/.

Indeed, if it is not the case, there exists a bounded interval .x�; xC/ such that AD jV j>� in .x�; xC/
and jV j.x˙/ D �, with @xjV j.xC/ � 0 � @xjV j.x�/. Therefore, we can make perturbations of the
amplitude An localized in .x�; xC/. Hence, arguing as in Step 2, we see that, then, V solves (TWc) in
.x�; xC/, with 2A2@x� D c.A2 � r20 / and jV j.x˙/D �, @xjV j.xC/ � 0 � @xjV j.x�/. We then are in
position to apply (33), yielding Z xC

x�

j@xV j
2
CF.jV j2/ dx � 1

2
E.U0/;
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but the combination with (37) provides

11
10
E.U0/� Kmin.�/�

Z xC

x�

j@xV j
2
CF.jV j2/ dxC

Z
jxj�R

j@xV j
2
CF.jV j2/ dx

�
1
2
E.U0/CE.U0/�K�� D

3
2
E.U0/�K��;

which is not possible if �� is sufficiently small.

Step 4. We have RD 0 or (z D 0 and c D ��).

Indeed, assume R > 0, and consider � 2 C1c..0;C1/;R/, � � 0, t � 0 and V tn � .AnC t�/e
i�n , so

that jV tn j DAnC t� � � in R. Since R > 0, we actually have infR jV
t
n j D � and V tn is a comparison map

for Kmin.�/. Arguing as before, we thus have

Kmin.�/� K.V tn /D Kmin.�/C on!C1.1/C 2t

Z C1
0

@xAn@x� dxC t
2

Z C1
0

.@x�/
2 dx

C 2t

Z C1
0

An�.@x�n/
2 dxC t2

Z C1
0

�2.@x�n/
2 dx� 2t

Z C1
0

f .A2n/An� dx

CMr20 t sin
P.Vn/� r

2
0�

r20

Z R

0

2An�@x�n dxCOt!0.t
2/:

By (36), we may pass to the limit as n!C1 in all the terms and deduce

0�2t

Z C1
0

@xA@x� dxC2t

Z C1
0

A�.@x�/
2 dx�2t

Z C1
0

f .A2/A� dx�2ct

Z C1
0

A�@x� dxCOt!0.t
2/:

At this stage, we see the relevance of taking a minimizing sequence as chosen in Step 1, since it allows us
to pass to the limit in the nonlinear terms involving @x�n. As a consequence, using (36),

�@2xA�Af .A
2/C

c2

4

.A2� r20 /
2

A3
� 0

in the distributional sense in .0;C1/. The term �Af .A2/C 1
4
c2.A2 � r20 /

2=A3 is continuous in R.
However, since A.x/ D � for 0 � x � R and A.x/ D Ac.x �RC z/ for x � R, we infer �@2xA D
�@xAc.z/ıxDR plus a piecewise continuous function in the distributional sense in .0;C1/. Since
@xAc.z/ � 0 (recall that z � 0), this forces @xAc.z/D 0; that is, z D 0. Consequently, �D jV j.R/D
A.R/D Ac.z/D Ac.0/ and then c D ��.

In the next step, we take into account the loss in the weak convergence Vn*V .

Step 5. There exists K > 0 such that

E] �
P]

K
; where E] � lim

n!C1

E.Vn/�E.V /� 0; P] � lim
n!C1

P.Vn/�P.V /D P1�P.V /:

Let � > 0 be fixed but small, and pick some X > 0 large so thatˇ̌̌̌
E.V /�

Z
jxj�X

j@xV j
2
CF.jV j2/ dx

ˇ̌̌̌
� �;

ˇ̌̌̌
P.V /�

Z
jxj�X

.A2� r20 /u dx

ˇ̌̌̌
� �:
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We claim that there exists some small N� > 0, independent of �, such that jVnj � N� for jxj � X and n
large. Indeed, otherwise, we may argue as in Step 3 and show, as in the beginning of the proof there, thatR
jxj�X j@xVnj

2CF.jVnj
2/ dx � 1

2
E.U0/. This is not possible since

12
10
E.U0/� lim

n!C1

E.Vn/�
1
2
E.U0/C

Z
jxj�X

j@xV j
2
CF.jV j2/ dx � 1

2
E.U0/CE.V /� �;

and E.V / is close to E.U0/ as �! 0. Therefore, as for (34),ˇ̌̌̌Z
jxj�X

.A2n� r
2
0 /un dx

ˇ̌̌̌
�
K

N�

Z
jxj�X

j@xVnj
2
CF.jVnj

2/ dx:

Consequently,

E.Vn/�E.V /

�

Z
jxj�X

j@xVnj
2
CF.jVnj

2/ dx�

Z
jxj�X

j@xV j
2
CF.jV j2/ dxC

Z
jxj�X

j@xVnj
2
CF.jVnj

2/ dx� �

�

Z
jxj�X

j@xVnj
2
CF.jVnj

2/ dx�

Z
jxj�X

j@xV j
2
CF.jV j2/ dxC

N�

K

ˇ̌̌̌Z
jxj�X

.A2n� r
2
0 /un dx

ˇ̌̌̌
� �:

Passing to the liminf and using the weak convergence in Œ�X;CX�, we infer

lim
n!C1

E.Vn/�E.V /�
N�

K
lim

n!C1

ˇ̌̌̌
P.Vn/�

Z
jxj�X

.A2n� r
2
0 /un dx

ˇ̌̌̌
� �:

However, (36) implies Z
jxj�X

.A2n� r
2
0 /un dx!

Z
jxj�X

.A2� r20 /u dx;

so that

E] �
N�

K

ˇ̌̌̌
P1�

Z
jxj�X

.A2� r20 /u dx

ˇ̌̌̌
� � �

N�

K
jP1�P.V /j �

�
1C
N�

K

�
� D

N�

K
jP]j �

�
1C
N�

K

�
�:

Letting �! 0, the conclusion follows.

Step 6. There exists K > 0 such that, if R > 0, then

Kmin.�/�E.U0/C
�2

K
:

We recall the expansion P.Us/ D r20� C s
PP0 C o.s/ as s ! 0, where PP0 � .dP.Us/=ds/jsD0.

From the Hamilton group relation dE.Us/=ds D sdP.Us/=ds, we also infer by integration E.Us/ D
E.U0/C

1
2
s2 PP0C o.s

2/. On the other hand, by definition of cn,

2Mr40 sin2
P.Vn/� r

2
0�

2r20
DMr40

�
1� cos

P.Vn/� r
2
0�

r20

�

DMr40

�
1�

s
1� sin2

P.Vn/� r
2
0�

r20

�
DMr40

�
1�

s
1�

c2n
M 2

�
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for n large. Here, we have used that Mcn D sin..r20� �P.Vn//=r
2
0 /!Mc 2 Œ0;K��� (cf. Step 2); thus

cos..r20� �P.Vn//=r
2
0 /� 0, for, otherwise, we would have, by Proposition 6.1,

K.Vn/DE.Vn/C 2Mr40 sin2
P.Vn/� r

2
0�

2r20
�E.U0/�K�CMr40

�
1C

s
1�

c2n
M 2

�
�E.U0/�K��C 2Mr40 CO.�2�/;

but this contradicts (32) if �� is sufficiently small.
We assume R > 0, so that, by Step 4, z D 0 and c D ��. We recall �� D 2�

p
F.0/=r20 C O.�2/ �

2�
p
F.0/=r20 . By definition of E], one has

E]CE.V /CMr40

�
1�

s
1�

c2

M 2

�
� lim
n!C1

E.Vn/C lim
n!C1

2Mr40 sin2
P.Vn/� r

2
0�

2r20

D lim
n!C1

K.Vn/D Kmin.�/

since .Vn/ is minimizing for Kmin.�/. Moreover, from the expression of V , we have (for R > 0)

E.V /DE.U��/C 2R

�
�2�.r

2
0 ��

2/2

4�2
CF.�2/

�
and P.V /D P.U��/CR��

.r20 ��
2/2

�2
:

Furthermore, we have P] D P1 �P.V / and c DMr20 sin..r20� �P1/=r
2
0 / with P1 2 Œ0; r20�� and

cos..r20� �P1/=r
2
0 /� 0; thus

P] D P1�P.V /D r
2
0� � r

2
0 arcsin

�
c

Mr20

�
�P.U��/�R��

.r20 ��
2/2

�2
:

Combining this with the expansions of E.U� / and P.U� / gives

Kmin.�/�E.U0/CE]C
�2�

2
PP0Co.�

2
�/CM

�
1�

s
1�

�2�

M 2

�
C2R

�
�2�.r

2
0��

2/2

4�2
CF.�2/

�
�E.U0/C

jP]j

K
C
�2�

2

�
PP0C

1

M

�
Co.�2/C4RF.0/

�E.U0/C
1

K

ˇ̌̌̌
r20 arcsin.��=.Mr20 //C��

PP0CR�
.r20��

2/2

�2
Co.��/

ˇ̌̌̌
C
�2�

2

�
PP0C

1

M

�
Co.�2/C4RF.0/

�E.U0/C
1

K

ˇ̌̌̌
��

M
C�� PP0CR��

.r20��
2/2

�2
Co.��/

ˇ̌̌̌
C
�2�

2

�
PP0C

1

M

�
Co.�2/C4RF.0/

�E.U0/C
��

K

ˇ̌̌̌
PP0C

1

M
CR

.r20��
2/2

�2

ˇ̌̌̌
C
�2�

2

�
PP0C

1

M

�
C4RF.0/Co.�2/:

The right-hand side is a continuous piecewise affine function of R (the “o” does not depend on R).
Since ��.r20 ��

2/2=.K�2/' 1=�� 4F.0/ and PP0C 1=M < 0 (since M > � PP�10 by hypothesis), it
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follows that the right-hand side is a function of R which is decreasing in Œ0; R0.�/� and increasing in
ŒR0.�/;C1/, with

R0.�/��

�
PP0C

1

M

�
�2

.r20 ��
2/2
��

�
PP0C

1

M

�
�2

r40
> 0:

Therefore, using once again that �2� � 4�
2F.0/=r40 ,

Kmin.�/�E.U0/C
�2�

2

�
PP0C

1

M

�
C 4R0.�/F.0/C o.�

2/

DE.U0/C

�
PP0C

1

M

�
2�2F.0/

r40
�

�
PP0C

1

M

�
4�2F.0/

r40
C o.�2/

DE.U0/��
2 2F.0/

r40

�
PP0C

1

M

�
C o.�2/:

In view of our hypothesis PP0C 1=M < 0, we infer that

Kmin.�/�E.U0/C
�2

K

for �� sufficiently small and some positive constant K, as wished. If the assumption PP0C 1=M < 0 is
not satisfied, but, if PP0C 1=M > 0 for instance, then the function of R above is increasing in Œ0;C1/,
with minimum value achieved at RD 0 and equal to

E.U0/C
�2�

2

�
PP0C

1

M

�
C o.�2/DE.U0/C

2�2F.0/

r40

�
PP0C

1

M

�
C o.�2/�E.U0/C

�

K
:

We then would have concluded a stronger estimate, which is actually in contradiction with (32); hence
we are necessarily in the case R > 0. The assumption PP0C 1=M < 0 is however crucial for the last step.

Step 7. We assume PP0C 1=M < 0. Then, for �� sufficiently small, the case RD 0 does not occur.

We argue in a similar way, but, since RD 0, the expressions for E.V / and P.V / are given by

E.V /DE.Uc/� 4

Z z

0

F.jUcj
2/ dx and P.V /D P.Uc/� 2

Z z

0

c

2

.r20 �A
2
c/
2

A2c
dx:

Here, we have used that j@xUcj2 D F.jUcj2/ since Uc solves (TWc). Combining this here again with the
expansions of E.Uc/ and P.Uc/ gives, using that 0� c �K�,

Kmin.�/�E.U0/CE]C
c2

2
PP0Co.c

2/CM

�
1�

s
1�

c2

M 2

�
�4

Z z

0

F.jUcj
2/ dx

�E.U0/C
jP]j

K
C
c2

2

�
PP0C

1

M

�
�4zF.0/Co.�2/

�E.U0/C
1

K

ˇ̌̌̌
arcsin.c=M/Cc PP0�c

Z z

0

.r20�A
2
c/
2

A2c
dxCo.c/

ˇ̌̌̌
C
c2

2

�
PP0C

1

M

�
Co.�2/�4zF.0/:
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Following the lines of the proof of Lemma 20, we have

c

Z z

0

.r20 �A
2
c/
2

A2c
dx D 2 arctan

s
�2

r20 C �c
CO.�2/: (38)

Indeed, noticing that Ac D O.�/ in Œ0; z� with z �K�, we write, expanding the square,Z z

0

.r20 �A
2
c/
2

A2c
dx D

Z z

0

r40
A2c
� 2CA2c dx D

Z z

0

r40
A2c

dxCO.�/:

Then, using the change of variable � D �c.x/,Z z

0

.r20 �A
2
c/
2

A2c
dx D

Z �2�r20

�c

r40

.r20 C �/
p
�Vc.�/

d�CO.�/

D

Z �2�r20

�c

r40

.r20 C �/
p
�V0c.�c/.� � �c/

d�

C

Z �2�r20

�c

r40

.r20 C �/

�
1p
�Vc.�/

�
1p

�V0c.�c/.� � �c/

�
d�CO.�/

D
2

c
arctan

s
�2

r20 C �c
� 1CO.�/; (39)

by computations similar to those for the proof of Lemma 20. This proves (38). Therefore,

Kmin.�/

�E.U0/C
1

K

ˇ̌̌̌
c

�
PP0C

1

M

�
�2 arctan

s
�2

r20 C �c
� 1Co.c/

ˇ̌̌̌
C
c2

2

�
PP0C

1

M

�
Co.�2/�4zF.0/: (40)

By (32), the left-hand side is �E.U0/CK�2. Since PP0C 1=M < 0, c �K�, z �K� and F.0/ > 0,
this implies ˇ̌̌̌

c

�
PP0C

1

M

�
� 2 arctan

s
�2

r20 C �c
C o.c/

ˇ̌̌̌
�K�I

thus

arctan

s
�2

r20 C �c
� 1�K�;

and, finally, for �� small enough,

0�
�2

r20 C �c
� 1�K�2:

Combining this with the equality r20 C �c D c
2r40=.4F.0//CO.c4/ seen during the proof of Lemma 20,

we infer

c D
2
p
F.0/

r20
�CO.�2/:
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In particular, going back to (39) and since, for 0� x � z,

r20 C �c D A
2
c.0/� A

2
c.x/� A

2
c.z/D �

2;

this implies

zr40
�2
�

Z z

0

r40
A2c
�
2

c
arctan

s
�2

r20 C �c
� 1CO.�/�

K�

c
CK��K;

which provides (since c � �)

z �K�2:

Inserting this into (40) and keeping in mind that the left-hand side is �E.U0/CK�2, we deduce

c

�
PP0C

1

M

�
� 2 arctan

s
�2

r20 C �c
� 1D o.�/:

However, since arctan
q
�2=.r20 C �c/� 1� 0, this gives

o.�/� c

�
PP0C

1

M

�
�
2�
p
F.0/

r20

�
PP0C

1

M

�
;

yielding a contradiction for small � since we have PP0C 1=M < 0 by assumption. Therefore, the case
RD 0 does not occur for sufficiently small ��. If we had PP0C 1=M > 0, we would not have been able
to show that Kmin.�/ gives a control on �.

The proof of Proposition 6.2 is complete. �

Proof of Theorem 23. Let U 2 V�� . If � � infR jU j > 0, then Proposition 6.2 gives K.U / �

E.U0/C �
2=K > E.U0/ D K.U0/. If infR jU j D 0, we deduce from Proposition 6.1 that K.U / �

E.U0/C2Mr40 sin2..P.U /��r20 /r
2
0 /. Hence K.U />E.U0/ except if K.U /DE.U0/. From the study

of the equality case in Proposition 6.1, it follows that U 2 fei�U0. � �y/; y 2 R; � 2 Rg, as claimed. �

6C. Proof of Theorem 24. As a first step, we shall need a quantified version of Proposition 6.1.

Proposition 6.3. There exist �0 > 0 and K > 0, depending only on f , such that, for any U 2 Z verifying

K.U /�E.U0/� �0 and inf
R
jU j � �0;

we have

inf
y2R
�2R

dZ.U; e
i�U0. � �y//�K

�
K.U /�E.U0/C inf

R
jU j

�1=4
:

Proof. First, we translate the problem in space so that �� infR jU j D jU j.0/ and shall choose the phase
factor later. We follow the lines of the proof of Proposition 6.1 and actually get (writing U DAei� locally
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in fjU j> 0g)Z C1
0

j@xU j
2
CF.jU j2/ dx

D

Z C1
0

1jU j>0A
2.@x�/

2 dxC

Z C1
0

ˇ̌
@xjU j

ˇ̌2
CF.jU j2/ dx

D

Z C1
0

1jU j>0A
2.@x�/

2 dxC

Z C1
0

hp
F.jU j2/�

ˇ̌
@xjU j

ˇ̌i2
dxC 2

Z C1
0

ˇ̌̌p
F.jU j2/@xjU j

ˇ̌̌
dx

�

Z C1
0

1jU j>0A
2.@x�/

2 dxC

Z C1
0

hp
F.jU j2/�

ˇ̌
@xjU j

ˇ̌i2
dxC 2

Z r0

�

p
F.s2/ ds:

Arguing similarly in .�1; 0/, we get

E.U /�E.U0/C

Z
R

1jU j>0A
2.@x�/

2 dxC

Z
R

hp
F.jU j2/� j@xjU jj

i2
dx� 4

Z �

0

p
F.s2/ ds: (41)

The gradient of the phase is controlled using (41). We shall now estimate the modulus part. Let us define
A� jU j and

h� @xA�
p
F.A2/;

for which we have, by (41),

khk2
L2.R/

�E.U /�E.U0/C 4

Z �

0

p
F.s2/ ds �E.U /�E.U0/CK�: (42)

Recall that U0 satisfies .@xU0/2 D F.U 20 / in R; hence @xU0 D
p
F.U 20 / in RC. Setting ‚� A� jU0j,

we infer
@x‚D

p
F.A2/�

p
F.U 20 /C h in RC:

We set, for x � 0,

G.x; �/�
p
F..U0.x/C �/

2/�
p
F.U 20 .x//C

U0.x/f .U
2
0 .x//�p

F.U 20 .x//
:

Since U0 satisfies @2xU0CU0.x/f .U
2
0 .x//D 0 and @xU0 D

p
F.U 20 .x// in RC, it follows that

G.x; �/D
p
F..U0.x/C �/

2/�
p
F.U 20 .x//�

@2xU0.x/

@xU0.x/
�:

Moreover, by the Taylor expansion, we infer the existence of K > 0 and �0 > 0 such that, for j� j � �0,
x 2 RC,

jG.x; �/j �K�2:

The estimate is clearly uniform in view of the exponential decay of @xU0 at infinity. Therefore,

@x‚D
@2xU0.x/

@xU0.x/
‚CG.x;‚/C h.x/: (43)
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We view this ODE as a linear ODE with source term G.x;‚.x// C h.x/. Since @xU0 solves the
homogeneous equation, we infer, from Duhamel’s formula and the fact that ‚.0/ D A.0/�U0.0/ D
jU.0/j D �, that, for x � 0,

‚.x/D �C @xU0.x/

Z x

0

G.z;‚.z//C h.z/

@xU0.z/
dz: (44)

We shall prove that this equation implies that, if � and khkL2.RC/ are sufficiently small, then

k‚kL2.RC/ �K.khkL2.RC/C�/: (45)

We assume � < �0=2. Note that, since U0 is a kink, we have the decays given in Proposition 2. Hence,
there exist two positive constants K1 and K2 such that

e�csx

K1
� @xU0.x/�K2e

�csx for all x 2 RC:

In particular, if j‚.x/j � �0 in the interval Œ0; R�, then (44) implies, for x 2 Œ0; R�,

j‚.x/j � �CK1K2e
�csx

Z x

0

ecsz
�
Kk‚kL1.Œ0;R�/j‚.z/jC jhj.z/

�
dz

� �C
KK1K2

cs
k‚k2L1.Œ0;R�/C

K1K2
p
2cs
khkL2.RC/

by the Cauchy–Schwarz inequality. We thus choose khkL2.RC/C� sufficiently small so that

4

�
�C

K1K2
p
2cs
khkL2.R/

�
� Q�0 �min

�
�0;

cs

2KK1K2

�
:

Then, we consider the set R of all R>0 such that j‚.x/j � Q�0 in the interval Œ0; R�. Since ‚2H 1.R;C/

is continuous by the Sobolev embedding and j‚.0/j D � < Q�0, R 6D∅ and is closed in R�
C

. Moreover,
the above estimate shows that, for R 2R,

k‚kL1.Œ0;R�/ � �C
KK1K2

cs
k‚k2L1.Œ0;R�/C

K1K2
p
2cs
khkL2.RC/;

which gives

k‚kL1.Œ0;R�/

�
1�

KK1K2

cs
k‚kL1.Œ0;R�/

�
� �C

K1K2
p
2cs
khkL2.RC/;

and then

k‚kL1.Œ0;R�/ � 2

�
�C

K1K2
p
2cs
khkL2.R/

�
�

Q�0

2
< Q�0: (46)

Consequently, R is open in R�
C

. By connexity, R D R�
C

, proving (45). In what follows, we assume
khkL2.RC/C� is sufficiently small so that k‚kL1 � Q�0; thus jG.x;‚/j �K‚2. In particular,

j‚.x/j � �CK1K2

Z x

0

e�cs.x�z/
�
Kk‚kL1.Œ0;R�/j‚.z/jC jhj.z/

�
dz:
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For R > 0 to be determined later, we then deduce from classical convolution estimates that

k‚kL2.Œ0;R�/ � �
p
RCK3k‚kL1.RC/k‚kL2.Œ0;R�/CK3khkL2.RC/:

Imposing that khkL2.RC/C� be smaller if necessary, we may assume that

K3k‚kL1.RC/ �K3K.khkL2.RC/C�/�
1
2
;

so that we get

k‚kL2.Œ0;R�/ �K4
�
�
p
RCkhkL2.RC/

�
:

Reporting this into (43) provides

k@x‚k
2
L2.Œ0;R�/

�K5.�
2RCkhk2

L2.RC/
/:

Arguing similarly in Œ�R; 0� and using (42), we obtain an H 1 estimate for ‚ in Œ�R;R�:

k‚k2
H1.Œ�R;R�/

�K6
�
E.U /�E.U0/C�

2RC�
�
: (47)

We now turn to the estimate in fjxj �Rg. For that purpose, we writeZ
jxj�R

.@xjU j/
2
C
1

K
.jU j2�r20 /

2 dx�E.U /�E.U0/C

Z
jxj�R

.@xU0/
2
CF.U 20 / dx

�

Z
jxj�R

.@xjU jj/
2
CF.jU j2/ dxC

Z
jxj�R

.@xU0/
2
CF.U 20 / dx: (48)

Since U0 decays exponentially (see Proposition 2), it follows thatZ
jxj�R

j@xU0j
2
CF.U 20 / dx �Ke�csR:

Furthermore, by integration by parts,

�

Z
jxj�R

.@xjU j/
2
CF.jU j2/ dxC

Z
jxj�R

.@xU0/
2
CF.U 20 / dx

D�

Z
jxj�R

2@xU0@x‚�2U0f .U
2
0 /‚dx�

Z
jxj�R

.@x‚/
2
CF.ŒU0C‚�

2/�F.U 20 /�2U0F
0.U 20 /‚dx

�

Z
jxj�R

2‚Œ@2xU0CU0f .U
2
0 /� dx�2‚.CR/@xU0.CR/C2‚.�R/@xU0.�R/CKk‚k

2
H1.Œ�R;CR�/

�Ke�csRCK
�
E.U /�E.U0/C�

2RC�
�
:

For the second-to-last line, we have used that � 7! F.ŒU0C ��
2/�F.U 20 /� 2U0F

0.U 20 /� is O.�2/ as
� ! 0 and, for the last line, that U0 solves @2xU0CU0f .U

2
0 /D 0, the exponential decay of @xU0 and
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the uniform bound on ‚. Reporting these estimates into (48) provides

k‚k2
H1.fjxj�Rg/

D

Z
jxj�R

.@xjU j � @xjU0j/
2
C .jU j � jU0j/

2 dx

� 2

Z
jxj�R

.@xjU j/
2
C .@xjU0j/

2
C .jU j � r0/

2
C .jU0j � r0/

2 dx

�KŒE.U /�E.U0/C e�csRC�2RC��:

Combining this with (47), we deduce that, for any R > 0, we have

k‚k2
H1.R/

�KŒE.U /�E.U0/C e�csRC�2RC��:

We then choose RD ��1 if � > 0 or R!C1 if �D 0, and get

k‚kH1.R/ �K
p
E.U /�E.U0/C�:

Notice that, if f 0 < 0 everywhere, then we may give a quick proof of the above estimate, since, using
here again integration by parts and that @2xU0CUOf .U

2
O/D 0, we may deduce that

E.U /�E.U0/� �4�@xU0.0/C

Z C1
0

.@x‚/
2 dxC

Z
R

F..U0C‚/
2/�F.U 20 /� 2U0‚F

0.U 20 / dx;

and, since f 0 < 0, F..U0C �/2/�F.U 20 /� 2U0�F
0.U 20 /� �

2=K by the Taylor expansion, providing
the desired H 1 bound on ‚.

Observe now that

K.U /�E.U0/�E.U /�E.U0/�

Z
R

1jU j>0ŒA@x��
2 dxI

hence

k@xU � @xU0kL2.R/ D k@x.jU0jC‚/e
i�1jU j>0C i1jU j>0A@x�e

i�
� @xU0kL2.R/

� kei�1jU j>0@xjU0j � @xU0kL2.R/Ck1jU j>0A@x�kL2.R/Ck‚kL2.R/

� kei�1jU j>0@xjU0j � @xU0kL2.R/CKŒK.U /�E.U0/C��
1=2: (49)

We distinguish now the cases �D 0 and � > 0, and begin with the assumption � > 0. Then, we have a
global lifting U D Aei� and

dZ.U; U0/D k@xU � @xU0kL2.R/CkjU j � jU0jkL2.R/CjU.0/�U0.0/j

D k@xU � @xU0kL2.R/Ck‚kL2.R/C�

� kei�@xjU0j � @xU0kL2.R/CKŒK.U /�E.U0/C��
1=2:

Now, we notice that

kei�@xjU0j � @xU0k
2
L2.R/

D 2

Z
R

�
.@xU0/

2
� @xU0@xjU0j cos�

�
dx

D 2

Z C1
0

.@xU0/
2.1� cos�/ dxC 2

Z 0

�1

.@xU0/
2.1C cos�/ dx (50)
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and that

K.U /�E.U0/� 2Mr40 sin2
P.U /� r20�

2r20
�
1

K
.P.U /� r20� mod 2�r20 /

2: (51)

We define ı D .K.U /�E.U0/C�/1=4. By the Cauchy–Schwarz inequality, we haveˇ̌̌̌Z
jxj�ı

.A2� r20 /@x� dx

ˇ̌̌̌
�

K

infjxj�ı A

�Z
jxj�ı

.A2� r20 /
2 dx

�1=2�Z
jxj�ı

.A@x�/
2 dx

�1=2
�

K

infjxj�ı A

�
E.U /�E.U0/C�

�1=2
:

Inserting this into (51) givesˇ̌̌̌Z
jxj�ı

.A2�r20 /@x� dx�r
2
0� mod 2�r20

ˇ̌̌̌
�K

�
.K.U /�E.U0//

1=2
C

1

infjxj�ı A

�
E.U /�E.U0/C�

�1=2�
�

K

infjxj�ı A

�
K.U /�E.U0/C�

�1=2
:

In addition, by the Cauchy–Schwarz inequality,ˇ̌̌̌Z
jxj�ı

A2@x� dx

ˇ̌̌̌
�
p
2ı.supjxj�ı A/

�
K.U /�E.U0/C�

�1=2
:

Consequently,

r20
ˇ̌
�.Cı/��.�ı/�� mod 2�

ˇ̌
�

ˇ̌̌̌Z
jxj�ı

.A2� r20 /@x� dx� r
2
0� mod 2�r20

ˇ̌̌̌
C
p
2ı.supjxj�ı A/

�
K.U /�E.U0/C�

�1=2
�

�
K

infjxj�ı A
C
p
2ı.supjxj�ı A/

��
K.U /�E.U0/C�

�1=2
: (52)

From our choice ıD .K.U /�E.U0/C�/1=4� 1 and since k‚kL1.R/ �K.K.U /�E.U0/C�/1=2D
O.ı2/, we infer infjxj�ı A � infjxj�ı jU0j � k‚kL1.R/ � ı=K. Similarly, we have supjxj�ı A �
supjxj�ı jU0jC k‚kL1.R/ �Kı. Reporting this into (52) yieldsˇ̌

�.Cı/��.�ı/�� mod 2�
ˇ̌
�Kı:

We now freeze the gauge invariance by imposing �.Cı/ D 0. Note that then �.�ı/ D � C O.ı/.
Furthermore, since �.Cı/D 0,Z

jxj�ı

.@x�/
2 dx �

K

.infjxj�ı A/2

Z
jxj�ı

A2.@x�/
2 dx �

K

ı2
ı4 DKı2;

which implies, for x � ı,

j1� cos�.x/j � j1� cos�.0/jC
ˇ̌̌̌Z x

ı

@x� sin�
ˇ̌̌̌
�Kı

p
x
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and, similarly, since cos�.�ı/D cos.� CO.ı//D�1CO.ı2/, for x � �ı,

j1C cos�.x/j �Kı
p
jxj:

We turn back to (50) and infer

kei�@xjU0j � @xU0k
2
L2.R/

�KıC 2

Z C1
ı

.@xU0/
2.1� cos�/ dxC 2

Z �ı
�1

.@xU0/
2.1C cos�/ dx

�KıCKı

Z
R

.@xU0/
2
p
jxj dx DKı:

Inserting these estimates in (49), it follows that

dZ.U; U0/�Kı:

We now turn to the case �D 0. Without loss of generality, we may assume that jU j> 0 in .�1; 0/
(since jU j ! r0 > 0 at ˙1), and let ` � 0 be such that jU j.`/D 0 and jU j > 0 in .`;C1/. We first
estimate ` by writing that

jU0j.`/D jU j.`/C‚.`/D‚.`/� k‚kL1.R/ �K
�
K.U /�E.U0/C�

�1=2
DKı2I

thus `�Kı2. Moreover, we have two local liftings U D Aei�C in Œ`;C1/ and U D Aei�� in .�1; 0/.
Going back to (49), we then deduce

dZ.U; U0/

� kei��@xjU0j � @xU0kL2.�1;0/Cke
i�C@xjU0j � @xU0kL2.`;C1/CKıCKŒK.U /�E.U0/�

1=2:

Arguing as for the case �> 0, we obtain jU j DA� ı=K in Œ`Cı;C1/ and in .�1;�ı/. By definition
of P, we have

P.U /D

Z `Cı

�ı

hiU j@xU iC

Z C1
`Cı

.A2�r20 /@x�C dxCr
2
0�C.`Cı/C

Z �ı
�1

.A2�r20 /@x�� dx�r
2
0�C.�ı/

in R=.2�r20Z/; hence the same arguments as in the case � > 0 provideˇ̌
�C.`C ı/��C.�ı/�� mod 2�

ˇ̌
�Kı;

since the integral
R `Cı
�ı hiU j@xU i is bounded by K

p
ı by the Cauchy–Schwarz inequality. Imposing

�C.`Cı/ for the gauge invariance, we infer 1�cos.�C.`Cı//D 0 and �C.�ı/D �CO.
p
ı/ mod 2� ;

hence 1C cos.��.�ı//D O.ı/. Therefore, we conclude as before that

dZ.U; U0/�Kı;

which finishes the proof of the proposition. �

In order to prove Theorem 24, we use Proposition 6.2, which provides

K.U /�E.U0/C
1

K
.infR jU j/

2I
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thus

�D inf
R
jU j �K

p
K.U /�E.U0/:

Inserting this bound in Proposition 6.3 then gives

dZ.U; U0/�K
�
K.U /�E.U0/CK

p
K.U /�E.U0/

�1=4
�K 8

p
K.U /�E.U0/;

and the proof is complete.

7. About the stability analysis for the sonic waves .c D cs/

We have left aside in our study the case of the sonic waves (c D cs), but would like to say a few words on
the difficulties associated with this critical case.

We note that, if there exists a sonic nontrivial traveling wave, it does not vanish; hence we may use
the hydrodynamical formulation (15) of (NLS) as in [Lin 2002]. The point is that the Sturm–Liouville
operator (see [Lin 2002, Section 4])

L��
@

@x

�
1

4.r20 � �/

@

@x

�
C q.x/;

with

q.x/�
.@x�/

2

4.r20 � �/
3
�
@

@x

�
@x�

4.r20 � �/
2

�
�
1

2
f 0.r20 � �/�

c2r40

4.r20 � �/
3
;

has, by Weyl’s theorem, essential spectrum �ess.L/ D Œ0;C1/ when c D cs . Indeed, we know
from Proposition 2 that �cs and its derivatives tend to zero at infinity; hence, as x ! ˙1, q.x/!
�
1
2
f 0.r20 /� c

2=.4r20 /D 0 since c2 D c2s D�2r
2
0f
0.r20 /. Therefore, there does not exist ı > 0 such that

hHp;pi � ıkpk2 for any p orthogonal to the subspace spanned by the negative and the zero eigenvalue,
and thus the Grillakis–Shatah–Strauss theory does not apply.

In the case .dP=dc/jcDcs < 0, where it is natural to expect stability, a natural thing would be to try to
work with the functional

L. /�E. /� csP. /C
M

2
.P. /�P.Ucs //

2

and to follow the lines of the proof of Theorem 23. Indeed, the spectral analysis shall not give positive
definiteness of the Hessian due to presence of essential spectrum down to 0. Therefore, we may study L

at fixed �D infR j j close to infR jUcs j. When 0 < c� < cs and .dP=dc/jcDc� 6D 0, the infimum of jUcj
contains a neighborhood of infR jUc� j for c close to c�. For c� D cs , this is no longer the case: we
have only a one-sided neighborhood of infR jUcs j. It is plausible that the study for � in this one-sided
neighborhood of infR jUcs j can be done as in the proof of Theorem 23, but, for the remaining values of �,
we have to find a sharp ansatz, which is not very easy to find.

Furthermore, for the linear instability which is expected if .dP=dc/jcDcs > 0, let us mention the
following point. For the eigenvalue problem studied in [Benzoni-Gavage 2010b], the characteristic
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equation for the constant coefficient limit at infinity, namely

r4� .c2s � c
2
�/r

2
� 2c��r C�

2
D 0;

becomes, when c� D cs ,

r4� 2cs�r C�
2
D 0: (53)

The behavior of the roots for small � is then different from the case 0 < c� < cs . Indeed, there exists a
root � �=.2cs/ for �! 0, and, for the three other roots, we use the variable r D 3

p
�z, which transforms

r4�2cs�rC�
2D 0 into z4�2cszC�2=3D 0. This last equation has, for �! 0, three roots � j k 3

p
2cs ,

where j D e2i�=3 and k D 0, 1, 2. In particular, (53) has three roots � j k 3
p
2cs�, k D 0, 1, 2. The

value �D 0 is then a branching point, and we shall have a smooth problem not in � but in 3
p
�. Since

analyticity is not necessary for our purpose, we may define an Evans function QD in RC, smooth, and
such that, for � > 0, QD. 3

p
�/D 0 if and only if � is an unstable eigenvalue for (27). Another difficulty

comes from the fact that it will be difficult to find an analytic extension of the Evans function QD near 0
since, by Proposition 2, for c� D cs , u� and �� decay only at an algebraic rate and not an exponential
rate. Consequently, we can not use the gap lemma of [Gardner and Zumbrun 1998] and [Kapitula and
Sandstede 1998]. Finally, as a straightforward computation shows, the stable and unstable subspaces for
the eigenvalue problem are transverse for � > 0 but their continuous extensions at �D 0 have a nontrivial
intersection. Therefore, both stability and instability require some further analysis, and the situation is
then much more delicate than the one studied in Section 5A.

Appendix A. Construction of a Liapounov functional in the stable case in the
Grillakis–Shatah–Strauss framework

We work with the notations of [Grillakis et al. 1987], and recall them briefly. We consider a Hamiltonian
equation in a real Hilbert space X, with scalar product . � ; � /X, under the form

@u

@t
D JE 0.u/; (H)

where J W X� ! X is a closed linear operator with dense domain and skew-symmetric. Assume that
T is a C0-group of unitary operators in X generated by T 0.0/, which is skew-adjoint and with dense
domain, and that E is invariant by T ; that is, E.T .s/u/DE.u/ for any s 2 R, u 2 X. Assume moreover
that T .s/J D JT .�s/� for any s 2 R and that there exists B W X! X�, linear and bounded, such that
B� D B and JB is an extension of T 0.0/. We then set

Q.u/� 1
2
hBu; uiX�;X:

The basic assumptions of [Grillakis et al. 1987] are the following ones.

Assumption 1 (existence of solutions). For any r > 0 there exists t� > 0, depending only on r , such that,
for any uin 2 X, there exists a u 2 C..�t�; t�/;X/ with u.0/D uin solution of (H) in the sense that, for
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any ' 2D.J /� X�,

d

dt
hu.t/; 'iX�;X D�hE

0.u.t//; J'iX�;X in D0..�t�; t�//;

and verifying E.u.t//DE.uin/ and Q.u.t//DQ.uin/ for t 2 .�t�; t�/.

Assumption 2 (existence of “bound states”). There exists an interval �� R, not reduced to a singleton,
and a mapping � 3 ! 7! �! 2 X of class C1 such that, for any ! 2�,

E 0.�!/D !Q
0.�!/; �! 2D.T

0.0/3/\D.JIT 0.0/2/; T 0.0/�! 6D 0:

Assumption 3 (spectral decomposition). For each!2�, the operatorH!�E 00.�!/�!Q00.�!/ WX!X�

has its kernel spanned by T 0.0/�! , has one negative simple eigenvalue and the rest of its spectrum is
positive and bounded away from zero.

Under Assumption 2, we consider some !� 2� and the associated bound state �!� , and then define,
for M > 0, the functional

L!�.u/�E.u/�!�Q.u/C
M

2
.Q.u/�Q.�!�//

2:

It is clear that �!� is a critical point of L!� : L0.�!�/DE
0.�!�/�!�Q

0.�!�/D 0. We denote by

ƒ� L00!�.�!�/DH!� CM hQ
0.�!�/; � iX�;XQ

0.�!�/

its second derivative, which is a self-adjoint operator. The main result of this appendix is the following.

Theorem 26. We make Assumptions 2 and 3 and suppose that the operator hQ0.�!�/; � iX�;XQ
0.�!�/ is

a compact perturbation of H!� . If .dQ.�!/=d!/j!D!� < 0 and

M >
1

�
dQ.�!/

d! j!D!�

;

there exists ı > 0 such that

hƒv; vi � ıkvk2 for all v 2X s.t. .v; T 0.0/�!�/X D 0:

In particular, for any u 2X with infs2R ku�T .s/�!�k
2 � �, we have

inf
s2R
ku�T .s/�!�k

2
�
2

ı
.L.u/�L.�!�//:

Therefore, when Assumption 1 is moreover satisfied, the (global) solution u.t/ to (H) with initial datum uin

satisfies

sup
t2R

inf
s2R
ku.t/�T .s/�!�k

2
�
2

ı
.L.uin/�L.�!�//�Kku

in
��!�k

2;

provided the right-hand side is sufficiently small.
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We point out that the condition that the operator hQ0.�!�/; � iX�;XQ
0.�!�/ is a compact perturbation

of H!� is not very restrictive, since, in many cases coming from PDEs, it involves less derivatives
than H!� and Q0.�!�/ tends to zero at spatial infinity.

This type of Liapounov functional has been used in [Barashenkov 1996] to prove that the traveling
waves of (NLS) in dimension one are stable when dP=dc < 0. The proof follows basically the one in
[Barashenkov 1996], but some points have to be clarified. The interest of this type of Liapounov
functional is that the saddle point �!� is now a nondegenerate local minimum for L!� . This is
a great advantage for numerical simulation of the “bound states”, since a gradient flow method on
L!� can be used. This approach has been used, with a very similar functional, by N. Papanicolaou
and P. Spathis [1999] for the numerical simulation of the traveling waves for a planar ferromagnets
model. In the same spirit, in [Chiron and Scheid 2012], we also use a gradient flow method on
this type of functional for the numerical simulation of the traveling waves for (NLS) in two dimen-
sions.

Proof of Theorem 26. Recall that the spectrum of H!� is, by Assumption 3, such that ��2� 2 �.H!�/,
02�.H!�/ and �.H!�/nf��

2
�; 0g� Œı;C1/ for some ı>0. Since we assume that hQ0.�!�/; � iQ

0.�!�/

is a compact perturbation of H!� , the essential spectrum of ƒ is the same as the one of H!� , and hence
is included in Œı;C1/. Furthermore, 0 2 �.H!�/ and ker.H!�/ D RT 0.0/�!� by Assumption 3.
Since Q0.�!�/ D B�!� and JB is an extension of T 0.0/, we have that hQ0.�!�/; T

0.0/�!�iX�;X D

hB�!� ; JB�!�iX�;X D 0; hence ƒ.T 0.0/�!�/ D 0. Noticing that hQ0.�!�/; � iX�;XQ
0.�!�/ is a non-

negative operator, we infer that ker.ƒ/ D ker.H!�/ D RT 0.0/�!� is one-dimensional. Therefore, it
suffices to show that ƒ has no eigenvalues in .�1; 0/. As we have seen that hQ0.�!�/; � iX�;XQ

0.�!�/

is a nonnegative operator, we deduce that �.ƒ/ � Œ��2�;C1/. Let us first show that ��2� 62 �.ƒ/
by contradiction. If ��2� is an eigenvalue of ƒ, then there exists v 2 X , v 6D 0, such that 0 D
.ƒC �2�/v D .H C �2�/v CM hQ

0.�!�/; viX�;XQ
0.�!�/. Taking the duality product with v yields

0Dh.H!�C�
2
�/v; viX�;BXCM hQ

0.�!�/; vi
2
X�;X. Since the two terms in the sum are nonnegative, this im-

plies hQ0.�!�/; viX�;XD0 and h.H!�C�
2
�/v; viX�;XD0, which in turn implies v2ker.H!�C�

2
�/DR�

(here, � is a negative eigenvector of H!� for the eigenvalue ��2� < 0). As a consequence, we must have
hQ0.�!�/; �iX�;X D 0. On the other hand, differentiating the equality E 0.�!/�!Q0.�!/D 0 at ! D !�
yields Q0.�!�/ D H!��

0, where �0 � .d�=d!/j!D!� . Thus we must have 0 D hH!��
0; �iX�;X D

hH!��; �
0iX�;X D ��

2
�.�; �

0/. Therefore, �0 is orthogonal to � and this gives hH!��
0; �0iX�;X � 0.

However, this is not possible if .dQ.�!/=d!/j!D!�<0, since .dQ.�!/=d!/j!D!�D�hH!��
0; �0iX�;X.

As a consequence, if � is a negative element of the spectrum ofƒ, then��2�<�<0 and � is an eigenvalue:
there exists v 2X such that v 6D 0 and

�v Dƒv DH!�vCM hQ
0.�!�/; viX�;XQ

0.�!�/:

Since ��2� < � < 0, we then infer

v D�M hQ0.�!�/; viX�;X.H!� ��/
�1Q0.�!�/: (A-1)
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Since v 6D 0, we can not have hQ0.�!�/; viX�;X D 0. Then, taking the scalar product of (A-1) with
I�1Q0.�!�/ (here, I W X! X� is the usual Riesz isomorphism) gives

g.�/D 0; where g.t/� 1CM
�
.H!� � t /

�1Q0.�!�/; I
�1Q0.�!�/

�
X
; ��2� < t < 0:

It is clear that g is smooth in .��2�; 0/ and that

g0.t/DM
�
.H!� � t /

�2Q0.�!�/; I
�1Q0.�!�/

�
X
DMk.H!� � t /

�1Q0.�!�/k
2
X > 0:

We now study the limit of g at 0�. Let us recall that H!��
0 DQ0.�!�/ and that we have already seen

that hQ0.�!�/; T
0.0/�!�iX�;X D 0; i.e., I�1Q0.�!�/ is orthogonal to ker.H!�/. Therefore, as t ! 0�,�

.H!� � t /
�1Q0.�!�/; I

�1Q0.�!�/
�
! .�0; I�1Q0.�!�//D hQ

0.�!�/; �
0
iX�;X D

dQ.�!/

d! j!D!�

and thus

g.t/! 1CM
dQ.�!/

d! j!D!�
as t ! 0�:

Since .dQ.�!/=d!/j!D!� < 0 by hypothesis, it follows that, if M > �1=.dQ.�!/=d!/j!D!� > 0, the
function g increases in .��2�; 0/ and tends to some negative limit at 0�. In particular, g is negative; hence
we can not have g.�/D 0 with � 2 .��2�; 0/. We have therefore shown that the spectrum of ƒ consists
in a simple eigenvalue 0 with eigenspace spanned by T 0.0/�!� and the rest of the spectrum is positive
and bounded away from 0. This concludes the proof. �

We would like to point out the fact that, in the proof of [Barashenkov 1996], ��2� 62 �.ƒ/ was not
shown, the kernel of ƒ was not studied and the essential spectrum was not considered. Moreover, the
functional spaces are not given; hence we do not know for which perturbations stability holds.

Appendix B. From linear to nonlinear instability

We still consider in this appendix an abstract Hamiltonian equation in the framework of [Grillakis et al.
1987]

@u

@t
D JE 0.u/ (H)

on the real Hilbert space X, with scalar product . � ; � /X. Here E WX!R is of class C2 and J WX�!X is a
closed linear operator with dense domain and skew-symmetric in the sense that .u; Jw/XD�hw; JuiX�;X
for u 2 X, w 2 X�.

We assume that there exists a C0-group T of unitary operators in X generated by T 0.0/, which is
skew-adjoint and with dense domain, and that E is invariant by T ; that is, E.T .!/u/D E.u/ for any
! 2R, u2X. Assume moreover that T .!/J D JT .�!/� for any ! 2R and that there exists B WX!X�,
linear and bounded, such that B� D B and JB is an extension of T 0.0/. We then set

Q.u/� 1
2
hBu; uiX�;X;
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which is invariant by the flow (H) (see [Grillakis et al. 1987]). By “bound state”, we mean a particular
solution U of (H) of the form U.t/D T .!t/� for some ! 2 R and where � 2 X, � 6D 0. In other words,
E 0.�/D !Q0.�/.

There exist an open interval �� R, not reduced to a singleton, and a mapping � 3 ! 7! �! 2X of
class C1 such that, for any ! 2�,

E 0.�!/D !Q
0.�!/; �! 2D.T

0.0/3/\D.JIT 0.0/2/; T 0.0/�! 6D 0:

The solution U.t/D T .!t/� is said to be stable in X if, for any " > 0, there exists ı > 0 such that
any solution to (H) with initial datum uin 2 BX.�; ı/ is global in time and remains in BX.�; "/ for t � 0.
Otherwise, it is said to be unstable. This supposes some knowledge of the Cauchy problem for (H) (at
least existence of solutions). If we are given some Banach space Y � X with continuous imbedding
X ,!Y, we may also say that the solution U.t/DT .!t/� is said to be stable from X to Y if, for any ">0,
there exists ı > 0 such that any solution to (H) with initial datum uin 2 BX.�; ı/ remains in BY.�; "/ for
t � 0. Clearly, a solution stable in X is precisely a solution stable from X to X, and is also stable from X

to Y; hence instability from X to Y is a stronger statement that instability in X.
In our framework, the notion of orbital stability is more relevant. Let us consider G a group and

T W R�G! GLc.X/ a unitary representation of R�G on X, extending T W R! X and leaving E and Q
invariant. Then, U.t/ D T .!t/� is said to be orbitally stable in X (for the group G) if, for any " > 0,
there exists ı > 0 such that any solution to (H) with initial datum uin 2 B.�; ı/ is global in time and
remains in

S
.!;g/2R�GB.T.!; g/�; "/ for t � 0. We may also define orbital instability from X to Y�X

in a natural way.
In [Grillakis et al. 1987; 1990], a general framework for the stability analysis for the “bound state” has

been given. In particular, the nonlinear orbital instability is proved in [Grillakis et al. 1987] through the
construction of a Liapounov-type functional. However, this method does not give a clear understanding
neither of how we get farther from the “bound state”, nor on which timescale it occurs.

The need for allowing an additional group of invariances G can be seen in the case of bound state
solutions, that is U.t/D ei!t�! , to the nonlinear Schrödinger equation

i@t‰C�‰C‰f .j‰j
2/D 0; (NLS)

or the nonlinear Klein–Gordon equation in Rd

@2t‰ D�‰C‰f .j‰j
2/; (NLKG)

since, then, the invariance by translation in space must be taken into account in the definition of orbital
stability, and we are in a case where GD Rd acts naturally by translation. The translations are taken into
account in [Cazenave and Lions 1982]. In [Grillakis et al. 1987; 1990], the notion of orbital stability
is for G trivial. It is clear from the definition that orbital stability for GD f0g implies orbital stability
for arbitrary G. For the instability in the nonlinear Schrödinger equation or the nonlinear Klein–Gordon
equation, [Grillakis et al. 1987] and [Shatah and Strauss 1985] work with radial H 1 functions. The fact



STABILITY FOR SUBSONIC TRAVELING WAVES OF THE NONLINEAR SCHRÖDINGER EQUATION 1399

that this also implies the orbital instability with the action of GD Rd by translations follows immediately
from the fact that for any � 2 Œ0; 2�� the manifold M� �fe

i��. � �y/; y 2Rd g is orthogonal toH 1
rad.R

d /.
For the stability analysis of a “bound state” U.t/D T .!�t /.�!�/, it is natural to consider the lineariza-

tion of (H) near �. More precisely, we linearize according to the ansatz u.t/D T .!�t /.�!� C v.t//, so
that the “bound state” becomes stationary. The linearized problem then becomes

@v

@t
D J.E 00.�/�!Q00.�//v D JLv; (Hlin)

where, I W X! X� denoting the Riesz isomorphism, J� J I W X! X is skew-adjoint.
The purpose of this appendix is to give a general result, for Hamiltonian equations, showing that linear

instability implies nonlinear (orbital) instability. By linear instability, we mean that the complexification
of [JL]C has at least one eigenvalue in the right half-space fRe> 0g. The argument follows ideas from
the works of F. Rousset and N. Tzvetkov [2008; 2009].

Showing the existence of an unstable eigenvalue can be done through various techniques: see [Grillakis
et al. 1990] (in the framework of [Grillakis et al. 1987] when J is onto), [Grillakis 1988] (assuming
a special structure of the Hamiltonian equation); for uses of the Vakhitov–Kolokolov function, see
[de Bouard 1995], [Di Menza and Gallo 2007] or [Pelinovsky and Kevrekidis 2008]. When J is not onto,
we quote [Lopes 2002]. For one-dimensional partial differential equations, one may also use the Evans
function (see the survey [Sandstede 2002]) as in [Pego and Weinstein 1992; Gardner and Zumbrun 1998;
Kapitula and Sandstede 1998; Zumbrun 2008]. The paper [Lin 2008] proposes another approach which
allows treating pseudodifferential equations, such as the BBM equation, the Benjamin–Ono equation,
regularized Boussinesq equations, the intermediate long wave equation, etc.

In order to pass from linear to nonlinear instability, the following result is standard. We refer to the
paper by D. Henry, J. Perez and W. Wreszinski [Henry et al. 1982]. It can also be found in [Grillakis
1988; Shatah and Strauss 2000].

Theorem B.1 [Henry et al. 1982; Grillakis 1988; Shatah and Strauss 2000]. We assume that A generates
a continuous semigroup on X and that �.A/ meets the right half-space fRe> 0g. We assume moreover
that F WX !X is locally Lipschitz continuous and satisfies, for some ˛ > 0, kF.v/kX D O.kvk1C˛X / as
v! 0. Then, the solution � D 0 is unstable for the equation @tv DAvCF.v/.

In [Shatah and Strauss 2000], it is claimed that an orbital instability result can also be established.
Theorem B.1 shows nonlinear instability without assuming that the equation is Hamiltonian. However,
if (Hlin) can be solved using a semigroup, it does not give the growth of its norm. Moreover, it does not
say that, if the initial datum is in a most unstable direction, that is, an eigendirection of A corresponding
to an eigenvalue of maximal positive real part (plus the complex conjugate if necessary), then one can
track the exponential growth of the solution. In particular, it does not explain the mechanism of instability
and does not give any information on the timescale on which one see the instability. For instance, some
strong instability results are shown by proving blow-up in finite time (see [Berestycki and Cazenave
1981]), but the instability due to an exponentially growing mode holds on a much smaller timescale.
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We wish to provide here some results clarifying the instability mechanism by tracking the exponentially
growing mode.

A spectral mapping theorem for linearized Hamiltonian equations. When we want to prove a nonlinear
instability result from a linear instability one, we need some information on the growth of the semigroup
JL, when such a semigroup etJL exists, which we shall assume in this appendix. The growth estimate on
etJL relies classically on the following spectral mapping result due to J. Prüss [1984], which generalizes
the work of L. Gearhart [1978].

Theorem B.2 [Prüss 1984]. Let X be a complex Hilbert space and A an unbounded operator on X which
generates a continuous semigroup etA on X . For t 2 .0;C1/, we have

�.etA/ n f0g D

�
e�t ; either

�
�C

2i�

t
Z

�
\ �.A/ 6D∅; or sup

k2Z





�A���
2i�k

t

��1




Lc.X/

DC1

�
:

The following result is an immediate corollary.

Corollary B.3. Let X be a complex Hilbert space and A an unbounded operator on X which generates a
continuous semigroup etA on X . Assume that, for any 
 2 R�, we have

lim sup
j� j!C1

k.A� 
 � i�/�1kLc.X/ <C1;

and that there exists #0 2 Œ0;C1/ such that �ess.A/Dfi#; # 2R; j#j �#0g. Then, for any t 2 .0;C1/,
the spectral mapping holds: �.etA/ n f0g D et�.A/.

Proof. Since �ess.A/D fi#; # 2 R; j#j � #0g, we have S1 � et�.A/ � �.etA/. If � 2 C does not have
modulus one, then note that, when .�C .2i�=t/Z/\�.A/D∅, the supremum for k 2 Z in Theorem B.2
can be C1 only when jkj !C1, and we conclude with our hypothesis. �

The fact that we exclude 0 in the spectral mapping theorem just comes from the fact that we consider a
semigroup and not a group. However, in most Hamiltonian PDEs, we have time reversibility and we have
actually a continuous group and not only a semigroup. In most cases, we work with A WD.A/� Y ! Y

where Y is a real Hilbert space, thus for applying Theorem B.2 or Corollary B.3 we have to consider,
as usual, the complexified operator AC W D.AC/ � D.A/˚ iD.A/ � YC � Y ˚ iY ! YC defined by
AC.uC iv/D AuC iAv.

It seems that the first time Theorem B.2 is used to prove a growth estimate on a semigroup was by
T. Kapitula and B. Sandstede [1998]. Later, F. Gesztesy et al. [2000] also used this result for bound states
for (NLS). The bounds on the resolvent in [Kapitula and Sandstede 1998] were proved using the particular
structure of the linearized operator. In [Gesztesy et al. 2000], the computations are more involved and
rely on suitable kernel estimates of some Hilbert–Schmidt operators. The same type of estimates have
also been used in [Di Menza and Gallo 2007].

The main objective of this appendix is to provide a generalization of these results to a wide class of
Hamiltonian equations. Indeed, the approaches in [Kapitula and Sandstede 1998; Gesztesy et al. 2000]
seem specific to the problem. In addition, it is not clear whether the computations in [Gesztesy et al.
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2000; Di Menza and Gallo 2007] can be extended to other types of equations. In particular, in [Chiron
2012] and in the present paper, we have a situation similar to the one studied in [Di Menza and Gallo
2007], namely traveling wave solutions to a nonlinear Schrödinger equation with nonzero condition at
infinity, but, for nonzero propagation speeds, the traveling wave is not real-valued (as it is in [Di Menza
and Gallo 2007] for stationary waves or for bound state solutions), and the block diagonal structure of the
linearized Hamiltonian disappears. An additional difficulty is that, in [Chiron 2012] and the present work,
the limits of the traveling waves at C1 and �1 differ.

The proof we give is based on ideas from [Rousset and Tzvetkov 2008; 2009] and makes very few
spectral assumptions on L.

Assumption A. The spectrum of L consists in a finite number (possibly zero) of nonpositive eigenvalues
��1, . . . , ��q in .�1; 0�, each one with finite multiplicity, and the rest of the spectrum is positive
and bounded away from 0. Furthermore, for any 1 � k � q, we have ker.L C �k/ � D.J/ and
JŒker.LC�k/��D.L/. Finally, there exists #0 2 Œ0;C1/ such that �ess.JL/D fi#; # 2R; j#j � #0g.

The first hypothesis on the location of the spectrum of L is quite weak, since it is satisfied when L is
bounded from below and has essential spectrum positive and bounded away from zero. Indeed, if ı > 0 is
such that �ess.L/� Œ2ı;C1/, then the eigenvalues of L in .�1; ı� are isolated, of finite multiplicity,
and are bounded from below by assumption. The second hypothesis ker.LC�k/�D.LJ/ is a regularity
assumption on the eigenvectors.

Let us recall that Theorem 25 ensures that the number of eigenvalues (with algebraic multiplicities) of
JL in the right half-space fRe> 0g is less than or equal to the number of negative eigenvalues of L, and
hence is finite under Assumption A. Let us now state our main result, the proof of which is given starting
on page 1413.

Theorem B.4. We make Assumption A and suppose that JL generates a continuous semigroup. Then,
for any t 2 .0;C1/, the spectral mapping holds: �.etŒJL�C/ n f0g D et�.ŒJL�C/. Furthermore, defining


0 � sup
˚
Re.�/; � 2 �.ŒJL�C/\fRe� 0g

	
2 Œ0;C1/;

for any ˇ > 0, there exists M.ˇ/ > 0 such that, for any t � 0, we have

ketJL
kLc.X/ �M.ˇ/e

.
0Cˇ/t :

Assume in addition 
0 > 0 and define

m�max
˚
algebraic multiplicity of �; � 2 �.ŒJL�C/ s.t. Re�D 
0

	
2 N�:

Then, there exists M0 > 0 such that, for any t � 0, we have

ketJL
kLc.X/ �M0.1C t /

m�1e
0t :

In particular, Theorem B.4 provides a very simple proof of the spectral mapping theorem used in
[Gesztesy et al. 2000; Di Menza and Gallo 2007]. Indeed, the self-adjoint operator L involved in these
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papers is block diagonal:

LD

�
L1 0

0 L2

�
;

and both L1, L2 have at most two nonnegative eigenvalues. More generally, if L1 and L2 are closed
self-adjoint operators on X verifying Assumption A and if N WX!X is a linear bounded operator which
is compact with respect to L1 and L2, then the self-adjoint operator

LD

�
L1 N

N� L2

�
also satisfies Assumption A. Indeed, L is bounded from below (since N is bounded) and its essential
spectrum is �ess.L1/[ �ess.L2/� Œı;C1/ for some positive ı, since N is compact with respect to L1
and L2. In [Kapitula and Sandstede 1998, Section 7.1; Georgiev and Ohta 2012, Proposition 10], a
spectral mapping theorem is used for such an operator. In [Kapitula and Sandstede 1998], the specific
algebra of the problem was used, and for [Georgiev and Ohta 2012], the proof relies on the arguments in
[Gesztesy et al. 2000], but here again, in both cases, we may use Theorem B.4 to show the same result.

Passing from linear to nonlinear instability.

Semilinear type models. We start with a classical result for “semilinear” equations, proved on page 1416.

Theorem B.5. Let X be a real Hilbert space, and consider an evolution equation of the form

dv

dt
DAvCˆ.v/;

where ˆ W X ! X is a locally Lipschitz mapping satisfying ˆ.v/ D O.kvk2X / as v ! 0 and A is a
linear operator which generates a semigroup. We assume that AC WD.AC/�XC!XC has an unstable
eigenvalue in the right half-plane fRe> 0g and a finite number of eigenvalues in fRe> 0g. We define


0 � sup
˚
Re.�/; � 2 �.ŒJL�C/\fRe> 0g

	
2 .0;C1/

and fix �2 �.AC/ with Re.�/D 
0 and an associated eigenvectorwC 2D.AC/ such that kRe.wC/kX D 1.
Assume furthermore that there exist 0� ˇ < 
0 and M0 > 0 such that

ketAkLc.X/ �M0e
.
0Cˇ/t :

Then, 0 is an unstable solution. More precisely, there exist K > 0, "0 > 0 and ı0 > 0 such that, for any
0 < ı < ı0, the solution v with initial datum vin D ı Re.wC/ 2D.A/ exists at least on Œ0; ln.2"0=ı/=
0�
and satisfies, for 0� t � ln.2"0=ı/=
0,

kv.t/� ı Re.et�wC/kX �Kı
2e2t
0 and kv.t/kX � ıe

t
0 �Kı2e2t
0 :

In particular, for 0 < " < "0, we see the instability for t D .1=
0/ ln.2"=ı/. If Y is a Banach space
containing X and with continuous imbedding X ,! Y , the trivial solution 0 is also unstable from X to Y .
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Let us observe that it is always possible to choose the (complex) eigenvector w so that Re.wC/ 6D 0

since, for any � 2R, ei�w is also an eigenvector. The following corollary deals with the orbital instability.
We recall that, under Assumption A, ŒJL�C has a finite number of eigenvalues in fRe> 0g.

Corollary B.6. We make Assumption A and suppose that JL generates a continuous semigroup. Let Y

be a Banach space containing X and with continuous imbedding X ,! Y. Assume moreover that ŒJL�C
has at least one eigenvalue in fRe> 0g and choose � 2 C with

Re.�/D 
0 �max
˚
Re.�/; � 2 �.ŒJL�C/\fRe> 0g

	
2 .0;C1/

and wC 2 D.AC/ an associated eigenvector such that kRe.wC/kX D 1. We assume moreover that
M� fT.!; g/�!� ; ! 2 R; g 2Gg is a C1 submanifold of X. We finally suppose that the equation (H) is
semilinear in the sense that there exists ˆ WX!X locally Lipschitz continuous such that ˆ.v/D O.kvk2X/

as v! 0 and

J.E 0�!�Q
0/.�!� C v/D J.E

00
�!�Q

00/.�!�/Œv�Cˆ.v/:

Then, there exist K > 0, "0 > 0 and ı0 > 0, depending only on Re.wC/ and M, with the following
properties. For any 0 < ı < ı0, the solution u to (H) with initial datum uin D �!� C ı Re.wC/ 2D.A/

exists at least on Œ0; ln.2"0=ı/=
0� and satisfies, for 0� t � ln.2"0=ı/=
0,

distY.u.t/;M/�
ı

K
et
0 �Kı2e2t
0 :

In particular, the “bound state” solution T .!�t /�!� is nonlinearly orbitally unstable from X to Y and,
for 0 < " < "0=K, we see the instability for t D .1=
0/ ln.2K"=ı/.

In [Henry et al. 1982], a similar assertion is made for the orbital instability in the remark after Theorem 2
there, but with Y D X. For applications to PDEs, the space X may be a Sobolev space H s , and Y a
space like L2 or L1 for instance. The framework of [Grillakis et al. 1987] is the single energy space
(for instance H 1), but an instability result established by tracking exponentially growing modes allows
proving instability from the regular space X (H 1) to the nonregular space Y (L2 or L1). Here, we may
obtain instability in L2.

Remark B.7. In the framework of [ibid.], where a Liapounov-type functional is used, it follows that the
instability is seen for a time at most equal to K"=ı2, where K is some positive constant. This timescale
is much larger than the natural one .1=
0/ ln.2K"=ı/.

Some applications. We may apply our result to the nonlinear Schrödinger equation

i@t‰C�‰C‰f .j‰j
2/D 0; (NLS)

or the nonlinear Klein–Gordon equation

@2t‰ D�‰C‰f .j‰j
2/ (NLKG)

in Rd . We shall consider a nonlinearity f at least C1, so that we are in the framework of [ibid.].
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� A bound state solution for these two equations is a particular solution of the form U.t/D ei!t�! . The
instability is in general linked to the fact that

d

d!

Z
Rd
j�! j

2 dx < 0 for (NLS), resp.
d

d!

�
!

Z
Rd
j�! j

2 dx

�
< 0 for (NLKG).

The existence of at least one unstable eigenvalue has been shown under this assumption by [Grillakis
1988] for radial bound states with an arbitrary number of nodes and in [Grillakis et al. 1990] for radial
ground states. Corollary B.6 may be applied with XDH s.Rd /, where s 2N, s > d=2 and assuming that
the nonlinearity satisfies f 2CsC2, and YDL2.Rd / or L1.Rd /. The result in [Mizumachi 2006] shows
the instability of linearly unstable bound states for (NLS) (in dimension d D 2) with f .%/D %.p�1/=2

by showing the exponential growth of an unstable eigenmode. Our result gives a simple proof of this
result, but restricted to the sufficiently smooth cases, namely p an odd integer or p > 5C2s > 5Cd . For
nonsmooth nonlinearities, the situation is more delicate (see [Mizumachi 2006]). An alternative approach
is to combine Strichartz estimates with the growth estimate on the semigroup etJL given in Theorem B.4,
as in [Georgiev and Ohta 2012].

� Corollary B.6 also applies to the discrete nonlinear Schrödinger equation

i@t‰nC ".‰nC1� 2‰nC‰n�1/C‰nf .j‰nj
2/D 0 for all n 2 Z; (DNLS)

as studied in [Melvin et al. 2008] with the saturated nonlinearity f .%/D ˇ=.1C %/, ˇ > 0 (existence of
traveling wave solution) and in [Fitrakis et al. 2007] (defocusing cubic DNLS, i.e., f .%/D�ˇ% for some
ˇ > 0). The numerical analysis in [Fitrakis et al. 2007] shows the existence of linearly unstable bound
state solutions. The traveling wave solutions numerically obtained in [Melvin et al. 2008] are linearly
stable, but it may happen that, for other nonlinearities f , some are linearly unstable.

Quasilinear PDEs. For quasilinear problems, we shall not make restrictions on the smoothness of the
nonlinearity. The result relies on the strategy of E. Grenier [2000] and [Rousset and Tzvetkov 2008;
2009]. We consider the evolution equation

du

dt
D J.L0uCrF.u// (E)

for u W Rd ! R� , where F 2 C1.R� ;R/, with the following hypotheses. The operator J is a Fourier
multiplier, skew-symmetric on L2, into and with domain containing H 1. There exists � > 0 such that the
operator L0 is a Fourier multiplier with domain containing H 2� , symmetric and having a self-adjoint
realization on L2.Rd ;R�/. Moreover, for some C > 0, the operator L0 satisfies

1

C
kuk2H� � .L0u; u/L2 � Ckuk

2
H� :

The framework proposed in [Rousset and Tzvetkov 2008] was for L0 coercive in H 1; that is, � D 1.
For the examples below, we shall have � D 1=2 or � D 2, which requires very few modifications to the
proof of [ibid.]. We still assume that, for some group G, there exists a unitary representation of G on X,
T W G! GLc.X/, leaving the equation (E) invariant.
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We consider a stationary solution of the evolution equation (E), that is, some Q 2H1.Rd ;R�/ such
thatL0QCrF.Q/D 0. We are interested in the stability of this solution. We assume that the commutator
ŒJ;r2F.Q/� is bounded in L2, which is the case when J is bounded in L2 or when d D 1 and J D @x .
We suppose that, for the problem

@u

@t
D J.L0uCrF.u

a
Cu/�rF.ua/CG/;

where ua is smooth, bounded as well as its derivatives and G 2 C.R;H s/ for every s, we have local
well-posedness for s large enough: there exists a time T > 0 and a unique solution in C.Œ0; T �;H s/. We
moreover assume that, for some continuous nondecreasing function � W RC! RC with �.0/D 0, the
tame estimate

j.@˛xJ fr
2F.wC v/Œv�g; @˛xv/L2 j � �.kwkW sC1;1 CkvkH s /kvk2H s ;

with j˛j � s, holds true. In order to control high-order derivatives, we finally require that, for s large
enough, there exist a self-adjoint operator Ms and Cs such that

j.Msu; v/L2 j � CskukH skvkH s ; .Msu; u/L2 � kuk
2
H s �Cskuk

2
H s�min.�;1/

and
Re.JLu;Msu/L2 � CskukH skukH s�min.�;1/

(for a criterion which ensures the existence of such a multiplier, see Lemma 5.1 in [ibid.]).

Adapting the strategy of [Rousset and Tzvetkov 2008; 2009], we may deduce the following result.
Since the proof is very similar, we omit it.

Theorem B.8. We make the above assumptions and assume moreover that L0 C r2F.Q/ satisfies
Assumption A in L2. We assume furthermore that ŒJ.L0Cr2F.Q//�C has an unstable eigenvalue in the
right half-plane fRe> 0g, define


0 � sup
˚
Re.�/; � 2 �.ŒJ.L0Cr2F.Q//�C/\fRe> 0g

	
2 .0;C1/

and fix � 2 �.ŒJ.L0 C r2F.Q//�C/ satisfying Re.�/ D 
0 and an associated eigenvector wC 2

D.ŒJ.L0 C r
2F.Q//�C/ such that kRe.wC/kH s D 1. There exists s0 2 N such that, if s � s0, Q

is nonlinearly unstable from H s to L2 and to L1: there exist K > 0, "0 > 0 and ı0 > 0 such that, for
any 0 < ı < ı0, the H s solution u to (E) with initial datum uin DQC ı Re.wC/ 2H

s exists at least on
Œ0; ln.2"0=ı/=
0� and satisfies, for 0� t � ln.2"0=ı/=
0,

ku.t/�Q� ı Re.et�wC/kH s �Kı2e2t
0 I

hence
ku.t/�QkL2 � ıe

t
0 �Kı2e2t
0 and ku.t/�QkL1 � ıe
t
0 �Kı2e2t
0 :

If , in addition, M� fT.g/Q; g 2 Gg is a C1 submanifold of H s , then we also have

distL2.u.t/;M/�Kıet
0 �Kı2e2t
0 and distL1.u.t/;M/�Kıet
0 �Kı2e2t
0 :
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In particular, for 0 < " < "0=K, we see the nonlinear orbital instability for t D .1=
0/ ln.2K"=ı/.

Some applications to nonlinear dispersive wave equations. Some model quasilinear equations are given
by wave equations (in one space dimension) such as the generalized Korteweg–de Vries equation

@tuC @x.f .u//C @
3
xuD 0; (gKdV)

the generalized regularized Korteweg–de Vries equation, also called Benjamin–Bona–Mahony equation
or Peregrine equation when f .u/D u2=2,

@tuC @xuC @x.f .u//� @t@
2
xuD 0; (gBBM)

the generalized regularized Boussinesq equation

@2t u� @
2
xu� @

2
x.f .u//� @

2
t @
2
xuD 0: (grBsq)

Each of these equations admits a nontrivial solitary wave solution u.t; x/D Uc.x� ct/ for c in .0;C1/,
.1;C1/ and .�1;�1/[ .1;C1/, respectively. For these solitary wave solutions, the momentum is,
respectively,

P.Uc/D

Z
R

U 2c dx D kUck
2
L2
; P.Uc/D

Z
R

U 2c C .@xUc/
2 dx; P.Uc/D c

Z
R

U 2c C .@xUc/
2 dx:

The existence of exactly one unstable eigenvalue has been shown with the use of an Evans function by
R. Pego and M. Weinstein [1992] for these three equations under the condition dP.Uc/=dc < 0. Lopes
[2002] also gives a linear instability result. Equations (gBBM) and (grBsq) turn out to be semilinear due
to the regularization effect. Indeed, they may be written

@tuC .1� @
2
x/
�1@xuC .1� @

2
x/
�1@x.f .u//D 0; @2t u� .1� @

2
x/
�1@2xu� .1� @

2
x/
�1@2x.f .u//D 0:

Therefore, Corollary B.6 applies to these two models and this shows the nonlinear instability when linear
instability holds.

In [Lin 2008], some generalizations of the equations (gKdV), (gBBM) and (grBsq) have been proposed
that take into account pseudodifferential operators. These are, respectively,

@tuC @x.f .u//� @xMuD 0; (I)

@tuC @xuC @x.f .u//C @tMuD 0 (II)

and

@2t u� @
2
xu� @

2
x.f .u//C @

2
tMuD 0: (III)

Here, M is a Fourier multiplier of symbol OM: bMw D OM Ow (here, O� denotes the Fourier transform). We
assume OM� 0 (otherwise, see [ibid.]). When MD�@2x , these equations reduce to (gKdV), (gBBM) and
(grBsq), respectively. The Benjamin–Ono equation ( OMD j�j), the Smith equation ( OMD

p
1C �2�1) and

the intermediate long wave (or Whitham) equation ( OMD �= tanh.�H/� 1=H , for some constant H > 0)
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are common models of dispersive wave equations that are of type (I). We refer to [ibid.] for references on
these models and the existence of solitary waves. The associated momentum is

PI.Uc/D

Z
R

U 2c dx D kUck
2
L2
; PII.Uc/D k.1CM/1=2Uck

2
L2
; PIII.Uc/D ck.1CM/1=2Uck

2
L2
:

For these models, Evans function type arguments do not work since we no longer have a differential
equation (it is nonlocal). The paper [ibid.] proposes a different approach than the Evans function technique
for establishing the existence of unstable eigenvalues. However, it is not completely clear whether this
method extends easily to the case of systems such as the Euler–Korteweg system (EK) (given at the
beginning of Section 5A).

Theorem B.9 [Lin 2008]. We consider one of the equations (I), (II) or (III) with f of class C1 satisfying
f .0/Df 0.0/D0 and jf .u/j� juj for juj!C1. We assume moreover that OM is even, nonnegative, and
satisfies, for somem�1, 0< limC1 OM.�/=�

m� limC1 OM.�/=�m<1. Assume that c 7!�cDUc.x�ct/

is a C1 branch of traveling wave solution to (I), (II) or (III) with Uc 2 Hm=2.R/ defined near c� and
suppose that the linearized operator L has exactly one negative eigenvalue, that ker L is spanned by
@xUc� and that .dP.Uc/=dc/jcDc� < 0. Then, Uc� is linearly unstable.

It is not easy to determine whether the hypotheses of Theorem B.9 hold true when M is not a (differential)
Sturm–Liouville operator. See however [Albert 1992] on this question. It is clear that, if the assumptions
of Theorem B.9 are satisfied, then Assumption A is also satisfied. As for the (gBBM) and the (grBsq)
equations, the equations (II) and (III) turn out to be semilinear; thus we may prove nonlinear orbital
instability by applying Corollary B.6.

The Kawahara equation (or fifth-order KdV equation)

@tuC @x.f .u//C˛@
3
xuCˇ@

5
xuD 0; (K)

with ˛, ˇ 6D 0 two real constants, is another relevant dispersive model. For this equation, it may happen
that the linearized equation around the solitary wave has more than one negative eigenvalue, in which
case [Grillakis et al. 1987; 1990; Lopes 2002; Lin 2008] do not give a clear necessary and sufficient
condition for stability. T. Bridges and G. Derks [2002] give a sufficient condition for linear instability for
solitary wave solutions, but also for other types of traveling solutions. This condition is probably not
necessary since it may happen that there exist at least two unstable eigenvalues, or two complex conjugate
eigenvalues.

Instead of stating a general result for nonlinear orbital instability, we shall consider several model cases
on which we will verify the hypotheses of Theorem B.8, in particular the question of the existence of the
multiplier Ms .

Proposition B.10. We consider the equation (I), namely

@tuC @x.f .u//� @xMuD 0;
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with f of class C1 satisfying f .0/D f 0.0/D 0 and jf .u/j � juj for juj !C1. We assume that OM is
one of the following functions:

��2 (KdV)I �4C˛�2 (Kawahara)I j�j (Benjamin–Ono)I
�

tanh.�H/
�
1

H
(intermediate long wave)I

q
1C �2� 1 (Smith):

There exists s0 > 0 such that, if there exists c 2 R such that (I) has a nontrivial solitary wave Uc 2 L2

which is linearly unstable, then, for any s � s0, it is also nonlinearly unstable from H s to H s , to L2 and
to L1.

By application of Theorem B.8, we are thus able to show the nonlinear instability from H s to L2

or L1 by tracking the exponentially growing mode (this question was left open in [Lin 2008] and also in
[Lopes 2002]). In particular, we obtain the L2 nonlinear instability of the linearly unstable solitary waves
for these models.

Proof. All the assumptions for Theorem B.8 for these types of models are satisfied in Section 8.1 in
[Rousset and Tzvetkov 2008], except the existence of the multiplier Ms .

For the KdV equation, where � D 1, we shall take (for s � 2 an integer)

Ms � .�1/
s@2sx C

1C 2s

3
.�1/s�1@s�1x ff

0.Q/@s�1x � g;

as the computations from [ibid., Section 8.1] show. For the Kawahara equation, with � D 2, we take (for
s � 4 an integer)

Ms � .�1/
s@2sx C

1C 2s

5
.�1/s�1@s�2x ff

0.Q/@s�2x � g

and, since the computations are very similar, we omit them. For the Benjamin–Ono equation, we have
OM.�/ D j�j and � D 1=2, and we will then have to deal with pseudodifferential operators which are

Fourier multipliers with homogeneous symbol. For this type of operator, we shall need some commutator
estimates. We denote by F.w/ or Ow the Fourier transform of w, and H the Fourier multiplier with symbol
�i sgn.�/ (this is the Hilbert transform).

Lemma B.11. (i) Let h 2 L1.R/ with F.M1=2h/ 2 L1.R/ ( for instance, h 2H� .R/ for some � > 1).
Then, there exists C > 0 such that, for any v 2H 1=2.R/,

kM
1
2 .hv/� hM

1
2 vkL2.R/ � CkvkL2.R/:

(ii) Let h 2 L1.R/ with F.M3=2h/ 2 L1.R/ ( for instance, h 2H� .R/ for some � > 2). Then, there
exists C > 0 such that, for any v 2H 3=2.R/,

M

3
2 fhvg�hM

3
2 v� 3

2
Œ@xh�M

1
2Hv




L2.R/

� CkvkL2.R/:

(iii) Let h 2 L1.R/ with F.@xM1=2h/ 2 L1.R/ ( for instance, h 2H� .R/ for some � > 2). Then, there
exists C > 0 such that, for any v 2H 3=2.R/,

@xM

1
2 fhvg�h@xM

1
2 v� 3

2
Œ@xh�M

1
2 v



L2.R/

� CkvkL2.R/:
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Proof. We have

F.M
1
2 .hv/� hM

1
2 v/.�/D

Z
R

j�j
1
2 Oh.� � �/ Ov.�/ d� �

Z
R

j�j
1
2 Oh.� � �/ Ov.�/ d�:

Using the inequality
ˇ̌
j�j1=2� j�j1=2

ˇ̌
� C j� � �j1=2, we thus obtainˇ̌

F.M
1
2 .hv/� hM

1
2 v/.�/

ˇ̌
� C

Z
R

j� � �j
1
2 j Oh.� � �/j � j Ov.�/j d� D C fjF.M

1
2h/j � j Ovjg.�/

and we conclude with the classical convolution estimate L1 �L2 � L2. This argument does not provide
the sharpest bound in h, since it involves kF.M1=2h/kL1 , whereas the use of paradifferential calculus
will use only khkC1=2 . However, we shall to use this refinement here.

The starting point for the second inequality isˇ̌
j�j

3
2 � j�j

3
2 �

3
2
j�j

1
2 sgn.�/.� � �/

ˇ̌
� C j� � �j

3
2 :

Using the homogeneity � D ��, this is a direct consequence of the easy inequalityˇ̌̌
j� j

3
2 � 1�

3

2
.� � 1/

ˇ̌̌
� C j� � 1j

3
2 :

Therefore,ˇ̌
F
�
M
3
2 fhvg�hM

3
2 v� 3

2
Œ@xh�M

1
2Hv

�
.�/
ˇ̌

D

ˇ̌̌̌Z
R

j�j
3
2 Oh.� � �/ Ov.�/ d� �

Z
R

j�j
3
2 Oh.� � �/ Ov.�/ d� �

Z
R

3
2
j�j

1
2 sgn.�/.� � �/ Oh.� � �/ Ov.�/ d�

ˇ̌̌̌
� C

Z
R

j� � �j
3
2 j Oh.� � �/j � j Ov.�/j d�

D C jF.M
3
2h/j � j Ovj;

and we conclude as before. For the third inequality, we argue in a similar way with the estimateˇ̌
i�j�j

1
2 � i�j�j

1
2 � i 3

2
j�j

1
2 .� � �/

ˇ̌
� C j� � �j

3
2 :

The proof is complete. �

For the Benjamin–Ono equation, OM.�/D j�j, � D 1=2 and the index s will be half an integer: s 2N=2.
Therefore, we set s D Œs�Cfsg, with Œs� integer and fsg 2 f0I 1=2g. Let us define, for s 2 N=2, s � 1,

Ms �

�
.�1/s@2sx C 
sM

1
2 @s�1x ff

0.Q/@s�1x M
1
2 � g if fsg D 0;

.�1/Œs�@
2Œs�
x MC 
s@

Œs�
x ff

0.Q/@
Œs�
x � g if fsg D 1

2
;

for some real constant 
s to be determined later. It is clear that Ms is self-adjoint on L2 and that there
exists Cs > 0 such that

j.Msu; v/L2 j � CskukH skvkH s and .Msu; u/L2 � kuk
2
H s �Cskuk

2

H
s� 1
2

:
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To verify the assumptions for the multiplier Ms , it remains to study Re.J.L0Cr2F.Q//u;Msu/L2 .
When fsg D 0, i.e., s 2 N, this quantity is

Re.@x.MC cCf 0.Q//u;Msu/L2

D Re.@xMu; .�1/s@2sx u/L2 C 
s Re.@xMu;M
1
2 @s�1x ff

0.Q/@s�1x M
1
2ug/L2

CRe.@xŒf 0.Q/u�; .�1/s@2sx u/L2 C 
s Re.@xŒf 0.Q/u�;M
1
2 @s�1x ff

0.Q/@s�1x M
1
2ug/L2

C c Re.@xu;Msu/L2 : (B-1)

By skew-adjointness, the first and last scalar products are zero. By integration by parts and the Leibniz
formula, we deduce, since Q 2H1,

Re.@xŒf 0.Q/u�; .�1/s@2sx u/L2

D Re.@sC1x Œf 0.Q/u�; @sxu/L2

� Re.f 0.Q/@sC1x u; @sxu/L2 C .sC 1/Re.@xŒf 0.Q/�@sxu; @
s
xu/L2 CCskukH skukH s�1

�
�
sC 1

2

�
Re.@xŒf 0.Q/�@sxu; @

s
xu/L2 CCskukH skukH s�1 :

Similarly, using the easy estimates kM1=2vkL2 �KkvkH1=2 and khvkH1=2 � C.h/kvkH1=2 for h 2L1

with F.M1=2h/ 2 L1 (this is an immediate consequence of Lemma B.11),


s Re.@xŒf 0.Q/u�;M
1
2 @s�1x ff

0.Q/@s�1x M
1
2ug/L2

D 
s.�1/
s�1 Re.M

1
2 @sxŒf

0.Q/u�; f 0.Q/@s�1x M
1
2u/L2

� 
s.�1/
s�1 Re.M

1
2 Œf 0.Q/@sxu�; f

0.Q/@s�1x M
1
2u/L2 CCkuk

2

H
s� 1
2

:

Using Lemma B.11, we deduce kM1=2Œf 0.Q/@sxu��f
0.Q/M1=2@sxukL2 � C.Q/kukH s ; thus


s Re.@xŒf 0.Q/u�;M
1
2 @s�1x ff

0.Q/@s�1x M
1
2ug/L2

� 
s.�1/
s�1 Re.f 0.Q/@sxM

1
2u; f 0.Q/@s�1x M

1
2u/L2 CCkukH skuk

H
s� 1
2

D

s

2
.�1/s Re.@xŒf 0.Q/�@s�1x M

1
2u; f 0.Q/@s�1x M

1
2u/L2 CCkukH skuk

H
s� 1
2

� Ckuk2

H
s� 1
2

CCkukH skuk
H
s� 1
2
� CkukH skuk

H
s� 1
2
:

We now turn to the term


s Re.@xMu;M
1
2 @s�1x ff

0.Q/@s�1x M
1
2ug/L2 D 
s.�1/

s�1 Re.@sxu;M
3
2 ff 0.Q/@s�1x M

1
2ug/L2 :

Using Lemma B.11, we write

M
3
2 ff 0.Q/@s�1x M

1
2ug�f 0.Q/@s�1x M2u� 3

2
@xŒf

0.Q/�M
1
2Hf@s�1x M

1
2ug




L2
� C.Q/k@s�1x M

1
2ukL2

� C.Q/kuk
H
s� 1
2
;
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which implies


s Re.@xMu;M
1
2 @s�1x ff

0.Q/@s�1x M
1
2ug/L2

� 
s.�1/
s�1 Re.@sxu; f

0.Q/@s�1x M2u/L2 C
3
2

s.�1/

s�1 Re.@sxu; @xŒf
0.Q/�M

1
2Hf@s�1x M

1
2ug/L2

CCkukH skuk
H
s� 1
2
:

Noticing that M2 D�@2x and M1=2H@s�1x M1=2 D @s�1x MHD�@sx (since MH has symbol equal to �i�),
we infer


s Re.@xMu;M
1
2 @s�1x ff

0.Q/@s�1x M
1
2ug/L2

� 
s.�1/
s Re.@sxu; f

0.Q/@sC1x u/L2 C
3
2

s.�1/

s Re.@sxu; @xŒf
0.Q/�@sxu/L2 CCkukH skuk

H
s� 1
2

D 
s.�1/
s Re.@sxu; @xŒf

0.Q/�@sxu/L2 CCkukH skuk
H
s� 1
2

by integration by parts.
Reporting these estimates into (B-1), we infer

Re.@x.MC cCf 0.Q//u;Msu/L2

�
�
sC 1

2

�
Re.@xŒf 0.Q/�@sxu; @

s
xu/L2 C 
s.�1/

s Re.@sxu; @xŒf
0.Q/�@sxu/L2 CCkukH skuk

H
s� 1
2
:

Therefore, the choice


s � .�1/
s�1

�
sC 1

2

�
provides the desired control

Re.@x.MC cCf 0.Q//u;Msu/L2 � CkukH skuk
H
s� 1
2
:

When fsg D 1=2, the computations are similar: (B-1) becomes now

Re.@x.MC cCf 0.Q//u;Msu/L2

D Re.@xMu; .�1/Œs�@2Œs�x Mu/L2 C 
s Re.@xMu; @Œs�x ff
0.Q/@Œs�x ug/L2

CRe.@xŒf 0.Q/u�; .�1/Œs�@2Œs�x Mu/L2 C 
s Re.@xŒf 0.Q/u�; @Œs�x ff
0.Q/@Œs�x ug/L2

C c Re.@xu;Msu/L2 ; (B-2)

and the first and last scalar products still vanish. Moreover, by integration by parts and the Leibniz
formula, we deduce, since Q 2H1,


s Re.@xŒf 0.Q/u�; @Œs�x ff
0.Q/@Œs�x ug/L2 D 
s.�1/

Œs� Re.@Œs�C1x Œf 0.Q/u�; f 0.Q/@Œs�x u/L2

� 
s.�1/
Œs� Re.f 0.Q/@Œs�C1x u; f 0.Q/@Œs�x u/L2CCkuk

2
H Œs�

� 
s.�1/
Œs��1 Re.@xŒf 0.Q/�@Œs�x u; f

0.Q/@Œs�x u/L2CCkuk
2
H Œs�

� Ckuk2
H Œs� D Ckuk

2

H
s� 1
2

:
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Furthermore,

Re.@xŒf 0.Q/u�; .�1/Œs�@2Œs�x Mu/L2

D Re.M
1
2 @Œs�C1x Œf 0.Q/u�; @Œs�x M

1
2u/L2

� Re.@xM
1
2 ff 0.Q/@Œs�x ug; @

Œs�
x M

1
2u/L2

C Œs�Re.@xM
1
2 f@xŒf

0.Q/�@
Œs��1
x ug; @

Œs�
x M

1
2u/L2 CCkuk

H
Œs�� 1

2
kuk

H
Œs�C 1

2
:

For the second scalar product, we write, by Lemma B.11,

Re.@xM
1
2 f@xŒf

0.Q/�@Œs��1x ug; @Œs�x M
1
2u/L2

D Re.M
1
2 f@2xŒf

0.Q/�@Œs��1x ug; @Œs�x M
1
2u/L2 CRe.M

1
2 f@xŒf

0.Q/�@Œs�x ug; @
Œs�
x M

1
2u/L2

� Ckuk
H
Œs�� 1

2
kuk

H
Œs�C 1

2
CRe.@xŒf 0.Q/�@Œs�x M

1
2u; @Œs�x M

1
2u/L2 CCkukH Œs�kuk

H
Œs�C 1

2

� Re.@xŒf 0.Q/�@Œs�x M
1
2u; @Œs�x M

1
2u/L2 CCkuk

H
s� 1
2
kukH s :

For the first scalar product, we use Lemma B.11 once again:

Re.@xM
1
2 ff 0.Q/@Œs�x ug; @

Œs�
x M

1
2u/L2

� Re.f 0.Q/@xM
1
2 @Œs�x u; @

Œs�
x M

1
2u/L2 C

3
2

Re.@xŒf 0.Q/�@Œs�x M
1
2u; @Œs�x M

1
2u/L2 CCkuk

H
s� 1
2
kukH s

� Re.@xŒf 0.Q/�@Œs�x M
1
2u; @Œs�x M

1
2u/L2 CCkuk

H
s� 1
2
kukH s :

As a consequence, since Œs�D s� 1
2

,

Re.@xŒf 0.Q/u�; .�1/Œs�@2Œs�x Mu/L2 �
�
sC 1

2

�
Re.@xŒf 0.Q/�@Œs�x M

1
2u; @Œs�x M

1
2u/L2CCkuk

H
s� 1
2
kukH s :

We turn finally to the term


s Re.@xMu; @Œs�x ff
0.Q/@Œs�x ug/L2 D 
s.�1/

Œs� Re.@Œs�x M
1
2u; @xM

1
2 ff 0.Q/@Œs�x ug/L2 ;

and infer, by Lemma B.11,


sRe.@xMu;@Œs�x ff
0.Q/@Œs�x ug/L2�
s.�1/

Œs�Re.@Œs�x M
1
2u;f 0.Q/@xM

1
2 @Œs�x u/L2

C
3
2

s.�1/

Œs�Re.@Œs�x M
1
2u;@xŒf

0.Q/�M
1
2 @Œs�x u/L2CCkukH s� 1

2
kukH s

D
s.�1/
Œs�Re.@Œs�x M

1
2u;@xŒf

0.Q/�M
1
2 @Œs�x u/L2CCkukH s� 1

2
kukH s :

Therefore,

Re.@x.MC cCf 0.Q//u;Msu/L2

�
�
sC 1

2
C 
s.�1/

Œs�
�

Re.@Œs�x M
1
2u; @xŒf

0.Q/�M
1
2 @Œs�x u/L2 CCkukH s� 1

2
kukH s I

hence choosing 
s � .�1/Œs��1.sC 1
2
/ gives the result.
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It remains to study the cases of the intermediate long wave equation and the Smith equation, for
which OM is, respectively,

�

tanh.�H/
�
1

H
;

q
1C �2� 1:

We denote by M0 the operator with symbol j�j (the one of the Benjamin–Ono equation), and define Ms

as for the Benjamin–Ono case (hence with “M”DM0). We observe that, in both cases, QM�M�M0 is
bounded on L2. Indeed, its symbol is continuous in R and, for �!˙1,

OM.�/D
�

tanh.�H/
�
1

H
D

�

sgn.�/CO.e�2j�jH /
�
1

H
D j�j �

1

H
CO.j�je�2j�jH /

and
OM.�/D

q
1C �2� 1D j�j

q
1C ��2� 1D j�j � 1CO.j�j�1/;

respectively. In the quantity Re.@x.MC c C f 0.Q//u;Msu/L2 , we then have to bound from above
the extra term Re.@x. QMu/;Msu/L2 ; that is (using the skew-adjointness for the higher-order derivatives
in Ms),

Re.@x. QMu/; 
sM
1
2

0 @
s�1
x ff

0.Q/@s�1x M
1
2

0 ug/L2

D 
s.�1/
s�1 Re.@sxM

1
2

0 .
QMu/; f 0.Q/@s�1x M

1
2

0 u/L2 if fsg D 0I

Re.@x. QMu/; 
s@Œs�x ff
0.Q/@Œs�x ug/L2 D 
s.�1/

Œs� Re.@Œs�C1x . QMu/; f 0.Q/@Œs�x u/L2 if fsg D 1
2
:

We then note that, in both cases, one may actually split QM D M�M0 D
QMc C

QMh, where QMc is the
multiplication by �1=H (respectively, �1) and QMh has a symbol which is continuous in R and O.j�j�1/

at infinity, so that QMh is bounded from H� to H�C1 if � � 0. Therefore, when fsg D 0, we easily get

Re.@x. QMu/; 
sM
1
2

0 @
s�1
x ff

0.Q/@s�1x M
1
2

0 ug/L2

D 
s.�1/
s�1 Re.@sxM

1
2

0 .
QMcu/; f

0.Q/@s�1x M
1
2

0 u/L2C
s.�1/
s�1 Re.@sxM

1
2

0 .
QMhu/; f

0.Q/@s�1x M
1
2

0 u/L2

�
1
2

s.�1/

s Re.@s�1x M
1
2

0 u;
QMc@xŒf

0.Q/�@s�1x M
1
2

0 u/L2CCkuk
2

H
s� 1
2

� Ckuk2

H
s� 1
2

and similarly when fsg D 1=2. Therefore, the estimate

Re.@x.MC cCf 0.Q//u;Msu/L2 � Ckuk
H
s� 1
2
kukH s

remains true for the intermediate long wave equation and the Smith equation. The proof of Proposition B.10
is thus completed by applying Theorem B.9. �

We now turn to the deferred proofs of Theorem B.4, Theorem B.5, and Corollary B.6.

Proof of Theorem B.4. We shall prove the resolvent estimate required in Corollary B.3. Let us consider
�D 
 C i� 2 C with 
 6D 0 and the resolvent equation .JL��/v D†, or

.
 C i�/v D JL.v/�†: (B-3)
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By hypothesis, the essential spectrum of JL is of the form i ŒR n .�#0;C#0/�. Moreover, we have seen
that JL has a finite number of eigenvalues in the half-space fRe > 0g; hence, for j� j � �0 sufficiently
large, we know that there exists a unique solution v to (B-3). By taking the scalar product with L.v/, we
deduce the conservation law


.v;L.v//X D�Re.†;L.v//X: (B-4)

By our assumption, there exist a finite (possibly empty) number of eigenvalues in .�1;0�, .��1; : : : ;��q/,
each one of finite multiplicity. For any 1 � k � q, we fix an orthonormal basis .�k;`/1�`�nk of the
eigenspace ker.LC�k/. By Assumption A, any eigenvector �k;` is smooth in the sense that �k;` 2D.J/
and J�k;` 2D.L/.

We then make a spectral orthogonal decomposition

v D

qX
kD1

nkX
`D1

˛k;`�k;`C vC;

where L.�k;`/D �k�k;` and .vC;L.vC//X � ıkvCk2X for some positive ı. In the double sum, we have
a finite number (independent of v) of terms. Inserting this into (B-4) yields

j
 jıkvCk
2
X � j
 jı.vC;L.vC//X � ı

�
jRe.†;L.v//XjC

P
k;`

�kj˛k;`j
2

�
�Kk†kXkvkXCK

X
k;`

j˛k;`j
2:

Using the inequality ab � "a2 C b2=.4"/ with a D kvkX, b D Kk†kX and " D j
 jı=2, the equality
kvk2X D kvCk

2
XC

P
k;` j˛k;`j

2 and incorporating the term j
 jıkvCk2X=2 in the left-hand side, we infer

j
 jı

2
kvCk

2
X �K

0
X
k;`

j˛k;`j
2
CK 00k†k2X: (B-5)

On the other hand, since �k;` 2D.J/ and J�k;` 2D.L/ by Assumption A, taking the scalar product
of (B-1) with �k;` provides

.
 C i�/˛k;` D�.v;LJ�k;`/X� .†; �k;`/X:

Consequently,

.j
 jC j� j/j˛k;`j �Kk;`kvkXCKk†kXI

thus

.j
 jC j� j/2
X
k;`

j˛k;`j
2
�K0kvk

2
XCKk†k

2
X DK0

X
k;`

j˛k;`j
2
CKkvCk

2
XCKk†k

2
X;

which implies, if j� j � 1C
p
K0� j
 j,X

k;`

j˛k;`j
2
�K

kvCk
2
XCk†k

2
X

.j
 jC j� j/2�K0
:
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Reporting this into (B-5) gives

j
 jı

2
kvCk

2
X �K

0K
kvCk

2
XCk†k

2
X

.j
 jC j� j/2�K0
CK 00k†k2X:

If j� j � 1C
p
K0C 4KK 0=j
 jı� j
 j, we deduce

j
 jı

4
kvCk

2
X �

�
K 00C

K 0K

.j
 jC j� j/2�K0

�
k†k2X �K1k†k

2
X;

and it follows that
kvk2X D kvCk

2
XC

X
k;`

j˛k;`j
2
�K2k†k

2
X;

where K2 does not depend on j� j (large enough), as wished.

The proof of the first semigroup estimate then follows easily; see, for instance, Proposition 2 in [Prüss
1984].

Proof of the semigroup estimate when 
0>0. Here, we assume 
0>0. As a consequence, the spectrum
of ŒJL�C is of the form �s[�u, where �ess.ŒJL�C/� �s � fRe� 0g and ∅ 6D �u � fRe> 0g consists in a
finite number of eigenvalues of finite algebraic multiplicities. Therefore, we may define (see, e.g., [Kato
1976; Hislop and Sigal 1996]) the spectral Riesz projection

P�
1

2i�

Z
�

.ŒJL�C� z/
�1 dz;

where � is any simple (positively oriented) closed curve enclosing �u. As a consequence, P is bounded,
commutes with ŒJL�C on D.ŒJL�C/ and satisfies �.ŒJL�CP/D �u, �.ŒJL�C.Id�P//D �s. Moreover,
ŒJL�CP is bounded, and hence generates a continuous semigroup, etŒJL�CP, given by the exponential
series

etŒJL�CP
D

C1X
nD0

tn.ŒJL�CP/n

nŠ
:

In addition, ŒJL�C.Id�P/ D ŒJL�C � ŒJL�CP also generates a continuous semigroup and we have
etŒJL�C D etJLPetŒJL�C.Id�P/.

The semigroup generated by the bounded operator ŒJL�CP is easily analyzed. We shall now apply the
spectral mapping theorem of J. Prüss (Theorem B.2) to ŒJL�C.Id�P/ in order to control the growth of
its norm. By Corollary B.3, it suffices to estimate its resolvent ŒŒJL�C.Id�P/� .
 C i�/��1 for large j� j
(note that �.ŒJL�C.Id�P// D �s � fRe � 0g). If † 2 XC and j� j is large, it is clear that the solution
u 2 XC to ŒŒJL�C.Id�P/� .
 C i�/�uD† is given by

uD ŒŒJL�C� .
 C i�/�
�1.Id�P/†�

1


 C i�
P†I

thus, for j� j large,

ŒŒJL�C.Id�P/�.
Ci�/��1




Lc.XC/
�


ŒŒJL�C�.
Ci�/�

�1




Lc.XC/
kId�PkLc.X/C

1

j
 C i� j
kPkLc.XC/
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is bounded. Consequently, by Theorem B.2 and since �s�fRe�0g, �.etŒJL�C.Id�P//D et�.ŒJL�C.Id�P//D

et�s � ND.0; 1/. It follows that, for any � > 0, there exists K� > 0 such that

ketŒJL�C.Id�P/
kLc.XC/ �K�e

�t for all t � 0:

Since etŒJL�CP is given by the exponential series, we also have the optimal estimate

ketŒJL�CP
kLc.XC/ �K0.1C t /

m�1e
0t for all t � 0

by definition of m. We conclude by taking � D 
0=2 for instance.

Proof of Theorem B.5. Since A generates a continuous semigroup, v is a solution to @tv DAvCˆ.v/

if and only if it is a mild solution:

v.t/D etAvin
C

Z t

0

e.t��/Aˆ.v.�// d�:

There exists r0 > 0 such that kˆ.v/kX � Mkvk2X if kvkX � r0. We choose vin D ı Rew, where
kRewkX D 1 and w is an eigenvector for the eigenvalue �, and write the solution under the form
v D etAvinC Qv D Re.et�w/C Qv. If � 2 R, we can choose w 2D.A/�D.AC/. Then,

Qv.t/D

Z t

0

e.t��/Aˆ.ı Re.et�w/C Qv.�// d�:

Let us define r1 � min
�
r0; .
0 � ˇ/=.2MM0/

�
and let T > 0 be the maximal time such that T <

ln.r=.2ı//=
0 and k Qu.�/kX < r1=2 in Œ0; T /, where 0 < r < r1 will be determined later. We shall work
for 0� t < T , so that kı Re.et�w/C Qv.�/kX < ıet
0 C r1=2� r1 � r0. Then,

k Qv.t/k �

Z t

0

ke.t��/AkLc.X/Mkı Re.e��w/C Qv.�/k2 d�

� 2M0M

Z t

0

e.
0Cˇ/.t��/
�
ı2e2�
0 CkQv.�/k2

�
d�

�
2M0M


0�ˇ
ı2e2t
0 C r1M0M

Z t

0

e.
0Cˇ/.t��/k Qv.�/kX d�;

since ˇ < 
0. Applying now the Gronwall inequality to e�.
0Cˇ/tk Qv.t/kX then gives, since M0Mr1 <


0�ˇ,

k Qu.t/kX �

�
2M0M


0�ˇ
C

2r1M
2
0M

2

.
0�ˇ/.
0�ˇ� r1M0M/

�
ı2e2t
0 DKı2e2t
0 :

We now choose r �
p
r1=K, so that the right-hand side is �Kr2=4 < r1=2, and this implies that u exists

at least on Œ0; ln.r=.2ı//=
0�. In addition, for 0� t < T ,

ku.t/kX � ıe
t
0 �k Qu.t/kX � ıe

t
0 �Kı2e2t
0 ;

as desired. We conclude choosing "0 > 0 so small that 2"0�K"20 � "0.
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Proof of Corollary B.6. We pick some 0<ˇ <
0 (for instance ˇD 
0=2) in order to have the semigroup
estimate required in Theorem B.5. The solution u.t/ D T .!�t /.�!� C v.t// satisfies, for 0 � t �

�10 ln.2"0=ı/,

kv.t/kX D kT .�!�t /u.t/� .�!� C ı Re.et�w//kX �Kı
2e2t
0 :

Hence, T .�!�t /u.t/ remains at distance �K"0 from �!� 2M and therefore

distX.u.t/;M/� distX.ı Re.et�w/;M��/�Kı2e2t
0 :

Assume � 2 R. Then, we observe that the straight line R 3 � 7! �w is transverse to the tangent space
T�M of the manifold M, since w is an eigenvector of JL for � 6D 0, and hence does not belong to the
kernel of L. Therefore, distX.�w;M��/� j� j=K1 for small j� j. Thus,

distX.u.t/;M/�
1

K1
ıet��Kı2e2t
0 :

If �2CnR, the equation ŒJL�C.w/D�w splits as JL.Rew/DRe.�/Rew�Im.�/ Imw and JL.Imw/D

Im.�/RewCRe.�/ Imw. Therefore, Rew and Imw do not belong to ker.L/. Consequently, the surface
C 3 � 7! Re.�w/ is transverse to the tangent space T�M of the manifold M, and we conclude as before
that

distX.u.t/;M/�
1

K1
ıet
0 �Kı2e2t
0 :
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