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SOME MINIMIZATION PROBLEMS IN THE CLASS OF CONVEX FUNCTIONS
WITH PRESCRIBED DETERMINANT

NAM Q. LE AND OVIDIU SAVIN

We consider minimizers of linear functionals of the type

L(u):/ uda—/udx
aQ Q

in the class of convex functions u with prescribed determinant det D%u = f.
We obtain compactness properties for such minimizers and discuss their regularity in two dimensions.

1. Introduction

In this paper, we consider minimizers of certain linear functionals in the class of convex functions with
prescribed determinant. We are motivated by the study of convex minimizers u# for convex energies E of
the type
E(u) = / F(det Dzu) dx + L(u), with L a linear functional,
Q

which appear in the work of Donaldson [2002; 2009] in the context of existence of K#hler metrics of
constant scalar curvature for toric varieties. The minimizer u solves a fourth-order elliptic equation with
two nonstandard boundary conditions involving the second- and third-order derivatives of u (see (1-4)
below). In this paper, we consider minimizers of L (or E) in the case when the determinant det Du
is prescribed. This allows us to understand better the type of boundary conditions that appear in such
problems and to obtain estimates also for unconstrained minimizers of E.

The simplest minimization problem with prescribed determinant which is interesting in its own right is

minimize / udo, withu € A,
Q

where €2 is a bounded convex set, do is the surface measure of €2, and i is the class of nonnegative
solutions to the Monge—Ampere equation det D*u = 1:

Ay = {u : Q2 — [0, 00) | u convex, det D*u = 1}.

Question. Is the minimizer u smooth up to the boundary 02 if Q is a smooth, say uniformly convex,

domain?
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In the present paper, we answer this question affirmatively in dimensions n = 2. First, we remark that
the minimizer must vanish at xg, the center of mass of 92:

X0 = ][ xdo.
Q

u(x) — u(xo) — Vu(xo)(x — xo) € o

This follows easily since

and

/ [u(x) —u(xg) — Vu(xy)(x — xo)] do = / [u—u(xp)ldo < / udo,
a0 a0 3

Q

with strict inequality if u(xg) > 0. Thus we can reformulate the problem above as minimizing
/ udo —H" 1 OQ)u(xp)
30

in the set of all solutions to the Monge—Ampére equation det D?u = 1 which are not necessarily nonnegative.
This formulation is more convenient since we can now perturb functions in all directions.
More generally, we consider linear functionals of the type

L(u):/ uda—/udA,
Q2 Q

with do, dA nonnegative Radon measures supported on 0€2 and €2 respectively. In this paper, we study
the existence, uniqueness and regularity properties for minimizers of L, that is,

minimize L(u) for all u € o P
in the class s of subsolutions (solutions) to a Monge—Ampére equation det D%u > f:
o= {u:Q— R|u convex, det D*u > f}.

Notice that we are minimizing a linear functional L over a convex set & in the cone of convex functions.
Clearly, the minimizer of the problem (P) satisfies det D?u = f in Q. Otherwise we can find v €
such that v = u in a neighborhood of 92, and v > u in Q with strict inequality in some open subset, and
thus L(v) < L(u).
We assume throughout that the following 5 conditions are satisfied:
(1) €2 1is a bounded, uniformly convex, C L1 domain.
(2) f is bounded away from 0 and oco.
(3) do =o(x)d¥"~ '3, with the density o (x) bounded away from 0 and co.
(4) dA = A(x) dx in a small neighborhood of 9€2, with the density A(x) bounded from above.

(5) L(u) > 0 for all u convex but not linear.
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The last condition is known as the stability of L (see [Donaldson 2002]), and in two dimensions, is
equivalent to saying that for all linear functions /, we have

LI =0 and LIT)>0 ifit#£0inQ,

where [T = max(/, 0) (see Proposition 2.4).

Notice that the stability of L implies that L (/) = 0 for any linear function /, and hence do and d A
must have the same mass and the same center of mass.

A minimizer u of the functional L is determined up to linear functions, since both L and # are invariant
under addition with linear functions. We “normalize” u by subtracting its tangent plane at, say, the center
of mass of 2. In Section 2, we shall prove in Proposition 2.5 that there exists a unique normalized
minimizer to the problem (P).

We also prove a compactness theorem for minimizers.

Theorem 1.1 (compactness). Let u; be the normalized minimizers of the functionals Ly with data
(fr, doy, dAg, 2) that has uniform bounds in k. Precisely, the inequalities (2-1) and (2-4) below are
satisfied uniformly ink and p < fi < p~\. If

Je— f, dox — do, dAr — dA,

then uy — u uniformly on compact sets of 2, where u is the normalized minimizer of the functional L

with data (f, do, dA, Q).
If u is a minimizer, then the Euler-Lagrange equation reads (see Proposition 3.6)
if 9 : 2 — R solves UY¢;; =0, then L(p) =0,

where U'/ are the entries of the cofactor matrix U of the Hessian D?u. Since the linearized Monge—
Ampere equation is also an equation in divergence form, we can always express the Q2-integral of a
function ¢ in terms of a boundary integral. For this, we consider the solution v to the Dirichlet problem

Uvij=-dAinQ, v=0o0ndQ.

Integrating by parts twice and using 9;(U"/) = 3 (U /)y =0, we can compute

/(pdA:—/goUijvij=/gai Uijvj —/ (pUijvjv,-
Q Q Q Gle)

:—/(Uij(pij)v —i—/ gini-ivvj—/ in-jvjviz—/ gan</vivj. 1-1)
Q IQ IQ 0

From the Euler—Lagrange equation, we obtain
Uijvivj =—0 onodf2.
Since v =0 on 92, we have v; = v, v;, and hence

ij ij vy 2
UYvjvj =U"Yvivjv, = U"v, = (det Diu)v,,
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with x’ L v denoting the tangential directions along d€2. In conclusion, if u is a smooth minimizer, then
there exists a function v such that (u, v) solves the system

detD’u=f inQ,
Uv;j=—dA inQ,
v=0 on 92,
U"v,=—0o on 0%2.

1-2)

This system is interesting since the function v above satisfies two boundary conditions, Dirichlet and
Neumann, while # has no boundary conditions. Heuristically, the boundary values for u can be recovered
from the term U"Y = det Df/u, which appears in the Neumann boundary condition for v.

Our main regularity results for the minimizers « are in two dimensions.

Theorem 1.2. Assume that n = 2, and the conditions (1)—~(5) hold. If o € C*(dR), f € C*(RQ), and
Q2 € C>*, then the minimizer u € C>*(2) and the system (1-2) holds.

We obtain Theorem 1.2 by showing that u# separates quadratically on 9€2 from its tangent planes, and
then we apply the boundary Holder gradient estimates for v which were obtained in [Le and Savin 2013].

As a consequence of Theorem 1.2, we obtain higher regularity if the data (f, do, dA, 2) is more
regular.

Theorem 1.3. Assume that n = 2 and the conditions (1)—~(5) hold. If o € C*R), f € C®(RQ),
AeC®(Q),and 3Q € C*®, then u € C®(RQ).

In Section 6, we provide an example of Pogorelov type for a minimizer in dimensions n > 3 that shows
that Theorem 1.3 does not hold in this generality in higher dimensions.

We explain briefly how Theorem 1.3 follows from Theorem 1.2. If u € C>%(R), then U/ € C¥(RQ),
and Schauder estimates give v € C 2.%(Q), and thus v, € C1%(3Q). From the last equation in (1-2) we
obtain U"Y = det Di,u e C1*(3Q). This implies u € C>*(3R), and from the first equation in (1-2), we
find u € C>%(). We can repeat the same argument and obtain that u € C*¢ for any k > 2.

As we mentioned above, our constraint minimization problem is motivated by the minimization of the
Mabuchi energy functional from complex geometry in the case of toric varieties

M(u):/—logdetD2u+/ uda—/udA.
Q aQ Q

In this case, do and dA are canonical measures on 9€2 and 2. Minimizers of M satisfy the following
fourth-order equation, called Abreu’s equation [1998]:

n 2.ij
.. 0“uY
u = E =—A,
J - 8)6,‘3)61'
i,j=1

where u'/ are the entries of the inverse matrix of D?u. This equation and the functional M have been
studied extensively by Donaldson [2002; 2005; 2008; 2009]; see also [Zhou and Zhu 2008]. In Donaldson’s
papers, the domain €2 was taken to be a polytope P C R" and A was taken to be a positive constant. The
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existence of smooth solutions with suitable boundary conditions has important implications in complex
geometry. It says that we can find Kihler metrics of constant scalar curvature for toric varieties.
More generally, one can consider minimizers of the convex functional

E(u):/ F(detDzu)—F/ uda—/ udA, (1-3)
Q Elo) Q
where F (") is a convex and decreasing function of # > (. The Mabuchi energy functional corresponds to
F(t) = —logt, whereas in our minimization problem (P) (with f = 1),
ift <1,
Fi={" "'~
0 ifr>1.

Minimizers of E satisfy a system similar to (1-2):

—F'(detD*u)=v inQ,
Uijvijz—dA in €2,
v=0 on 0%2,
U"v, =—0o on 0%2.

(1-4)

A similar system but with different boundary conditions was investigated by Trudinger and Wang
[2008a]. If the function F is strictly decreasing, then we see from the first and third equations above that
det D?u = oo on 9%2, and therefore we cannot expect minimizers to be smooth up to the boundary (as is
the case with the Mabuchi functional M (u)).

If F is constant for large values of ¢ (as in the case we considered), then det D?u becomes finite on the
boundary and smoothness up to the boundary is expected. More precisely, assume that

F e CY1((0,0)), G(t):=F@") isconvexins, and G'(0%) = —o0,
and there exists fy > 0 such that
F(t) =0 on [ty, 00), F”(t) > 0 on (0, to].

Theorem 1.4. Assume n =2 and the conditions (1)—(5) and the above hypotheses on F are satisfied. If
o € CYAR), A € C*(Q), and IR € C>2, then the normalized minimizer u of the functional E defined in
(1-3) satisfies u € C 2.%(Q), and the system (1-4) holds in the classical sense.

The paper is organized as follows. In Section 2, we discuss the notion of stability for the functional L
and prove existence, uniqueness and compactness of minimizers of the problem (P). In Section 3, we state
a quantitative version of Theorem 1.2, Proposition 3.1, and we also obtain the Euler—Lagrange equation.
Proposition 3.1 is proved in Sections 4 and 5, first under the assumption that the density A is bounded
from below and then in the general case. In Section 6, we give an example of a singular minimizer in
dimension n > 3. Finally, in Section 7, we prove Theorem 1.4.
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2. Stability inequality and existence of minimizers

Let © be a bounded convex set and define

L(u):/ udo—/udA
IQ Q

for all convex functions u : @ — R with u € L'(3R2, do). We assume that
o>pond2and A(x) < ,zf1 in a neighborhood of 92 2-1)
for some small p > 0 and that L is stable, that is,
L(u) > 0 for all u convex but not linear. 2-2)

Assume for simplicity that O is the center of mass of 2. We notice that (2-2) implies L(/) = 0 for any
[ linear, since / can be approximated by both convex and concave functions. We “normalize” a convex
function by subtracting its tangent plane at 0, and this does not change the value of L. First we prove
some lower semicontinuity properties of L with respect to normalized solutions.

Lemma 2.1 (lower semicontinuity). Assume that (2-1) holds and (uy) is a normalized sequence that
satisfies
/ urdo < C, uy — u uniformly on compact sets of €2, (2-3)
a0

for some function u : Q@ — R. Let it be the minimal convex extension of u to 2, that is,

u=uinS, ux) = lirln u(tx) if x € 092.
t—1-
Then
/udA:lim/ updA, / ﬁdosliminf/ uydo,
Q Q a0 Q
and thus

L(u) <liminf L(uy).
Remark. The upper graph of the function i is the closure of the upper graph of u in R"*1.

Proof. Since uy are normalized, they are increasing on each ray out of the origin. For each n > 0 small,
we consider the set 2, := {x € Q : dist(x, Q) < n}, and from (2-1) we obtain

/udefC,o_ln/ urdo <Cn.
Q, IQ

Since this inequality holds for all small n — 0, we easily obtain

/udA:lim/ updA.
Q Q

For each z € 02 and ¢ < 1 we have uy(tz) < ux(z). We let k — oo in the inequality

/uk(tz)daf/ ur(z) do
IQ a0
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and obtain

/u(tz)dofliminf/ uy(z) do,
a0

Q2

and then we lett — 17

/ ﬂdofliminf/ uydo. ]
o Q2

Remark 2.2. From the proof we see that if we are given functionals L; with measures oy, Ay that satisfy
(2-1) uniformly in k and
o — O, Ak — A,

and if (2-3) holds for a sequence uy, then the statement still holds; that is,
L(u) < liminf Ly (uy).

By compactness, one can obtain a quantitative version of (2-2) known as stability inequality. This was
done by Donaldson [2002, Proposition 5.2.2]. For completeness, we sketch its proof here.

Proposition 2.3. Assume that (2-1) and (2-2) hold. Then we can find i > 0 such that

L(u) :=/ uda—/ udAzu,/ udo (2-4)
1o} Q Clo)

for all convex functions u normalized at 0.

Proof. Assume the conclusion does not hold; then there is a sequence of normalized convex functions
(ur) with
/ updo =1, limL(ux) =0,
a0

and thus

lim/ urdA = 1.
Q

Using convexity, we may assume that u; converges uniformly on compact subsets of €2 to a limiting
function u > 0. Let & be the minimal convex extension of u to Q. Then, from Lemma 2.1, we obtain

L(ii) =0, /ﬁdA:l,
Q

and thus u > 0 is not linear and we contradict (2-2). O

Donaldson [2002, Proposition 5.3.1] showed that when n = 2, the stability condition can be checked
easily.

Proposition 2.4. Assume that n = 2, that (2-1) holds, and that for all linear functions | we have
L) =0 and LI >0 iflt #0inQ, (2-5)

where [T =max(l, 0). Then L is stable; that is, condition (2-2) is satisfied.
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Proof. For completeness, we sketch the proof. Assume by contradiction that L(x) < 0 for some convex
function u which is not linear in Q. Let u* be the convex envelope generated by the boundary values of
it — the minimal convex extension of u to €. Notice that u* = iz on 2. Since L(u*) < L(&1) < L(u),
we find L(u*) < 0. Notice that u* is not linear, since otherwise 0 = L(u™) < L(u) < 0 (we used that u
is not linear). After subtracting a linear function, we may assume that #* is normalized and u™* is not
identically 0.

We obtain a contradiction by showing that u* satisfies the stability inequality. By our hypotheses, there
exists i > 0 small such that

L(l+)zu/ I"do
Q2

for any /™. Indeed, by (2-1), this inequality is valid if the “crease” {I = 0} is near d<2, and for all other
I’s, it follows by compactness from (2-5). We approximate from below u* by u}, which is defined as the
maximum of the tangent planes of u* at some points y; € Q,i =1, ..., k. Since u* is a convex envelope
in two dimensions, uj is a discrete sum of /™’s, and hence it satisfies the stability inequality. Now we let
k — oo; since uj < u*, using Lemma 2.1, we obtain that u* also satisfies the stability inequality. ]

Proposition 2.5. Assume that (2-1) and (2-2) hold. Then there exists a unique (up to linear functions)
minimizer u of L subject to the constraint

ued:= {v:§—>R‘vc0nvex, detDszf},

where p < f < p~! for some p > 0. The minimizer satisfies det D*u = f, and if n = 2, it is unique (up to
linear functions).

Proof. Let (u;) be a sequence of normalized solutions such that L(u;) — infy L. By the stability
inequality, we see that [, 9q Uk do are uniformly bounded, and after passing to a subsequence, we may
assume that u; converges uniformly on compact subsets of €2 to a function u. Then u € s, and from
the lower semicontinuity we see that L(u) = infy L, that is, u is a minimizer. Notice that det D*u=f.
Indeed, if a quadratic polynomial P with det D>P > f touches u strictly from below at some point
Xo € £, in a neighborhood of xg, then we can replace u in this neighborhood by max{P + €, u} € s, and
the energy decreases.

Next we assume w is another minimizer. We use the strict concavity of M — log(det D>M) in the space
of positive symmetric matrices M, and obtain that for almost every x where u, w are twice differentiable,

log det Dz(HTw)(x) > Llogdet D*u(x) + 1 log det D*w(x) > log f(x).

This implies (« + w)/2 € o is also a minimizer and D*u = D*w almost everywhere in Q. Since f is
bounded above and below, we know that u, w € Wli’cl (see [De Philippis and Figalli 2013]) in the open
set Q" where both u, w are strictly convex. This gives that u — w is linear on each connected component
of Q. If n =2, then Q' = , and hence u — w is linear. O

Remark. Uniqueness is expected to hold in any dimension. For this one needs to show that the set of
strict convexity of a solution to the Monge—Ampere equation is always connected.
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Remark. The arguments above show that the stability condition is also necessary for the existence of a
minimizer. Indeed, if u is a minimizer and L (ug) = O for some convex function uq that is not linear, then
u + ug is also a minimizer and we contradict the uniqueness.

Proof of Theorem 1.1. We assume that the data ( fx, doy, dAg, 2) satisfies (2-1), (2-4) uniformly in k
and p < fi < ,0_1. For each k, let wy be the convex solution to det D?wy = fr in © with w; = 0 on 0€2.
Since f; are bounded from above, we find w; > —C, and so by the minimality of uy,

Li(ug) < Li(wg) <C.

It follows from the stability inequality that

/ urydoy <C,
Q2

and we may assume, after passing to a subsequence, that u; — u uniformly on compact subsets of 2.
We need to show that « is a minimizer for L with data (f, do, dA, 2). For this it suffices to prove that
for any continuous v : @ — R which solves det D?v = f in 2, we have L(u) < L(v).
Let v; be the solution to det D?v; = f; with boundary data v, = v on 3S2. Using appropriate barriers,
it is standard to check that fy — f, fi < p~' implies vy — v uniformly in Q. Then we let k — oo in
Li(ur) < Li(vg), use Remark 2.2, and obtain

L(u) < lim inka(uk) < lim Lk(vk) = L(U),

which finishes the proof. U

3. Preliminaries and the Euler-Lagrange equation

We rewrite our main hypotheses in a quantitative way. We assume that for some small p > 0, we have:

(H1) The curvatures of dQ are bounded from below by p and from above by p~!.

H2) p<f=<p '
(H3) do =0 (x)d¥" 109, with p <o (x) < p~ .
(H4) dA = A(x) dx in a small neighborhood
Q, = {x € Q| dist(x, 0Q2) < p}

of 9 with A(x) < p~ L.

(H5) For any convex function u# normalized at the center of mass of €2, we have

L(u) ::/ udo—/udAZp/ udo.
Q2 Q R

We denote by ¢, C positive constants depending on p, and their values may change from line to line
whenever there is no possibility of confusion. We refer to such constants as universal constants.
Our main theorem, Theorem 1.2, follows from the next proposition, which deals with less regular data.
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Proposition 3.1. Assume that n = 2 and that conditions (H1)—(HS) hold.

(i) Then the minimizer u obtained in Proposition 2.5 satisfies u € C#(Q)NC1(9Q) for some universal
B € (0, 1) and u separates quadratically from its tangent planes on 0%, that is,

Cllx =yl <u(y) —u@) = Vu@x)(y —x) < Clx —y|* forallx,yedQ,

for some C > 0 universal.

(i1) If in addition o € C*(0R), then u |yq€ C27 (3Q) with y = min{e, B}, and
lullczr 9o < Cllollcr o).
We remark that in part (ii), we obtain u € C>7 (32) even though f and A are assumed to be only L.

Proof that Proposition 3.1 implies Theorem 1.2. Theorem 7.3 of [Savin 2013] states that a solution to
the Monge—Ampere equation which separates quadratically from its tangent planes on the boundary
satisfies the classical C*-Schauder estimates. Thus, if the assumptions of Proposition 3.1(ii) are satisfied
and f € C*(RQ), then u € C>7(Q) with its C>? norm bounded by a constant C depending on p, «,
llollce@g). 19€2c2e, and || £l c«(g)- This implies that the system (1-2) holds. If & < B, then we are done.
If o > B, then we use v, € C%(dQ) in the last equation of the system and obtain u € C>*(32), which
gives u € C>%(Q). O

We prove Proposition 3.1 in the next two sections. Part (ii) follows from part (i) and the boundary
Harnack inequality for the linearized Monge—Ampere equation, which was obtained in [Le and Savin
2013, Theorem 2.4]. This theorem states that if a solution to the Monge—Ampere equation with bounded
right-hand side separates quadratically from its tangent planes on the boundary, then the classical boundary
estimate of Krylov holds for solutions of the associated linearized equation.

In order to simplify the ideas, we prove the proposition in the case when the hypotheses (H1), (H2),
(H4) are replaced by

(H1") Q@ = By.
(H2) feC®Q).p=f=p"
(H4') dA = A(x)dx with p < A(x) < p~lin Q and A € C®(Q).

We use (H1") only for simplicity of notation. We will see from the proofs that the same arguments
carry to the general case. We use (H2') so that D?u is continuous in €2 and the linearized Monge—Ampeére
equation is well defined. Our estimates do not depend on the smoothness of f, and thus the general case
follows by approximation from Theorem 1.1. Later, in Section 5, we show that (H4’) can be replaced by

(H4), that is, the bound for A from below is not needed.
First, we establish a result on uniform modulus of convexity for minimizers of L in two dimensions.

Proposition 3.2. Let u be a minimizer of L that satisfies the hypotheses above. Then, for any § < 1, there
exist ¢(8) > 0 depending on p, § such that

xeBis = Sp(x) By ifh <c(d),
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where Sy (x) denotes the section of u centered at x at height h:
Sp(x) ={y € By :u(y) <u(x)+ Vux)(y —x) +h}.

Although this result is well known (see [Trudinger and Wang 2008b, Remark 3.2] for example), we
include its proof here for completeness.

Proof. Without loss of generality, assume u is normalized in Bj, that is, u > 0, u(0) = 0. From the

/ udx <C.
3B

This integral bound and the convexity of u# imply

stability inequality (2-4), we obtain

lul, |Du| < C(8) in By_52,

for any 6 < 1. We show that our statement follows from these bounds. Assume by contradiction that the
conclusion is not true. Then we can find a sequence of convex functions uy satisfying the bounds above
such that

ur (yr) < g (xp) + Vur () (v — xx) + hy (3-1

for sequences xx € Bi_s, yx € dB1_s;2 and hy — 0. Because Duy is uniformly bounded, after passing to
a subsequence if necessary, we may assume

uyp — uy uniformly on 51_5/2, Xk = X¢, Yk —> Vs

1

Moreover, u, satisfies p < det D%u, < p~—, and

U (Ps) = Us (X)) + Vi (X)) (Vs — Xs),

that is, the graph of u,, contains a straight line in the interior. However, any subsolution v to det D?v > p
in two dimensions does not have this property and we reach a contradiction. ([

Since f € C*, we obtain that u € C**(By), and thus the linearized Monge—Ampere equation is well
defined in B;. The next lemma deals with general linear elliptic equations in B; which may become
degenerate as we approach 0 B.

Lemma 3.3. Let $v :=a"/ (x)v;j be a linear elliptic operator with continuous coefficients a'’ e C%(By)
that satisfy the ellipticity condition (a'/ (x)); ;> 01in By. Given a continuous boundary data ¢, there exists
a unique solution v € C(B)) N C3(R) to the Dirichlet problem

Fv=0in B;, v=¢ondB.
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Proof. For each small §, we consider the standard Dirichlet problem for uniformly elliptic equations
Fvs =0in Bj_s, vs = ¢ on dB]_s. Since vs satisfies the comparison principle with linear functions,
it follows that the modulus of continuity of v at points on the boundary d Bi_s depends only on the
modulus of continuity of ¢. Thus, from the maximum principle, we see that vs converges uniformly to a
solution v of the Dirichlet problem above. The uniqueness of v follows from the standard comparison
principle. ]

Remark 3.4. The modulus of continuity of v at points on d B; depends only on the modulus of continuity
of ¢.

Remark 3.5. If &, is a sequence of operators satisfying the hypotheses of Lemma 3.3 with afnj — a'
uniformly on compact subsets of B; and ¥,,v,, =0 in B1, v,, = ¢ on d By, then v,, — v uniformly in Bi.
Indeed, since v,, have a uniform modulus of continuity on d B; and, for all large m, a uniform modulus
of continuity in any ball B;_s, we see that we can always extract a uniform convergent subsequence in B.
Now it is straightforward to check that the limiting function v satisfies £v = 0 in the viscosity sense.

Next, we establish an integral form of the Euler—-Lagrange equations for the minimizers of L.

Proposition 3.6. Assume that u is the normalized minimizer of L in the class si. If ¢ € C*(Q2) N C(Q) is
a solution to the linearized Monge—Ampére equation

U'gij =0inQ,
then

L((p)::/ (de—/(pdA:O.
a0 Q

Proof. Consider the solution u, = u + €@, to

det D’u. = f in By,
Ue=UTF €Y on J0B;.

Since ¢, satisfies the comparison principle and comparison with planes, its existence follows as in
Lemma 3.3 by solving the Dirichlet problems in B;_s and then letting § — 0.
In By, ¢, satisfies

1 1 [ d y
0 = —(det D*uc — det D*u) = — / — det D*(u + tege) dt = a’ ;¢
€ € Jo dt
where (aéj ) is the integral from O to 1 of the cofactor matrix of D*(u + tege), that is,
1
(a);; =/ det D?(u + teg) (D*(u+tegy)) ™ dt.
0

Because u is strictly convex in two dimensions and u — u uniformly on B, D*u. — D*u uniformly
on compact sets of By. Thus, as € — 0, aZ — U"/ uniformly on compact sets of B; and by Remark 3.5,
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we find ¢, — ¢ uniformly in B;. By the minimality of u, we find

e—>0t €

1
0 < lim —(L(ug)—L(u)):/ (pda—/ pdA.
3B B,
By replacing ¢ with —¢, we obtain the opposite inequality. |

4. Proof of Proposition 3.1

In this section, we prove Proposition 3.1 where (H1’), (H2') and (H4') are satisfied. Given a convex

-1

function u € C*°(B;) (not necessarily a minimizer of L) with p < det D>u < p~!, we let v be the solution

to the Dirichlet problem
UYvij=—Ain B, v=0o0naB. 4-1)

Notice that ¥ := C(1 — |x|?) is an upper barrier for v if C is large enough, since
UV, < —CtrU < —C(det D*U)"" = —C(det D*u)"~V/" < —Cp"~D/" < — 4,

and hence

0<w(x) < C> — |x|*) ~ dist(x, dBy). 4-2)

As in Lemma 3.3, the function v is the uniform limit of the corresponding vs that solve the Dirichlet
problem in B;_;. Indeed, since vs also satisfies (4-2), we see that

|U¢31 — v52|Loo <C max{61, 52}.
Let ¢ be the solution of the homogeneous problem
Uijwij=0inBl, ¢=l+on881,

where [T = max{0, /} for some linear function / = b+ v - x of slope |v| = 1. Denote by & := BiN{l =0}
the segment of intersection of the crease of / with B. Then:

Lemma 4.1. / godA:/ l+dA+/ unvd%l,
By B g
where T is the unit vector in the direction of ¥, and hence T 1 v.

Proof. Tt suffices to show the equality in the case when u € C*°(B). The general case follows by writing
the identity in B,_s with vs (which increases as § decreases), and then letting 6 — O.
Let I, be a smooth approximation of /T with

DzleAv@)vdHlLﬂ)ase—)O,
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and let ¢, solve the corresponding Dirichlet problem with boundary I.. Then we integrate by parts and
use 9; U = 0:

(pe —l)dA=— | (e —I)U"vj;dx = / 3i(pe —IUYv; dx
B B B
= —/ 0;j (@e —ie)Uijvdx :/ U""'8,~jl~€vdx.
By B

We let € — 0 and obtain
(0 —1")dA = / U vd¥',
By g
which is the desired conclusion, since U’ = u. |
From Lemma 4.1 and Proposition 3.6, we obtain:

Corollary 4.2. If u is a minimizer of L in the class A, then

/u”vd%l:/ z+do—/ ITdA.
4 9B B

The hypotheses on o and A imply that if the segment & has length 2h with h < hy small, universal then
ch® < / urcvd¥' < Ch,
¥

for some c, C universal.

Lemma 4.3. Let X| and X, be the endpoints of the segment & defined as above. Then

/ oo (1— |x2) d = 4h(M —][ " d%‘), (4-3)
¥ 2 ¥

where 2h denotes the length of &.

Proof. Again we may assume that u € C%(B}), since the general case follows by approximating B; by
B1_s. Assume for simplicity that T = e;. Then

h
/ur,(1—|x|2)d%l=/ 32u(r, a)(h* — 1) dt
4 —h

for some fixed a, and integrating by parts twice, we obtain (4-3). O

We remark that the right-hand side in (4-3) represents twice the area between the segment with end
points (X1, u(X1)), (X2, u(X5)) and the graph of u above .

Definition 4.4. We say that u admits a tangent plane at a point z € d B; if there exists a linear function /,
such that
Xng1 =1 (x)

is a supporting hyperplane for the graph of u at (z, u(z)) but for any € > 0,

Xpy1 =l (x) —€z-(x —2)
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is not a supporting hyperplane. We call /; a tangent plane for u at z.

Remark 4.5. Notice that if det D?u < C, then the set of points where « admits a tangent plane is dense in
dB,. Indeed, using standard barriers, it is not difficult to check that any point on d B; where the boundary
data 1|5, admits a quadratic polynomial from below satisfies the definition above. In the definition above,
we assumed u = i on 0 By with u defined as in the Lemma 2.1; therefore u|yp, is lower semicontinuous.

Assume that # admits a tangent plane at z, and define
u=u—I,.
Lemma 4.6. There exists n > 0 small, universal such that the section
S::={xeBi|i<nx—2)-(~2))
satisfies
$.CBi\Bi_p, IS:/zc,
for some small c universal.

Proof. We notice that (4-3) is invariant under additions with linear functions. We apply it to & with
X1 =2z, X =x and use u > 0, it (z) = 0 together with (4-2) and Corollary 4.2 to obtain

ﬂ(x)zclx—zlz, X € 0B1 N By, (2).

From the uniform strict convexity of &, which was obtained in Proposition 3.2, we find that the inequality
above holds for all x € d By for possibly a different value of c. Thus, by choosing 5 sufficiently small, we
obtain
SZCBl, SZﬂBl_p=®,
where the second statement follows also from Proposition 3.2.

Next we show that |S.| cannot be arbitrarily small. Otherwise, by the uniform strict convexity of i, we
obtain that S, C B,s(z) for some small € > 0. Assume for simplicity of notation that z = —e,. Then the
function

€ 1
wi=n(+ D4 —x?+ — @+ 1)> —2e(xy + 1)
2 2p€
is a lower barrier for # in B} N B.4(z). Indeed, notice that if € is sufficiently small, then
w < n(xa+1) <iion d(B; N Ba(z)), det D*w = p~! > det D?%ii.

In conclusion, & > w > (n/2)(x2 + 1) and we contradict that x,; = 0 is a tangent plane for i at z. [J

Lemma 4.7. Let u be the normalized minimizer of L. Then ||u|| -0, (By) = C, and u admits tangent planes
at all points of d By. Also, u separates at least quadratically from its tangent planes, that is,

ulx) =1 x)+clx —z|2 forall x,z € 0B;.
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Proof. Let z be a point on d B; where u admits a tangent plane /,. From the previous lemma, we know
that u satisfies the quadratic separation inequality at z and also that &z = u — [, is bounded from above and
below in S’Z, that is,

lu—1.|<CinS..

/|1z|dx—C§/udx§/udx§C/ wdo <C,
Sz S‘Z B 0B

and since S, C B has measure bounded from below, we find

We obtain

[(2), VL] < C.

By Remark 4.5, this holds for almost every z € d By and, by approximation, we find that any point in 0 B}
admits a tangent plane that satisfies the bounds above. This also shows that u is Lipschitz and the lemma
is proved. ([l

Lemma 4.8. The function v satisfies the lower bound
v(x) > ¢ dist(x, 0 By),
for some small ¢ universal.
Proof. Let z € 9B; and let [ be a linear functional with
l(x)=1,(x)—bz-(x—2z), forsome(<b<n,
where [, denotes a tangent plane at z. We consider all sections
S={xeB|lu<l}
which satisfy

irSlf(u —1) < —cy,

for some appropriate ¢y small, universal. We denote the collection of such sections Jl,;. From Lemma 4.6,
we see that .l, # @ since S, (or b = n) satisfies the property above. Notice also that § C S. C By and
z € 3S. For any section S € Jl,, we consider its center of mass z°, and from the property above we see
that z° € By_, for some small ¢ > 0 universal.

First, we show that the lower bound for v holds on the segment [z, z%]. Indeed, since

U'le(l —u)l;; = —2cdet D*u > —2¢cp™' > —A=U"v;;
and ¢(I —u) < 0= v on 3B, we conclude that
c(l—u)T <vin By. (4-4)

Now we use the convexity of u and the fact that the property of S implies (u —1)(z%) < —c, and conclude

that
v(x) = c(l—u)(x) =clx —z| = cdist(x, 0By) forall x € [z, 21
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Now it remains to prove that the collection of segments [z, 5], z€ 3By, S € M, cover a fixed
neighborhood of d By. To this aim, we show that the multivalued map

2€dB — F(z):={z>| Se..}

has the following properties:

(1) the map F is closed in the sense that
Zn— Ze and 20" — y, = y* € F(24);

(2) F(z) is a connected set for any z.

The first property follows easily from the following facts: z5 varies continuously with the linear map [
that defines S = {u < /}; and if [;,, — [,, then [, <!, for some tangent plane /,,.

To prove the second property, we notice that if we increase continuously the value of the parameter b
(which defines /) up to n, then all the corresponding sections also belong to Jl,. This means that in F(z)
we can continuously connect z5 with 25 for some section S.. On the other hand, the set of all possible

7% is connected, since the set /. of all tangent planes at z is connected in the space of linear functions.

Since F(z) C Bi—., it follows that for all § < ¢, the intersection map
2= Gs(2) ={lz,y]N9Bi—s | y € F(2)}
also has properties (1) and (2) above. Now it is easy to check that the image of G covers the whole
d B1_s, and hence the collection of segments [z, z5] covers B \ Bi_. and the lemma is proved. O
Now we are ready to prove the first part of Proposition 3.1.

Proof of Proposition 3.1(i). In Lemma 4.7, we obtained the quadratic separation from below for it =u —1,.
Next we show that i separates at most quadratically on d B; in a neighborhood of z.

Assume for simplicity of notation that z = —e,. We apply (4-3) to &t with X| = (—h, a), X, = (h, a),
and then use Corollary 4.2 and Lemma 4.8 to obtain

i(X1) +i(X2) _][kChz
2 g

On the other hand, for small 4, the segment [z, zgz] intersects [X1, X3] at a point y = (¢, a) with
1| < Ch? < h/2. Moreover, since y € S,, we have ii(y) < n(a + 1) < Ch?. On the segment [ X, X»], u
satisfies the conditions of Lemma 4.9 which we prove below, and hence

i(X1), i(X2) < Ch>.

In conclusion, u separates quadratically on dB; from its tangent planes and therefore satisfies the
hypotheses of the Localization Theorem in [Savin 2013; Le and Savin 2013]. From [Le and Savin 2013,
Theorem 2.4 and Proposition 2.6], we conclude that

lullcreg,y> Wllcss,)> Tvwlicsos) = C, (4-5)

for some 8 < 1, C universal. U
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Lemma 4.9. Let f : [—h, h] — R be a nonnegative convex function such that
fEM+f) 1 /h
2 2h

for somet € [—h/2, h/2). Then

fydx <Mh*,  f(t) < Mh*,
—h

f(Eh) < Ch?

for some C depending on M.

Proof. The inequality above states that the area between the line segment with end points (—#, f(—h)),
(h, f(h)) and the graph of f is bounded by 2Mh>. By convexity, this area is greater than the area of
the triangle with vertices (—h, f(—h)), (¢, f(t)), (h, f(h)). Now the inequality of the heights f(4h)
follows from elementary euclidean geometry. (I

Finally, we are ready to prove the second part of Proposition 3.1.

Proof of Proposition 3.1 (ii). Let ¢ be such that
Uijgoij:Oin By, (pGCl’l(aBl)ﬂCO(El).

Since u satisfies the quadratic separation assumption and f is smooth up to the boundary, we obtain from
[Le and Savin 2013, Theorem 2.5 and Proposition 2.6]

lllcrs,y lelcrsi, <K, and U] < K|logs|* on By s,

for some constant K depending on p, ||f||Cﬁ(§1), and [lollcriap,)-
We will use the following identity in two dimensions:

ij TV vy
UYvjvi =U" v, +U""v,.

Integrating by parts twice, we obtain, as in (1-1),

/ (pdA:—/ goUijvijdx:/ (piUijvvj—/ (pUijvjv,-:—/ U v, +o(1),
By_s By s 0By 0By 0B

where in the last equality we used the estimates
vl <C8, vl <K&, gl IVol <K, UY <K|logs* ondBis.

SiIlCe on ()j;r
1 -2 —
b v - urf =r M99 r u] 9

ueC“P(B 1) and u(re'?) converges uniformly as » — 1, and ugg is uniformly bounded from below, we

obtain
U™ d# (o5 — (ugo +uy) d¥! |35, asr — 1.

We let § — 0 in the equality above and find

/@dA=—/ @ (ugg + uy)v, d¥e'.
B] 33]
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Now the Euler—Lagrange equation, Proposition 3.6, gives
(g +u,)v, = —0 on dBy.
We use that [|v,||css8,) < C and, from Lemma 4.8, v, < —c on d B and obtain

lullczr @y < Cllollcr@s)- O

5. The general case for A

In this section, we remove the assumptions that A is bounded from below by p in By and we also assume
that A is bounded from above only in a neighborhood of the boundary. Precisely, we assume that A > 0
inBjand A < p~!
by approximation. Notice that | 5 A dx is bounded from above and below since it equals |, 9B, do.

in BI\E 1—p- We may also assume A is smooth in By, since the general case follows

Let v be the solution of the Dirichlet problem
Uv;j = —A, v=0on dB,. (5-1)

In Section 4, we used that A is bounded from above when we obtained v < C(1 — |x|2), and we used
that A is bounded from below in Lemma 4.8 (see (4-4)). We need to show that these bounds for v also
hold in a neighborhood of d B; under the weaker hypotheses above. First, we show:

Lemma 5.1. v=C ondBy_,p and v=>c() onB_s,

with C universal and c(§) > 0 depending also on §.

Proof. As before, we may assume that u € C*°(B)), since the general case follows by approximating B;
by B 1—e-
We multiply the equation in (5-1) by (1 — |x|?), integrate by parts twice, and obtain

/thr dez/ A1 = |xP)dx <C,
B B

/ vdx <C.
B

(1) v > 0 solves a linearized Monge—Ampere equation with bounded right-hand side in By \ Bi_,.

and since tr U > ¢, we obtain

‘We know this:

(2) u has a uniform modulus of convexity on compact sets of Bj.

Now we use the Harnack inequality of Caffarelli and Gutierrez [1997] and conclude that
supy v < C(infy v + 1), V := Bi_p/a \ Bi_3p/4,

and the integral inequality above gives supy, v < C.
Next we prove the lower bound. We multiply the equation in (5-1) by ¢ € C§°(By) with

¢=0if |x| >1-8/2, ¢=1inBi_5, |D%| <C/8,



1044 NAM Q. LE AND OVIDIU SAVIN

integrate by parts twice, and obtain

C(S)/vtrUz—/ vUY ;) =/ Ag >c, A := Bi_s \ Bi_s,
a By By

where the last inequality holds provided that § is sufficiently small. Since u is normalized, we obtain (see
Proposition 3.2) |Vu| < C(§) in AU, and thus

/trU:/Au:/ u, < C(@).
au au U

The last two inequalities imply supg, v > ¢(8), and hence there exists xg € U such that v(xg) > c(5). We
use (1), (2) above and the Harnack inequality and find v > ¢(68) in Bz(x¢) for some small 5 depending
on p and 8. Since v is a supersolution, that is, U/ v; ;i <0, we can apply the weak Harnack inequality
of Caffarelli and Gutierrez [1997, Theorem 4]. From property (2) above, we see that we can extend the
lower bound of v from Bj(xo) all the way to U, and by the maximum principle, this bound holds also in
Bi_5)2. O

The upper bound in Lemma 5.1 gives as in (4-2) the upper bound for v in a neighborhood of d By, that
is,
v) <CA—1xI*) on Bi\Bi_pp.
This implies, as in Section 4, that Lemma 4.7 holds, that is, u separates at least quadratically from its
tangent planes on d B;. It remains to show that also Lemma 4.8 holds. Since A is not strictly positive,
c(! —u) is no longer a subsolution for the equation (5-1) and we cannot bound v below as we did in (4-4).

In the next lemma, we construct another barrier which allows us to bound v from below on the segment
[z, 2°].

Lemma 5.2. Let i : By — R be a convex function with it € C(B1) N C*(B1), and

p <detD%i<p~l.

Assume that the section S := {u < 0} is included in By and is tangent to 0 B at a point z € 0 B, and also
that
infu <—pu,
tu = 2
for some p > 0. If
ﬁijv,-j <0in By, v>0o0nodBy,

then
i
1r51 u}

(Sl

v(x) =c(u, p)lx —z| igfv for all x € [z, 251, S = {12 <

where 75 denotes the center of mass of S and c(u, p) is a positive constant depending on . and p.

The functions & = u — [ and v in the proof of Lemma 4.8 satisfy the lemma above, if n in Lemma 4.6
is small, universal. Using also the lower bound on v from Lemma 5.1, we find

v > clx —z| on [z, 2°],
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for some ¢ universal, and the rest of the proof of Lemma 4.8 follows as before. This shows that
Proposition 3.1 holds also with our assumptions on the measure A.

Proof of Lemma 5.2. We construct a lower barrier for v of the type
wi=e? 1, W= —ii+ %(|x|2 — ),
for appropriate constants k large and € < v small. Notice that w < 0 on 0By, since w <0 on dB;. Also
> clx —z] on [z, 2°],
since, by convexity, —ii > c|x — z| on [z, z5] for some ¢ depending on . and p. It suffices to check that
ﬁijwij >0on B\ Y,

since then we obtain v > (infg v)cw in By \ S’, which easily implies the conclusion. In B; \ S’ we have
[Vw| > c¢(u) > 0, provided that € is sufficiently small, and thus

U w;w; = (det D*i)(Vw)" (D%i) "' Vio > e A1,
where A is the largest eigenvalue of D2ii. Then we use that tr U > A"l > cAVO=D where A is the
smallest eigenvalue of D?ii, and obtain
Uijwl-j = kek® (0ij11),-j + kUijﬂ)izbj) > kekw(—np_l +etrU + kcA_l)
> ke*” (—np '+ c(e AV 4 kATY) > 0,

if k is chosen large depending on €, p, i and n. ([

6. Singular minimizers in dimension n > 3.

Let
u(x) = X' 77" h(x,)

be the singular solution to det D?u = 1 constructed by Pogorelov, with & a smooth even function, defined
in a neighborhood of 0 and 4 (0) = 1, satisfying an ODE

(0-2p-(e- e

v(x) 1= X7 ()

We let

be obtained as the infinitesimal difference between u and a rescaling of u,
/ : 1 / — /
v (', x,) = lim —[ux' x) = L+ )V ul, A+ e)xn)],
e—>0 €

for some small y < % Notice that
q(t) =yh() —h'()t
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and g > 0 in a small interval (—a, a) and g vanishes at its end points. Also,
Uijvij =ny—-2<0 inQ:=R""x[-a,al,
v=0, U"v,=U"v,=—09 onos,

for some constant oy > 0. The last equality follows since U™" is homogeneous of degree —(n — 1)(2/n)
in |x’| and v, is homogeneous of degree 2 —2/n in |x'|.

Notice that u, v are solutions of the system (1-2) in the infinite cylinder Q2 for uniform measures A
and o. In order to obtain a solution in a finite domain 2y, we modify v outside a neighborhood of the
line |x’| = 0 by subtracting a smooth convex function ¥ which vanishes in B; and increases rapidly

outside Bj. Precisely, we let
vi=v—1vY, Qo:={v>0},
and then we notice that u, v, solve the system (1-2) in the smooth bounded domain 2 for smooth
measures A and o.
Since

U7 | < Cr®™=2 if |x'| >,

we integrate by parts in the domain g \ {|x’| < €} and then let ¢ — 0 and find

/(pdA:—/ Uijgo,'jv-i-/ ¢do, forall g € C3(Q),
Q Q 3%

or
L(p) =/ U'gjjv.
Qo

This implies that L is stable, that is, L(¢) > 0 for any convex ¢ which is not linear. Also, if w € C 2(Qo)
satisfies det D*w = 1, then Ui (w— u);j > 0, and we obtain

L(w)—L(u) = / U (w—u);jv >0,
Qo
that is, # is a minimizer of L.
We remark that the domain 2 has flat boundary in a neighborhood of the line {|x’| = 0}, and therefore
is not uniformly convex. However, this is not essential in our example. One can construct, for example, a
function v in a uniformly convex domain by modifying v as

b= |x' 77 g (x, (14 81x71)),

for some small § > 0.

7. Proof of Theorem 1.4

We assume for simplicity that 2 = B;. The existence of a minimizer u# for the convex functional E
follows as in Section 2. First, we show that

11 < det D*u < 1, (7-1)
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for some #; depending on F and p. The upper bound follows easily. If det D>u > f; in a set of positive
measure, then the function w defined as

det D*w = min{z, det Dzu}, w =u on dB;,

satisfies E(w) < E(u), since F(det D>w) = F(det D?u) and L(w) < L(u).
In order to obtain the lower bound in (7-1), we need the following lemma.

Lemma 7.1. Let w be a convex function in By with
(det D*w)'/" = g € L"(B)).
Let w + ¢ be another convex function in By with the same boundary values as w such that
(det D*(w + )" =g —h, forsomeh > 0.
Then

/<pg”‘1§C(n) hg" .
B B

Proof. By approximation, we may assume that w, ¢ are smooth in B;. Using the concavity of the map
M > (det M)'/" in the space of symmetric matrices M > 0, we obtain

1 N
(det D*(w + )/ < (det D*w)'/" + r—l(det D*w) VM= Twiig,
and hence
—nhg"™' < WWg;;.

We multiply both sides by & := %(l —|x|?) and integrate. Since both ¢ and ® vanish on d B; we integrate
by parts twice and obtain

—Cn) | hg" < | W=~ [ (wW)e.
B B By
Using
tr W > c(n)(det W)'/" = ¢(n)(det D>w) = D/" = ¢(n)g" !,
we obtain the desired conclusion. [l

Now we prove the lower bound in (7-1). Define w such that w = u on d B and
det D*w = max{t;, det Dzu}
for some small #;. Since G(¢) = F(t") is convex and det D?w > t;, we have
G((det D*w)"/") < G((det D*u)"/™) + G'(1,"") ((det D*w)'/" — (det D*u)'/").

We write
u—w=g¢, (detD*w)/"=g, (detD?u)'/"=g—h,
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and we rewrite the inequality above as
F(det D*w) < F(det D*u) + G'(t;/")h.

From Lemma 7.1, we obtain

/ heg"'>cn) | pg" !,
B B

/

and since 4 is supported on the set where the value of g = tl1 " is minimal, we find that

/ h>cn) | ¢.
B, B

/ F(det D*w) — F(det D*u) < cm)G'(1,'") | o,
B B

This gives

and thus, using the minimality of 4 and G'(0") = —o0,
0= E@)~Ew = [ pda+ecmc @) [ p<o
B B

if #; is small enough. In conclusion, ¢ = 0 and u = w and (7-1) is proved.

We write
detD’u=f, 1 <f<t.

Any minimizer for L in the class of functions whose determinant equals f is a minimizer for E as well.
In order to apply Theorem 1.2, we need f to be Holder continuous. However, we can approximate f
by smooth functions f, and find smooth minimizers u, for approximate linear functionals L, with the
constraint

det D*u, = f,,.
By Proposition 3.1 (see (4-5)),
||un||cl,ﬁ(§1)v ”Un”Cﬂ(E]) =C,
and hence we may assume (see Theorem 1.1) that, after passing to a subsequence, u, — u and v, — v
uniformly for some function v € C P(B). We show that
v=—F'(f). (7-2)
Then by the hypotheses on F, we obtain det D>u = f € C#(B)), and from Theorem 1.2, we easily obtain

||M||C2.Q(El)9 ||v|IC2*“(§1) = C

for some C depending on p, «, ”U”ca(E.)’ ||A||ca(El)’ and F.

In order to prove (7-2), we need a uniform integral bound (in two dimensions) between solutions to
the Monge—Ampere equation and solutions of the corresponding linearized equation.

The proof of the following lemma will be given at the end of the section.
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Lemma 7.2. Assume n =2 and let w be a smooth convex function in By with
AfdetDzw =g <A
for some positive constants A, A. Let w + €@ be a convex function with
det D*(w+ep) =g +eh, ¢=00ndB

for some smooth function h with ||h| -~ < 1. If € < €, then

|h— W' ;| < Ce
By

for some C, €y depending only on A, A.
Now let & be a smooth function, ||2].~ < 1, and we solve the equations
det D2(un +epy) = fnt+eh, ¢,=0o0nadBy,

with u,, f, as above. From (1-1) we see that

La(gn) = [ (UY8;j0,)vn,
By

and hence, by the lemma above,

Ln((pn) _/ hvn <Ce
B
with C universal. We let n — o¢ and obtain
L(p) —/ hv| < Ce,
By

with ¢ the solution of
det D*(u+e€9) = f +€h, @=0o0ndB.

The inequality E(u 4 €¢) > E(u) implies

/ (F(f +e€h) — F(f)+€hv) > —Cé?,
By

and hence, as € — 0,

(F'(f)+v)h >0 for any smooth A,
B

which gives (7-2). O
Proof of Lemma 7.2. Using the concavity of (det D?w)!/”, we obtain
(g+eh)/ Sgl/n_i_igl/n—lwij(pij’
n

and thus, for € < ¢,
h—Ce<Wg;. (7-3)

Since n = 2, we have

det D*(w + €g) = det D*w + eWij(pij + €% det D9,
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and hence
h— Wijgoij = edet D2§0.

From the pointwise inequality (7-3), we see that in order to prove the lemma, it suffices to show that

/ det D*¢ > —C.
B

Let & = (d%/) be the cofactor matrix of D?¢. Integrating by parts and using ¢ = 0 on d By, we find

/2detD2(p=/ q)ij§0ij:/ q)ijfpi‘)j:/ CDW%Z/ ¢y =0,
B B JdB dB; dBy

where we used PV = ¢, = @,. O
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