
ANALYSIS & PDE

mathematical sciences publishers

Volume 5 No. 3 2012

YVES COLIN DE VERDIÈRE

SEMICLASSICAL TRACE FORMULAS AND HEAT EXPANSIONS



ANALYSIS AND PDE
Vol. 5, No. 3, 2012

dx.doi.org/10.2140/apde.2012.5.693 msp

SEMICLASSICAL TRACE FORMULAS AND HEAT EXPANSIONS

YVES COLIN DE VERDIÈRE

In a recent paper (J. Phys. A 43:47 (2011), 474028), B. Helffer and R. Purice compute the second term of a
semiclassical trace formula for a Schrödinger operator with magnetic field. We show how to recover their
formula by using the methods developed by Riemannian geometers in the seventies for heat expansions.

Introduction

There is a strong similarity between the expansions of the heat kernel as worked out by people in
Riemannian geometry in the seventies, starting with the famous “Can one hear the shape of a drum?”
by Mark Kac [1966] and continuing with [Berger 1966; McKean and Singer 1967] (see also the books
[Berger et al. 1971; Gilkey 1975]), and the so-called semiclassical trace formulas developed by people
in semiclassical analysis, starting with [Helffer and Robert 1983]. In fact, this is not only a similarity,
but, as we will prove, each of these expansions, even if they differ when expressed numerically for some
example, can be deduced from the other one as formal expressions of the fields.

Let us look first at the heat expansion on a smooth closed Riemannian manifold of dimension d , .X;g/,
with the (negative) Laplacian �g

1. The heat kernel e.t;x;y/, with t > 0 and x;y 2X , is the Schwartz
kernel of exp.t�g/: the solution of the heat equation ut ��guD 0 with initial datum u0 is given by

u.t;x/D

Z
X

e.t;x;y/u0.y/ jdyjg:

The function e.t;x;x/ admits, as t ! 0C, the following asymptotic expansion:

e.t;x;x/� .4� t/�d=2
�
1C a1.x/t C � � �C al.x/t

l
C � � �

�
:

The al are given explicitly in [Gilkey 2004, p. 201] for l � 3, and are known for l � 5 [Avramidi 1990; Ven
1998]. See also the related works [Hitrik 2002; Hitrik and Polterovich 2003a; 2003b; Polterovich 2000].
They are universal polynomials in the components of the curvature tensor and its covariant derivatives.
For example, a0 D 1 and a1 D �g=6, where �g is the scalar curvature.

The previous asymptotic expansion gives the expansion of the trace by integration over X and has
been used as an important tool in spectral geometry:

trace.et�g/D

Z
X

e.t;x;x/ jdxjg D

1X
kD1

e�k t ;

MSC2010: 35P20, 35S05, 58J35.
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1In this note, we will not follow the usual sign convention of geometers, but the convention of analysts
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where ��1D 0���2� � � � ���k � � � � is the sequence of eigenvalues of ��g with the usual convention
about multiplicities. If d D 2, this gives

trace.et�g/D
1

4� t

�
Area.X /C

2��.X /

6
t CO.t2/

�
;

where �.X / is the Euler characteristic of X .
There is an extension of the previous expansion in the case of Laplace type operators on fiber bundles:

the coefficients of the expansion are then polynomials in the covariant derivatives of the curvature of the
metric and of the connection on the fiber bundle. The heat expansion can be reinterpreted as an expansion
of the Schwartz kernel of f .�„2�g/ on the diagonal x D y in powers of „ with f .u/D exp.�u/ and
t D „2. This is a particular case of the semiclassical trace.

Let us describe the semiclassical setting in the flat case: yH„ is a self-adjoint „-pseudodifferential
operator with Weyl symbol H.x; �/ in some open domain X in Rd , or more generally on a Riemannian
manifold. Let f 2 S.R/ and look at f . yH„/. Under some suitable assumptions (ellipticity at infinity in �)
on H , f . yH„/ is a pseudodifferential operator whose Weyl symbol f ?.H / is a formal power series in
„, given, using the Moyal product denoted by ?, by the following formula (see [Gracia-Saz 2005] for
explicit formulas and Section 4.2 therein for a proof; see also [Charles 2003]) at the point z0 2 T ?X :

f ?.H /.z0/D .2�„/
�d
1X

lD0

1

l!
f .l/.H.z0// .H �H.z0//

? l .z0/: (1)

From the previous formula, we see that the symbol of f . yH„/ at the point z depends only of the Taylor
expansions of H at the point z and of f at the point H.z/. Helffer and Purice [2010] have studied the case
of the magnetic Schrödinger operator whose Weyl symbol is Ha;V .x; �/D

Pd
jD1.�j � aj .x//

2CV .x/

and show that the Schwartz kernel of f . yH„;a;V / at the point .x;x/ admits an asymptotic expansion of
the form

Œf . yH„;a;V /�.x;x/D .2�„/
�d
1X

jD0

„
2j

� kjX
lD0

Z
Rd

f .l/.k�k2CV .x//Q
a;V
j ;l

.x; �/ jd�j

�

where the Q
a;V
j ;l

.x; �/ are polynomials in � calculated from the Taylor expansions of the magnetic field
B D da and V at the point x. The proof in [Helffer and Purice 2010] uses a pseudodifferential calculus
adapted to the magnetic field.

We will give a simplified version of the expansion replacing the (non-unique) Q
a;V
j ;l

.x; �/ by functions
P

B;V
j ;l

.x/ which are uniquely defined and are given by universal O.d/-invariant polynomials of the Taylor
expansions of B and V at the point x. We present then two ways to compute the P

B;V
j ;l

:

� we can first use Weyl’s invariant theory (see [Gilkey 2004]) in order to reduce the problem to the
determination of a finite number of numerical coefficients; then simple examples, like harmonic
oscillator and constant magnetic field, allow to determine (part of) these coefficients.
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� The P
B;V
j ;l

are related in a very simple way to the coefficients of the heat expansion; it is possible to
compute the P

B;V
j ;l

from the knowledge of the al for j C 1� l � 3j . This is enough to recompute
the coefficient of „2 and also, in principle, the coefficients of „4 in the expansion, because the al are
known up to l D 6 in the case of a flat metric (see [Ven 1998]).

In this note, we will first describe precisely the semiclassical expansion for Schrödinger operators (in
the case of an Euclidean metric) and the properties of the functions P

B;V
j ;l

.x/. Then, we will show how
to compute the P

B;V
j ;l

.x/ using an adaptation of the method used for the heat kernel (Weyl’s theorem on
invariants and explicit examples). Finally, we will explain how the al are related to the P

B;V
j ;l

.x/. This
gives us two proofs of the main formula given in [Helffer and Purice 2010]; this paper was the initial
motivation to this work.

1. Semiclassical trace for Schrödinger operators

In what follows, X is an open domain in Rd , equipped with the canonical Euclidean metric, and �k.X /

will denote the space of smooth exterior differential forms in X . Let us give a Schrödinger operator,
with a smooth magnetic field B D

P
1�i<j�d bij dxi ^ dxj (a closed real 2-form) and a smooth electric

potential V (a real-valued smooth function) in X . We assume that V is bounded from below. We will
assume also that the 2-form B is exact and can be written B D da and we introduce the Schrödinger
operator defined by

H„;a;V D

dX
jD1

�
„

i

@

@xj
� aj .x/

�2

CV .x/:

The Weyl symbol of H„;a;V is Ha;V .x; �/D k� � a.x/k2CV .x/. We denote by yH„;a;V a self-adjoint
extension of H„;a;V in L2.X; jdxj/. Let us give f 2 S.R/ and � 2 C1o .X / and consider the trace of
�f . yH„;a;V / as a distribution on X �R (the density of states):

Trace.�f . yH„;a;V //D
Z

X

Z„;a;V .g/.x/�.x/ jdxj;

where Z„;a;V .g/.x/ is the value at the point .x;x/ of the Schwartz kernel of f . yH„;a;V /.

Theorem 1. We have the following asymptotic expansion in powers of „:

Z„;a;V .g/.x/�

.2�„/�d

� Z
Rd

f .k�k2CV .x// jd�jC

1X
jD1

„
2j

� lD3jX
lDjC1

P
B;V
j ;l

.x/

Z
Rd

f .l/.k�k2CV .x// jd�j

��
:

We have the explicit formulas

P
B;V
1;2
D�

1
6

�
�V CkBk2

�
; P

B;V
1;3
D�

1
12
krV k2;

P
B;V
2;3
D�

1
180

�
8krBk2Ckd?Bk2C 12h�BjBiC 3�2V

�
:
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Here kBk2 D
P

1�i<j�d b2
ij , d? W�2.X /!�1.X / is the formal adjoint of d used in the definition of

the Hodge Laplacian on exterior forms. If d D 3, kBk is the Euclidean norm of the vector field associated
to B.

The P
B;V
j ;l

.x/ are polynomials of the derivatives of B and V at the point x. Moreover, if �; �; c are
constants and we define �?.f /.x/D f .�x/, we have the following scaling properties:

(1) P
�:�?.B/;�?.V /

j ;l
.x/D �2j P

B;V
j ;l

.�x/. This will be used with x D 0.

(2) P
�B;�2V

j ;l
.x/D �2.l�j/P

B;V
j ;l

.x/.

(3) P
B;VCc
j ;l

.x/D P
B;V
j ;l

.x/.

(4) P
�B;V
j ;l

.x/D P
B;V
j ;l

.x/.

(5) The P
B;V
j ;l

are invariant by the natural action of the orthogonal group O.d/ on the Taylor expansions
of B and V at the point x.

Remark 1. From the statement of the theorem, we see that the expansion of the density of states is
independent of the chosen self-adjoint extension.

As a consequence, we can get the following full trace expansion under some more assumptions:

Corollary 1. Let us assume that E0 D inf V < E1 D lim infx!@X V .x/ and that we have chosen
the Dirichlet boundary conditions. Let f 2 C1o .��1;E1Œ/, then the trace of f . yH„;a;V / admits the
asymptotic expansion

Trace.f . yH„;a;V //� .2�„/
�d

Z
X

�Z
Rd

f .k�k2CV .x// jd�jC � � �

� � �

1X
jD1

„
2j

lD3jX
lDjC1

P
B;V
j ;l

.x/

Z
Rd

f .l/.k�k2CV .x// jd�j

�
jdxj:

The coefficient of „2 can be written as

�
1

12

Z
X�Rd

f .2/.k�k2CV .x//
�
�V .x/C 2kB.x/k2

�
jdx d�j:

The expansion follows from [Helffer and Robert 1983]. An integration by part in x givesZ
X

f .3/.k�k2CV .x//krV .x/k2 jdxj D �

Z
X

f .2/.k�k2CV .x//�V .x/ jdxj:

2. Existence of the „-expansion of Z„;a;V

Using Theorem 2 in the Appendix, we can work in Rd with a and V compactly supported. The existence
of the expansion is known in general from [Helffer and Robert 1983] and the calculus of the symbol of
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f . yH„;a;V /. We get

Z
X

Z„;a;V .f /.x/�.x/ jdxj D .2�„/�d
1X

jD0

„
2j

kjX
lD0

Z
�.x/f .l/.Ha;V .x; �//Qj ;l.x; �/ jdx d�j

where the Qj ;l.x; �/ are polynomials in the Taylor expansion of Ha;V at the point .x; �/. The previous
expansion is valid for any (admissible) pseudodifferential operator. In the case of Schrödinger operators
we can make integrations by part in the integrals

R
f .l/.Ha;V .x; �//Qj ;l.x; �/ jd�j which reduces to a

similar formula where we can replace the Qj ;l.x; �/ by the Pj ;l.x/. This is based on the expansion of
Qj ;l as a polynomial in � in powers of .� �a/: odd powers give 0 and even powers can be reduced using

d�
�
.�j � aj /f

.l/.Ha;V /�.@�j /d�
�
D 2k�j � ajk

2f .lC1/.Ha;V /d�Cf
.l/.Ha;V /d�:

We have only to check that the powers of � in Qj ;l.x; �/ are less than l : this is based on Equation (1).
The coefficients of the l-th Moyal power of Ha;V .z/�Ha;V .z0/ are homogeneous polynomials of degree
l in the derivatives of Ha;V .z/. At the point z D z0 only derivatives of order � 1 are involved. They are
all of degree � 1 in �. Using gauge invariance at the point x (Section 3), we can assume that a.x/D 0.

3. Gauge invariance

If S WX ! R is a smooth function, we have

Trace.�e�iS.x/=„f . yH„;a;V /e
iS.x/=„/D Trace.�f . yH„;a;V //

and

e�iS.x/=„f . yH„;a;V /e
iS.x/=„

D f . yHaCdS;V /:

Hence, we can chose any local gauge a in order to compute the expansion: using the synchronous
gauge (see Section 4), we get the individual termsZ

f .l/.H0;V /P
B;V
j ;l

.x/ jd�j

for the expansion, where the P
B;V
j ;l

.x/ depend only of the Taylor expansions of B and V at the point x.

4. The synchronous gauge

The main idea is to find an appropriate gauge a adapted to the point x0 where we want to make the
symbolic computation. In a geometric language, we use the trivialization of the bundle by parallel
transportation along the rays: the potential a vanishes on the radial vector field.2 Here, this is simply the
fact that, for any closed 2-form B on R2, there exists an unique 1-form aD

Pd
jD1 aj dxj so that daDB

and
Pd

jD1 xj aj D 0.

2This gauge is sometimes called the Fock–Schwinger gauge; in [Atiyah et al. 1973], it is called the synchronous framing.
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We will do that for the Taylor expansions degree by degree. In what follows we will use a decomposition
for 1-forms, but it works also for k-forms.

Let us denote by�k
N

the finite dimensional vector space of k-differential forms on Rd whose coefficients
are homogeneous polynomials of degree N and by W D

Pd
jD1 xj @=@xj the radial vector field. The

exterior differential induces a linear map from �k
N

into �kC1
N�1

and the inner product �.W / a map from
�k

N
into �k�1

NC1
. They define complexes which are exact except at k D N D 0. Moreover, we have a

situation similar to Hodge theory:

�k
N D d�k�1

NC1˚ �.W /�kC1
N�1

:

This is due to Cartan’s formula: the Lie derivative of a form ! 2�k
N

satisfies, from the direct calculation,
LW ! D .kCN /!, and, by Cartan’s formula, LW ! D d.�.W /!/C �.W /d!. So

! D
1

kCN
.d.�.W /!/C �.W /d!/ :

It remains to show that this is a direct sum: if ! D d˛ D �.W /
 , we have �.W /! D 0 and d! D 0; from
the previous decomposition, we see that ! D 0. Let us denote by J N!, where ! is a differential form of
degree k, the form in �k

N
which appears in the Taylor expansion of !.

We get:

Proposition 1. If P .J 0a;J 1a; � � � ;J N a/ is a polynomial in the Taylor expansion of the 1-form a at some
order N which is invariant by a! aC dS , P is independent of J 0a and

P .J 1a; � � � ;J N a/D P
�

1

2
J 1�.W /B; � � � ;

1

NC1
J N �.W /B

�
is a polynomial of the Taylor expansion of B to the order N � 1.

5. Properties of the Pj;l

5.1. Range of l for j fixed. From the scaling properties, we deduce that, in a monomial

D˛1Bi1;j1
� � �D˛k Bik ;jk

Dˇ1V � � �DˇmV;

belonging to Pj ;l , we have k C 2m D 2.l � j / and k C j˛1j C � � � C j˛k j C jˇ1j C � � � C jˇmj D 2j .
Moreover, for j � 1, kCm � 1 and j p̌j � 1. Hence j C 1 � l � 3j . The previous bounds are sharp:
take the monomials �j V and krV k2j which give l D j C 1 and l D 3j .

5.2. Invariance properties.

(1) Let us assume that we look at the point x D 0 and consider the operator D�.f /.x/D f .�x/. We
have

D� ı
yH„;A;V ıD1=� D

yH„=�;AıD�;V ıD� :
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The same relation is true for any function f . yH„;A;V / and then we have, looking at the Schwartz
kernels and using the Jacobian �d of D�:

P
B;V
j ;l

.0/

Z
Rd

f .l/.k�k2CV .0// jd�j D ��2j P
�:�?B;�?V

j ;l
.0/

Z
Rd

f .l/.k�k2CV .0// jd�j:

(2) We have bH„;�a;�2V D �
2 bH „

�
;a;V :

(3) Changing V into V C c gives a translation by c in the function f but does not change the P
B;V
j ;l

.

(4) Changing B into �B gives a complex conjugation in the computations. The final result is real-valued.

(5) Orthogonal invariance is clear: an orthogonal change of coordinates around the point x preserves
the density of states.

5.3. The case d D 2. We deduce from the scaling properties and invariance by the orthogonal group,
that there exists constants ad ; bd ; cd so that P

B;V
1;2

.x/D ad�V C bdkBk
2; P1;3.x/D cdkrV k2.

6. Explicit examples

The calculation for the harmonic oscillators and the constant magnetic fields allows to determine the
constants ad ; bd ; cd .

6.1. Harmonic oscillators. Let us consider �D�„2 d2

dx2
Cx2 with d D 1. The kernel of P .t;x;y/ of

exp.�t�/ is given by the Mehler formula:

P .t;x;y/D .2�„ sinh.2t„//�
1
2 exp

�
�

1

2„ sinh.2t„/

�
cosh.2t„/.x2

Cy2/� 2xy
��
:

Hence

P .t;x;x/� .2�„/�1e�tx2

�Z
R

e�t�2

d�

� �
1�„2.t2

� t3x2/=3CO.„4/
�
:

Hence P1;2.x/D�V 00.x/=6 and P1;3.x/D�V 0.x/2=12.
Similarly, in dimension d > 1, we get P1;2.x/D��V .x/=6 and P1;3.x/D�krV k2=12.

6.2. Constant magnetic field. Let us consider the case of a constant magnetic field B in the plane and
denote by Q.t;x;y/ the kernel of exp.�tHB;0/. We have (see [Avron et al. 1978])

Q.t;x;x/D
B

4�„ sinh Bt„
:

Hence the asymptotic expansion

Q.t;x;x/D .2�„/�2

Z
exp.�tk�k2/ jd�j

�
1� t2

„
2B2=6CO.„4/

�
I

hence P1;2.x/D�B2=6 and P1;3.x/D 0.
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Using the normal form B D b12dx1 ^ dx2C b34dx3 ^ dx4C � � � , we get in dimension d > 2 the
values P1;2.x/D�kBk

2=6 and P1;3.x/D 0.

7. Heat expansion from the semiclassical expansions

We have t yH1;a;V D
yHpt ;

p
ta;tV . Using the expansion of Theorem 1 with f .E/D e�E , we get easily

the point-wise expansion of the heat kernel on the diagonal as t ! 0C:

Œexp.�t yH1;a;V /�.x;x/�
1

.4� t/d=2
e�tV .x/

1X
lD0

� X
l=3�j�l�1

P
B;V
j ;l

.x/

�
.�t/l :

In particular, a1.x/D�V .x/ and the coefficient a2.x/ is given by

a2.x/D
1
2
V .x/2� 1

6
�V .x/� 1

6
kB.x/k2:

This formula agrees with Equation (3) of Theorem 3.3.1 in [Gilkey 2004].
This gives another way to compute the Pj ;l : if, as power series in t ,

1X
lD0

.�1/lbl.x/t
l
D etV .x/

1X
lD0

al.x/t
l ;

we have X
l=3�j�l�1

P
B;V
j ;l

.x/D bl.x/:

P
B;V
j ;l

is the sum of monomials homogeneous of degree 2.l � j / in bl where B and its derivatives have
weights 1 while V and its derivatives have weights 2.

The heat coefficients al on flat spaces are known for l � 6 from [Ven 1998]. This is enough to check the
term in „2 (uses a2 and a3) in [Helffer and Purice 2010] and to compute the term in „4 in the semiclassical
expansion (uses the al for 3� l � 6).

We have also a mixed expansion writing t bH„;a;V D bHpt„;
p

ta;tV , we get a power series expansion in

powers of „ and t valid in the domain „2t! 0 and 0< t � t0 for the point-wise trace of exp.�t bH„;a;V /:
Zt;„.x/�

1

.4� t/d=2
e�tV .x/

�
1C

X
j�1

jC1�l�3j

„
2j .�t/lP

B;V
j ;l

.x/

�
:

This shows that the integrals
R
X V .x/k jdxj and

R
X P

B;V
j ;l

.x/ jdxj are recoverable from the semiclassical
spectrum.

Appendix: functional calculus in domains and self-adjoint extensions (after Johannes Sjöstrand)

The content of this Appendix is due to Johannes Sjöstrand. I thank him very much for this contribution.

Let X � Rd be an open set. We say that a linear operator A is a ‰DO in X , with Weyl symbol a if,
for any compact K �X , A acts on functions supported in K as a ‰DO of Weyl symbol a.
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Theorem 2. Let H„;a;V be a Schrödinger operator with magnetic field given by

H„;a;V D

dX
jD1

�
„

i

@

@xj
� aj .x/

�2

CV .x/;

defined in some open domain X � Rd . We assume that a and V are smooth in X and that V is bounded
from below, so that H„;a;V admits some self-adjoint extensions on the Hilbert space L2.X; jdxj/. One of
them will be denoted by yH„;a;V . Then, for any f 2 S.R/, f . yH„;a;V /, given by the functional calculus,
is a semiclassical ‰DO in X whose symbol is given by Equation (1) and is independent of the chosen
extension.

The proof uses a multicommutator method already used by Helffer and Sjöstrand [1984].

Proof. We introduce, for s 2 R, the semiclassical („-dependent) Sobolev spaces

Hs
„
WD fu 2 S0.Rd / j kOp„.1Ck�k

2/s=2ukL2 <1 g

with the norm
kuks WD kOp„.1Ck�k

2/s=2ukL2 :

The („-dependent) norm kAks1;s2
is the norm of A as linear operator from Hs1

„
to Hs2

„
. A linear operator

K is smoothing if, for all s1; s2, kKks1;s2
D O.„1/. This implies that the Schwartz kernel of K is

smooth with all derivatives locally O.„1/. We have the

Lemma 1. Let Y be an open set in Rd . Let Pj DPj .„/; j D 0; 1 be two self-adjoint operators on Hilbert
spaces Hj DL2.Xj ; jdxj/ with Y b X0 � X1 � Rd and with domains Dj so that C1o .Y /� Dj �Hj .
Let us assume that, on C1o .Y /, P0 D P1 DH„;a;V .D P /.

Then, for any f 2 C1o .R/, f .P0/� f .P1/ is smoothing on Y . In particular, the densities of states
Œf .Pj /�.x;x/; j D 0; 1, coincide in Y modulo O.„1/.

Assuming Lemma 1, Theorem 2 follows by extending a and V smoothly outside Y so that they have
compact support in Rd . We take Y bX DX0 � Rd DX1. It follows that P1 is essentially self-adjoint
and the functional calculus for P1 follows then easily from [Helffer and Robert 1983]. The result is valid
even for f 2 S.R/ because C1o is dense in S and the result of [Helffer and Robert 1983] is valid for
f 2 S and the resulting formulas for the symbols are continuous w.r. to the topology of S. �

Proof. Proof of Lemma 1 If � 2 C1o .Y /, then, for z 62 R and j ; k 2 f0; 1g, we have on L2.Y /:

.Pj � z/�1
ı�D � ı .Pk � z/�1

� .Pj � z/�1ŒP; ��.Pk � z/�1 (2)

Let �0��1� � � � ��N with, for l D 0; � � � ;N , �l 2C1o .Y / and, for l D 0; � � � ;N �1, �l.1��lC1/� 0.
By iterating (2) and using �lC1ŒP; �l �D ŒP; �l �, we find:

.P1� z/�1
ı�0 D �1 ı .P0� z/�1�0��2 ı .P0� z/�1ŒP; �1�.P0� z/�1�0C � � �

˙�N .P0� z/�1ŒP; �N�1�.P0� z/�1ŒP; �N�2� � � � .P0� z/�1�0

� .P1� z/�1ŒP; �N �.P0� z/�1
� � � .P0� z/�1�0
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Let us give now �0;  2 C1o .Y / with disjoints supports. By choosing the �l for l > 0 with supports
disjoint from the support of  , we see, using Equation (2), that, for any N ,

k .P1� z/�1�0k0;2 DO
�
„

N
j=zj�.NC1/

�
:

The standard a priori elliptic estimates

kuksC2;�1
� C

�
k.P � z/uks;�2

Ckuks;�1

�
for z 2K b C and �1 b�2 b Rd , allow to prove that, for any N; s, there exists M.N; s/ so that

k .P1� z/�1�0ks;sCNC2 DO.„N
j=zj�M.N;s// (3)

Let � 2 C1o .Y / so that �� 1 on the support of �0. Let us apply multiplication by �0 to the right and to
the left in (2) and choose  with support disjoint from �0 so that ŒP; �� D ŒP; ��. Inserting  this way
in (2), we get, using (3),

�0.P1� z/�1�0��0.P0� z/�1�0 DK;

and, for any N , there exists M.N / so that kKk�N;N D O.„N=z�M.N //. We now apply the formula
(known to some people as the “Helffer–Sjöstrand formula”, proved for example in [Dimassi and Sjöstrand
1999, p. 94–95]), valid for f 2 C1o .R/ and Qf an almost holomorphic extension of f :

f .Pj /D
1

�

Z
C

@Nz Qf .z/.Pj � z/�1dL.z/;

where dL.z/ is the canonical Lebesgue measure in the complex plane. From this, we see that f .P0/�

f .P1/ is smoothing in Y . �
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