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THE INVERSE CONJECTURE FOR THE GOWERS NORM OVER FINITE
FIELDS VIA THE CORRESPONDENCE PRINCIPLE

TERENCE TAO AND TAMAR ZIEGLER

The inverse conjecture for the Gowers norms U d(V ) for finite-dimensional vector spaces V over a finite
field F asserts, roughly speaking, that a bounded function f has large Gowers norm ‖ f ‖Ud (V ) if and only
if it correlates with a phase polynomial φ= eF(P) of degree at most d−1, thus P :V→F is a polynomial
of degree at most d − 1. In this paper, we develop a variant of the Furstenberg correspondence principle
which allows us to establish this conjecture in the large characteristic case char F > d from an ergodic
theory counterpart, which was recently established by Bergelson, Tao and Ziegler. In low characteristic
we obtain a partial result, in which the phase polynomial φ is allowed to be of some larger degree C(d).
The full inverse conjecture remains open in low characteristic; the counterexamples found so far in this
setting can be avoided by a slight reformulation of the conjecture.

1. Introduction

1.1. The combinatorial inverse conjecture in finite characteristic. Let F be a finite field of prime order.
Throughout this paper, F will be considered fixed (for example, F = F2 or F = F3), and the term vector
space will be shorthand for vector space over F, and more generally any linear algebra term (span,
independence, basis, subspace, linear transformation, etc.) will be understood to be over the field F.

If V is a vector space, f : V → C is a function, and h ∈ V is a shift, we define the (multiplicative)
derivative 1· h f : V → C of f by the formula

1· h f := (Th f ) f ,

where the shift operator Th with shift h is defined by Th f (x) := f (x + h). An important special case
arises when f takes the form f = eF(P), where P : V → F is a function, and eF : F→ C is the standard
character eF( j) := e2π i j/|F| for j = 0, . . . , |F|−1. In that case we see that 1· h f = eF(1h P), where
1h P : V → F is the (additive) derivative of P , defined as

1h P = Th P − P.

Given an integer d > 0, we say that a function P : V → F is a polynomial of degree at most d if
we have 1h1 . . . 1hd+1 P = 0 for all h1, . . . , hd+1 ∈ V , and write Polyd V for the set of all polynomials
on V of degree at most d; thus for instance Poly0 V is the set of constants, Poly1 V is the set of linear
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polynomials on V , Poly2 V is the set of quadratic polynomials, and so forth. It is easy to see that Polyd V
is a vector space, and if V = Fn

= {(x1, . . . , xn) : x1, . . . , xn ∈ F} is the standard n-dimensional vector
space, then Polyd V has the monomials x i1

1 . . . x
in
n for 06 i1, . . . , in < |F| and i1+· · ·+ in 6 d as a basis1.

We shall say that a function f : V → C is a phase polynomial of degree at most d if all (d+1)-th
multiplicative derivatives 1· h1 . . . 1· hd+1 f are identically 1, and write Pd(V ) for the space of all phase
polynomials of degree at most d. We have the following equivalence between polynomials and phase
polynomials in the high characteristic case:

Lemma 1.2 (phase polynomials are exponentials of polynomials). Suppose that 0 6 d < char F, and
f : V → C. Then the following are equivalent:

(i) f ∈ Pd(V ).

(ii) f = e2π iθeF(P) for some θ ∈ R/Z and P ∈ Polyd V .

Proof. See [Bergelson et al. 2009, Lemma D.5]. �

Remark 1.3. The lemma fails in the low characteristic case d> char F; consider for instance the function
f : F2→ C defined by f (1) := i and f (0) := 1. This function lies in P2(F2) but does not arise from a
polynomial in Poly2F2.

Definition 1.4 (expectation notation). If A is a finite nonempty set and f : A→C is a function, we write
|A| for the cardinality of A, and EA f ,

∫
A f , or Ex∈A f (x) for the average (1/|A|)

∑
x∈A f (x).

Definition 1.5 (Gowers uniformity norm [Gowers 1998; 2001]). Let V be a finite vector space, let
f : V → C be a function, and let d > 1 be an integer. We then define the Gowers norm ‖ f ‖U d (V ) of f
to be the quantity

‖ f ‖U d (V ) :=

∣∣∣Eh1,...,hd

∫
V
1· h1 . . . 1· hd f

∣∣∣1/2d

,

thus ‖ f ‖U d+1(V ) measures the average bias in d-th multiplicative derivatives of f . We also define the
weak Gowers norm ‖ f ‖ud (V ) of f to be the quantity

‖ f ‖ud (V ) := sup
φ∈Pd−1(V )

∣∣∣∫
V

f φ
∣∣∣, (1-1)

thus ‖ f ‖ud (V ) measures the extent to which f can correlate with a phase polynomial of degree at most
d − 1.

Remark 1.6. It can in fact be shown that the Gowers and weak Gowers norm are in fact norms for d > 2
(and seminorms for d = 1); see [Gowers 2001; Tao and Vu 2006]. Further discussion of these two norms
can be found in [Green and Tao 2008]. In view of Lemma 1.2, in the high characteristic case char F> d
one can replace the phase polynomial φ ∈ Pd−1(V ) in (1-1) by the exponential eF(P) of a polynomial
P ∈ Polyd−1 V . However, this is not the case in low characteristic. For instance, let F= F2, V = Fn

2 , and
consider the symmetric function S4 : V → F2 defined by

S4(x1, . . . , xn) :=
∑

16i< j<k<l6n

xi x j xk xl .

1The restriction i1, . . . , in < |F| arises of course from the identity x |F| = x for all x ∈ F.
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Then the function f := (−1)S4 has low correlation with any exponential eF(P) = (−1)P of a cubic
polynomial P ∈ Poly3 V in the sense that Ex∈V f eF(−P)= on→∞(1) [Lovett et al. 2007; Green and Tao
2009a]; on the other hand, it is not hard to verify that the function

g(x1, . . . , xn) := e2π i |x |/8,

where |x | denotes the number of indices 16 j 6 n for which x j = 1, lies in P3(V ) and has a large inner
product with f ; indeed, since f (x) = +1 when |x | = 0, 1, 2, 3 mod 8 and −1 otherwise, we easily
check that

Ex∈V f ḡ = 1
8

(
1+ e−2π i/8

+ e−4π i/8
+ e−6π i/8

− e−8π i/8
− e−10π i/8

− e−12π i/8
− e−14π i/8)

+ on→∞(1)

=
1− i −

√
2i

4
+ on→∞(1).

We thus see that ‖(−1)S4‖u4(V ) is bounded from below by a positive absolute constant for large n.

Let D := {z ∈ C : |z| 6 1} be the compact unit disk. This paper is concerned with the following
conjecture.

Conjecture 1.7 (inverse conjecture for the Gowers norm). Let F be a finite field and let d > 1 be an
integer. Then for every δ > 0 there exists ε > 0 such that ‖ f ‖ud (V ) > ε for every finite vector space V
and every function f : V → D such that ‖ f ‖U d (V ) > δ.

Remark 1.8. This result is trivial for d = 1, and follows easily from Plancherel’s theorem for d = 2. The
result was established for d = 3 in [Green and Tao 2008] (for odd characteristic) and [Samorodnitsky
2007] (for even characteristic), and a formulation of Theorem 1.9 was then conjectured in both papers,
in which the phase polynomials were constrained to be (char F)-th roots of unity. This formulation of the
conjecture turned out to fail in the low characteristic regime char F+1< d [Green and Tao 2009a; Lovett
et al. 2007]; however, the counterexamples given there do not rule out the conjecture as formulated above
in this case, basically because of the discussion in Remark 1.6.

The case when δ was sufficiently close to 1 (depending on d) was treated in [Alon et al. 2003; 2005],
while the case when char F is large compared to d and δ was established in [Sudan et al. 2001]. In [Green
and Tao 2009a], Theorem 1.9 was also established in the case when f was a phase polynomial of degree
less than char F. These results have applications to solving linear systems of equations (and in particular,
in finding arithmetic progressions) in subsets of vector spaces [Green and Tao 2009b; Gowers and Wolf
2007] and also to polynomiality testing [Samorodnitsky 2007; Bogdanov and Viola 2007]. Conjecture
1.7 is also the finite field analogue of a corresponding inverse conjecture for the Gowers norm in cyclic
groups Z/NZ, which is of importance in solving linear systems of equations in sets of integers such as
the primes; see [Green and Tao 2006; Frantzikinakis et al. 2007] for further discussion.

The main result of this paper is to establish this conjecture in the high characteristic case.

Theorem 1.9 (inverse conjecture for the Gowers norm in high characteristic). Conjecture 1.7 holds
whenever char F≥ d.

In the low characteristic case we have a partial result.
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Theorem 1.10 (partial inverse conjecture for the Gowers norm). Let F be a finite field and let d > 1 be
an integer. Then for every δ > 0 there exists ε > 0 such that ‖ f ‖uk(V ) > ε for every finite vector space V
and every function f : V → D such that ‖ f ‖U d (V ) > δ, where k = C(d) depends only on d.

Remark 1.11. One could in principle make the quantity k = C(d) in Theorem 1.10 explicit, but this
would require analyzing the arguments in [Bergelson et al. 2009] in careful detail. One should however
be able to obtain reasonable values of k for small d (e.g., d = 4).

The proofs of Theorems 1.9, 1.10 rely on four additional ingredients:

• an ergodic inverse theorem for the Gowers norm for Fω-systems (Theorems 1.19, 1.20), established
in [Bergelson et al. 2009];

• the Furstenberg correspondence principle [Furstenberg 1977], combined with the random averaging
trick of Varnavides [1959];

• a statistical sampling lemma (Proposition 3.13); and

• local testability of phase polynomials (Lemma 4.5), essentially established in [Alon et al. 2003;
2005].

Of these ingredients, the ergodic inverse theorem is the most crucial, and we now pause to describe it
in detail.

1.12. The ergodic inverse conjecture in finite characteristic. Let Fω :=
⋃
∞

n=0 Fn be the inverse limit of
the finite-dimensional vector spaces Fn , where each Fn is included in the next space Fn+1 in the obvious
manner; equivalently, Fω is the space of sequences (xi )

∞

i=1 with xi ∈ F, and all but finitely many of the
xi nonzero. This is a countably infinite vector space over F.

Definition 1.13 (Fω-system). A Fω-system is a quadruplet X = (X,B, µ, (Tg)g∈Fω), where (X,B, µ) is
a probability space, and T : h 7→ Th is a measure-preserving action of Fω on X , thus for each h ∈ Fω,
Th : X → X is a measure-preserving bijection such that Th ◦ Tk = Th+k for all h, k ∈ Fω. Given any
measurable φ : X → C and h ∈ Fω, we define Thφ : X → C to be the function Thφ := φ ◦ Th , and
1· hφ : X → C to be the function 1· hφ := Thφ · φ. We also define the inner product 〈 f, g〉 :=

∫
X f ḡ dµ

for all f, g ∈ L2(X), where the Lebesgue spaces L p(X)= L p(X,B, µ) are defined in the usual manner.
We say that the system is ergodic if the only Fω-invariant functions on L2(X) are the constants.

Definition 1.14 (phase polynomial). Let X = (X,B, µ, (Tg)g∈Fω) be an Fω-system, and let d > 0. We
say that a function φ ∈ L∞(X) is a phase polynomial of degree at most d if we have 1· h1 . . . 1· hd+1φ = 1
µ-a.e. for all h1, . . . , hd+1 ∈ Fω. We let Pd(X) denote the space of all phase polynomials.

Remark 1.15. By setting h1 = · · · = hd+1 = 0 we see that every phase polynomial φ ∈ Pd(X) has unit
magnitude: |φ| = 1 µ-a.e.

Definition 1.16 (Gowers–Host–Kra seminorms [Host and Kra 2005]). Let X = (X,B, µ, (Tg)g∈Fω) be
a Fω-system, and let φ ∈ L∞(X). We define the Gowers–Host–Kra seminorms ‖φ‖U d (X) for d > 1
recursively as follows:

• If d = 1, then ‖φ‖U 1(X) := lim supn→∞
(
‖Eh∈Fn Thφ‖

2
L2(X,µ)

)1/2;

• If d > 1, then ‖φ‖U d (X) := lim supn→∞
(
‖1· hφ‖

2d−1

U d−1(X,µ,T )

)1/2d

.
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We also define the weak Gowers–Host–Kra seminorm ‖φ‖ud (X) as

‖φ‖ud (X) := sup
ψ∈Pd−1(X)

|〈φ,ψ〉|.

Example 1.17. If φ ∈ Pd−1(X) is a phase polynomial of degree at most d − 1, then

‖φ‖U d (X) = ‖φ‖ud (X) = 1.

Remark 1.18. One can use the ergodic theorem to show that the limits here in fact converge, but we
will not need this. The U d are indeed seminorms, but we will not need this either.

In [Bergelson et al. 2009, Corollaries 1.26, 1.27], the following ergodic theory analogues of Theorems
1.9, 1.10 was shown:

Theorem 1.19 (inverse conjecture for the Gowers–Host–Kra seminorm for high characteristic). Let X =
(X,B, µ, (Tg)g∈Fω) be an ergodic Fω-system, let char F > d > 1, and let φ ∈ L∞(X) be such that
‖φ‖U d (X) > 0. Then ‖φ‖ud (X) > 0.

Theorem 1.20 (partial inverse conjecture for the Gowers–Host–Kra seminorm for general characteristic).
Let X = (X,B, µ, (Tg)g∈Fω) be an ergodic Fω-system, let d > 1, and let φ ∈ L∞(X) be such that
‖φ‖U d (X) > 0. Then ‖φ‖uk(X) > 0 for some k = C(d) depending only on d.

Remark 1.21. The if part of this theorem follows easily from van der Corput’s lemma; the important
part of the theorem for us is the only if part. These results can be viewed as a finite field analogue of the
results in [Host and Kra 2005] in high characteristic (and a partial analogue in the low characteristic case),
and indeed draws heavily on the tools developed in that paper; see [Bergelson et al. 2009] for further
discussion. It is quite possible that k can in fact be taken to equal d in Theorem 1.20 (or equivalently,
that the condition char F> d can be dropped in Theorem 1.19); this would imply Conjecture 1.7 in full
generality.

We will use Theorem 1.20 as a black box, and it will be the primary ingredient in our proof of
Theorem 1.10, in much the same way that the Furstenberg recurrence theorem is the primary ingredient
in Furstenberg’s proof of Szemerédi’s theorem in [Furstenberg 1977]. Theorem 1.19 plays a similar role
for Theorem 1.9.

As with any other argument using a Furstenberg-type correspondence principle, our bounds are inef-
fective, in that we do not obtain an explicit value of ε in terms of d and δ. In principle, one could finitise
the arguments in [Bergelson et al. 2009] (in the spirit of [Tao 2006]) to obtain such an explicit value, but
this would be extremely tedious (and not entirely straightforward), and would lead to an extremely poor
dependence (such as iterated tower-exponential or worse). We will not pursue this matter here.

2. Notation

We will rely heavily on asymptotic notation. Given any parameters x1, . . . , xk , we use Ox1,...,xk (X) to
denote any quantity bounded in magnitude by Cx1,...,xk X for some finite quantity Cx1,...,xk depending only
on x1, . . . , xk . We also write Y �x1,...,xk X or X �x1,...,xk Y for Y = Ox1,...,xk (X). Furthermore, given an
asymptotic parameter n that can go to infinity, we use on→∞;x1,...,xk (X) to denote any quantity bounded
in magnitude by cx1,...,xk (n)X , where cx1,...,xk (n) is a quantity which goes to zero as n →∞ for fixed
x1, . . . , xk . Thus for instance, if r2 > r1 > 1, then exp r1/log r2 = or2→∞;r1(1).
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3. Statistical sampling

It is well known that the global average Eh∈V f (h) of a bounded function f : V → D can be accurately
estimated (with high probability) by randomly selecting a number of points x1, . . . , xN ∈ V and comput-
ing the empirical Monte Carlo average (or local average) E16n6N f (xn). Indeed, it is not hard to show
(by the second moment method) that with probability oN→∞(1), one has

E16n6N f (xn)= Eh∈V f (h)+ oN→∞(1).

The point here is that the error term is uniform in the choice of f and V .
We now record some variants of this standard random local averages approximate global averages

fact, in which we perform more exotic empirical averages. We begin with averages along random sub-
spaces of V .

Lemma 3.1 (random sampling for integrals). Let v1, . . . , vm be points chosen independently at random
in a finite-dimensional vector space V , and let f : V →D be a function. With probability 1−om→∞(1),
we have

EEa∈Fm f (Ea · Ev)= Eh∈V f (h)+ om→∞(1),

where Ev := (v1, . . . , vm) and Ea · Ev := a1v1+ · · ·+ amvm .

Remark 3.2. One can easily make the om→∞(1) terms more explicit, but we will not need to do so here.

Proof. We use the second moment method. Note that

EEEa∈Fm f (Ea · Ev)= Eh∈V f (h)+ om→∞(1)

(the om→∞(1) error arising from the a= 0 contribution) so by Chebyshev’s inequality it suffices to show
that

E|EEa∈Fm f (Ea · Ev)|2 = |Eh∈V f (h)|2+ om→∞(1).

The left side can be rearranged as
E
Ea,Eb∈Fm E f (Ea · Ev) f̄ (Eb · Ev).

It is easy to see that the inner expectation is |Eh∈V f (h)|2 unless Ea = cEb, for some c ∈ F in which case it
is O(1). The claim follows. �

In the above lemma, f was deterministic and thus independent of the vi . But we can easily extend
the result to the case where f depends on a bounded number of the vi .

Corollary 3.3 (random sampling for integrals, II). Let V be a finite-dimensional vector space, let m >
m0 > 0, let v1, . . . , vm ∈ V be chosen independently at random, and let fv1,...,vm0

: V → D be a function
that depends on v1, . . . , vm0 but is independent of vm0+1, . . . , vm . Then with probability 1−om→∞;m0(1),
we have

EEa∈Fm fv1,...,vm0
(Ea · Ev)= Eh∈V fv1,...,vm0

(h)+ om→∞;m0(1).

Proof. We write Ea = (Ea0, Ea1) ∈ Fm0 × Fm−m0 and Ev = (Ev0, Ev1) ∈ V m0 × V m−m0 . If we condition Ev0 =

(v1, . . . , vm0) to be fixed, we see from applying Lemma 3.1 to the remaining random vectors Ev1 that for
fixed Ea0, we have

EEa1∈Fm−m0 fv1,...,vm0
(Ea · Ev)= Eh∈V fv1,...,vm0

(Ea0 · Ev0+ h)+ om−m0→∞(1),
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with probability 1−om−m0→∞(1) conditioning on Ev0; integrating this we see that the same is true without
the conditioning. We can shift h by Ea0 · Ev0, move the h average onto the other side, and take expectations
to conclude that

E|EEa1∈Fm−m0 fv1,...,vm0
(Ea · Ev)− Eh∈V fv1,...,vm0

(h)| = om−m0→∞(1)

for each Ea0; averaging over Ea0 by the triangle inequality we obtain the claim. �

Remark 3.4. It is with this corollary that we are implicitly exploiting the highly transitive nature of
the symmetry group GL(V ) available to us. In the setting of the cyclic group Z/NZ, the analogue of
Lemma 3.1 is still true, namely that one can approximate a global average

∫
Z/NZ

f by a local average
on random arithmetic progressions of medium length, but this approximation no longer holds if f is
allowed to depend on the first few values of that progression, since this of course determines the rest
of the progression; this is related to the fact that (for N prime, say), the affine group of Z/NZ (which
is analogous to GL(V )) is 2-transitive but no stronger. In contrast, in the finite field setting, a small
subspace of a medium-dimensional subspace does not determine the whole subspace.

We will need to generalise these results further by considering more exotic averages along cubes. A
typical result we will need can be stated informally as

EEa2∈Fm2 EEa1∈Fm1

∫
V

f (TEa1·Ev1 f̄ )(TEa2·Ev2 f̄ )(TEa1·Ev1+Ea2·Ev2 f )≈ Eh1,h2∈V

∫
V

f (Th1 f̄ )(Th2 f̄ )Th1+h2 f (3-1)

when m1 is large, m2 is large compared with m1, and Ev is random (see Lemma 3.9 for the formal version
of this type of estimate). Such results follow (heuristically, at least), by iterating the previous results.
For instance, from Corollary 3.3 we heuristically have

EEa2∈Fm2 EEa1∈Fm1

∫
V

f (TEa1·Ev1 f̄ )(TEa2·Ev2 f̄ )(TEa1·Ev1+Ea2·Ev2 f )(x)≈Eh2∈V EEa1∈Fm1

∫
V

f (TEa1·Ev1 f̄ )(Th2 f̄ )(TEa1·Ev1+h2 f )

when m2 is large compared to m1 and then interchanging the expectations and applying Lemma 3.1
heuristically yields

Eh2∈V EEa1∈Fm1

∫
V

f (TEa1·Ev1 f̄ )(Th2 f̄ )(TEa1·Ev1+h2 f )≈ Eh1∈V Eh2∈V

∫
V

f (Th1 f̄ )(Th2 f̄ )(Th1+h2 f ),

when m1 is large, thus giving (3-1).
We will formalise the precise statement along these lines that we need later in this section. We begin

with some key definitions.

Definition 3.5 (Lipschitz norm). If G : Dn
→ C is a function on a polydisk Dn , we define the Lipschitz

norm ‖G‖Lip of G to be the quantity

‖G‖Lip := sup
z∈Dn
|G(z)| + sup

z,w∈Dn :z 6=w

|G(z)−G(w)|
d(z, w)

,

where we use the metric

d
(
(z1, . . . , zn), (w1, . . . , wn)

)
:= |z1−w1| + · · · + |zn −wn|.
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Definition 3.6 (accurate sampling sequence). Let k > 1, let V be a finite-dimensional vector space, let
f : V → D be a bounded function, and let

0= H0 < H1 < H2 < H3 < · · ·

be a sequence of integers (or “scales”). We define an accurate sampling sequence for f of degree k and
at scales H1, H2, . . . to be an infinite sequence of vectors

v1, v2, v3, . . . ∈ V

such that for every sequence
06 w0 < r1 < · · ·< rk

of scales and every Lipschitz function G : D{0,1}
k
×F

Hr0
→ C, we have∫

V
|G f,r0,r1,...,rk −G f,r0 |6

‖G‖Lip

r1
, (3-2)

where
G f,r0,r1,...,rk (x) := E

Ea1∈F
Hr1 ,...,Eak∈F

Hrk G
(
( f (x +ω ·u+ Eb · Ev0)

)
ω∈{0,1}k ,Eb∈F

Hr0 ),

where
u= (Ea1 · Ev1, . . . , Eak · Evk); Ev j = (v1, . . . , vHr j

), j = 0, . . . , k,

and
G f,r0(x) := Eh1∈V,...,hk∈V G

(
( f (x +ω ·h+ Eb · Ev0))ω∈{0,1}k ,Eb∈F

Hr0

)
,

where h= (h1, . . . , hk).

Remark 3.7. The denominator r1 in (3-2) could be replaced by any other fixed function of r1 that went
to infinity as r1→∞ if desired here.

Remark 3.8. We make the trivial but useful remark that an accurate sampling sequence of degree k
is also an accurate sampling sequence of degree k ′ for any 1 6 k ′ 6 k. Indeed, to verify (3-2) for a
function G ′ :D{0,1}

k′
×F

Hr0
→D and some scales rk′ > · · ·> r0 > 0, one simply adds some dummy scales

rk′+1, . . . , rk above rk′ and extends G ′ to a function G :D{0,1}
k
×F

Hr0
→D by composing with the obvious

restriction map from D{0,1}
k
×F

Hr0 to D{0,1}
k′
×F

Hr0 .

Roughly speaking, an accurate sampling sequence will allow us to estimate all the global averages
that we need for the combinatorial inverse conjecture for the Gowers norm by local averages which are
suitable for lifting to the ergodic setting via the correspondence principle. We illustrate the use of such
sequences by describing the three special cases of (3-2) that we will actually need in our arguments.

Lemma 3.9 (global Gowers norm can be approximated by local Gowers norm). Let d > 1, let V be a
finite-dimensional vector space, let f : V → D be a bounded function, and let v1, v2, . . . ∈ V be an
accurate sampling sequence for f of degree d and at scales H1, H2, . . . . Then for every sequence of
scales

0< r1 < r2 < · · ·< rd ,

we have
E
Ea1∈F

Hr1 ,..., Ead∈F
Hrd

∫
V
1· Ea1·Evr1

. . . 1· Ead ·Evrd
f = ‖ f ‖2

d

U d (V )+ or1→∞;d(1).
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Remark 3.10. As with all other estimates in this section, the point is that the error term is uniform over
all choices of f and V . Note that the d = 2 case of this lemma is a formalisation of (3-1).

Proof. We apply (3-2) with r0 = 0, and G : D{0,1}
d
→ C being the function

G
(
(z(ω))ω∈{0,1}d

)
:=

∏
ω∈{0,1}d

Cω1+...+ωd z(ω),

where C : z 7→ z̄ is the complex conjugation operator. A routine computation gives the identities

G f,0,r1,...,rd (x)= E
Ea1∈F

Hr1 ,...,Ead∈F
Hrd 1· Ea1·Evr1

. . . 1· Ead ·Evrd
f,

∫
V

G f,0 = ‖ f ‖2
d

U d (V ).

Also, it is easy to see that the Lipschitz norm ‖G‖Lip is Od(1). The claim now follows immediately from
(3-2) and the triangle inequality. �

Lemma 3.11 (global averages can be approximated by local averages). Let V be a finite-dimensional
vector space, let f : V → D be a bounded function, and let v1, v2, . . . ∈ V be an accurate sampling
sequence for f of degree 1 and at scales H1, H2, . . . . Then for every finite sequence Eb1, . . . , Ebm ∈ Fω and
every continuous function F : Dm

→ C, we have∫
V
|EEa∈FHr TEa·Evg−

∫
V

g| = or→∞;F,m,Eb1,...,Ebm
(1),

where g : V → C is the function

g(x) := F(TEb1·Ev
f (x), . . . , TEbm ·Ev

f (x)). (3-3)

Proof. By approximating the continuous function F uniformly by a Lipschitz function, we may assume
that F is Lipschitz. By adding dummy vectors to the collection Eb1, . . . , Ebm if necessary, we may assume
that {Eb1, . . . , Ebm} = FHr0 for some r0 > 0 depending on Eb1, . . . , Ebm , thus F is now a Lipschitz function
from DF

Hr0 to C.
Note that to prove the claim we may without loss of generality restrict to the regime r > r0. We now

apply (3-2) with G : D{0,1}×F
Hr0
→ C being the function

G
(
(z(ω, Eb))ω∈{0,1},Eb∈F

Hr0

)
:= F

(
(z(1, Eb))Eb∈F

Hr0

)
.

A routine computation gives the identities

G f,r0,r (x)= EEa∈FHr TEa·Evg(x), G f,r0(x)= Eh∈V Thg(x)=
∫

V
g.

Also, it is clear that G is Lipschitz with norm OF,r0(1). The claim then follows from (3-2). �

Lemma 3.12 (global polynomiality test can be approximated by local polynomiality test). Let k > 1, let
V be a finite-dimensional vector space, let f :V→D be a bounded function, and let v1, v2, . . .∈V be an
accurate sampling sequence for f of degree k and at scales H1, H2, . . . . Then for every finite sequence
Eb1, . . . , Ebm ∈ Fω and every continuous function F : Dm

→ C, we have

E
Ea1∈F

Hr1 . . . EEak∈F
Hrk

∫
V

∣∣1· Ea1·Ev . . . 1· Eak ·Evg− 1
∣∣= Eh1,...,hk∈V

∫
V

∣∣1· h1 . . . 1· hk g− 1
∣∣+ or1→0;F,m,Eb1,...,Ebm ,k(1)
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for any 16 r1 < r2 < · · ·< rk , where g : V → C is the function defined by (3-3).

Proof. Arguing as in Lemma 3.11, we may assume that {Eb1, . . . , Ebm} = FHr0 for some r0 > 0 depending
on Eb1, . . . , Ebm , and that F : DF

Hr0
→ C is Lipschitz.

Note that to prove the claim we may without loss of generality restrict to the regime r1 > r0. We now
apply (3-2) with G : D{0,1}

k
×F

Hr0
→ C being the function

G
(
(z(ω, Eb))ω∈{0,1}k ,Eb∈F

Hr0

)
:=

∣∣∣ ∏
ω∈{0,1}k

Cω1+...+ωk F
(
(z(ω, Eb))Eb∈F

Hr0

)
− 1

∣∣∣,
where C is again the complex conjugation operator. A routine computation gives the identities

G f,r0,r1,...,rk (x)= E
Ea1∈F

Hr1 . . . EEak∈F
Hrk

∣∣1· Ea1·Ev . . . 1· Eak ·Evg(x)− 1
∣∣,

G f,r0(x)= Eh1,...,hk∈V
∣∣1· h1 . . . 1· hk g(x)− 1

∣∣,
for any r0 < r1 < · · · < rk . Also it is clear that G is Lipschitz with norm OF,r0,k(1). The claim then
follows from (3-2) and the triangle inequality. �

Of course, in order to utilise the above lemmas we need to know that such accurate sampling sequences
in fact exist. This is the purpose of the following proposition.

Proposition 3.13 (existence of accurate sampling sequence). Let d > 1. Then there exists a sequence

0= H0 < H1 < H2 < H3 < · · ·

of integers such that for every finite-dimensional vector space V and any function f : V→D, there exists
an accurate sampling sequence v1, v2, v3, . . . ∈ V for f of degree d at scales H1, H2, . . . .

Remark 3.14. The key point here is that the scales H1, H2, H3, . . . are universal; they depend on d , but
otherwise and work for all vector spaces V and functions f .

Proof. We select H j recursively by the formula H j+1 := F(H j ), where F = Fd :N→N is a sufficiently
rapidly growing function depending on d that we will choose later.

We use the probabilistic method, choosing v1, v2, . . . ∈ V uniformly at random, and showing that (if
F was sufficiently rapid) the resulting sequence will be an accurate sampling sequence with positive
probability.

We begin with observing that in order to verify the condition (3-2), it suffices by the triangle inequality
to show that with positive probability, one has∫

V

∣∣G f,r0,r1,...,rd′
−G f,r0,r1,...,rd′−1

∣∣6 ‖G‖Lip

dr1
(3-4)

for all 16 d ′ 6 d , all 06 r0 < · · ·< rd ′ , and every Lipschitz function G : D{0,1}
d
×F

Hr0
→ C, where

G f,r0,r1,...,rd′
(x)

:= E
Ea1∈F

Hr1 ,...,Ead′∈F
Hrd′

Ehd′+1,...,hd∈V G
((

f
(

x +
d ′∑

j=1

ω j Ea j · Ev j +

d∑
j=d ′+1

ω j h j + b · Ev0

))
(ω1,...,ωd )∈{0,1}d

b∈F
Hr0

)
.
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By the union bound, it will suffice to show that for all 1 6 d ′ 6 d and all 0 6 r0 < · · · < rd ′ , with
probability 1− oHrd′

→∞;d,Hr0 ,...,Hrd′−1
,r1(1), (3-4) holds for all Lipschitz functions G :D{0,1}

d
×F

Hr0
→ C,

since the total failure probability can be made to be less than 1 by choosing F to be sufficiently rapid.
We can normalise G to have Lipschitz norm 1. By the Arzelà–Ascoli theorem, the space of such

functions is compact in the uniform topology. In particular, there exists a collection of functions

G : D{0,1}
d
×F

Hr0
→ C

of Lipschitz norm 1, S, of size Od,Hr0 ,r1(1), such that any other such Lipschitz function lies within
1/(4dr1), say, of a function G ∈ S in the uniform metric. Because of this, we see from the union bound
again that it will suffice to show that for all 1 6 d ′ 6 d and all 0 6 r0 < · · · < rd ′ , and all functions
G : D{0,1}

d
×F

Hr0
→ C of Lipschitz norm 1 in S,∫

V

∣∣G f,r0,r1,...,rd′
−G f,r0,r1,...,rd′−1

∣∣6 1
2dr1

(3-5)

of (3-4) holds with probability 1− oHrd′
→∞;d,Hr0 ,...,Hrd′−1

,r1(1).
Fix d ′, r0, . . . , rd ′,G. By Markov’s inequality, it suffices to show that

E

∫
V

∣∣G f,r0,r1,...,rd′
−G f,r0,r1,...,rd′−1

∣∣= oHrd′
→∞;d,Hr0 ,...,Hrd′−1

(1);

by linearity of expectation it thus suffices to show that

E
∣∣G f,r0,r1,...,rd′

(x)−G f,r0,r1,...,rd′−1
(x)
∣∣= oHrd′

→∞;d,Hr0 ,...,Hrd′−1
(1)

uniformly in x ∈ V .
Fix x . We observe that

G f,r0,r1,...,rd′
(x)= E

Ea∈F
Hrd′

fv1,...,vHrd′−1
(Ea · Evd ′), G f,r0,r1,...,rd′−1

(x)= Eh∈V fv1,...,vHrd′−1
(h),

where fv1,...,vHrd′−1
: V → D is the function

fv1,...,vHrd′−1
(h) :=

E
Ea1∈F

Hr1 ,...,Ead′−1∈F
Hrd′−1

Ehd′+1,...,hd∈V G
((

f
(

x+
d ′−1∑
j=1

ω j Ea j ·Ev j+ωd ′hd ′+

d∑
j=d ′+1

ω j h j+b·Ev0

))
(ω1,...,ωd )∈{0,1}d

b∈F
Hr0

)
.

As the notation suggests, the function fv1,...,vHrd′−1
depends on the values of v1, . . . , vHrd′−1

but not on
higher elements of the sequence. Also, as G has Lipschitz norm 1, f takes values in D. The claim now
follows from Corollary 3.3. �

4. Proof of the main theorems

We are now ready to prove the main theorems. We shall just prove Theorem 1.10 using Theorem 1.20;
the deduction of Theorem 1.9 using Theorem 1.19 is exactly analogous (see the brief remarks at the end
of this section).
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Fix F and d , and let k = C(d) be the quantity in Theorem 1.20. By increasing k if necessary we may
assume k> d . Assume for sake of contradiction that Theorem 1.10 failed for this choice of F, d, k. Then
we can find δ > 0 and a sequence f (n) : V (n)

→D of functions on finite-dimensional vector spaces V (n)

such that
‖ f (n)‖U d (V (n)) > δ (4-1)

for all n, but
‖ f (n)‖uk(V (n)) = on→∞(1). (4-2)

We now let F(x) := x , and let
1< H1 < H2 < · · ·

be the sequence in Proposition 3.13; it is important to note that this sequence does not depend on n.
From that proposition, we can find an accurate sampling sequence

v
(n)
1 , v

(n)
2 , . . . ∈ V (n)

for f (n) of degree k at these scales. We fix such a sequence for each n.
We will use these sampling sequences to lift the functions f (n) on V (n) to a universal dynamical

system for Fω by the usual Furstenberg correspondence principle method. We begin by constructing this
universal space.

Definition 4.1 (Furstenberg universal space). Let X :=DFω be the space of functions ζ : Fω→D. With
the product topology, this is a compact metrisable space, with Borel σ -algebra B. It has a continuous
action h 7→ Th of the additive group Fω, defined by the formula

Thζ(x) := ζ(x + h).

We let Pr(X)T be the space of all Borel probability measures µ on X which are invariant with respect to
this action; note that X = (X,B, µ, (Th)h∈Fω) is a Fω-system for any µ ∈ Pr(X)T . If µ(n) ∈ Pr(X)T is a
sequence of such measures, and µ ∈ Pr(X)T is another measure, we say that µ(n) converges vaguely to
µ if we have

lim
n→∞

∫
X
φ(ζ ) dµ(n)(ζ )→

∫
X
φ(ζ ) dµ(ζ )

for all continuous functions φ : X→ C.

Because X is compact metrisable, and the action of T is continuous it is a well known fact that
Pr(X)T is sequentially compact; thus every sequence of measures in Pr(X)T has a vaguely convergent
subsequence whose limit is also in Pr(X)T .

For each n, we define a measure µ(n) ∈ Pr(X)T on X by the formula

µ(n) = Ex∈V (n)δζn,x ,

where δ denotes the Dirac mass and for each x ∈ V (n), ζn,x ∈ X is the function

ζn,x(Ea) := TEa·Ev(n) f (n)(x)= T∑∞
m=1 amv

(n)
m

f (n)(x)

for all Ea ∈ Fω (note the sum on the right side has only finitely many nonzero terms). Observe that µ(n)

is indeed T -invariant. By passing to a subsequence if necessary, we may assume that µ(n) converges
vaguely to a limit µ ∈ Pr(X)T . We write X := (X,B, µ, (Th)h∈Fω).
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Let f : X→ D be the indicator function f (ζ ) := ζ(0). We observe the key correspondence∫
X

G(TEa1 f, . . . , TEak f ) dµ(n)(ζ )=
∫

V (n)
G(TEa1·Ev(n) f (n), . . . , TEak ·Ev(n) f (n)) (4-3)

for all Ea1, . . . , Eak ∈ Fω, all n, and all continuous G : Dk
→ C.

We now record the (standard) fact that the countable collection of shifts Th f for h ∈ Fω generates
L∞(X):

Lemma 4.2 (Th f generate L∞(X)). Given any φ ∈ L∞(X) and ε > 0, there exists a finite number of
shifts Eh1, . . . , Ehk ∈ Fω and a continuous function G : Dk

→ C such that∫
X

∣∣φ−G(TEh1
f, . . . , TEhk

f )
∣∣ dµ6 ε.

Proof. For continuous φ, the claim follows easily from the Stone–Weierstrass theorem (and in this case
we can upgrade the L1 approximation to L∞ approximation). As X is compact metrisable, the Borel
measure µ is in fact a Radon measure, and so (by Urysohn’s lemma) the continuous functions are dense
in L∞(X) in the L1(X) topology, and the claim follows. �

We can now use the machinery of the previous section to deduce various important facts about X and
f . For instance, Lemma 3.11 now implies

Lemma 4.3 (ergodicity). X is ergodic.

Proof. By the mean ergodic theorem, it suffices to show that

lim
r→∞

∫
X

∣∣∣EEh∈FHr Thg−
∫

X
g dµ

∣∣∣ dµ= 0

for all g ∈ L∞(X). By Lemma 4.2 and a standard limiting argument it suffices to show this for g which
are functions of finitely many shifts of f , say g = G(TEb1

f, . . . , TEbk
f ). We will then show that∫

X

∣∣∣EEh∈FHr TEhg−
∫

X
g dµ

∣∣∣ dµ= or→∞;G,k,Eb1,...,Ebk
(1).

By vague convergence it suffices to show that∫
X

∣∣∣Eh∈FHr TEhg−
∫

X
g dµ(n)

∣∣∣ dµ(n) = or→∞;G,k,Eb1,...,Ebk
(1)

for all n. By (4-3), we can rewrite the left side as∫
V

∣∣∣EEh∈FHr TEh·Ev(n)r
g(n)−

∫
V

g(n)
∣∣∣,

where
g(n) := G(TEb1·Ev(n)

f (n), . . . , TEbk ·Ev(n)
f (n)).

But the claim now follows from Lemma 3.11 (and Remark 3.8). �

In a similar spirit, Lemma 3.9 implies this:

Lemma 4.4 ( f has large Gowers–Host–Kra norm). ‖ f ‖U d (X) > δ.
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Proof. From the mean ergodic theorem we have

‖ f ‖2U 1(X) = lim sup
K1→∞

EEh1∈FK1

∫
X
1· Eh1

f dµ,

and by induction we have

‖ f ‖2
d

U d (X) = lim sup
Kd→∞

. . . lim sup
K1→∞

EEhd∈FKd . . . EEh1∈FK1

∫
X
1· Eh1

. . . 1· Ehd
f dµ.

It thus suffices to show that

EEhd∈F
Hrd . . . EEh1∈F

Hr1

∫
X
1· Eh1

. . . 1· Ehd
f dµ > δ2d

− ord→∞(1)

whenever 16 rd < · · ·< r1. By reversing the order of averages, it suffices to show that

EEhd∈F
Hrd . . . EEh1∈F

Hr1

∫
X
1· Eh1

. . . 1· Ehd
f dµ > δ2d

− or1→∞(1)

whenever 16 r1 < · · ·< rd . Fix r1, . . . , rd . By weak convergence, it suffices to show that

EEhd∈F
Hrd . . . EEh1∈F

Hr1

∫
X
1· Eh1

. . . 1· Ehd
f dµ(n) > δ2d

− or1→∞(1)

for all n. By (4-1), it suffices to show that

EEhd∈F
Hrd . . . EEh1∈F

Hr1

∫
X
1· Eh1

. . . 1· Ehd
f dµ(n) > ‖ f (n)‖2

d

U d (V (n))
− or1→∞(1).

By (4-3), left side can be rephrased as∫
V

E
Ea1∈F

Hr1 ,...,Ead∈F
Hrd 1· Ea1·Ev

(n)
r1
. . . 1·

Ead ·Ev
(n)
rd

f (n),

and the claim now follows from Lemma 3.9 (and Remark 3.8). �

We have now verified all the hypotheses of Theorem 1.19. Applying that theorem, we conclude that
‖ f ‖uk(X) > c for some c > 0 (which could be very small, but positive). Thus we can find a phase
polynomial φ ∈ Pk−1(X) of degree k− 1 such that∣∣∣∫

X
f φ dµ

∣∣∣> c.

Let ε > 0 be a small number (depending on d, k, c) to be chosen later. By Lemma 4.2, we can find
Eb1, . . . , Ebm ∈ Fω (with m potentially quite large, but finite) and a continuous G : Dm

→ C such that∫
X

∣∣φ−G(TEb1
f, . . . , TEbm

f )
∣∣6 ε. (4-4)

Since φ takes values in D, we may assume without loss of generality that G does also. If ε is small
enough depending on c, we thus have∣∣∣∫

X
f G(TEb1

f, . . . , TEbm
f ) dµ

∣∣∣> c/2.
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By vague convergence, we thus have∣∣∣∫
X

f G(TEb1
f, . . . , TEbm

f ) dµ(n)
∣∣∣> c/4

for all sufficiently large n (depending on G,m, c). Using (4-3), we rearrange this as∣∣∣∫
V

f (n)G(TEb1·Ev(n)
f (n), . . . , TEbm ·Ev(n)

f (n))
∣∣∣> c/4. (4-5)

Now let r1 be a large integer depending on the Eb1, . . . , Ebm, ε, and let r j := r1+ ( j −1) for j = 2, . . . , d .
Since φ is a phase polynomial of degree k− 1, we have∫

X

∣∣1· Ea1 . . . 1· Eakφ− 1
∣∣ dµ= 0

for all Ea1 ∈ FHr1 , . . . , Eak ∈ FHrk . From many applications of (4-4), the triangle inequality, and the bound-
edness of φ,G, we conclude that∫

X

∣∣1· Ea1 . . . 1· Eak G(TEb1
f, . . . , TEbm

f )− 1
∣∣ dµ�k ε

for all Ea1 ∈ FHr1 , . . . , Eak ∈ FHrk . By vague convergence, this implies that∫
X

∣∣1· Ea1 . . . 1· Eak G(TEb1
f, . . . , TEbm

f )− 1
∣∣ dµ(n)�k ε

for all sufficiently large n (depending on ε, Hr1, . . . , Hrk ). Using (4-3), we can rearrange the left side as∫
V (n)

∣∣1· Ea1·Ev(n) . . . 1· Eak ·Ev(n)G(TEb1·Ev(n)
f (n), . . . , TEbm ·Ev(n)

f (n))− 1
∣∣,

and so on averaging we obtain

E
Ea1∈F

Hr1 ,...,Eak∈F
Hrk

∫
V (n)

∣∣1· Ea1·Ev(n) . . . 1· Eak ·Ev(n)G(TEb1·Ev(n)
f (n), . . . , TEbm ·Ev(n)

f (n))− 1
∣∣�k ε.

Applying Lemma 3.12 we conclude (if r1 is sufficiently large depending on Eb1, . . . , Ebm, ε) that

Eh1,...,hk∈V (n)

∫
V (n)

∣∣1· h1 . . . 1· hk G(TEb1·Ev(n)
f (n), . . . , TEbm ·Ev(n)

f (n))− 1
∣∣�k ε.

Now we invoke a local testability lemma:

Lemma 4.5 (polynomiality is locally testable). Let V be a finite-dimensional vector space, let k > 1, let
g : V → D be a bounded function, and suppose that

Eh1,...,hk∈V

∫
V

∣∣1· h1 . . . 1· hk g− 1
∣∣6 ε (4-6)

for some ε > 0. Then there exists a phase polynomial φ ∈ Pk−1(V ) such that∫
V
|g−φ|6 oε→0;d(1).
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For F = F2, this result is essentially in [Alon et al. 2003; 2005] or [Tao 2007, Proposition 4.6], but
for the convenience of the reader, and in view of the subtle difference between phase polynomials and
polynomials (see Remark 1.3), we give a full proof of this lemma in Appendix A.

Applying this lemma, we conclude that there exists φ(n) ∈ Pk−1(V (n)) such that∫
V

∣∣G(TEb1·Ev(n)
f (n), . . . , TEbm ·Ev(n)

f (n))−φ(n)
∣∣6 oε→0;k(1).

Inserting this into (4-5) we conclude that ∣∣∣∫
V

f (n)φ(n)
∣∣∣> c/8

if ε is sufficiently small depending on c, k. But this contradicts (4-2). The proof of Theorem 1.10 is
complete.

The proof of Theorem 1.9 is identical, but with k now set equal to d , and Theorem 1.19 used instead
of Theorem 1.20. We leave the details to the reader.

Remark 4.6. It is tempting to try to adapt these arguments to the cyclic setting Z/NZ, in which the
role of polynomials is replaced by that of a nilsequence (see [2006; 2008] for further discussion), thus
establishing the inverse conjecture for the Gowers norm for Z/NZ that was formulated in those papers.
The analogue of Theorem 1.19 is known; see [Host and Kra 2005]. However, two obstructions remain
before one can carry out this program. The first is to compensate for the rigidity of arithmetic progressions
that seems to prevent a counterpart of Corollary 3.3 from holding in the cyclic group setting (see Remark
3.4). The second is that whereas polynomiality is locally testable thanks to Lemma 4.5, it is unclear
whether the property of being a nilsequence is similarly testable.

Appendix: Proof of Lemma 4.5

In this appendix we give a proof of Lemma 4.5, following the arguments in [Alon et al. 2003; 2005] and
[Tao 2007, Proposition 4.6]. We begin with a variant of Lemma 1.2:

Lemma A.1 (discreteness). Let k > 0, let V be a finite-dimensional vector space, and φ ∈ Pk(V ). Then
there exists θ ∈ R/Z and an integer K > 1 depending only on F such that φ(x) is equal to e2π iθ times a
K -th root of unity for every x ∈ V .

Proof. See [Bergelson et al. 2009, Lemma D.5], (which gives the explicit value K = pbk/pc+1, where p
is the characteristic of F). �

Lemma A.2 (rigidity). Let k > 0, let V be a finite-dimensional vector space, and take φ ∈ Pk(V ).
Suppose that

∫
V |φ−1|6 ε for some ε > 0. If ε is sufficiently small depending on k, F, then φ is constant.

Proof. We induct on k. For k = 0 the claim is obvious, and for k = 1 φ is a linear character (times a
phase) and the claim can be worked out by hand. Now suppose k > 2 and the claim has already been
shown for smaller values of k. Since φ is a phase polynomial, we have 1· 0 . . . 1· 0φ = 1, and thus φ
has unit magnitude. Observe that if

∫
V |φ − 1| 6 ε, then

∫
V |Thφ − 1| 6 ε for every h ∈ V . Using the

elementary estimate
|1· hφ− 1|6 |φ− 1| + |Thφ− 1|
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(using the fact that φ has unit magnitude) we conclude that∫
V
|1· hφ− 1|6 2ε,

for every h ∈ V . On the other hand, 1· hφ ∈ Pk−1(V ), so by induction hypothesis (if ε is small enough)
we conclude that 1· hφ is constant for all h ∈ V . Thus φ ∈ P1(V ), but then the claim follows from the
case of k− 1. �

We now prove Lemma 4.5. The case k = 1 is easy, so suppose that k > 2 and the claim has already
been established for k − 1. To abbreviate the notation we shall write o(1) for oε→0;k(1). We say that a
statement P(x) holds for most x ∈ V if it holds for (1− o(1))|V | elements of v.

We fix k, V, f . We may assume that ε is small depending on d , as the claim is trivial otherwise. From
(4-6) and Markov’s inequality we see that

Eh1,...,hk−1∈V

∫
V

∣∣1· h1 . . . 1· hk−11· h f − 1
∣∣= o(1) (A-1)

for most h ∈ V . Let us call h good if (A-1) holds. Applying the induction hypothesis, we conclude that
for any good h there exists2 φh ∈ Pk−2(V ) such that∫

V
|1· h f −φh|6 o(1).

In particular, this implies (by Markov’s inequality) that for all good h, we have

f (x + h) f (x)= φh(x)+ o(1)

for most V . Since f is bounded in magnitude by 1, this implies that

| f (x)| = 1− o(1)

for most x , and for all good h we have

f (x + h)= φh(x) f (x)+ o(1) (A-2)

for most x .
We now pause to perform a discretisation trick. Write p := char F. From repeated applications of

(A-2) we see that

f (x)= f (x + ph)= φh(x)φh(x + h) . . . φh(x + (p− 1)h) f (x)+ o(1)

for most x , and thus
φh(x)φh(x + h) . . . φh(x + (p− 1)h)= 1+ o(1)

for at least one x . On the other hand, from Lemma A.1 φh takes values in e2π iθ times K -th roots of unity
for some fixed K depending only on d, p. Thus e2π i pθ times a K -th root of unity is within o(1) of 1,

2This quantity plays the same role that cocycles do in ergodic theory.
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and so e2π iθ lies within o(1) of a pK -th root of unity. Rotating φh by o(1) if necessary we may assume
that e2π iθ is exactly a pK -th root of unity, and in particular we have

φ
pK
h ≡ 1 (A-3)

whenever h is good.
Now suppose that h1, h2, h3, h4 are good and form an additive quadruple in the sense that h1+ h2 =

h3+ h4. Then from (A-2) we see that

f (x + h1+ h2)= f (x)φh1(x)φh2(x + h1)+ o(1) (A-4)

for most x , and similarly

f (x + h3+ h4)= f (x)φh3(x)φh4(x + h3)+ o(1)

for most x . Since | f (x)| = 1+ o(1) for most x , we conclude the approximate cocycle relationship

φh1(x)φh2(x + h1)φh3(x)φh4(x + h3)= 1+ o(1)

for most x . In particular, the average of the left side in x is 1 − o(1). Applying Lemma A.2 (and
assuming ε small enough), we conclude that the left side is constant in x ; using the discretisation (A-3),
we conclude (again for ε small enough) that it is in fact 1. Thus

φh1(x)φh2(x + h1)= φh3(x)φh4(x + h3) (A-5)

for all x and any good additive quadruple h1, h2, h3, h4.
Now for any k ∈ V , define the quantity ψ(k) ∈ C by the formula

ψ(k) := φh1(0)φh2(h1) (A-6)

whenever h1, h2, h1+h2 are simultaneously good. Note that the existence of such an h1, h2 is guaranteed
since most h are good, and (A-5) ensures that the right side of (A-6) does not depend on the exact choice
of h1, h2 and so ψ is well-defined. From (A-3) we see that ψ takes values in the pK -th roots of unity,
and in particular only has O(1) possible values.

Now let x ∈ V and h be good. Then, since most elements of V are good, we can find good r1, r2, s1, s2

such that r1+ r2 = x and s1+ s2 = x + h. From (A-4) we see that

f (y+ x)= f (y+ r1+ r2)= f (y)φr1(y)φr2(y+ r1)+ o(1),

f (y+ x + h)= f (y+ s1+ s2)= f (y)φs1(y)φs2(y+ s1)+ o(1),

for most y. Also from (A-2) we have

f (y+ x + h)= f (y+ x)φh(y+ x)+ o(1)

for most y. Combining these (and the fact that | f (y)| = 1+ o(1) for most y) we see that

φs1(y)φs2(y+ s1)φr1(y)φr2(y+ r1)φh(y+ x)= 1+ o(1)

for most y. Taking expectations and applying Lemma A.2 and (A-3) as before, we conclude that

φs1(y)φs2(y+ s1)φr1(y)φr2(y+ r1)φh(y+ x)= 1
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for all y. Specialising to y = 0 and applying (A-6) we conclude that

φh(x)= ψ(x + h)ψ(x)=1· hψ(x) (A-7)

for all x ∈ V and good h; thus we have successfully “integrated” φh . We can then extend φh(x) to all
h ∈ V (not just good h) by viewing (A-7) as a definition. Observe that if h ∈ V , then h = h1 + h2 for
some good h1, h2, and from (A-7) we have

φh(x)= φh1(x)φh2(x + h1).

In particular, since the right side lies in Pk−2(V ), the left side does also. Thus we see that1· hψ ∈Pk−2(V )
for all h ∈ V , and thus Q ∈ Pk−1(V ). If we then set g(x) := f (x)ψ(x), then from (A-2), (A-7) we see
that for every h ∈ H we have

g(x + h)= g(x)+ o(1)

for most x . From Fubini’s theorem, we thus conclude that there exists an x such that g(x+h)=g(x)+o(1)
for most h, thus g is almost constant. Since |g(x)| = 1+o(1) for most x , we thus conclude the existence
of a phase θ ∈ R/Z such that g(x)= e2π iθ

+ o(1) for most x . We conclude that

f (x)= e2π iθψ(x)+ o(1)

for most x , and Lemma 4.5 then follows.
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