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Let R be a commutative noetherian ring. Denote by D−(R) the derived category
of cochain complexes X of finitely generated R-modules with Hi (X)=0 for i�0.
Then D−(R) has the structure of a tensor triangulated category with tensor product
· ⊗

L
R · and unit object R. In this paper, we study thick tensor ideals of D−(R),

i.e., thick subcategories closed under the tensor action by each object in D−(R),
and investigate the Balmer spectrum SpcD−(R) of D−(R), i.e., the set of prime
thick tensor ideals of D−(R). First, we give a complete classification of the
thick tensor ideals of D−(R) generated by bounded complexes, establishing a
generalized version of the Hopkins–Neeman smash nilpotence theorem. Then, we
define a pair of maps between the Balmer spectrum SpcD−(R) and the Zariski
spectrum Spec R, and study their topological properties. After that, we compare
several classes of thick tensor ideals of D−(R), relating them to specialization-
closed subsets of Spec R and Thomason subsets of SpcD−(R), and construct a
counterexample to a conjecture of Balmer. Finally, we explore thick tensor ideals
of D−(R) in the case where R is a discrete valuation ring.
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Introduction

Tensor triangular geometry is a theory established by Balmer at the beginning of
this century. Let (T,⊗, 1) be an (essentially small) tensor triangulated category,
that is, a triangulated category T equipped with symmetric tensor product ⊗
and unit object 1. One can then define prime thick tensor ideals of T, which
behave similarly to prime ideals of commutative rings. The Balmer spectrum
Spc T of T is defined as the set of prime thick tensor ideals of T. This set has
the structure of a topological space. Tensor triangular geometry studies Balmer
spectra and develops commutative-algebraic and algebrogeometric observations
on them. Tensor triangular geometry is related to a lot of areas of mathematics,
including commutative/noncommutative algebra, commutative/noncommutative
algebraic geometry, stable homotopy theory, modular representation theory, motivic
theory, noncommutative topology, and symplectic geometry. Understandably, tensor
triangular geometry has been attracting a great deal of attention, and Balmer [2010b]
gave an invited lecture at the 2010 International Congress of Mathematicians.

By virtue of a landmark theorem due to Balmer [2005], the radical thick tensor
ideals of T correspond to the Thomason subsets of the Balmer spectrum Spc T

of T. It is thus a main subject in tensor triangular geometry to determine/describe
the Balmer spectrum of a given tensor triangulated category. Such studies have been
done for these thirty years considerably widely; one can find ones at least in stable
homotopy theory [Balmer and Sanders 2017; Devinatz et al. 1988; Hopkins and
Smith 1998], commutative algebra [Hopkins 1987; Neeman 1992; Takahashi 2010],
algebraic geometry [Balmer 2002; Stevenson 2014b; Thomason 1997], modular
representation theory [Balmer 2016; Benson et al. 1997; 2011; Friedlander and
Pevtsova 2007], and motivic theory [Dell’Ambrogio and Tabuada 2012; Peter 2013].

Let R be a commutative noetherian ring. Denote by D−(R) the right bounded
derived category of finitely generated R-modules, namely, the derived category of
(cochain) complexes X of finitely generated R-modules such that Hi (X)= 0 for all
i � 0. Then (D−(R),⊗L

R, R) is a tensor triangulated category. The main purpose
of this paper is to investigate thick tensor ideals of the tensor triangulated category
D−(R), analyzing the structure of the Balmer spectrum SpcD−(R) of D−(R).

Here, we should remark that results in the literature which we can apply for
our purpose are quite limited. For example, many people have been studying the
Balmer spectra of tensor triangulated categories which arise as the compact objects
of compactly generated tensor triangulated categories, but our tensor triangulated
category D−(R) does not arise in this way. Also, there are various results on the
Balmer spectrum of a rigid tensor triangulated category, but again they do not
apply to our case because D−(R) is not rigid (nor even closed); see Remark 1.3.
Furthermore, several properties have been found for tensor triangulated categories
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which are generated by their unit object as a thick subcategory, but D−(R) does not
satisfy this property. Thus, the only existing results that are available and useful for
our goal are basically general fundamental results given in [Balmer 2005], and we
need to start with establishing basic tools by ourselves.

From now on, let us explain the main results of this paper. First of all, recall that
an object X of a triangulated category T is compact if the natural morphism⊕

λ∈3

HomT(M, Nλ)→ HomT

(
M,

⊕
λ∈3

Nλ

)
is an isomorphism for every family {Nλ}λ∈3 of objects of T with

⊕
λ∈3 Nλ ∈ T.

Furthermore, X is cocompact if the natural morphism⊕
λ∈3

HomT(Nλ,M)→ HomT

(∏
λ∈3

Nλ,M
)

is an isomorphism for every family {Nλ}λ∈3 of objects of T with
∏
λ∈3 Nλ ∈T. A

thick tensor ideal of D−(R) is called compactly generated or cocompactly generated
if it is generated by compact or cocompact objects, respectively, of D−(R) as a
thick tensor ideal. For a subcategory X of D−(R) we denote by Supp X the union
of the supports of complexes in X, and for a subset S of Spec R we denote by 〈S〉
the thick tensor ideal of D−(R) generated by R/p with p ∈ S. We shall prove the
following theorem.

Theorem A (Proposition 2.1, Theorem 2.12, and Corollary 2.16). The compact or
cocompact objects of D−(R) are the perfect or bounded complexes, respectively;
hence, all compactly generated thick tensor ideals are cocompactly generated. The
assignments X 7→ Supp X and 〈W 〉 7→W make mutually inverse bijections

{Cocompactly generated thick ⊗-ideals of D−(R)}

� {Specialization-closed subsets of Spec R}.

Consequently, all cocompactly generated thick tensor ideals of D−(R) are compactly
generated.

The core of this theorem is constituted by the classification of the cocompactly
generated thick tensor ideals of D−(R), which is obtained by establishment of a
generalized smash nilpotence theorem, extending the classical smash nilpotence
theorem due to Hopkins [1987] and Neeman [1992] for the homotopy category of
perfect complexes. In view of Theorem A, we may simply call X compact if X

is compactly generated and/or cocompactly generated. We should remark that in
general we have

〈W 〉 6= Supp−1 W,
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where Supp−1 W consists of the complexes whose supports are contained in W .
Thus, we call a thick tensor ideal of D−(R) tame if it has the form Supp−1 W for
some specialization-closed subset W of Spec R.

Next, we relate the Balmer spectrum SpcD−(R) of D−(R) to the Zariski spectrum
Spec R of R, i.e., the set of prime ideals of R. More precisely, we introduce a pair
of order-reversing maps

S : Spec R� SpcD−(R) : s

and investigate their topological properties. These maps are defined as follows. Let
p ∈ Spec R and P ∈ SpcD−(R). Then S(p) consists of the complexes X ∈ D−(R)
with Xp = 0, and s(P) is the unique maximal element of ideals I of R with
R/I /∈ P with respect to the inclusion relation. Our main result in this direction
is the following theorem. Denote by tSpcD−(R) the set of tame prime thick
tensor ideals of D−(R), and by MxD−(R) and MnD−(R) the maximal and minimal
elements, respectively, of SpcD−(R) with respect to the inclusion relation. For
each full subcategory X of D−(R), let Xtame stand for the smallest tame thick tensor
ideal of D−(R) containing X.

Theorem B (Theorems 3.9, 4.5, 4.7, 4.12, and 4.14 and Corollary 3.14). The
following statements hold.

(1) s ·S= 1 and S ·s= Supp−1 Supp= ( · )tame. In particular, dim(SpcD−(R))>
dim R.

(2) The image of S coincides with tSpcD−(R), and it is dense in SpcD−(R).

(3) The map s is continuous, and its restriction s′ : tSpcD−(R)→ Spec R is a
continuous bijection.

(4) The map S′ : Spec R → tSpcD−(R) induced by S is an open and closed
bijection.

(5) The map Min R→ MxD−(R) induced by S is a homeomorphism.

(6) The map Max R → MnD−(R) induced by S is a homeomorphism if R is
semilocal.

(7) S is continuous⇐⇒ S′ is homeomorphic⇐⇒ s′ is homeomorphic⇐⇒ Spec R
is finite.

The celebrated classification theorem due to Balmer [2005] asserts that taking
the Balmer support Spp makes a one-to-one correspondence between the set Rad
of radical thick tensor ideals of D−(R) and the set Thom of Thomason subsets of
SpcD−(R):

Spp : Rad� Thom : Spp−1 .
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Our next goal is to complete this one-to-one correspondence to the following
commutative diagram, giving complete classifications of compact and tame thick
tensor ideals of D−(R). Denote by Cpt and Tame the sets of compact and tame
thick tensor ideals of D−(R), respectively, and by Spcl(Spec) and Spcl(tSpc) the
sets of specialization-closed subsets of Spec R and tSpcD−(R), respectively.

Theorem C (Theorems 5.13 and 5.20). There is a diagram

Rad
Spp

//

( · )cpt

��

Thom
Spp−1

oo

S−1

��

( · )spcl

&&

Cpt

( · )rad

OO

Supp
//

( · )tame

%%

Spcl(Spec)

S

OO

〈 · 〉

oo
S

//

Supp−1

��

Spcl(tSpc)

( · )spcl

ff

s
oo

Sp−1

xx

Tame

( · )cpt

ee

Sp

88

Supp

OO

where the pairs of maps A=(( · )rad,( · )cpt), B=(S,S−1), and C=(( · )spcl,( · )spcl)

are section-retraction pairs (as sets), and all the other pairs consist of mutually
inverse bijections. The diagram with the sections and retractions, respectively, and
bijections is commutative.

We do not give here the definitions of the maps appearing above (we do this in
Section 5); what we want to emphasize now is that those maps are given explicitly.

Moreover, we prove that some/any of the three section-retraction pairs A, B,C
in the above theorem are bijections if and only if R is artinian, which is incorporated
into the following theorem.

Theorem D (Theorem 6.5). The following are equivalent.

(1) R is artinian.

(2) Every thick tensor ideal of D−(R) is compact, tame, and radical.

(3) Every radical thick tensor ideal of D−(R) is tame.

(4) The pair of maps (S, s) consists of mutually inverse homeomorphisms.

(5) Some/all of the maps S, s are bijective.

(6) Some/all of the pairs A, B,C consist of mutually inverse bijections.

This theorem says that in the case of artinian rings everything is clear. An
essential role is played in the proof of this theorem by a certain complex in D−(R)
constructed from shifted Koszul complexes.
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Let (T,⊗, 1) be a tensor triangulated category. Balmer [2010a] constructs a
continuous map

ρ•T : Spc T→ Spech R•T,

where R•T = HomT(1, 6•1) is a graded-commutative ring. Balmer [2010b] con-
jectures that the map ρ•T is (locally) injective when T is an algebraic triangulated
category, that is, a triangulated category arisen as the stable category of a Frobenius
exact category. Our D−(R) is evidently an algebraic triangulated category, but does
not satisfy this conjecture under a quite mild assumption:

Theorem E (Corollary 6.10). Assume that dim R > 0 and that R is either a domain
or a local ring. Then the map ρ•

D−(R) is not locally injective. Hence, Balmer’s
conjecture does not hold for D−(R).

In fact, the assumption of the theorem gives an element x ∈ R with ht(x) > 0.
Then we can find a nontame prime thick tensor ideal P of D−(R) associated with x
at which ρ•

D−(R) is not locally injective.
Finally, we explore thick tensor ideals of D−(R) in the case where R is a discrete

valuation ring, because this should be the simplest unclear case, now that everything
is clarified by Theorem D in the case of artinian rings. We show the following
theorem, which says that even if R is such a good ring, the structure of the Balmer
spectrum of D−(R) is rather complicated. (Here, ``( · ) stands for the Loewy
length.)

Theorem F (Propositions 7.7 and 7.17 and Theorems 7.11 and 7.14). Let (R, x R)
be a discrete valuation ring, and let n > 0 be an integer. Let Pn be the full
subcategory of D−(R) consisting of complexes X with finite length homologies such
that there exists an integer t > 0 with ``(H−i X)6 tin for all i � 0. Then:

(1) Pn coincides with the smallest thick tensor ideal of D−(R) containing the
complex⊕

i>0

(R/x in
R)[i] = (· · · 0

−→ R/x3n
R 0
−→ R/x2n

R 0
−→ R/x1n

R→ 0).

(2) Pn is a prime thick tensor ideal of D−(R) which is not tame. If n > 1, then Pn

is not compact.

(3) One has P0 ( P1 ( P2 ( · · · . Hence, SpcD−(R) has infinite Krull dimension.

The paper is organized as follows. Section 1 is devoted to giving several basic
definitions and studying fundamental properties that are used in later sections.
In Section 2, we study compactly and cocompactly generated thick tensor ideals
of D−(R), and classify them completely. The generalized smash nilpotence the-
orem and Theorem A are proved in this section. In Section 3, we define the
maps S and s between Spec R and SpcD−(R), and prove part of Theorem B. In
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Section 4, we study topological properties of the maps S, s and the Balmer spectrum
SpcD−(R). We complete in this section the proof of Theorem B. In Section 5, we
compare compact, tame, and radical thick tensor ideals of D−(R), relating them
to specialization-closed subsets of Spec R and tSpcD−(R) and Thomason subsets
of SpcD−(R). Theorem C is proved in this section. In Section 6, we consider
when the section-retraction pairs in Theorem C are one-to-one correspondences,
and deal with the conjecture of Balmer for D−(R). We show Theorems D and E in
this section. The final Section 7 concentrates on investigation of the case of discrete
valuation rings. Several properties that are specific to this case are found out, and
Theorem F is proved in this section.

1. Fundamental materials

In this section, we give several basic definitions and study fundamental properties,
which will be used in later sections. We begin with our convention.

Convention 1.1. Throughout the paper, unless otherwise specified, R is a commuta-
tive noetherian ring, and all subcategories are nonempty and full. We put I 0

= R and
x0
= 1 for an ideal I of R and an element x ∈ R. We denote by Spec R, Max R, and

Min R the set of prime, maximal prime, and minimal prime ideals of R, respectively.
For an ideal I of R, we denote by V(I ) the set of prime ideals of R containing I ,
and set D(I )=V(I ){ = Spec R \V(I ). When I is generated by a single element x ,
we simply write V(x) and D(x). For a prime ideal p of R, the residue field of Rp is
denoted by κ(p), i.e., κ(p)= Rp/pRp. For a sequence x = x1, . . . , xn of elements
of R, the Koszul complex of R with respect to x is denoted by K(x, R). For an
additive category C we denote by 0 the zero subcategory of C, that is, the full
subcategory consisting of objects isomorphic to the zero object. For objects X, Y
of C, we mean by X lY (or Y mX ) that X is a direct summand of Y in C. We often
omit subscripts, superscripts, and parentheses, if there is no danger of confusion.

Let T be a triangulated category. A thick subcategory of T is by definition a
triangulated subcategory closed under direct summands; in other words, it is a
subcategory closed under direct summands, shifts, and cones. For a subcategory
X of T we denote by thickX the thick closure of X, that is, the smallest thick
subcategory of T containing X.

Now we recall the definitions of a tensor triangulated category and a thick tensor
ideal.

Definition 1.2. (1) We say that (T,⊗, 1) is a tensor triangulated category if T is
a triangulated category equipped with a symmetric monoidal structure which
is compatible with the triangulated structure of T; see [Hovey et al. 1997, Ap-
pendix A] for the precise definition. In particular, ·⊗· is exact in each variable.
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(2) Let (T,⊗, 1) be a tensor triangulated category. A subcategory X of T is said
to be a thick tensor ideal provided that X is a thick subcategory of T and for
any T ∈T and X ∈X one has T⊗X ∈X. We often abbreviate “tensor ideal” to
“⊗-ideal”. For a subcategory C of T, we define the thick ⊗-ideal closure of C

to be the smallest thick ⊗-ideal of T containing C, and denote it by thick⊗ C.

We denote by D−(R) and Db(R) the derived categories of (cochain) complexes X
of finitely generated R-modules with Hi (X)= 0 for all i � 0 and |i | � 0, respec-
tively. We denote by D−

fl (R) and Db
fl(R) the subcategories of D−(R) and Db(R),

respectively, consisting of complexes X whose homologies have finite length as
R-modules. By K−(R) and Kb(proj R) we denote the homotopy categories of
complexes P of finitely generated projective R-modules with P i

=0 for all i�0 and
|i | � 0, respectively. By K−,b(R) we denote the subcategory of K−(R) consisting
of complexes P with Hi (P)= 0 for all i � 0. Note that there are chains

Db
fl(R)⊆ Db(R) ⊆ D−(R),

Db
fl(R)⊆ D−

fl (R) ⊆ D−(R),

Kb(proj R)⊆ K−,b(R)⊆ K−(R)

of thick subcategories and triangle equivalences

D−(R)∼= K−(R), Db(R)∼= K−,b(R).

We will often identify D−(R),Db(R) with K−(R),K−,b(R), respectively, via these
equivalences. Note that (Kb(proj R),⊗R, R) and (D−(R),⊗L

R, R) are essentially
small tensor triangulated categories. (In general, if C is an essentially small additive
category, then so is the category of complexes of objects in C, and so is the homotopy
category.)

Remark 1.3. The tensor triangulated category D−(R) is never rigid. More strongly,
it is never closed. In fact, assume there is a functor F :D−(R)×D−(R)→D−(R) such
that HomD−(R)(X⊗L

R Y, Z)∼=HomD−(R)(Y, F(X, Z)) for all X, Y, Z ∈D−(R). We
have HomD−(R)(X⊗L

RY, Z)=HomD(R)(X⊗L
RY, Z)∼=HomD(R)(Y, RHomR(X, Z)),

where D(R) is the unbounded derived category of R-modules. Letting Y = R[−i]
for i ∈ Z, we obtain Hi (F(X, Z))∼= ExtiR(X, Z). Since F(X, Z) is in D−(R), we
have Hi (F(X, Z))= 0 for i � 0. Hence, Ext�0

R (X, Z)= 0 for all X, Z ∈ D−(R).
This is a contradiction.

Here we compute some thick closures and thick ⊗-ideal closures.

Proposition 1.4. There are equalities:

(1) thick⊗
D−(R)R = D−(R).

(2) thickD−(R) R= thickDb(R) R= thickKb(proj R) R= thick⊗
Kb(proj R) R=Kb(proj R).
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(3) thickD−(R) k = thickDb(R) k = Db
fl(R), if R is local with residue field k.

Proof. The following hold in general and are easy to check.

(a) Let T be a triangulated category, U be a thick subcategory, and U ∈U. Then
thickU U = thickT U .

(b) Let (T,⊗, 1) be a tensor triangulated category. Then thick⊗ 1= T.

The assertion is shown by these two statements. �

From now on, we deal with the supports of objects and subcategories of D−(R).
Recall that the support of an R-module M is defined as the set of prime ideals p
of R such that the Rp-module Mp is nonzero, which is denoted by SuppR M .

Proposition 1.5. Let X be a complex in D−(R). Then the following three sets are
equal:

(1)
⋃

i∈Z SuppR Hi (X),

(2) {p ∈ Spec R | Xp 6
∼= 0 in D−(Rp)}, and

(3) {p ∈ Spec R | κ(p)⊗L
R X 6∼= 0 in D−(Rp)}.

Proof. It is clear that the first and second sets coincide. For a prime ideal p of R one
has κ(p)⊗L

R X ∼= κ(p)⊗L
Rp

Xp. It is seen by [Christensen 2000, Corollary A.4.16]
that the second and third sets coincide. �

Definition 1.6. The set in Proposition 1.5 is called the support of X and denoted
by SuppR X . For a subcategory C of D−(R), we set Supp C=

⋃
C∈C Supp C , and

call this the support of C. For a subset S of Spec R, we denote by Supp−1 S the
subcategory of D−(R) consisting of complexes whose supports are contained in S.

Remark 1.7. The fact that the second and third sets in Proposition 1.5 coincide
will often play an important role in this paper. Note that these two sets are different
if X is a complex outside D−(R). For example, let (R,m, k) be a local ring of
positive Krull dimension. Take any nonmaximal prime ideal P , and let X be the
injective hull E(R/P) of the R-module R/P . Then k⊗L

R X = 0, while Xm 6= 0.

Remark 1.8. For X ∈ D−(R) one has Supp X =∅ if and only if X = 0. In other
words, it holds that Supp−1 ∅= 0. (If we define the support of X as the third set in
Proposition 1.5, then the assumption that X belongs to D−(R) is essential, as the
example given in Remark 1.7 shows.)

In the following lemma and proposition, we state several basic properties of
Supp and Supp−1 defined above. Both results will often be used later.

Lemma 1.9. The following statements hold.

(1) Supp(X [n])= Supp X for all X ∈ D−(R) and n ∈ Z.

(2) If X is a direct summand of Y in D−(R), then Supp X ⊆ Supp Y .
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(3) If X→Y→ Z→ X [1] is an exact triangle in D−(R), then Supp A⊆Supp B∪
Supp C for all {A, B,C} = {X, Y, Z}.

(4) Supp(X ⊗L
R Y )= Supp X ∩Supp Y for all X, Y ∈ D−(R).

Proof. The assertions (1), (2), and (3) are straightforward by definition. For each
prime ideal p of R there is an isomorphism (X ⊗L

R Y )p ∼= Xp⊗
L
Rp

Yp. Hence,
(X ⊗L

R Y )p = 0 if and only if either Xp = 0 or Yp = 0 by [Christensen 2000,
Corollary A.4.16]. This shows the assertion (4). �

Let X be a topological space. A subset A of X is called specialization-closed
provided that for each point a ∈ A the closure {a} of {a} in X is contained in A.
Hence, a subset S of Spec R is specialization-closed if and only if for each p ∈ S
one has V(p) ⊆ S. Note that A is specialization-closed if and only if A is a
(possibly infinite) union of closed subsets of X . Therefore, a union of specialization-
closed subsets is again specialization-closed, and thus, one can define the largest
specialization-closed subset Aspcl of X contained in A, which will be called the
spcl-closure of A in Section 5.

Proposition 1.10. (1) Let S be a subset of Spec R. Then there are equalities
Supp−1 S = Supp−1(Sspcl) and Supp(Supp−1 S)= Sspcl. Moreover, Supp−1 S
is a thick ⊗-ideal of D−(R).

(2) Let X be any subcategory of D−(R). Then Supp X is a specialization-closed
subset of Spec R, and one has Supp X= Supp(thick⊗ X).

(3) It holds that D−
fl (R)=Supp−1(Max R). In particular, D−

fl (R) is a thick⊗-ideal
of D−(R).

Proof. (1) We put W = Sspcl. Let X be a complex in D−(R). Since Supp X is
specialization-closed, it is contained in S if and only if it is contained in W . Hence,
Supp−1 S = Supp−1 W . Evidently, W contains Supp(Supp−1 W ), while we have
p ∈ Supp R/p = V(p) ⊆ W for p ∈ W . Hence, Supp(Supp−1 W ) = W , and thus,
Supp(Supp−1 S)=W . It is seen from Lemma 1.9 that Supp−1 S is a thick ⊗-ideal
of D−(R).

(2) We have Supp X=
⋃

X∈X Supp X =
⋃

X∈X

⋃
i∈Z SuppHi X by Proposition 1.5.

Since Hi X is a finitely generated R-module, SuppHi X is closed. Hence, Supp X is
specialization-closed. A prime ideal p of R is not in Supp X if and only if X is con-
tained in Supp−1({p}{), if and only if thick⊗ X is contained in Supp−1({p}{), if and
only if p does not belong to Supp(thick⊗ X). It follows from (1) that Supp−1({p}{)

is a thick ⊗-ideal of D−(R), which shows the second equivalence. The other two
equivalences are obvious.

(3) The equality is straightforward, and the last assertion is shown by (1). �
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2. Classification of compact thick tensor ideals

In this section, we prove a generalized version of the smash nilpotence theorem
due to Hopkins [1987] and Neeman [1992], and using this we give a complete
classification of cocompact thick tensor ideals of D−(R).

We begin with recalling the definitions of compact and cocompact objects. Let
T be a triangulated category. We say that an object M ∈T is compact if the natural
morphism ⊕

λ∈3

HomT(M, Nλ)→ HomT

(
M,

⊕
λ∈3

Nλ

)
is an isomorphism for every family {Nλ}λ∈3 of objects of T with

⊕
λ∈3 Nλ ∈ T.

Furthermore, we say that an object M ∈ T is cocompact if the natural morphism⊕
λ∈3

HomT(Nλ,M)→ HomT

(∏
λ∈3

Nλ,M
)

is an isomorphism for every family {Nλ}λ∈3 of objects of T with
∏
λ∈3 Nλ ∈T. We

denote by Tc and Tcc the subcategories of T consisting of compact and cocompact
objects, respectively. For T= D−(R) we have explicit descriptions of the compact
objects and cocompact objects:

Proposition 2.1. One has D−(R)c = Kb(proj R) and D−(R)cc
= Db(R).

Proof. The second statement follows from [Stevenson 2014a, Theorem 18]. The
first one can be shown in the same way as of the fact that the compact objects of
the unbounded derived category of all R-modules coincide with Kb(proj R). For
the convenience of the reader, we give a proof.

First of all, R is compact since each homology functor Hi commutes with direct
sums. Since the compact objects form a thick subcategory, Kb(proj R)⊆ D−(R)c.
Next, let X ∈D−(R) be a compact object. Replacing X with its projective resolution,
we may assume X ∈ K−(R). Consider the chain map

X
fn
��

(· · · // Xn−1 dn−1
//

��

Xn dn
//

f n
n
��

Xn+1 //

��

· · · )

Cn
[−n] (· · · // 0 // Cn // 0 // · · · )

where Cn is the cokernel of dn−1, and f n
n : X

n
→ Cn is a natural surjection. Put

Y =
⊕

n∈Z Cn
[−n]. A chain map f : X→ Y is induced by { fn}n∈Z. As X ∈K−(R)

is compact in D−(R), we have isomorphisms

HomK(X, Y )∼= HomD−(R)(X, Y )

∼=

⊕
n∈Z

HomD−(R)(X,Cn
[−n])∼=

⊕
n∈Z

HomK(X,Cn
[−n]),
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where K is the homotopy category of R-modules. The composition of these iso-
morphisms sends f to ( fn)n∈Z, which implies that there exists t ∈ Z such that
fn = 0 in K for all n 6 t . Hence, there is an R-linear map g : Xn+1

→ Cn such
that g ◦ dn

= f n
n . Let dn : Cn

→ Xn+1 be the map induced by dn . We have
gdn f n

n = gdn
= f n

n , and obtain gdn = 1 as f n
n is a surjection. Thus, Cn is a direct

summand of Xn+1, and thereby projective. Also, Hn X is isomorphic to the kernel of
dn , which vanishes since dn is a split monomorphism. Consequently, the truncated
complex X ′ := (0→C t d t

−→ X t+1 d t+1
−−→ X t+2 d t+2

−−→ · · · ), which is quasi-isomorphic
to X , is in Kb(proj R). We now conclude that X belongs to Kb(proj R). �

Next, we give the definitions of the annihilators of morphisms and objects
in D−(R).

Definition 2.2. (1) Let f : X → Y be a morphism in D−(R). We define the
annihilator of f as the set of elements a ∈ R such that a f = 0 in D−(R), and
denote it by AnnR( f ). This is an ideal of R.

(2) The annihilator of an object X ∈ D−(R) is defined as the annihilator of the
identity morphism idX , and denoted by AnnR(X). This is the set of elements
a ∈ R such that (X a

−→ X)= 0 in D−(R).

Here are some properties of annihilators.

Proposition 2.3. (1) Let f : X→ Y be a morphism in D−(R) and p a prime ideal
of R.

(a) The ideal AnnR( f ) is the kernel of the map η f : R→ HomD−(R)(X, Y )
given by a 7→ a f .

(b) If the natural map τX,Y,p : HomD−(R)(X, Y )p→ HomD−(Rp)(Xp, Yp) is an
isomorphism, then there is an equality AnnR( f )p = AnnRp( fp).

(2) For any X ∈ D−(R) one has V(Ann X)⊇ Supp X. The equality holds if τX,X,p

is an isomorphism for all p ∈ Spec R. In particular, for X ∈ Db(R) one has
V(Ann X)= Supp X.

(3) Let x = x1, . . . , xn be a sequence of elements of R. Then it holds that
Ann K(x, R)= x R. In particular, there is an equality Supp K(x, R)= V(x),
and K(x, R) belongs to Supp−1 V(x).

Proof. (1) The assertion (a) is obvious, while (b) follows from (a) and the commu-
tative diagram

Rp

(η f )p
// HomD−(R)(X, Y )p

∼= τX,Y,p
��

Rp

η fp
// HomD−(Rp)(Xp, Yp)
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(2) The first assertion is easy to show. Suppose that τX,X,p is an isomorphism for all
p ∈ Spec R. By (1) one has (AnnR X)p =AnnRp Xp. We have Xp 6= 0 if and only if
(AnnR X)p 6= Rp, if and only if p∈V(AnnR X). This shows V(AnnR X)=SuppR X .
As for the last assertion, use [Avramov and Foxby 1991, Lemma 5.2(b)].

(3) The second statement follows from the first one and (2). Therefore, it suffices
to show the equality Ann K(x, R)= x R. It follows from [Bruns and Herzog 1998,
Proposition 1.6.5] that Ann K(x, R) contains x R. Conversely, pick a∈Ann K(x, R).
Then the multiplication map a :K(x, R)→K(x, R) is null-homotopic, and there is a
homotopy {si :Ki−1(x, R)→Ki (x, R)} from a to 0. In particular, we have a=d1s1,
where d1 is the first differential of K(x, R). Writing d1 = (x1, . . . , xn) : Rn

→ R
and s1 =

t(a1, . . . , an) : R→ Rn , we get a = (x1, . . . , xn)
t(a1, . . . , an) = a1x1+

· · ·+ anxn ∈ x R. Consequently, we obtain Ann K(x, R)= x R. �

To state our next results, we need to introduce some notation.

Definition 2.4. Let T be a triangulated category.

(1) For two subcategories C1,C2 of T, we denote by C1∗C2 the subcategory of T

consisting of objects M such that there is an exact triangle C1→ M→ C2 
with Ci ∈ Ci for i = 1, 2.

(2) For a subcategory C of T, we denote by add6 C the smallest subcategory
of T that contains C and is closed under finite direct sums, direct summands,
and shifts. Inductively we define thick1

T(C) = add6 C and thickr
T(C) =

add6(thickr−1
T (C) ∗ add6 C) for r > 1. This is sometimes called the r-th

thickening of C. When C consists of a single object X , we simply denote it
by thickr

T(X).

(3) For a morphism f : X → Y in T and an integer n > 1, we denote by
f ⊗n the n-fold tensor product f ⊗ · · ·⊗ f︸ ︷︷ ︸

n

. By f ⊗n we mean the morphism
f ⊗L

R · · · ⊗
L
R f︸ ︷︷ ︸

n

for T= D−(R).

We establish two lemmas, which will be used to show the generalized smash
nilpotence theorem. The first one concerns general tensor triangulated categories,
while the second one is specific to our D−(R).

Lemma 2.5. Let T be a tensor triangulated category.

(1) Let X,Y be subcategories of T. Let f :M→M ′ and g : N→ N ′ be morphisms
in T. If f ⊗X= 0 and g⊗Y= 0, then f ⊗ g⊗ (X ∗Y)= 0.

(2) Let φ : A→ B be a morphism in T, and let C be an object of T. If φ⊗C = 0,
then φ⊗n

⊗ thickn
T(C)= 0 for all integers n > 0.
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Proof. As (2) is shown by induction on n and (1), let us show (1). Let X→ E→Y 
be an exact triangle in T with X ∈ X and Y ∈ Y. Then f ⊗ X = 0 and g⊗ Y = 0
by assumption. There is a diagram

M ⊗ N ⊗ X //

M⊗g⊗X
��

M ⊗ N ⊗ E //

M⊗g⊗E
��

	

M ⊗ N ⊗ Y //

M⊗g⊗Y 0
��

M ⊗ N ′⊗ X //

f⊗N ′⊗X 0
�� 0 **

M ⊗ N ′⊗ E //

f⊗N ′⊗E
��

	 	

M ⊗ N ′⊗ Y //

f⊗N ′⊗Y
��htt

M ′⊗ N ′⊗ X //

	

M ′⊗ N ′⊗ E // M ′⊗ N ′⊗ Y //

in T whose rows are exact triangles, and we obtain a morphism h as in it. It is
observed from this diagram that f ⊗ g⊗ E = ( f ⊗ N ′⊗ E) ◦ (M ⊗ g⊗ E) is a
zero morphism. �

Lemma 2.6. (1) Let f : X → Y be a morphism in D−(R). Let x = x1, . . . , xn

be a sequence of elements of R. If f ⊗L
R R/(x)= 0 in D−(R), then f ⊗2n

⊗
L
R

K(x, R)= 0 in D−(R).

(2) Let x = x1, . . . , xn be a sequence of elements of R, and let e > 0 be an integer.
Then K(xe, R) belongs to thickne

K−(R)(K(x, R)), where xe
= xe

1, . . . , xe
n .

Proof. (1) We use induction on n. Let n = 1 and set x = x1. There are exact
sequences 0 → (0 : x) → R → (x) → 0 and 0 → (x) → R → R/(x) → 0.
Applying the octahedral axiom to (R → (x)→ R) = (R

x
−→ R) gives an exact

triangle (0 : x)[1] → K(x, R)→ R/(x) in D−(R). We have f ⊗L
R R/(x) = 0,

and f ⊗L
R (0 : x)[1] = ( f ⊗L

R R/(x))⊗L
R/(x) (0 : x)[1] = 0. Lemma 2.5(1) yields

f ⊗2
⊗

L
R K(x, R)= 0.

Let n > 2. We have 0 = f ⊗L
R R/(x) = ( f ⊗L

R R/(x1))⊗
L
R/(x1)

R/(x). The
induction hypothesis gives

0= ( f ⊗L
R R/(x1))

⊗2n−1
⊗

L
R/(x1)

K(x2, . . . , xn, R/(x1))

= ( f ⊗2n−1
⊗

L
R K(x2, . . . , xn, R))⊗L

R R/(x1).

The induction basis shows 0 = ( f ⊗2n−1
⊗

L
R K(x2, . . . , xn, R))⊗2

⊗
L
R K(x1, R) =

f ⊗2n
⊗

L
R K(x2, . . . , xn, x, R). Note that K(x, R) is a direct summand of K(x2, . . . ,

xn, x, R) [Bruns and Herzog 1998, Proposition 1.6.21]. We thus obtain the desired
equality f ⊗2n

⊗
L
R K(x, R)= 0.

(2) Again, we use induction on n. Consider the case n = 1. Put x = x1. Ap-
plying the octahedral axiom to (R xe−1

−−→ R x
−→ R) = (R xe

−→ R), we get an exact
triangle K(xe−1, R)→ K(xe, R)→ K(x, R) . Induction on e shows K(xe, R) ∈
thicke K(x, R). Let n>2. By the induction hypothesis, K(xe

1, . . . , xe
n−1, R) belongs

to thick(n−1)e K(x1, . . . , xn−1, R). Applying the exact functor ·⊗K(xe
n, R), we see
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that K(xe, R) belongs to thick(n−1)e K(x1, . . . , xn−1, xe
n, R). Applying the exact

functor K(x1, . . . , xn−1, R)⊗· to the containment K(xe
n, R)∈ thicke K(xn, R) gives

rise to K(x1, . . . , xn−1, xe
n, R) ∈ thicke K(x, R). Therefore, K(xe, R) belongs to

thickne K(x, R). �

We now achieve the goal of generalizing the Hopkins–Neeman smash nilpotence
theorem.

Theorem 2.7 (generalized smash nilpotence). Let f : X → Y be a morphism in
K−(R) with Y ∈ Kb(proj R). Suppose that f ⊗ κ(p) = 0 for all p ∈ Spec R. Then
f ⊗t
= 0 for some t > 0.

Proof. We have an ascending chain AnnR( f )⊆ AnnR( f ⊗2)⊆ AnnR( f ⊗3)⊆ · · ·

of ideals of R. Since R is noetherian, there is an integer c such that AnnR( f ⊗c)=

AnnR( f ⊗i ) for all i > c. Replacing f by f ⊗c, we may assume that AnnR( f ) =
AnnR( f ⊗i ) for all i > 0. Note that AnnR( f )= R if and only if f = 0.

We assume AnnR( f ) 6= R, and shall derive a contradiction. Take a minimal
prime ideal p of AnnR( f ). Then localization at p reduces to the following situation:

(R,m, k) is a local ring, AnnR( f ) is an m-primary ideal, f ⊗R k = 0,
and AnnR( f )= AnnR( f ⊗i ) for all i > 0.

Indeed, since Y is in Kb(proj R), it follows from [Avramov and Foxby 1991,
Lemma 5.2(b)] that the map τX,Y,p is an isomorphism, and Proposition 2.3(1)
yields AnnRp( fp)=AnnR( f )p, which is a pRp-primary ideal of Rp. Also, we have
AnnRp( fp)=AnnR( f )p=AnnR( f ⊗i )p=AnnRp(( f ⊗i )p)=AnnRp(( fp)⊗i ) for all
i > 0. Furthermore, it holds that fp⊗Rp κ(p)= f ⊗R κ(p)= 0 by the assumption
of the theorem.

For each nonnegative integer n, consider the following two statements.

F(n): Let (R,m, k) be a reduced local ring with dim R 6 n. Let f : X → Y
be a morphism in K−(R) with Y ∈ Kb(proj R). If AnnR( f ) is m-primary and
f ⊗R k = 0, then f ⊗t

= 0 for some t > 0.

G(n): Let (R,m, k) be a local ring with dim R6n. Let f : X→Y be a morphism
in K−(R) with Y ∈Kb(proj R). If AnnR( f ) is m-primary and f ⊗R k = 0, then
f ⊗t
= 0 for some t > 0.

If the statement G(n) holds true for all n> 0, we have AnnR( f )=AnnR( f ⊗t)= R,
which gives a desired contradiction. Note that the statement F(0) always holds true
since a 0-dimensional reduced local ring is a field. It is thus enough to show the
implications F(n)=⇒ G(n)=⇒ F(n+ 1).

F(n)=⇒ G(n). We consider the reduced ring Rred = R/ nil R, where nil R stands
for the nilradical of R. The ideal AnnRred( f ⊗R Rred) of Rred is mRred-primary since
it contains (AnnR f )Rred. We have ( f ⊗R Rred)⊗Rred k = f ⊗R k = 0. Thus, Rred
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and f ⊗R Rred satisfy the assumption F(n), and we find an integer t > 0 such that
f ⊗t
⊗R Rred= ( f⊗R Rred)

⊗t
=0. Using Lemma 2.6(1), we get f ⊗tu

⊗RK(x, R)=0,
where x= x1, . . . , xn is a system of generators of nil R and u=2n . Choose an integer
e > 0 such that xe

i = 0 for all 16 i 6 n. Then R is a direct summand of K(xe, R)
by [Bruns and Herzog 1998, Proposition 1.6.21], whence R is in thickne K (x, R)
by Lemma 2.6(2). Finally, Lemma 2.5(2) gives rise to the equality f ⊗netu

= 0.

G(n) =⇒ F(n + 1). We may assume dim R = n + 1 > 0. Since R is reduced
and AnnR( f ) is m-primary, we can choose an R-regular element x ∈ AnnR( f ).
Then the local ring R/(x) has dimension n, the ideal AnnR/(x)( f ⊗R R/(x)) of
R/(x) is m/(x)-primary, and ( f ⊗R R/(x)) ⊗R/(x) k = 0. Hence, R/(x) and
f ⊗R R/(x) satisfy the assumption of G(n), and there is an integer t > 0 such that
( f ⊗R R/(x))⊗t

= 0. The short exact sequence 0→ R x
−→ R→ R/(x)→ 0 induces

an exact triangle R/(x)[−1] → R x
−→ R in D−(R). Tensoring Y with this gives

an exact triangle Y ⊗R R/(x)[−1] g
−→ Y x

−→ Y  in D−(R). As x f = 0, there is a
morphism h : X→ Y ⊗R R/(x)[−1] with f = gh. Now f ⊗t+1 is decomposed as

X⊗t+1 h⊗X⊗t

−−−−→ (Y ⊗R R/(x)[−1])⊗R X⊗t

(Y⊗R/(x)[−1])⊗ f ⊗t

−−−−−−−−−−−−→ (Y ⊗R R/(x)[−1])⊗R Y⊗t g⊗Y⊗t

−−−→ Y⊗t+1.

The middle morphism is identified with Y [−1]⊗R ( f ⊗R R/(x))⊗t , which is zero.
Thus, f ⊗t+1

= 0. �

Remark 2.8. (1) Theorem 2.7 extends the smash nilpotence theorem due to Hop-
kins [1987, Theorem 10] and Neeman [1992, Theorem 1.1], where X is also
assumed to belong to Kb(proj R), so that f : X→Y is a morphism in Kb(proj R).
Under this assumption one can reduce to the case where X = R, which plays
a key role in the proof of the original Hopkins–Neeman smash nilpotence
theorem.

(2) The proof of Theorem 2.7 has a similar frame to that of the original Hopkins–
Neeman smash nilpotence theorem, but we should notice that various delicate
modifications are actually made there. Indeed, Proposition 2.3 and Lemmas 2.5
and 2.6 are all established to prove Theorem 2.7, which are not necessary to
prove the original smash nilpotence theorem.

(3) The assumption in Theorem 2.7 that Y belongs to Kb(proj R) is used only to
have AnnRp( fp)= AnnR( f )p.

Our next goal is to classify cocompactly generated thick tensor ideals of D−(R).
To this end, we begin with deducing the following proposition concerning generation
of thick tensor ideals of D−(R), which will play an essential role throughout the
rest of the paper.
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Proposition 2.9. Let X be an object of D−(R), and let Y be a subcategory of D−(R).
If V(Ann X)⊆ Supp Y, then X ∈ thick⊗Y.

Proof. Clearly, we may assume X 6= 0. We prove the proposition by replacing
D−(R) with K−(R). There are a finite number of prime ideals p1, . . . , pn of R such
that V(Ann X)=

⋃n
i=1 V(pi ). Since each pi is in the support of Y, we find an object

Yi ∈Y with pi ∈ Supp Yi . All pi are in the support of Y := Y1⊕ · · ·⊕Yn ∈ K
−(R).

Choose an integer t with p1, . . . , pn ∈
⋃

i>t SuppHi (Y ), and let Y ′ = (· · · →
0→ 0→ Y t

→ Y t+1
→ · · · ) ∈ Kb(proj R) be the truncated complex of Y . Then

V(Ann X) is contained in Supp Y ′. Let f : Y ′ → Y be the natural morphism,
and let φ : R → HomR(Y ′, Y ) be the composition of the homothety morphism
R→ HomR(Y, Y ) and HomR( f, Y ) : HomR(Y, Y )→ HomR(Y ′, Y ). There is an
exact triangle Z ψ

−→ R φ
−→ HomR(Y ′, Y ) in K−(R). We establish two claims.

Claim 1. Let 8 : R→ C be a nonzero morphism in K−(R). If R is a field, then 8
is a split monomorphism.

Proof. Since C is isomorphic to H(C) in K−(R), we may assume that the differentials
of C are zero. As z :=80(1) is nonzero, we can construct a chain map 9 : C→ R
with 90(z)= 1 and 9 i

= 0 for all i 6= 0. It then holds that 98= 1. �

Claim 2. The morphism φ⊗R κ(p) in K−(κ(p)) is a split monomorphism for each
p ∈ V(Ann X).

Proof. Set S =
⋃

i>t SuppHi (Y ); note that this contains V(Ann X). We prove the
stronger statement that φ⊗ κ(p) is a split monomorphism for each p ∈ S. Since
Y ′ is a perfect complex, there are natural isomorphisms HomR(Y ′, Y )⊗ κ(p) ∼=
HomR(Y ′, Y ⊗κ(p))∼=Homκ(p)(Y ′⊗κ(p), Y ⊗κ(p)), which says that φ⊗κ(p) is
identified with the natural morphism κ(p)→ Homκ(p)(Y ′⊗ κ(p), Y ⊗ κ(p)). This
induces a map H0(φ⊗κ(p)) : κ(p)→HomK−(κ(p))(Y ′⊗κ(p), Y ⊗κ(p)), sending 1
to f ⊗ κ(p). If f ⊗ κ(p) = 0 in K−(κ(p)), then we see that H>t(Y ⊗ κ(p)) = 0,
contradicting the fact that p ∈ S. Thus, H0(φ⊗κ(p)) is nonzero, and so is φ⊗κ(p).
Applying Claim 1 completes the proof. �

Claim 2 implies ψ⊗R κ(p)= 0 for all p∈V(Ann X). Using Theorem 2.7 for the
morphism ψ⊗R (R/Ann X) in K−(R/Ann X), we have ψ⊗m

⊗R (R/Ann X)= 0
for some m > 0. Lemma 2.6(1) shows

0= ψ⊗u
⊗R K(x, R) : Z⊗u

⊗K(x, R)→ K(x, R), (2.9.1)

where x = x1, . . . , xr is a system of generators of the ideal Ann X , and u = 2r m.
For each i > 0, let Wi be the cone of the morphism ψ⊗i

: Z⊗i
→ R. Applying the

octahedral axiom to the compositionψ◦(ψ⊗i
⊗Z)=ψ⊗i+1, we get an exact triangle

Wi ⊗ Z→Wi+1→W1 in K−(R). As W1 ∼=HomR(Y ′, Y ) and Y ′ ∈ Kb(proj R),
we see that W1 is in thick Y . Using the triangle, we inductively observe that Wi
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belongs to thick⊗ Y for all i > 0, and so does Wu⊗K(x, R). It follows from (2.9.1)
that K(x, R) is a direct summand of Wu⊗K(x, R), and therefore, K(x, R) belongs
to thick⊗ Y .

There is an exact triangle R
xi
−→ R→ K(xi , R) in K−(R) for each 16 i 6 r .

Tensoring X with this and using the fact that each xi kills X , we see that X is a direct
summand of X ⊗K(x, R). Consequently, X belongs to thick⊗ Y . By construction
Y is in thickY, and hence, X belongs to thick⊗Y. �

Remark 2.10. (1) Proposition 2.9 extends Neeman’s result [1992, Lemma 1.2],
where both X and Y are contained in Kb(proj R) (and Y is assumed to consist
of a single object).

(2) Proposition 2.9 is no longer true if we replace V(Ann X) with Supp X , or if
we replace Supp Y with V(Ann Y). This will be explained in Remarks 6.7(1)
and 7.15.

The following result is a consequence of Proposition 2.9, which will often be
used later.

Corollary 2.11. Let X be a thick ⊗-ideal of D−(R). Let I be an ideal of R and
x = x1, . . . , xn a system of generators of I . Then there are equivalences

V(I )⊆ Supp X ⇐⇒ R/I ∈ X ⇐⇒ K(x, R) ∈ X.

Proof. By Proposition 2.3(3), we have that Supp R/I = V(Ann R/I ) = V(I ) =
V(Ann K(x, R))= Supp K(x, R). The assertion is shown by combining this with
Proposition 2.9. �

Now we can give a complete classification of the cocompactly generated thick
tensor ideals of D−(R), using Proposition 2.9. For each subset S of Spec R, we set
〈S〉 = thick⊗{R/p | p ∈ S}.

Theorem 2.12. The assignments X 7→ Supp X and 〈W 〉 7→W make mutually
inverse bijections

{Cocompactly generated thick ⊗-ideals of D−(R)}

� {Specialization-closed subsets of Spec R}.

Proof. Proposition 1.10(2) shows that the map X 7→ Supp X is well defined and that
for a specialization-closed subset W of Spec R the equality W = Supp〈W 〉 holds.
It remains to show that for any cocompactly generated thick ⊗-ideal X of D−(R)
one has X= 〈Supp X〉. Proposition 2.9 implies that X contains 〈Supp X〉. Since X

is cocompactly generated, there is a subcategory C of Db(R) with X= thick⊗ C by
Proposition 2.1. Thus, it suffices to prove that each M ∈ C belongs to 〈Supp X〉.
The complex M belongs to thick H(M) as M ∈ Db(R), and the finitely generated
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module H(M) has a finite filtration each of whose subquotients has the form R/p
with p ∈ SuppH(M). Hence, M is in 〈Supp M〉, and we are done. �

Let us give several applications of our Theorem 2.12.

Corollary 2.13. (1) Let C be a subcategory of Db(R). Then thick⊗
D−(R) C consists

of the complexes X ∈ D−(R) with V(Ann X) ⊆ Supp C. In particular, those
complexes X form a thick ⊗-ideal of D−(R).

(2) Let I be an ideal of R. Then thick⊗
D−(R)(R/I ) consists of the complexes

X ∈ D−(R) with I ⊆
√

Ann X.

(3) Let W be a specialization-closed subset of Spec R. Then 〈W 〉 consists of the
complexes X ∈ D−(R) such that V(Ann X)⊆W .

(4) Let X,Y be thick subcategories in Db(R). Then thick⊗ X = thick⊗Y if and
only if Supp X= Supp Y.

Proof. (1) Let X be the subcategory of D−(R) consisting of objects X ∈D−(R) with
V(Ann X)⊆ Supp C. Proposition 2.9 says that thick⊗ C contains X. Propositions
1.10(2) and 2.1 and Theorem 2.12 yield thick⊗ C= 〈Supp(thick⊗ C)〉 = 〈Supp C〉.
For each p ∈ Supp C, the set V(Ann R/p)= V(p) is contained in Supp C, whence
R/p is in X. Hence, thick⊗ C is contained in X, and we get the equality thick⊗ C=X.

(2) Applying (1) to C= {R/I }, we immediately obtain the assertion.

(3) Setting C = {R/p | p ∈ W } ⊆ Db(R), we have Supp C = W . The assertion
follows from (1).

(4) Let C be either X or Y. By Proposition 2.1 the thick ⊗-ideal thick⊗ C is
cocompactly generated, and Supp(thick⊗ C)= Supp C by Proposition 1.10(2). The
assertion now follows from Theorem 2.12. �

We obtain the following one-to-one correspondence by combining our Theorem
2.12 with the celebrated Hopkins–Neeman classification theorem [Neeman 1992,
Theorem 1.5].

Corollary 2.14. The assignments X 7→ X ∩ Kb(proj R) and thick⊗Y 7→Y make
mutually inverse bijections

{Cocompactly generated thick ⊗-ideals of D−(R)}

� {Thick subcategories of Kb(proj R)}.

In particular, all cocompactly generated thick ⊗-ideals of D−(R) are compactly
generated.

Proof. It is directly verified and follows from Proposition 2.1 that the assignments
X 7→ X∩Kb(proj R) and thick⊗Y 7→Y, respectively, make well defined maps. It
follows from [Neeman 1992, Theorem 1.5] that
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(#) the assignments X 7→ Supp X and W 7→ Supp−1
Kb(proj R)(W ) := Supp−1 W ∩

Kb(proj R) make mutually inverse bijections between the thick subcategories
of Kb(proj R) and the specialization-closed subsets of Spec R.

In view of Theorem 2.12 and (#), we only have to show that

(a) Supp−1
Kb(proj R)(Supp X)= X∩Kb(proj R) for any cocompactly generated thick

⊗-ideal X of D−(R), and

(b) 〈Supp Y〉 = thick⊗Y for any thick subcategory Y of Kb(proj R).

Using Propositions 2.1 and 1.10(2), we see that 〈Supp Y〉 and thick⊗Y are
cocompactly generated thick⊗-ideals of D−(R)whose supports are equal to Supp Y.
Now Theorem 2.12 shows the statement (b).

Clearly, Supp(X ∩ Kb(proj R)) is contained in Supp X. Take a prime ideal
p ∈ Supp X, and let x be a system of generators of p. Then V(Ann K(x, R)) =
Supp K(x, R)=V(p)⊆Supp X by Proposition 2.3(3), and K(x, R)∈X∩Kb(proj R)
by Proposition 2.9. It follows that p ∈ Supp K(x, R) ⊆ Supp(X ∩ Kb(proj R)).
Thus, we get Supp(X∩Kb(proj R))= Supp X, and obtain Supp−1

Kb(proj R)(Supp X)=

Supp−1
Kb(proj R)(Supp(X∩Kb(proj R))) = X∩Kb(proj R), where the last equality is

shown by (#). Now the statement (a) is proved. �

Remark 2.15. Corollary 2.14 in particular gives a classification of the compactly
generated thick ⊗-ideals of D−(R). This itself can also be deduced as follows. Let
X,Y be thick subcategories of Kb(proj R) with Supp(thick⊗ X)= Supp(thick⊗Y).
Then Supp X= Supp Y by Proposition 1.10(2), and the Hopkins–Neeman theorem
yields X= Y. Hence, thick⊗ X= thick⊗Y.

The essential benefit that Corollary 2.14 produces is the classification of the
cocompactly generated thick ⊗-ideals of D−(R). This should not follow from
the Hopkins–Neeman theorem or other known results, but requires the arguments
established in this section so far (especially, the generalized smash nilpotence
Theorem 2.7). A compactly generated thick tensor ideal of D−(R) is clearly co-
compactly generated by Proposition 2.1, but the converse (shown in Corollary 2.14)
should be rather nontrivial.

In view of Corollary 2.14 and Proposition 2.1, we obtain the following result
and definition.

Corollary 2.16. The following four conditions are equivalent for a thick ⊗-ideal X

of D−(R).

• X is compactly generated.

• X is cocompactly generated.

• X is generated by objects in Kb(proj R).

• X is generated by objects in Db(R).



Thick tensor ideals of right bounded derived categories 1697

Definition 2.17. Let X be a thick ⊗-ideal of D−(R). We say that X is compact if
it satisfies one (hence all) of the equivalent conditions in Corollary 4.19.

Next, for two thick ⊗-ideals X,Y of D−(R) we define the thick ⊗-ideals X∧Y

and X∨Y by

X∧Y= thick⊗{X ⊗L
R Y | X ∈ X, Y ∈ Y}, X∨Y= thick⊗(X∪Y).

These two operations yield a lattice structure in the compact thick⊗-ideals of D−(R):

Proposition 2.18. (1) Let A and B be specialization-closed subsets of Spec R.
One then has equalities

〈A〉 ∧ 〈B〉 = 〈A∩ B〉, 〈A〉 ∨ 〈B〉 = 〈A∪ B〉.

(2) The set of compact thick⊗-ideals of D−(R) is a lattice with meet ∧ and join ∨.

Proof. (1) It is evident that the second equality holds. Let us show the first one.
We claim that for two subcategories M,N of D−(R) it holds that

(thick⊗M)∧ (thick⊗N)= thick⊗{M ⊗L
R N | M ∈M, N ∈ N}.

In fact, clearly (thick⊗M)∧ (thick⊗N) contains C := thick⊗{M ⊗L
R N | M ∈M,

N ∈ N}. For each N ∈ N, the subcategory of D−(R) consisting of objects X with
X ⊗L

R N ∈ C is a thick ⊗-ideal containing M, so contains thick⊗M. Let X be an
object in thick⊗M. Then X ⊗L

R N belongs to C for all N ∈ N. The subcategory
of D−(R) consisting of objects Y with X⊗L

R Y ∈C is a thick ⊗-ideal containing N,
so contains thick⊗N. Hence, X⊗L

R Y is in C for all X ∈ thick⊗M and Y ∈ thick⊗N,
and the claim follows.

Using the claim, we see that 〈A〉 ∧ 〈B〉 = thick⊗{R/p⊗L
R R/q | p ∈ A, q ∈ B}.

Therefore,

Supp(〈A〉 ∧ 〈B〉)= Supp{R/p⊗L
R R/q | p ∈ A, q ∈ B}

=

⋃
p∈A, q∈B

Supp(R/p⊗L
R R/q)=

⋃
p∈A, q∈B

(V(p)∩V(q))

= A∩ B = Supp〈A∩ B〉

by Proposition 1.10(2), Lemma 1.9(4), and the assumption we made that A, B are
specialization-closed. Theorem 2.12 implies that 〈A〉 ∧ 〈B〉 = 〈A∩ B〉.

(2) Let X,Y be compact thick ⊗-ideals of D−(R). Theorem 2.12 implies that
X= 〈Supp X〉 and Y= 〈Supp Y〉, and Supp X and Supp Y are specialization-closed.
It follows from (1) that X∧Y=〈Supp X∩Supp Y〉 and X∨Y=〈Supp X∪Supp Y〉,
which are compact. It is seen by definition that any thick ⊗-ideal containing both
X and Y contains X∨Y. Let Z be a compact thick ⊗-ideal contained in both X

and Y. By Theorem 2.12 again we get Z= 〈Supp Z〉. Since Supp Z is contained in
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Supp X∩ Supp Y, we have that Z is contained in X∧Y. These arguments prove
the assertion. �

Note that the specialization-closed subsets of Spec R form a lattice with meet ∩
and join ∪. As an immediate consequence of this fact and Proposition 2.18(2), we
obtain a refinement of Theorem 2.12:

Theorem 2.19. The assignments X 7→ Supp X and 〈W 〉 7→W induce a lattice
isomorphism

{Compact thick ⊗-ideals of D−(R)} ∼= {Specialization-closed subsets of Spec R}.

Restricting to the artinian case, we get a complete classification of thick tensor
ideals of D−(R).

Corollary 2.20. Let R be an artinian ring. Then the following statements are true.

(1) All the thick ⊗-ideals of D−(R) are compact.

(2) The assignments X 7→ Supp X and 〈S〉 7→S induce a lattice isomorphism

{Thick ⊗-ideals of D−(R)} ∼= {Subsets of Spec R}.

Proof. (1) Take any thick ⊗-ideal X of D−(R). We want to show X = 〈Supp X〉.
Corollary 2.11 implies that X contains 〈Supp X〉. To show the opposite inclusion,
we may assume that X consists of a single object X . Let m1, . . . ,ms,ms+1, . . . ,mn

be the maximal ideals of R with Supp X = {m1, . . . ,ms}. Find an integer t > 0
with (m1 · · ·mn)

t
= 0. The Chinese remainder theorem yields an isomorphism

R ∼= R/mt
1⊕ · · ·⊕ R/mt

n of R-modules. Tensoring X , we obtain an isomorphism
X ∼= (X⊗L

R R/mt
1)⊕· · ·⊕(X⊗

L
R R/mt

n). Lemma 1.9(4) gives Supp(X⊗L
R R/mt

i )=

Supp X ∩ {mi }, which is an empty set for s + 1 6 i 6 n. For such an i we have
X ⊗L

R R/mt
i = 0 by Remark 1.8, and get X ∼= (X ⊗L

R R/mt
1)⊕· · ·⊕ (X ⊗

L
R R/mt

s).
It follows that X is in thick⊗{R/mt

1, . . . , R/mt
s}, which is the same as 〈Supp X〉 by

Corollary 2.13.

(2) Since all prime ideals of R are maximal, every subset of Spec R is specialization-
closed. (A more general statement will be given in Lemma 4.6.) The assertion
follows from (1) and Theorem 2.19. �

3. Correspondence between the Balmer and Zariski spectra

In this section, we construct a pair of maps between the Balmer spectrum SpcD−(R)
and the Zariski spectrum Spec R, which will play a crucial role in later sections.
First of all, let us recall the definitions of a prime thick tensor ideal of a tensor
triangulated category and its Balmer spectrum.
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Definition 3.1. Let T be an essentially small tensor triangulated category. A thick
⊗-ideal P of T is called prime provided that P 6= T and if X ⊗ Y is in P, then so
is either X or Y . The set of prime thick ⊗-ideals of T is denoted by Spc T and
called the Balmer spectrum of T.

Here is an example of a prime thick tensor ideal of D−(R).

Example 3.2. When R is local, the zero subcategory 0 of D−(R) is a prime thick
⊗-ideal. In fact, it is easy to verify that 0 is a thick ⊗-ideal of D−(R). (This also
follows from Remark 1.8 and Proposition 1.10(1).) If X, Y are objects of D−(R)
with X ⊗L

R Y = 0, then either X = 0 or Y = 0 by Lemma 1.9(4).

Now we introduce the following notation.

Notation 3.3. For a prime ideal p of R, we denote by S(p) the subcategory of
D−(R) consisting of complexes X with Xp

∼= 0 in D−(Rp).

The subcategory S(p) is always a prime thick tensor ideal:

Proposition 3.4. Let p be a prime ideal of R. Then S(p) is a prime thick ⊗-ideal
of D−(R) satisfying

Supp S(p)= {q ∈ Spec R | q* p}.

Proof. Since S(p) does not contain R, it is not equal to D−(R). Note that S(p)=

Supp−1({p}{). Using Lemma 1.9(4) and Proposition 1.10(1), we observe that S(p)

is a prime thick ⊗-ideal of D−(R).
Fix a prime ideal q of R. If q is in Supp S(p), then there is a complex X ∈ S(p)

with q ∈ Supp X , and it follows that Xp = 0 6= Xq. If q is contained in p, then
we have Xq = (Xp)q and get a contradiction. Therefore, q is not contained in p.
Conversely, assume this. Take a system of generators x = x1, . . . , xn of q, and
put K = K(x, R). Then we have Kq 6= 0 = Kp by Proposition 2.3(3). Hence, K
belongs to S(p) and q is in Supp K , which implies q ∈ Supp S(p). We thus obtain
the equality in the proposition. �

As an easy consequence of the above proposition, we get another example of a
prime thick tensor ideal.

Corollary 3.5. Let R be an integral domain of dimension one. It then holds that
D−

fl (R)=S((0)), where (0) stands for the zero ideal of R. Hence, D−
fl (R) is a prime

thick ⊗-ideal of D−(R).

Proof. For a complex X ∈ D−(R) it holds that

X ∈ D−
fl (R) ⇐⇒ `(Hi X) <∞ for all i

⇐⇒ Hi X(0) = 0 for all i ⇐⇒ X(0) = 0 ⇐⇒ X ∈ S((0)),
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where the second equivalence follows from the fact that Spec R = {(0)} ∪Max R.
This shows D−

fl (R)= S((0)). Proposition 3.4 implies that S((0)) is prime, which
gives the last statement of the corollary. �

Remark 3.6. Corollary 3.5 is no longer valid if we remove the assumption that R
is an integral domain. More precisely, the assertion of the corollary is not true even
if R is reduced. In fact, consider the ring R = k[[x, y]]/(xy), where k is a field.
Then R is a 1-dimensional reduced local ring. It is observed by Proposition 2.3(3)
that the Koszul complexes K(x, R),K(y, R) are outside D−

fl (R), while the complex
K(x, R)⊗L

R K(y, R)=K(x, y, R) is in D−
fl (R). This shows that D−

fl (R) is not prime.

We have constructed from each prime ideal p of R the prime thick tensor ideal
S(p) of D−(R). Now we are concerned with the opposite direction; that is, we
construct from a prime thick tensor ideal of D−(R) a prime ideal of R, which is
done in the following proposition.

Proposition 3.7. Let P be a prime thick ⊗-ideal of D−(R). Let K be the set of
ideals I of R such that V(I ) is not contained in Supp P. Then K has the maximum
element P with respect to the inclusion relation, and P is a prime ideal of R.

Proof. We claim that for ideals I, J of R, if Supp P contains V(I + J ), then it con-
tains either V(I ) or V(J ). Indeed, let x= x1, . . . , xa and y= y1, . . . , yb be systems
of generators of I and J , respectively. Corollary 2.11 yields that K(x, y, R) is in P.
There is an isomorphism K(x, R)⊗L

R K( y, R)∼=K(x, y, R) of complexes, whence
K(x, R)⊗L

R K( y, R) belongs to P. Since P is prime, it contains either K(x, R) or
K( y, R). Thus, Supp P contains either V(I ) or V(J ) by Corollary 2.11 again.

The claim says that K is closed under sums of ideals of R. Taking into account
that R is noetherian, we see that K has the maximum element P with respect to the
inclusion relation. There is a filtration 0=M0 ( M1 ( · · ·( Mt = R/P of submod-
ules of the R-module R/P such that for every 16 i 6 t one has Mi/Mi−1 ∼= R/pi

with some pi ∈ SuppR R/P , whence each pi contains P . Suppose that P is not a
prime ideal of R. Then the pi strictly contain P , and the maximality of P shows
that Supp P contains V(pi ). There is an equality SuppR R/P =

⋃t
i=1 Supp R/pi ,

or equivalently, V(P)=
⋃t

i=1 V(pi ). It follows that Supp P contains V(P), which
is a contradiction. Consequently, P is a prime ideal of R. �

Thus, we have got two maps in the mutually inverse directions, between Spec R
and SpcD−(R):

Notation 3.8. Let P be a prime thick ⊗-ideal of D−(R). With the notation of
Proposition 3.7, we set I(P) = K and s(P) = P . In view of Proposition 3.4, we
obtain a pair of maps

S : Spec R� SpcD−(R) : s

given by p 7→ S(p) and P 7→ s(P) for p ∈ Spec R and P ∈ SpcD−(R).
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Now we compare the maps S, s, and for this recall two basic definitions from
set theory. Let f : A→ B be a map of partially ordered sets. We say that f is
order-reversing if x 6 y implies f (x)> f (y) for all x, y ∈ A. Also, we call f an
order antiembedding if x 6 y is equivalent to f (x)> f (y) for all x, y ∈ A. Note
that any order antiembedding is an injection. We regard Spec R and SpcD−(R) as
partially ordered sets with respect to the inclusion relations. The following theorem
is the main result of this section.

Theorem 3.9. The maps S : Spec R � SpcD−(R) : s are order-reversing, and
satisfy

s ·S= 1, S · s= Supp−1 Supp .

Hence, S is an order antiembedding.

Proof. Let p, q be prime ideals of R with q⊆ p. Then Proposition 3.4 shows that
q is not in Supp S(p). Hence, Xq = 0 for all X ∈ S(p), which means that S(p) is
contained in S(q). On the other hand, let P,Q be prime thick ⊗-ideals of D−(R)
with P⊆ Q. Then Supp P is contained in Supp Q, and we see from the definition
of s that s(P) contains s(Q). Therefore, the maps S, s are order-reversing.

Fix a prime ideal p of R. Then s(S(p)) is the maximum element of I(S(p)),
which consists of ideals I with V(I )* Supp S(p). This is equivalent to saying that
I ⊆ p by Proposition 3.4. Hence, s(S(p))= p.

Let P be a prime thick⊗-ideal of D−(R). Note that a prime ideal p of R belongs
to I(P) if and only if p is not in Supp P. Let X ∈ D−(R) be a complex with
Xs(P) = 0. If p is a prime ideal of R with Xp 6= 0, then p is not contained in s(P),
and p must not belong to I(P), which means p ∈ Supp P. Therefore, Supp X is
contained in Supp P, and we obtain S(s(P)) ⊆ Supp−1 Supp P. Conversely, let
X ∈ D−(R) be a complex with Supp X ⊆ Supp P. Since s(P) is in I(P), it does
not belong to Supp P. Hence, s(P) is not in Supp X , which means Xs(P) = 0. We
thus conclude that S(s(P))= Supp−1 Supp P.

The last assertion is shown by using the equality p= s(S(p)) for all prime ideals
p of R. �

The above theorem gives rise to several corollaries, which will often be used
later. The rest of this section is devoted to stating and proving them.

Corollary 3.10. Let p be a prime ideal of R, and let P a prime thick ⊗-ideal of
D−(R). It holds that

p⊆ s(P) ⇐⇒ R/p /∈ P ⇐⇒ p /∈ Supp P ⇐⇒ P⊆ S(p).

In particular, s(P) is the maximum element of (Supp P){ with respect to the inclu-
sion relation.
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Proof. The second equivalence follows from Corollary 2.11, while the third one
is trivial. If p /∈ Supp P, then p⊆ s(P). If this is the case, then S(p)⊇ S(s(P))=

Supp−1 Supp P⊇ P by Theorem 3.9. �

Corollary 3.11. For two prime thick ⊗-ideals P,Q of D−(R) one has

s(P)⊆ s(Q) ⇐⇒ Supp P⊇ Supp Q, s(P)= s(Q) ⇐⇒ Supp P= Supp Q.

Proof. Theorem 3.9 and Proposition 1.10(1) yield the first equivalence, which
implies the second one. �

Here we introduce two notions of thick tensor ideals, which will play main roles
in the rest of this paper.

Definition 3.12. (1) For a thick⊗-ideal X of D−(R) we denote by
√

X the radical
of X, that is, the subcategory of D−(R) consisting of objects M such that the
n-fold tensor product M ⊗L

R · · · ⊗
L
R M belongs to X for some n > 1.

(2) A thick ⊗-ideal X of D−(R) is called radical if X =
√

X. Any prime thick
⊗-ideal is radical.

(3) A thick ⊗-ideal X of D−(R) is called tame if one can write X= Supp−1 S for
some subset S of Spec R. The set of tame prime thick ⊗-ideals of D−(R) is
denoted by tSpcD−(R).

Remark 3.13. For each subcategory X of D−(R) the following are equivalent:

(1) X is a tame thick ⊗-ideal of D−(R),
(2) X= Supp−1 S for some subset S of Spec R, and
(3) X= Supp−1 W for some specialization-closed subset W of Spec R.

This is a direct consequence of Proposition 1.10(1).

The following corollary of Theorem 3.9 gives an explicit description of tame
prime thick tensor ideals.

Corollary 3.14. tSpcD−(R)= Im S= {S(p) | p ∈ Spec R}.

Proof. For a prime ideal p of R, we have S(p)= SsS(p)= Supp−1(Supp S(p)) by
Theorem 3.9, which shows that the prime thick ⊗-ideal S(p) of D−(R) is tame. On
the other hand, let P be a tame prime thick ⊗-ideal of D−(R). Using Theorem 3.9
and Proposition 1.10, we get S(s(P))= Supp−1(Supp P)= P. �

Here is one more application of Theorem 3.9, giving a criterion for a thick tensor
ideal to be prime.

Corollary 3.15. Let W be a specialization-closed subset of Spec R. The following
are equivalent:

(1) the tame thick ⊗-ideal Supp−1 W of D−(R) is prime,
(2) there exists a prime ideal p of R such that W = Supp S(p),
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(3) there exists a prime thick ⊗-ideal P of D−(R) such that W = Supp P, and
(4) the set W { has a unique maximal element with respect to the inclusion relation.

Proof. (1) =⇒ (2). By Corollary 3.10, the complement of W = Supp(Supp−1 W )

(see Proposition 1.10(2)) has the maximum element p := s(Supp−1 W ). Using
Theorem 3.9, we obtain W = Supp S(p).

(2)=⇒ (3). Take P=S(p), which is a prime thick⊗-ideal of D−(R) by Proposition
3.4.

(3) =⇒ (4). This implication follows from Corollary 3.10.

(4) =⇒ (1). Let p be a unique maximal element of W {. We claim that there is an
equality W = Supp S(p). Indeed, Supp S(p) consists of the prime ideals q of R not
contained in p by Proposition 3.4. Now fix a prime ideal q of R. Suppose that q
is in W . If q is contained in p, then p belongs to W as W is specialization-closed.
This contradicts the choice of p, whence q belongs to Supp S(p). Conversely, if q
is not in W , then q is in W {, and the choice of p shows that q is contained in p.
Thus, the claim follows. Applying Theorem 3.9, we obtain Supp−1 W = S(p) and
this is a prime thick ⊗-ideal of D−(R). �

4. Topological structures of the Balmer spectrum

In this section, we study various topological properties of the maps S, s defined in
the previous section, and explore the structure of the Balmer spectrum SpcD−(R)
as a topological space. We begin with recalling the definition of the topology which
the Balmer spectrum possesses.

Definition 4.1. Let T be an essentially small tensor triangulated category.

(1) For an object X ∈ T the Balmer support of X , denoted by Spp X , is defined
as the set of prime thick ⊗-ideals of T not containing X . We set U(X) =
(Spp X){ = Spc T \ Spp X .

(2) The set Spc T is a topological space with open basis {U(X) | X ∈ D−(R)}
[Balmer 2005, Definition 2.1].

Therefore, SpcD−(R) is a topological space. We regard tSpcD−(R) as a subspace
of SpcD−(R) by the relative topology.

We first consider a direct sum decomposition of the Balmer spectrum.

Proposition 4.2. There is a direct sum decomposition of sets

SpcD−(R)=
∐

p∈Spec R

s−1(p),

where s−1(p) := {P ∈ SpcD−(R) | s(P) = p} = {P ∈ SpcD−(R) | Supp P =

{q ∈ Spec R | q* p}}.
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Proof. Theorem 3.9 says that the map s is surjective. Using this, we easily get the di-
rect sum decomposition. Applying Theorem 3.9, Corollary 3.11, and Proposition 3.4,
we observe that for any p ∈ Spec R and P ∈ SpcD−(R) one has s(P) = p if and
only if Supp P= {q ∈ Spec R | q* p}. �

Next we investigate the dimension of the Balmer spectrum. The (Krull) dimension
of a topological space X , denoted by dim X , is defined to be the supremum of
integers n > 0 such that there exists a chain Z0 ( Z1 ( · · · ( Zn of nonempty
irreducible closed subsets of X . (Recall that a subset of X is called irreducible if it
cannot be written as a union of two nonempty proper closed subsets.)

Proposition 4.3. (1) Let T be an essentially small ⊗-triangulated category. The
dimension of Spc T is equal to the supremum of integers n > 0 such that there
is a chain P0 ( P1 ( · · ·( Pn in Spc T.

(2) There is an inequality

dim(SpcD−(R))> dim R.

Proof. Applying [Balmer 2005, Propositions 2.9 and 2.18] shows (1), while (2)
follows from (1) and Theorem 3.9. �

Remark 4.4. We will see that the inequality in Proposition 4.3(2) sometimes
becomes an equality, and sometimes becomes a strict inequality. See Corollaries 4.16
and 7.13 and Theorem 7.11.

Let P,Q be prime thick ⊗-ideals of D−(R). We write P ∼ Q if Supp P =

Supp Q. Then ∼ defines an equivalence relation on SpcD−(R). We denote by
SpcD−(R)/Supp the quotient topological space of SpcD−(R) by the equiva-
lence relation ∼, so that a subset U of SpcD−(R)/Supp is open if and only if
π−1(U ) is open in SpcD−(R), where π : SpcD−(R)→ SpcD−(R)/Supp stands
for the canonical surjection. By definition, π is a continuous map. Denote by
θ : tSpcD−(R)→ SpcD−(R) the inclusion map, which is continuous. Now we
can state our first main result in this section.

Theorem 4.5. (1) The set tSpcD−(R) is dense in SpcD−(R).
(2) The composition πθ is a continuous bijection.
(3) The maps S, s induce the bijections S′, S̃, s′, s̃ which make the following

diagram commute:

tSpcD−(R)

θ
��

s′

))

Spec R
S̃

))

S
//

S′
55

SpcD−(R)

π
��

s
// Spec R

SpcD−(R)/Supp

s̃
55
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In particular, one has sS= s′S′ = s̃S̃= 1.
(4) The maps s, s′, s̃ are continuous. The maps S′, S̃ are open and closed.

Proof. First of all, recall from Corollary 3.14 that the image of S coincides with
tSpcD−(R).

(1) Let X be a complex in D−(R), and suppose that U := U(X) is nonempty.
Then U contains a prime thick ⊗-ideal P of D−(R), and X is in P. It is seen
from Theorem 3.9 that P is contained in S(s(P)), and hence, X is in S(s(P)).
Therefore, S(s(P)) belongs to the intersection U ∩ tSpcD−(R), and we have
U ∩ tSpcD−(R) 6=∅. This shows that any nonempty open subset of SpcD−(R)
meets tSpcD−(R).

(2) Since π and θ are continuous, so is πθ . Let P,Q be tame prime thick ⊗-ideals
of D−(R). Then P=Ss(P) and Q=Ss(Q) by Theorem 3.9. One has P∼Q if and
only if s(P)= s(Q) by Corollary 3.11, if and only if P= Q by Theorem 3.9 again.
This shows that the map πθ is well defined and injective. To show the surjectivity,
pick a prime thick⊗-ideal R of D−(R). It is seen from Proposition 1.10(1) that R∼

Supp−1 Supp R, and the latter thick⊗-ideal is tame. Consequently, πθ is a bijection.

(3) Using Theorem 3.9, we obtain the bijection S′ satisfying θS′ = S. Set S̃= πS

and s′ = sθ . Define the map s̃ : SpcD−(R)/Supp→ Spec R by s̃([P])= s(P) for
P∈SpcD−(R). Corollary 3.11 guarantees that this is well defined, and by definition
we have s̃π = s. Thus, the commutative diagram in the assertion is obtained, which
and Theorem 3.9 yield 1= sS= s′S′ = s̃S̃. It follows that the map S′ is bijective,
and so is s′. We have S̃= (πθ)S′, which is bijective by (2), and so is s̃.

(4) Let P ∈ SpcD−(R). An ideal I of R is contained in s(P) if and only if V(I ) is
not contained in Supp P, if and only if R/I does not belong to P by Corollary 2.11.
We obtain an equality

s−1(V(I ))= Spp R/I,

which shows that s is a continuous map. Since the map θ is continuous, so is the
composition s′ = sθ . The equality s′ =S′−1 from (3) and the continuity of s′ imply
that the map S′ is open and closed.

Fix an ideal I of R. A prime ideal p of R is in D(I ) if and only if S(p) is in
U(R/I ). This shows S(D(I ))= U(R/I )∩ tSpcD−(R), and we get π−1S̃(D(I ))=
π−1πS(D(I )) = π−1π(U(R/I ) ∩ tSpcD−(R)). Let P ∈ SpcD−(R) and Q ∈
tSpcD−(R). One has π(P) = π(Q) if and only if Supp P = Supp Q, if and only
if Supp−1 Supp P = Q since Supp−1 Supp Q = Q by Proposition 1.10. Hence, P

is in π−1π(U(R/I ) ∩ tSpcD−(R)) if and only if Supp−1 Supp P contains R/I
(note here that Supp−1 Supp P is in tSpcD−(R) by Theorem 3.9), if and only if
Supp P contains V(I ), if and only if R/I belongs to P by Corollary 2.11. Thus,
we obtain π−1S̃(D(I ))= U(R/I ), which shows that S̃(D(I )) is an open subset of
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SpcD−(R)/Supp. Therefore, S̃ is an open map. This map is also closed since it
is bijective. Combining the equality s̃= S̃−1 from (3) and the openness of S̃, we
observe that s̃ is a continuous map. �

The assertions of the above theorem naturally lead us to ask when the maps in the
diagram in the theorem are homeomorphisms. We start by establishing a lemma.

Lemma 4.6. The following are equivalent:

(1) the set Spec R is finite,

(2) there are only finitely many specialization-closed subsets of Spec R,

(3) there are only finitely many closed subsets of Spec R, and

(4) every specialization-closed subset of Spec R is closed.

Proof. (1) =⇒ (2). If Spec R is finite, then there are only finitely many subsets
of Spec R.

(2) =⇒ (3). This implication follows from the fact that any closed subset is
specialization-closed.

(3) =⇒ (4). Every specialization-closed subset is a union of closed subsets. This is
a finite union by assumption, and hence, it is closed.

(4) =⇒ (1). Since Max R is specialization-closed, it is closed by our assumption.
Hence, Max R possesses only finitely many minimal elements with respect to the
inclusion relation, which means that it is a finite set. Therefore, the ring R is
semilocal. In particular, it has finite Krull dimension, say d .

Suppose that R possesses infinitely many prime ideals. Then there exists an
integer 06 n 6 d such that the set S of prime ideals of R with height n is infinite.
Then the specialization-closed subset W =

⋃
p∈S V(p) is not closed because S

consists of the minimal elements of W , which is an infinite set. This provides a
contradiction, and consequently, R has only finitely many prime ideals. �

Now we can prove the following theorem, which answers the question stated
just before the lemma.

Theorem 4.7. Consider the following seven conditions: (1) S is continuous, (2)
S′ is homeomorphic, (3) s′ is homeomorphic, (4) S̃ is homeomorphic, (5) s̃ is
homeomorphic, (6) πθ is homeomorphic, and (7) Spec R is finite. Then the following
implications hold:

(1) ks +3 (2) ks +3 (3) ks +3 (5+ 6) ks +3

u} !)

(7)

(4) ks +3 (5) (6)
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Proof. In this proof we tacitly use Theorem 4.5.

(2)⇐⇒ (3). Note that S′ and s′ are mutually inverse bijections. The equivalence
follows from this.

(4)⇐⇒ (5). As S̃, s̃ are mutually inverse bijections, we have the equivalence.

(7)=⇒ (2). For each X ∈D−(R)we have S′−1(Spp X∩tSpcD−(R))={p ∈ Spec R |
S(p) ∈ Spp X} = Supp X . As Supp X is specialization-closed, it is closed by
Lemma 4.6. Hence, the map S′ is continuous.

(2) =⇒ (1). This follows from the fact that S is the composition of the continuous
maps S′ and θ .

(1) =⇒ (7). It is easy to observe that for any complex X ∈ D−(R) one has

S−1(Spp X)= Supp X. (4.7.1)

Since S is continuous, Supp X is closed in Spec R for all X ∈ D−(R) by (4.7.1).
Suppose that Spec R is an infinite set. Then by Lemma 4.6 there is a nonclosed
specialization-closed subset W of Spec R. There are infinitely many minimal
elements of W with respect to the inclusion relation, and we can choose countably
many pairwise distinct minimal elements p1, p2, p3, . . . of W . Consider the complex
X =

⊕
∞

i=1(R/pi )[i] ∈ D−(R). Then Supp X =
⋃
∞

i=1 V(pi ) is not closed since it
has infinitely many minimal elements. This contradiction shows that Spec R is a
finite set.

(2) =⇒ (4+ 6). Since π, θ,S′ are all continuous, so is S̃= πθS′. Combining this
with the fact that S̃ is bijective and open, we see that S̃ is a homeomorphism. As
S′ is homeomorphic, so is πθ = S̃S′−1.

(4+ 6) =⇒ (2). We have S′ = (πθ)−1S̃. Since πθ and S̃ are homeomorphisms, so
is S′. �

Next we consider the maximal and minimal elements of SpcD−(R) with respect
to the inclusion relation.

Definition 4.8. Let T be an essentially small tensor triangulated category.

(1) A thick ⊗-ideal M of T is said to be maximal if M 6= T and there is no thick
⊗-ideal X of T with M ( X ( T. We denote the set of maximal thick ⊗-ideals
of T by Mx T. According to [Balmer 2005, Proposition 2.3(c)], any maximal
thick ⊗-ideal is prime, or in other words, it holds that Mx T⊆ Spc T.

(2) A prime thick ⊗-ideal P of T is said to be minimal if it is minimal in Spc T

with respect to the inclusion relation. We denote the set of minimal prime
thick ⊗-ideals of T by Mn T.
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By Proposition 4.2 the Balmer spectrum of D−(R) is decomposed into the fibers
by s : SpcD−(R)→ Spec R as a set. Concerning the fibers of maximal ideals and
minimal primes of R, we have the following:

Proposition 4.9. Let m ∈Max R and p ∈Min R. Then

min s−1(m)⊆ MnD−(R), max s−1(p)⊆ MxD−(R).

Proof. Take P ∈ min s−1(m), and let Q be a prime thick ⊗-ideal contained in P.
Then m = s(P) ⊆ s(Q) by Theorem 3.9. Since m is a maximal ideal, we get
m= s(P)= s(Q), and Q ∈ s−1(m). The minimality of P implies P= Q. Thus, the
first inclusion follows. The second inclusion is obtained similarly. �

To prove our next theorem, we establish a lemma and a proposition. Recall that
a topological space is called T1-space if every one-point subset is closed.

Lemma 4.10. (1) The subspaces Max R,Min R of Spec R are T1-spaces, so every
finite subset is closed.

(2) Let T be an essentially small ⊗-triangulated category. The subspaces Mx T,

Mn T of Spc T are T1-spaces, so every finite subset is closed.

Proof. (1) Let A be either Max R or Min R. For each p ∈ A the closure of {p} in A
is V(p)∩ A, which coincides with {p}. Hence, A is a T1-space.

(2) Let B be either Mx T or Mn T. For each P ∈ B the closure of {P} in B is
{Q ∈ B | Q ⊆ P} by [Balmer 2005, Proposition 2.9], which coincides with {P}.
Hence, B is a T1-space. �

Proposition 4.11. For each complex X ∈ D−(R) it holds that

Supp X = Spec R ⇐⇒ thick⊗ X = D−(R) ⇐⇒ Spp X = SpcD−(R).

Proof. The second equivalence follows from [Balmer 2005, Corollary 2.5]. Let us
prove the first equivalence. Proposition 1.10(2) implies Supp X = Supp(thick⊗ X),
which shows (⇐=). As for (=⇒), for every M ∈ D−(R) we have V(Ann M) ⊆
Spec R = Supp X , by which and Proposition 2.9 we get M ∈ thick⊗ X . �

Now we can prove the following theorem. This especially says that D−(R) is
“semilocal” in the sense that D−(R) admits only a finite number of maximal thick
tensor ideals. If R is an integral domain, then D−(R) is “local” in the sense that
D−(R) has a unique maximal thick tensor ideal.

Theorem 4.12. The restriction of S to Min R induces a homeomorphism

S|Min R :Min R
∼=
−→ MxD−(R).
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Proof. Let us show that there is an equality

MxD−(R)= {S(p) | p ∈Min R}. (4.12.1)

Let p1, . . . , pn be the minimal prime ideals of R.
Let M be a maximal thick ⊗-ideal of D−(R). Suppose that M is not contained

in S(pi ) for any 1 6 i 6 n. Then for each i we find an object Mi ∈ M such
that (Mi )pi is nonzero. Set M = M1⊕ · · · ⊕ Mn . This object belongs to M, and
Mpi is nonzero for all 1 6 i 6 n. Hence, Supp M contains all the pi , and we
get Supp M = Spec R because Supp M is specialization-closed. Proposition 4.11
yields thick⊗ M = D−(R), and hence, we have M= D−(R), which contradicts the
definition of a maximal thick ⊗-ideal. Thus, M is contained in S(pl) for some
16 l 6 n. The maximality of M implies that M= S(pl).

Fix an integer 1 6 i 6 n. By [Balmer 2005, Proposition 2.3(b)] there exists
a maximal thick ⊗-ideal Mi of D−(R) that contains S(pi ). Applying the above
argument to Mi , we see that Mi coincides with S(p j ) for some 16 j 6 n. Hence,
S(pi ) is contained in S(p j ), and Theorem 3.9 shows that pi contains p j . The fact that
pi , p j are minimal prime ideals of R forces us to have i = j . Therefore, we obtain
Mi = S(pi ), which especially says that S(pi ) is a maximal thick ⊗-ideal of D−(R).

Thus, we get the equality (4.12.1). This shows that the restriction of the map
S : Spec R→ SpcD−(R) to Min R gives rise to a surjection Min R→ MxD−(R).
As Theorem 3.9 says that S is an injection, the map S|Min R is a bijection. By
Lemma 4.10 we see that S|Min R is a homeomorphism. �

Theorem 4.12 yields the following result concerning the structure of the Balmer
spectrum of D−(R).

Corollary 4.13. (1) There are equalities

SpcD−(R)=
⋃

p∈Spec R

{S(p)} =
⋃

p∈Min R

{S(p)}.

(2) The topological space SpcD−(R) is irreducible if and only if so is Spec R.

Proof. (1) The inclusions SpcD−(R)⊇
⋃

p∈Spec R {S(p)}⊇
⋃

p∈Min R {S(p)} clearly
hold. Pick a prime thick ⊗-ideal P of D−(R). Then one finds a maximal thick
⊗-ideal M containing P by [Balmer 2005, Proposition 2.3(b)]. Theorem 4.12
implies that M= S(p) for some minimal prime ideal p of R, and it follows from
[Balmer 2005, Proposition 2.9] that P belongs to the closure {S(p)}.

(2) First of all, SpcD−(R) is irreducible if and only if SpcD−(R)= {P} for some
P∈SpcD−(R). In fact, the “if” part is obvious, while the “only if” part follows from
[Balmer 2005, Proposition 2.18]. By [Balmer 2005, Proposition 2.9], the set {P}
consists of the prime thick ⊗-ideals contained in P. Hence, SpcD−(R)= {P} for
some P ∈ SpcD−(R) if and only if D−(R) has a unique maximal element, which
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is equivalent to Spec R having a unique minimal element by Theorem 4.12. This is
equivalent to saying that Spec R is irreducible. �

The following theorem is opposite to Theorem 4.12. The third assertion says that
if R is local, then D−(R) is an “integral domain” in the sense that 0 is a (unique)
minimal prime thick tensor ideal of D−(R).

Theorem 4.14. (1) For every maximal ideal m of R, the subcategory S(m) is a
minimal prime thick ⊗-ideal of D−(R), or in other words, the restriction of S

to Max R induces an injection

S|Max R :Max R ↪→ MnD−(R). (4.14.1)

(2) The ring R is semilocal if and only if D−(R) has only finitely many minimal
prime thick ⊗-ideals. When this is the case, the map (4.14.1) is a homeomor-
phism.

(3) If (R,m) is a local ring, then S(m) = 0 is a unique minimal prime thick
⊗-ideal of D−(R).

Proof. (1) Let P be a prime thick ⊗-ideal of D−(R) contained in S(m). Take any
object X ∈ S(m). Then Supp(X ⊗L

R R/m)= Supp X ∩ {m} =∅ by Lemma 1.9(4).
Remark 1.8 shows X ⊗L

R R/m= 0, which belongs to P. As P is prime, either X
or R/m is in P. Since S(m) does not contain R/m, neither does P. Therefore, X
must be in P, and we obtain P= S(m). This shows that the prime thick ⊗-ideal
S(m) is minimal. Thus, S induces a map Max R → MnD−(R). The injectivity
follows from Theorem 3.9.

(2) The first assertion of the theorem implies the “if” part, and it suffices to show
that if R is semilocal, then (4.14.1) is a homeomorphism. Let us first prove the
surjectivity of the map (4.14.1). Take a minimal prime thick ⊗-ideal P of D−(R).
What we want is that there is a maximal ideal m of R such that P= S(m).

Suppose that P does not contain S(m) for all m ∈ Max R. Write Max R =
{m1, . . . ,mt }. For each 16 i 6 t we find an object X i of D−(R) with X i ∈ S(mi )

and X i /∈P. Setting X = X1⊗
L
R · · ·⊗

L
R X t , for each i we have Xmi = X1⊗

L
R · · ·⊗

L
R

(X i )mi ⊗
L
R · · ·⊗

L
R X t = 0. Hence, Xm = 0 for all m ∈Max R, which implies Xp = 0

for all p ∈ Spec R. This means that Supp X is empty, and Remark 1.8 yields X = 0.
In particular, X = X1⊗

L
R · · · ⊗

L
R X t is in P. As P is prime, it contains some Xu ,

which is a contradiction.
Consequently, P must contain S(m) for some m ∈Max R. The minimality of P

shows that P= S(m). We conclude that the map (4.14.1) is surjective, whence it is
bijective. Since the set Max R is finite, so is MnD−(R). Applying Lemma 4.10, we
observe that (4.14.1) is a homeomorphism.
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(3) As R is a local ring with maximal ideal m, the equality S(m)= 0 holds, which
especially says that 0 is a prime thick ⊗-ideal of D−(R) by Proposition 3.4. If P is
a minimal prime thick ⊗-ideal, then P contains 0, and the minimality of P implies
P= 0. Thus, 0 is a unique minimal prime thick ⊗-ideal. �

Question 4.15. Is the map (4.14.1) bijective even if R is not semilocal?

Recall that a topological space X is called noetherian if any descending chain
of closed subsets of X stabilizes. Applying the above two theorems to the artinian
case gives rise to the following result.

Corollary 4.16. Let R be an artinian ring. Then the map S : Spec R→ SpcD−(R)
is a homeomorphism. Hence, the topological space SpcD−(R) is noetherian, and
one has dim(SpcD−(R))= dim R = 0<∞.

Proof. Since Spec R =Min R =Max R, the assertion is deduced from Theorems
4.12 and 4.14(2). �

From here we consider when D−(R) is a local tensor triangulated category. Let
us recall the definition.

Definition 4.17. (1) A topological space X is called local if for any open cover
X =

⋃
i∈I Ui of X there exists t ∈ I such that X =Ut . In particular, any local

topological space is quasicompact.

(2) An essentially small tensor triangulated category T is called local if Spc T is
a local topological space.

Remark 4.18. It is clear that the topological space Spec R is local if and only if
the ring R is local.

For an essentially small ⊗-triangulated category T the following are equivalent
[Balmer 2010a, Proposition 4.2]:

(i) T is local,

(ii) T has a unique minimal prime thick ⊗-ideal, and

(iii) the radical thick ⊗-ideal
√

0 of T is prime.

If moreover T is rigid, then the above three conditions are equivalent to

(iv) the zero subcategory 0 of T is a prime thick ⊗-ideal.

Also, it follows from [Balmer 2010a, Example 4.4] that Kb(proj R) is local if and
only if so is R.

The following result says that the same statements hold for D−(R). Also, we
emphasize that it contains the equivalent condition (4), even though D−(R) is not
rigid; see Remark 1.3.

Corollary 4.19. The following are equivalent:
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(1) the ⊗-triangulated category D−(R) is local,

(2) there is a unique minimal thick ⊗-ideal of D−(R),

(3) the radical thick ⊗-ideal
√

0 of D−(R) is prime,

(4) the zero subcategory 0 of D−(R) is a prime thick ⊗-ideal, and

(5) the ring R is local.

Proof. Combining Theorem 4.14 with the result given just before the corollary, we
observe that (1)⇐⇒ (2)⇐⇒ (3)⇐⇒ (5) =⇒ (4) holds. If 0 is prime, then it is easy
to see that

√
0= 0. Thus, (4) implies (3). �

One can indeed obtain more precise information on the structure of SpcD−(R)
than Corollary 4.19:

Proposition 4.20. One has

SpcD−(R)=
{

U(R/m)t {0} if (R,m) is local,⋃
m∈Max R U(R/m) if R is nonlocal.

If m, n are distinct maximal ideals of R, then SpcD−(R)= U(R/m)∪ U(R/n).

Proof. Suppose that (R,m, k) is a local ring. Corollary 4.19 implies that 0 is
prime, and SpcD−(R) contains U(k)∪{0}. Let P be a nonzero prime thick ⊗-ideal
of D−(R). Then there exists an object X 6= 0 in P. By Remark 1.8 the support of X
is nonempty and specialization-closed, whence contains m. Using Lemma 1.9(4),
we have Supp(X ⊗L

R k)= Supp X ∩Supp k = {m} 6=∅. Hence, X ⊗L
R k is nonzero

by Remark 1.8 again. Since X ⊗L
R k is isomorphic to a direct sum of shifts of

k-vector spaces, it contains k[n] as a direct summand for some n ∈ Z. As X ⊗L
R k

is in P, so is k. Therefore, P is in U(k), and we obtain SpcD−(R)= U(k)∪ {0}. It
is obvious that U(k)∩ {0} =∅. We conclude that SpcD−(R)= U(k)t {0}.

Now, let m and n be distinct maximal ideals of R. Applying Lemma 1.9(4),
we have Supp(R/m⊗L

R R/n) = {m} ∩ {n} = ∅, and hence, R/m⊗L
R R/n = 0 by

Remark 1.8. Therefore, we obtain U(R/m)∪ U(R/n)= U(R/m⊗L
R R/n)= U(0)=

SpcD−(R), where the first equality follows from [Balmer 2005, Lemma 2.6(e)].
Thus, the last assertion of the proposition follows, which shows the first assertion
in the nonlocal case. �

So far we have investigated the irreducible and local properties of SpcD−(R).
In general, there is no implication between the local and irreducible properties of
SpcD−(R):

Remark 4.21. If R is a local ring possessing at least two minimal prime ideals,
then SpcD−(R) is local by Corollary 4.19, but not irreducible by Corollary 4.13(2).
Similarly, if R is a nonlocal ring with unique minimal prime ideal, then SpcD−(R)
is irreducible but not local.
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5. Relationships among thick tensor ideals and specialization-closed subsets

This section compares compact, tame, and radical thick tensor ideals of D−(R), relat-
ing them to specialization-closed subsets of Spec R and tSpcD−(R) and Thomason
subsets of SpcD−(R). We start with some notation.

Definition 5.1. (1) Let T be a tensor triangulated category. Let P be a property of
thick ⊗-ideals of T. For a subcategory X of C we denote by XP the P-closure
of X, that is to say, the smallest thick ⊗-ideal of T which contains X and
satisfies the property P. Furthermore, we denote by XP the P-interior of X,
namely the largest thick ⊗-ideal of T which is contained in X and satisfies the
property P. We define these only when they exist.

(2) Let X be a topological space. Let P be a property of subsets of X . For a subset
A of X we denote by AP the P-closure of A, namely, the smallest subset of X
that contains A and satisfies P. Furthermore, we denote by AP the P-interior
of A — that is, the largest subset of X that is contained in A and satisfies P.
We define these only when they exist.

Here is a list of properties P as in the above definition which we consider:

rad= radical, tame= tame, cpt= compact, spcl= specialization-closed.

Notation 5.2. We denote by Rad, Tame, and Cpt the sets of radical, tame, and
compact thick ⊗-ideals of D−(R), respectively. Also, Spcl(Spec) and Spcl(tSpc)
stand for the sets of specialization-closed subsets of the topological spaces Spec R
and tSpcD−(R), respectively.

Our first purpose in this section is to give a certain commutative diagram of
bijections. To achieve this, we prepare several propositions. We state here two
propositions. The first one is shown by using Proposition 1.10, while the second
one is nothing but Theorem 2.19.

Proposition 5.3. There is a one-to-one correspondence Supp :Tame�Spcl(Spec) :
Supp−1.

Proposition 5.4. There is a one-to-one correspondence Supp :Cpt� Spcl(Spec) :
〈 · 〉.

Notation 5.5. For an object M of D−(R) we denote by Sp M the set of tame prime
thick⊗-ideals of D−(R) not containing M ; i.e., Sp M=Spp M∩tSpcD−(R). For a
subcategory X of D−(R) we set Sp X=

⋃
M∈X Sp M . For a subset A of SpcD−(R)

we denote by Sp−1 A the subcategory of D−(R) consisting of objects M such that
Sp M is contained in A.

The second following assertion is a variant of [Balmer 2005, Lemma 4.8].
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Lemma 5.6. (1) For a subcategory X of D−(R), the subset Sp X of tSpcD−(R)
is specialization-closed.

(2) For a subset A of tSpcD−(R) one has Sp−1 A =
⋂

P∈A{ P, where A{ =
tSpcD−(R) \ A.

(3) Let {Xλ}λ∈3 be a collection of tame thick ⊗-ideals of D−(R). Then the inter-
section

⋂
λ∈3 Xλ is also a tame thick ⊗-ideal of D−(R).

Proof. (1) We have Sp X =
⋃

X∈X Sp X , and Sp X = Spp X ∩ tSpcD−(R) is
closed in tSpcD−(R) since Spp X is closed in SpcD−(R). Therefore, Sp X is
specialization-closed in tSpcD−(R).

(2) An object X of D−(R) belongs to Sp−1 A if and only if Sp X is contained in A,
if and only if A{ is contained in (Sp X){ = {P ∈ tSpcD−(R) | X ∈P}, if and only
if X belongs to

⋂
P∈A{ P.

(3) For each λ ∈3 there is a subset Sλ of Spec R such that Xλ = Supp−1 Sλ. Then
it is clear that the equality

⋂
λ∈3 Xλ = Supp−1(⋂

λ∈3 Sλ
)

holds, which shows the
assertion. �

Using the above lemma, we obtain a bijection induced by Sp.

Proposition 5.7. There is a one-to-one correspondence Sp : Tame� Spcl(tSpc) :
Sp−1.

Proof. Fix a tame thick ⊗-ideal X of D−(R) and a specialization-closed subset
U of tSpcD−(R). Lemma 5.6(1) implies that Sp X is specialization-closed in
tSpcD−(R), that is, Sp X ∈ Spcl(tSpc). Lemma 5.6(2) implies that Sp−1 U =⋂

P∈U{ P, and each P ∈U { is a tame thick ⊗-ideal of D−(R). Hence, Sp−1 U is
also a tame thick ⊗-ideal of D−(R) by Lemma 5.6(3); namely, Sp−1 U ∈ Tame.

Let us show that Sp(Sp−1 U ) = U . It is evident that Sp(Sp−1 U ) is contained
in U . Pick any P ∈ U . Corollary 3.14 says P = S(p) for some prime ideal p
of R. Since U is specialization-closed in tSpcD−(R), the closure C of S(p) in
tSpcD−(R) is contained in U . Using [Balmer 2005, Proposition 2.9], we see that
C consists of the prime thick ⊗-ideals of the form S(q), where q is a prime ideal
of R with S(q)⊆ S(p). In view of Theorem 3.9, we have C = {S(q) | q ∈ V(p)},
and it is easy to observe that this coincides with Sp(R/p). Hence, R/p is in Sp−1 U ,
and P= S(p) belongs to Sp(Sp−1 U ). Now we obtain Sp(Sp−1 U )=U .

It remains to prove that Sp−1(Sp X)=X. We have Sp−1(Sp X)=
⋂

P∈(Sp X){ P by
Lemma 5.6(2). Fix a prime thick ⊗-ideal P of D−(R). Then P is in (Sp X){ if and
only if P is tame and P is not in Sp X. The former statement is equivalent to saying
that P= S(p) for some p ∈ Spec R by Corollary 3.14, while the latter is equivalent
to saying that X is contained in P. Hence, Sp−1(Sp X) =

⋂
p∈Spec R,X⊆S(p) S(p).

Thus, an object Y of D−(R) belongs to Sp−1(Sp X) if and only if Y belongs to S(p)

for all p ∈ Spec R with X ⊆ S(p), if and only if Yp = 0 for all p ∈ Spec R with
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Xp = 0, if and only if Supp Y is contained in Supp X, if and only if Y belongs to X

by Proposition 5.3. �

Here we consider describing rad-closures, tame-closures, and cpt-interiors, and
their supports.

Lemma 5.8. Let X be a subcategory of D−(R), and let Y be a thick ⊗-ideal
of D−(R). One has

(1) (thick⊗ X)cpt = 〈Supp X〉, Xrad
=
√
thick⊗ X, Xtame

= Supp−1 Supp X and

(2) Ycpt⊆Y⊆Yrad
⊆Ytame, Supp(Ycpt)=Supp Y=Supp(Yrad)=Supp(Ytame).

Proof. (1) It follows from [Balmer 2005, Lemma 4.2] and Remark 3.13 that
√
thick⊗ X and Supp−1 Supp X are thick⊗-ideals of D−(R), respectively. It is clear

that
√
thick⊗ X and Supp−1 Supp X are radical and tame, respectively, and contain X.

If C is a radical or tame thick ⊗-ideal of D−(R) containing X, then we have
√
thick⊗ X ⊆

√
thick⊗ C =

√
C = C or Supp−1 Supp X ⊆ Supp−1 Supp C = C by

Proposition 5.3, respectively. Thus, we obtain the two equalities Xrad
=
√
thick⊗ X

and Xtame
= Supp−1 Supp X. It remains to show the equality (thick⊗ X)cpt =

〈Supp X〉. Clearly, 〈Supp X〉 is a compact thick ⊗-ideal of D−(R). Applying
Corollary 2.11, we observe that 〈Supp X〉 is contained in thick⊗ X. Let C be a
compact thick ⊗-ideal of D−(R) contained in thick⊗ X. Then it follows from
Proposition 5.4 that C = 〈Supp C〉, which is contained in 〈Supp(thick⊗ X)〉 =

〈Supp X〉 by Proposition 1.10(2). We now conclude (thick⊗ X)cpt = 〈Supp X〉.

(2) Fix a prime ideal p of R. Proposition 3.4 says that S(p) is a prime thick ⊗-ideal
of D−(R), whence it is radical. Therefore, Yp = 0 if and only if (

√
Y)p = 0. This

shows Supp(
√

Y)= Supp Y. Hence,
√

Y is contained in Supp−1 Supp Y, meaning
that Yrad is contained in Ytame by (1). Thus, we get the inclusions Ycpt ⊆ Y ⊆

Yrad
⊆ Ytame, which implies Supp(Ycpt)⊆ Supp Y⊆ Supp(Yrad)⊆ Supp(Ytame).

By (1) and Proposition 1.10 we get Supp(Ytame) = Supp Y = Supp(Ycpt). The
equalities in the assertion follow. �

The inclusion Yrad
⊆ Ytame in Lemma 5.8 in particular says:

Corollary 5.9. Every tame thick ⊗-ideal of D−(R) is radical.

We now obtain a bijection, using the above lemma.

Proposition 5.10. There is a one-to-one correspondence ( · )tame
: Cpt� Tame :

( · )cpt.

Proof. Fix a compact thick ⊗-ideal X, and a tame thick ⊗-ideal Y of D−(R).
We have (Xtame)cpt = 〈Supp(Xtame)〉 = 〈Supp X〉 = X, where the first equal-
ity follows from Lemma 5.8(1), the second from Lemma 5.8(2), and the last
from Proposition 5.4. Also, it holds that (Ycpt)

tame
= Supp−1 Supp(Ycpt) =

Supp−1 Supp Y = Y, where the first equality follows from Lemma 5.8(1), the
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second from Lemma 5.8(2), and the last from Proposition 5.3. Thus, we obtain the
one-to-one correspondence in the proposition. �

For each subset A of Spec R, we put S(A)= {S(p) | p ∈ A}. For each subset B
of SpcD−(R), we put s(B)= {s(P) | P ∈ B}. We get another bijection.

Proposition 5.11. There exists a one-to-one correspondence S : Spcl(Spec) �
Spcl(tSpc) : s.

Proof. First of all, applying Theorem 3.9 and Corollary 3.14, we observe that

s(S(p))= p for all p ∈ Spec R,

S(s(P))= P for all P ∈ tSpcD−(R).
(5.11.1)

Fix a specialization-closed subset W of Spec R and a specialization-closed subset U
of tSpcD−(R). It follows from (5.11.1) that s(S(W ))=W and S(s(U ))=U .

Pick a prime ideal p in W . Let X be the closure of {S(p)} in tSpcD−(R). Then
X = Y ∩ tSpcD−(R), where Y is the closure of {S(p)} in SpcD−(R), and hence,

X = {P ∈ tSpcD−(R) | P⊆ S(p)} = {S(q) | q ∈ Spec R, S(q)⊆ S(p)}

= {S(q) | q ∈ V(p)} ⊆ S(W ),

where the first equality follows from [Balmer 2005, Proposition 2.9], the second
from Corollary 3.14, and the third from Theorem 3.9. The inclusion holds since W is
a specialization-closed subset of Spec R. Therefore, S(W ) is a specialization-closed
subset of tSpcD−(R); namely, S(W ) ∈ Spcl(tSpc).

Pick P ∈U . As U is a subset of tSpcD−(R), the prime thick ⊗-ideal P is tame.
Let q be a prime ideal of R containing s(P). We then get S(q) ⊆ S(s(P)) = P

by Theorem 3.9 and (5.11.1), which says that S(q) belongs to the closure of the
set {P} in tSpcD−(R) by [Balmer 2005, Proposition 2.9]. The specialization-closed
property of U implies that S(q) belongs to U . We have q = s(S(q)) by (5.11.1),
which belongs to s(U ). Consequently, the subset s(U ) of Spec R is specialization-
closed; that is, s(U ) ∈ Spcl(Spec). �

Here we note an elementary fact on commutativity of a diagram of maps.

Remark 5.12. Consider the following diagram of bijections:

A

a

��

c−1

��

B

a−1

BB

b
// C

c

\\

b−1
oo

One can choose infinitely many compositions of maps in the diagram, but once one
of them is equal to another, this triangle with edges having any direction commutes.



Thick tensor ideals of right bounded derived categories 1717

To be more explicit, if c = ba for instance, then the set {1, a, a−1, b, b−1, c, c−1
}

is closed under possible compositions.

Now we can state and prove our first main result in this section.

Theorem 5.13. There is a commutative diagram of mutually inverse bijections:

Spcl(Spec)

〈 · 〉

uu

S

∼= **

Supp−1∼=

��

Cpt

∼=

Supp
55

( · )tame

∼=
))

Spcl(tSpc)
s

jj

Sp−1

∼=

ttTame( · )cpt

ii Sp
44

Supp

OO

Proof. The five one-to-one correspondences in the diagram are shown in Propositions
5.3, 5.4, 5.7, 5.10, and 5.11. It remains to show the commutativity, and for this we
take Remark 5.12 into account.

For a thick⊗-ideal X of D−(R), we have Supp(Xtame)=Supp X by Lemma 5.8(2),
which shows that the left triangle in the diagram commutes. It is easy to observe
from Corollary 3.14 that

Sp X= S(Supp X) for any subcategory X of D−(R). (5.13.1)

The commutativity of the right triangle in the diagram follows from (5.13.1). �

Remark 5.14. The bijections in the diagram of Theorem 5.13 induce lattice struc-
tures in Tame and Spcl(tSpc), so that the maps are lattice isomorphisms. However,
we do not know if there is an explicit way to define lattice structures like the one
of Cpt given in Proposition 2.18(2).

Let f : A→ B and g : B→ A be maps with g f = 1. Then we say that ( f, g) is
a section-retraction pair, and write f a g. Our next goal is to construct a certain
commutative diagram of section-retraction pairs, and for this we again give several
propositions. The first one is a consequence of [Balmer 2005, Theorem 4.10].

Proposition 5.15. There is a one-to-one correspondence Spp : Rad � Thom :
Spp−1.

Proposition 5.16. There is a section-retraction pair ( · )rad
: Cpt� Rad : ( · )cpt.

Proof. For every X∈Cpt, we have (Xrad)cpt=〈Supp(Xrad)〉= 〈Supp X〉=Xcpt=X

by Lemma 5.8. �

Let X be a topological space. A subset T of X is called Thomason if T is a
union of closed subsets of X whose complements are quasicompact. Note that a
Thomason subset is specialization-closed.
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For each subset A of Spec R, we set S(A) =
⋃

p∈A {S(p)}. For each subset B
of SpcD−(R), we set S−1(B) = {p ∈ Spec R | S(p) ∈ B}. We obtain another
section-retraction pair.

Proposition 5.17. There is a section-retraction pair S : Spcl(Spec)�Thom :S−1.

Proof. Corollary 3.10 and [Balmer 2005, Proposition 2.9] yield

Spp(R/p)= {S(p)} for any prime ideal p of R, (5.17.1)

whence ({S(p)}){ = U(R/p), which is quasicompact by [Balmer 2005, Proposition
2.14(a)]. Hence, S(A) is a Thomason subset of SpcD−(R) for any subset A
of Spec R. In particular, we get a map S : Spcl(Spec)→ Thom.

Let T be a Thomason subset of SpcD−(R). Let p, q be prime ideals of R with
p⊆q and S(p)∈T . Then S(q) belongs to {S(p)} by Theorem 3.9 and [Balmer 2005,
Proposition 2.9]. Since T is Thomason, it contains {S(p)}. Hence, S(q) belongs
to T . Thus, the assignment T 7→S−1(T ) defines a map S−1

:Thom→ Spcl(Spec).
For a specialization-closed subset W of Spec R and a prime ideal p of R,

S(p) ∈ {S(q)} for some q ∈W ⇐⇒ S(p)⊆ S(q) for some q ∈W

⇐⇒ p⊇ q for some q ∈W ⇐⇒ p ∈W,

where the first and second equivalences follow from [Balmer 2005, Proposition 2.9]
and Theorem 3.9, and the last equivalence holds by the fact that W is specialization-
closed. This yields S−1(S(W ))=W . �

Now we consider describing spcl-closures and spcl-interiors.

Proposition 5.18. Let A be a specialization-closed subset of SpcD−(R), and let B
be a specialization-closed subset of tSpcD−(R).

(1) Let Aspcl stand for the spcl-interior of A in tSpcD−(R). Then

Aspcl = A∩ tSpcD−(R).

(2) Let Bspcl stand for the spcl-closure of B in SpcD−(R). Then

Bspcl
= {P ∈ SpcD−(R) | Ptame

∈ B} =
⋃

P∈Bspcl

Spp(R/s(P)).

In particular, Bspcl is a Thomason subset of SpcD−(R).

Proof. (1) We easily observe that A∩ tSpcD−(R) is a specialization-closed subset
of the topological space tSpcD−(R) contained in A. Also, it is obvious that if X is
a specialization-closed subset of tSpcD−(R) contained in A, then X is contained
in A∩ tSpcD−(R). Hence, A∩ tSpcD−(R) coincides with Aspcl.

(2) Let C be the set of prime thick ⊗-ideals P of D−(R) with Ptame
∈ B. We

proceed step by step.
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(a) Each Q ∈ B is tame. Hence, Qtame
= Q ∈ B. This shows that C contains B.

(b) Let Y be a specialization-closed subset of SpcD−(R) containing B. Take
any element P of C . Then Ptame belongs to B, and hence to Y . Since Y is
specialization-closed, {Ptame} is contained in Y . Hence, P belongs to Y by [Balmer
2005, Proposition 2.9]. It follows that C is contained in Y .

(c) We prove C =
⋃

P∈C Spp(R/s(P)). Combining Theorem 3.9, Lemma 5.8(1),
and (5.17.1) gives rise to Spp(R/s(P))= {Ptame}, and thus, it is enough to verify
C =

⋃
P∈C {P

tame}. By [Balmer 2005, Proposition 2.9] we see that C is contained
in
⋃

P∈C {P
tame}. Conversely, let P ∈ C and Q ∈ {Ptame}. Then Ptame belongs

to B, and Q is contained in Ptame by [Balmer 2005, Proposition 2.9], which shows
that Qtame is contained in Ptame. Hence, Qtame is in {Ptame} ∩

tSpcD−(R). As
B is specialization-closed in tSpcD−(R), it contains {Ptame} ∩

tSpcD−(R), and
therefore, Qtame is in B. Thus, Q belongs to C . We obtain C =

⋃
P∈C {P

tame}.

The equality C =
⋃

P∈C Spp(R/s(P)) shown in (c) especially says that C is
specialization-closed. By this together with (a) and (b) we obtain C = Bspcl,
and it follows that C =

⋃
P∈Bspcl Spp(R/s(P)). �

We now obtain another section-retraction pair:

Proposition 5.19. The operations ( · )spcl and ( · )spcl defined in Proposition 5.18
make a section-retraction pair ( · )spcl

: Spcl(tSpc)� Thom : ( · )spcl.

Proof. Let U be a specialization-closed subset of tSpcD−(R). By Proposition 5.18,
U spcl is a Thomason subset of SpcD−(R), and (U spcl)spcl =U spcl

∩
tSpcD−(R)=

{P ∈ tSpcD−(R) | Ptame
∈U } =U . �

We can prove our second main result in this section.

Theorem 5.20. There is a diagram

Rad ∼

a ( · )cpt

��

Thom

a S−1

��

Thom

a ( · )spcl

��

Cpt ∼

( · )rad

OO

Spcl(Spec)

S

OO

∼ Spcl(tSpc)

( · )spcl

OO

where the upper horizontal bijections are the one given in Proposition 5.15 and an
equality, and the lower horizontal bijections are the ones appearing in Theorem 5.13.
The diagrams with vertical arrows from the bottom to the top and the top to the
bottom are commutative.

Proof. The three section-retraction pairs are obtained in Propositions 5.16, 5.17,
and 5.19.

We claim that for any thick ⊗-ideal X of D−(R) one has

Spp(Xrad)= Spp X. (5.20.1)
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Indeed, Lemma 5.8(1) shows Xrad
=
√

X. The inclusion X⊆
√

X implies Spp X⊆

Spp
√

X. Let P be a prime thick ⊗-ideal of D−(R). If X is contained in P, then so
is
√

X as P is prime. Therefore, we obtain Spp
√

X= Spp X, and the claim follows.
Fix a thick ⊗-ideal C of D−(R). For a prime ideal p of R one has S(p) ∈ Spp C

if and only if C*S(p), if and only if Cp 6= 0, if and only if p∈ Supp C. This shows
S−1(Spp C) = Supp C. Lemma 5.8(2) gives Supp(Ccpt) = S−1(Spp C). Next,
suppose that C is compact. Lemma 5.8(1), (5.17.1), and (5.20.1) yield

Spp(Crad)= Spp C= Spp(Ccpt)= Spp(〈Supp C〉)

= Spp{R/p | p ∈ Supp C} = S(Supp C).

Thus, we obtain the commutativity of the left square of the diagram.
Let A be any subset of Spec R. It is clear that S(A) = {S(p) | p ∈ A} is

contained in S(A). As S(A) is a union of closed subsets of the topological
space SpcD−(R), it is a specialization-closed subset of SpcD−(R). Note that any
specialization-closed subset of SpcD−(R) containing S(A) contains S(A). Hence,
we have S(A)= (S(A))spcl. Let B be a specialization-closed subset of SpcD−(R).
Then S(S−1(B))= {S(p) | p ∈ Spec R, S(p) ∈ B} = B ∩ tSpcD−(R)= Bspcl by
Corollary 3.14 and Proposition 5.18(1). Now it follows that the right square of the
diagram commutes. �

We close this section by producing another commutative diagram, coming from
the above theorem.

Corollary 5.21. There is a commutative diagram

Rad
( · )cpt

tt

Supp

}}

( · )tame

��

Sp

**

Cpt ∼ Spcl(Spec) ∼ Tame ∼ Spcl(tSpc)

Here, the three bijections are the ones appearing in Theorem 5.13, and the other
maps are retractions.

Proof. We have the following diagram:

Rad

( · )cpta

��

Cpt

( · )rad

OO

Supp

∼=

//

Spcl(Spec)
Supp−1

∼=

//

〈 · 〉

oo Tame
Sp

∼=

//

Supp
oo Spcl(tSpc)

Sp−1
oo
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Thus, it suffices to verify the equalities of compositions of maps Supp ◦( · )cpt =

Supp, Supp−1
◦Supp= ( · )tame, and Sp ◦( · )tame

= Sp. This is equivalent to show-
ing that the equalities

(i) Supp(Xcpt)= Supp X,

(ii) Supp−1 Supp X= Xtame, and

(iii) Sp(Xtame)= Sp X

hold for each (radical) thick ⊗-ideal X of D−(R). The equalities (i) and (ii) im-
mediately follow from Lemma 5.8. We have Sp(Xtame) = Sp(Supp−1 Supp X) =

(Sp ◦Supp−1)(Supp X) = S(Supp X) = Sp X, where the first and last equalities
follow from Lemma 5.8(1) and (5.13.1). Proposition 1.10(2) says that Supp X

belongs to Spcl(Spec), and the third equality above is obtained by Theorem 5.13.
Now the assertion (iii) follows, and the proof of the corollary is completed. �

6. Distinction between thick tensor ideals, and Balmer’s conjecture

In this section, we consider when the section-retraction pairs in Theorem 5.20 and
Corollary 5.21 are one-to-one correspondences, and construct a counterexample to
the conjecture of Balmer. We begin with a lemma on the annihilator of an object in
the thick ⊗-ideal closure.

Lemma 6.1. Let {Xλ}λ∈3 be a family of objects of D−(R). For M ∈ thick⊗{Xλ}λ∈3
there are (pairwise distinct) indices λ1, . . . , λn ∈ 3 and integers e1, . . . , en > 0
such that Ann M contains

∏n
i=1(Ann Xλi )

ei .

Proof. Let C be the subcategory of D−(R) consisting of objects C such that there
are λ1, . . . , λn ∈3 and e1, . . . , en > 0 such that Ann C contains

∏n
i=1(Ann Xλi )

ei .
The following statements hold in general.

• If A is an object of D−(R) and B is a direct summand of A, then Ann A ⊆
Ann B.

• For each object A ∈ D−(R) one has Ann(A[±1])= Ann A.

• If A→ B→ C→ A[1] is an exact triangle in D−(R), then Ann B contains
Ann A ·Ann C .

• For any objects A, B of D−(R) one has Ann(A⊗L
R B)⊇ Ann A.

It follows from these that C is a thick ⊗-ideal of D−(R). Since Xλ is in C for all
λ ∈ 3, it holds that C contains thick⊗{Xλ}λ∈3. The assertion of the lemma now
follows. �

The proposition below says in particular that in the case where R is a local ring
D−(R) has a compact prime thick tensor ideal. On the other hand, in the nonlocal
case it is often that D−(R) has no such one.
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Proposition 6.2. (1) If R is a local ring with maximal ideal m, then Cpt ∩
s−1(m)= {0} 6=∅.

(2) Let R be a nonlocal semilocal domain. Then there exists no compact prime
thick ⊗-ideal of D−(R). In particular, one has Pcpt ( P = Prad for all
P ∈ SpcD−(R).

Proof. (1) Let P be in SpcD−(R). Then P is in s−1(m) if and only if Supp P =

{p ∈ Spec R | p*m} =∅ by Proposition 4.2, if and only if P= 0 by Remark 1.8.
Since 0 is compact, we are done.

(2) Let m1, . . . ,mn be the (pairwise distinct) maximal ideals of R with n > 2. For
each 1 6 i 6 n one finds an element xi ∈ mi that does not belong to any other
maximal ideals. As R is a domain of positive dimension, xi is a nonzerodivisor
of R. Set Ci =

⊕
t>0 R/x t+1

i [t]; note that this is an object of D−(R). We have
Supp(C1⊗

L
R · · · ⊗

L
R Cn) =

⋂n
i=1 Supp Ci =

⋂n
i=1 V(xi ) = V(x1, . . . , xn) = ∅ by

Lemma 1.9(4) and the fact that (x1, x2) is a unit ideal of R. Remark 1.8 gives
C1⊗

L
R · · · ⊗

L
R Cn = 0.

Suppose that there exists a compact prime thick ⊗-ideal P of D−(R). Then
C1 ⊗

L
R · · · ⊗

L
R Cn = 0 is contained in P, and so is C` for some 1 6 ` 6 n. We

have P = 〈Supp P〉 by Proposition 5.4, and by Lemma 6.1 there exist prime
ideals p1, . . . , pr ∈ Supp P and integers e1, . . . , er > 0 such that Ann C` contains
(Ann R/p1)

e1 · · · (Ann R/pr )
er =pe1

1 · · · p
er
r . Since R is a domain and x` is a nonunit

of R, we have Ann C`=
⋂

t>0 x t+1
` R=0 by Krull’s intersection theorem. Therefore,

pe1
1 · · · p

er
r =0, and ps =0 for some 16 s6 r as R is a domain. Thus, the zero ideal 0

of R belongs to Supp P, which implies Supp P= Spec R. We obtain P= D−(R)
by Proposition 4.11, which is a contradiction. �

To show a main result of this section, we make two lemmas. The first one
concerns the structure of the radical and tame closures, while the second one gives
an elementary characterization of artinian rings.

Lemma 6.3. Let X be a subcategory of D−(R). One has

Xrad
=

⋂
X⊆P∈Spc D−(R)

P, Xtame
=

⋂
X⊆P∈tSpc D−(R)

P.

Proof. Lemma 5.8(1) implies Xrad
=
√
thick⊗ X, which coincides with the in-

tersection of the prime thick ⊗-ideals of D−(R) containing thick⊗ X by [Balmer
2005, Lemma 4.2]. This is equal to the intersection of the prime thick ⊗-ideals
containing X, and thus, the first equality holds. As for the second equality, if P is a
tame thick ⊗-ideal containing X, then we have Xtame

⊆ Ptame
= P, which shows

the inclusion (⊆). Let M be an object of D−(R) belonging to all P ∈ tSpcD−(R)
with X ⊆ P. Corollary 3.14 says that M is in S(p) for all prime ideals p of R
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with X ⊆ S(p). This means that Supp M is contained in Supp X. Hence, M is in
Supp−1 Supp X, which coincides with Xtame by Lemma 5.8(1). Thus, the second
equality follows. �

Lemma 6.4. The ring R is artinian if and only if for any sequence I1, I2, . . . of
ideals of R it holds that V

(⋂
n>1 In

)
=
⋃

n>1 V(In).

Proof. First of all, note that the inclusion V
(⋂

n>1 In
)
⊇
⋃

n>1 V(In) always holds.
If R is artinian, then there exists an integer m > 1 such that

⋂
n>1 In =

⋂m
j=1 I j .

From this we obtain V
(⋂

n>1 In
)
=V

(⋂m
j=1 I j

)
=
⋃m

j=1 V(I j )⊆
⋃

n>1 V(In). This
shows the “only if” part.

Let us prove the “if” part. Assume first that R has infinitely many maximal
ideals, and take a sequence m1,m2, . . . of pairwise distinct maximal ideals of R.
By assumption, we get V

(⋂
n>1 mn

)
=
⋃

n>1 V(mn). Since V
(⋂

n>1 mn
)

is a
closed subset of Spec R, it has only finitely many minimal elements with respect
to the inclusion relation. However,

⋃
n>1 V(mn) = {m1,m2, . . .} has infinitely

many minimal elements, which is a contradiction. Thus, R is a semilocal ring.
Let m1, . . . ,mt be the maximal ideals of R, and J = m1 ∩ · · · ∩mt the Jacobson
radical of R. Applying the assumption to the sequence {J n

}n>1 of ideals gives
V
(⋂

n>1 J n
)
=
⋃

n>1 V(J n)= V(J ). By Krull’s intersection theorem, we obtain⋂
n>1 J n

= 0, whence V(J ) = Spec R. Hence, Spec R = {m1, . . . ,mt } =Max R,
and we conclude that R is artinian. �

Now we can prove our first main result in this section. Roughly speaking, if our
ring R is artinian, then everything is explicit and behaves well, and vice versa. Note
that this result includes Corollary 4.16.

Theorem 6.5. The following are equivalent.

(1) The ring R is artinian.

(2) Every thick ⊗-ideal of D−(R) is compact, tame, and radical.

(3) The maps S : Spec R� SpcD−(R) : s are mutually inverse homeomorphisms.

(4) The section-retraction pair S : Spec R� SpcD−(R) : s is a one-to-one corre-
spondence.

(5) The section-retraction pair ( · )cpt : Rad� Cpt : ( · )rad is a one-to-one corre-
spondence.

(6) The section-retraction pair S−1
: Thom � Spcl(Spec) : S is a one-to-one

correspondence.

(7) The section-retraction pair ( · )spcl : Thom� Spcl(tSpc) : ( · )spcl is a one-to-
one correspondence.

(8) The retraction Supp : Rad→ Spcl(Spec) is a bijection.
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(9) The retraction ( · )tame
: Rad→ Tame is a bijection.

(10) The retraction Sp : Rad→ Spcl(tSpc) is a bijection.

(11) The inclusion Rad⊇ Tame is an equality.

Proof. Theorems 3.9, 5.13, and 5.20 and Corollary 5.9 imply that the pairs in
(4), (5), (6), and (7) are section-retraction pairs, the maps in (8), (9), and (10) are
retractions, and one has the inclusion in (11).

The equivalences (5)⇐⇒ (6)⇐⇒ (7) and (5)⇐⇒ (8)⇐⇒ (9)⇐⇒ (10) follow
from Theorem 5.20 and Corollary 5.21, respectively. It is trivial that (3) implies
(4), while (1) implies (2) by Corollaries 2.20 and 5.9 and Proposition 1.10(1).
If SpcD−(R) = tSpcD−(R), then S = S′ and s = s′. From Theorems 4.5(3)
and 4.7 we see that (2) implies (3). Corollary 5.9 says Xtame

∈ Rad for each
X ∈Rad. Hence, if ( · )tame

:Rad→Tame is injective, then X=Xtame holds. This
shows that (9) implies (11). It is easily seen that the converse is also true, and we
get the equivalence (9) ⇐⇒ (11). When S : Spec R→ SpcD−(R) is surjective,
we have SpcD−(R) = tSpcD−(R), and for a radical thick ⊗-ideal X it holds
that X= Xrad

=
⋂

X⊆P∈Spc D−(R) P=
⋂

X⊆P∈tSpc D−(R) P= Xtame by Lemma 6.3,
whence X is tame. Therefore, (4) implies (11).

Now it remains to prove that (11) implies (1). By Lemma 6.4, it suffices to
prove that V

(⋂
n>1 In

)
is contained in

⋃
n>1 V(In) for any sequence I1, I2, . . .

of ideals of R. For each n > 1, fix a system of generators x(n) of In . Set
C =

⊕
n>1 K(x(n), R)[n]; note that this is defined in D−(R). Then Supp C =⋃

n>1 Supp K(x(n), R) =
⋃

n>1 V(In) by Proposition 2.3(3). The radical clo-
sure E of

〈⋃
n>1 V(In)

〉
is tame by assumption. Lemma 5.8 implies Supp E =⋃

n>1 V(In)= Supp C . Thus, C is in Supp−1 Supp E= E by Proposition 5.3, and
C⊗r
∈
〈⋃

n>1 V(In)
〉

for some r > 0. Using [Bruns and Herzog 1998, Proposition
1.6.21], we have

C⊗r
=

⊕
n>1

( ⊕
i1+···+ir=n

K(x(i1), R)⊗L
R · · · ⊗

L
R K(x(ir ), R)

)
[n]

m
⊕
n>1

K(x(n), R)⊗r
[nr ] =

⊕
n>1

K(x(n), . . . , x(n)︸ ︷︷ ︸
r

, R)[nr ]

m
⊕
n>1

K(x(n), R)[nr ] =: B. (6.5.1)

Thus, B is in
〈⋃

n>1 V(In)
〉
, and Corollary 2.13(3) implies V(Ann B)⊆

⋃
n>1 V(In).

We have Ann B =
⋂

n>1 Ann K(x(n), R) =
⋂

n>1 In by Proposition 2.3(3). It
follows that V

(⋂
n>1 In

)
⊆
⋃

n>1 V(In). �

Our second main result in this section deals with the difference between the
radical and tame closures.
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Theorem 6.6. Let W be a specialization-closed subset of Spec R. Set X= 〈W 〉 and
Y= Supp−1 W .

(1) The subcategory X is compact, and satisfies Xrad
=
√

X and Xtame
= Y.

(2) The subcategories X and Y are the smallest and largest thick ⊗-ideals of
D−(R) whose supports are W , respectively. In particular, X⊆

√
X⊆ Y.

(3) Assume that R is either a domain or a local ring, and that W is nonempty and
proper. Then one has

√
X ( Y. Hence, Y is not compact, and Xrad ( Xtame.

Proof. (1) The first statement is evident. The equalities follow from Lemma 5.8
and Proposition 1.10.

(2) Let Z be a thick ⊗-ideal of D−(R) whose support is W . Then it is clear that Z

is contained in Y. Proposition 2.9 implies that R/p belongs to Z for each p ∈W ,
which shows that Z contains X.

(3) Since W is nonempty, there is a prime ideal p ∈ W . Let x = x1, . . . , xr be a
system of generators of p, and put C =

⊕
i>0 K(xi+1, R)[i], which is an object

of D−(R). The support of C is equal to V(p) by Proposition 2.3(3), which is
contained in W as it is specialization-closed. Hence, C is in Supp−1 W = Y.

Suppose that
√

X coincides with Y, and let us derive a contradiction. There exists
an integer n>0 such that the n-fold tensor product D :=C⊗L

R · · ·⊗
L
R C belongs to X.

An analogous argument to (6.5.1) yields that D contains E :=
⊕

k>0 K(xk+1, R)[nk]
as a direct summand, whence E belongs to X. We use a similar technique to the
one in the latter half of the proof of Proposition 6.2. By Lemma 6.1, there are
prime ideals p1, . . . , pm ∈W and integers e1, . . . , em > 0 such that Ann E contains
pe1

1 · · · p
em
m . We have

Ann E =
⋂
k>0

Ann K(xk+1, R)=
⋂
k>0

xk+1 R = 0 (6.6.1)

by Proposition 2.3(3) and Krull’s intersection theorem. This yields pe1
1 · · · p

em
m = 0,

which says that each prime ideal of R contains pi for some 1 6 i 6 m. As W
is specialization-closed, we observe that W = Spec R, which is contrary to the
assumption. Consequently,

√
X is strictly contained in Y.

If Y is compact, then we have Y=〈Supp Y〉=〈W 〉=X⊆
√

X by Propositions 5.4
and 1.10(1), which is a contradiction. Hence, Y is not compact. �

Remark 6.7. (1) Let p,C be as in the proof of Theorem 6.6(3). Then

(a) Supp C is contained in Supp R/p, but C does not belong to thick⊗ R/p.
(b) V(Ann R) is contained in V(Ann C), but R does not belong to thick⊗ C .

This guarantees in Proposition 2.9 one cannot replace V(Ann X) by Supp X ,
or Supp Y by V(Ann Y).
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Indeed, we have Supp C = Supp R/p= V(p)⊆W 6= Spec R and Ann C =⋂
i>0 xi+1 R = 0. The former together with Proposition 4.11 shows R /∈

thick⊗ C , while the latter implies V(Ann R)= V(0)= V(Ann C). Assume C
is in thick⊗ R/p. Then Ann C = 0 contains some power of Ann R/p = p by
Lemma 6.1. Hence, V(p)= Spec R, which is a contradiction. Therefore, C is
not in thick⊗ R/p.

(2) The assumption in Theorem 6.6(3) that R is either domain or local is indispens-
able. In fact, let R = A× B be a direct product of two commutative noetherian
rings. Then Spec R = Spec AtSpec B and D−(R)∼= D−(A)×D−(B), which
imply that Supp−1

D−(R)(Spec A)= D−(A)= 〈Spec A〉D−(R).

(3) Recall that we have the following first section-retraction pair (Proposition 5.16),
while Corollary 5.9 gives rise to the following second section-retraction pair:

( · )rad
: Cpt� Rad : ( · )cpt, inc : Tame� Rad : ( · )tame.

Corollary 5.21 implies that the left diagram below commutes. Therefore, it is
natural to ask whether the right diagram below also commutes:

Rad
( · )cpt

||

( · )tame

##

Cpt ∼ Tame

Rad

Cpt

( · )rad
<<

∼ Tame

inc

cc

This is equivalent to asking if (Xcpt)
rad
= X for all X ∈ Tame, and to asking if

Ytame
= Yrad for all Y ∈ Cpt. Theorem 6.6 gives rise to a negative answer to

this question.

Finally, we consider a conjecture of Balmer. Let T be an arbitrary essentially
small tensor triangulated category. Balmer [2010a] constructs a continuous map

ρ•T : Spc T→ Spech R•T

given by ρ•T(P)= ( f ∈ R•T | cone f /∈P), where R•T = HomT(1, 6•1) is a graded-
commutative ring. (The ideal generated by a subset S of a ring A is denoted
by (S).) Recall that a triangulated category is called algebraic if it arises as the
stable category of some Frobenius exact category. Balmer [2010b, Conjecture 72]
conjectures the following:

Conjecture 6.8 (Balmer). The map ρ•T is (locally) injective when T is algebraic.

Here, recall that a continuous map f : X → Y of topological spaces is called
locally injective at x ∈ X if there exists a neighborhood N of x such that the
restriction f |N : N→ Y is an injective map. We say that f is locally injective if it is
locally injective at every point in X . If for any x ∈ X there exists a neighborhood E
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of f (x) such that the induced map f −1(E)→ E is injective, then f is locally
injective.

Let us consider the above conjecture for our tensor triangulated category D−(R).
It turns out that for T= D−(R), Balmer’s constructed map ρ•T coincides with our
constructed map s : SpcD−(R)→ Spec R.

Proposition 6.9. Let P be a prime thick ⊗-ideal of D−(R). One then has

(1) s(P)= (a ∈ R | R/a /∈ P)= {a ∈ R | R/a /∈ P} and

(2) s(P)= ρ•
D−(R)(P).

Proof. Corollary 2.11 and (1) imply (2). Let us show (1). Set J = (a ∈ R |
R/a /∈ P). As R is noetherian, we find a finite number of elements x1, . . . , xn

with R/x1, . . . , R/xn /∈ P and J = (x1, . . . , xn). Therefore, K(x1, . . . , xn, R) =
K(x1, R)⊗L

R · · · ⊗
L
R K(xn, R) is not in P by Corollary 2.11 and the fact that P is

prime. Using Corollary 2.11 again shows J ∈ I(P), whence J is contained in s(P).
Next, take any a ∈ s(P). Since V(s(P)) is not contained in Supp P, neither is V(a).
This implies R/a /∈ P by Corollary 2.11. �

As an application of our Theorem 6.6, we confirm that Conjecture 6.8 is not true
in general; our D−(R) is an algebraic triangulated category, but does not satisfy
Conjecture 6.8 under quite mild assumptions.

Corollary 6.10. Assume that R has positive dimension, and that R is either a
domain or a local ring. Then the map s : SpcD−(R) → Spec R is not locally
injective. Hence, Conjecture 6.8 does not hold.

Proof. We can choose a nonunit x ∈ R such that the ideal x R of R has positive height
(hence, it has height 1). Put X= 〈V(x)〉. Using Theorem 6.6(3) and Lemma 6.3,
we find a prime thick ⊗-ideal P such that X⊆P ( Ptame. Suppose that s is locally
injective at P. Then there exists a complex M ∈ D−(R) with P ∈ U(M) such that
the restriction s|U(M) : U(M)→ Spec R is injective. Since M is in P, it is also
in Ptame. Hence, both P and Ptame belong to U(M). However, these two prime
thick ⊗-ideals are sent by s to the same point; see Theorem 3.9. This contradicts
the injectivity of s|U(M), and we conclude that s is not locally injective at P. The
last assertion of the corollary follows from Proposition 6.9(2). �

Remark 6.11. The reader may think that Corollary 6.10 can also be obtained by
showing that the map

f : SpcD−(R)→ SpcKb(proj R), P 7→ P∩Kb(proj R)

is not injective. We are not sure whether the noninjectivity of the map f im-
plies Corollary 6.10, but at least showing the noninjectivity of f is equivalent
to our approach. Using Proposition 2.9, we see that P∩Kb(proj R) contains the
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Koszul complex of a system of generators of each prime ideal belonging to Supp P.
Hence, Supp(P∩Kb(proj R))=Supp P, and the Hopkins–Neeman theorem implies
P∩Kb(proj R)= Supp−1

Kb(proj R) Supp P. Therefore, for P,Q ∈ SpcD−(R),

f (P)= f (Q) ⇐⇒ Supp P= Supp Q,

which says that the map f is injective if and only if all the prime thick tensor
ideals of D−(R) are tame. In the end, even if we intend to prove Corollary 6.10
by showing the noninjectivity of the map f , we must find a nontame prime thick
tensor ideal of D−(R), which is what we have done in this section.

7. Thick tensor ideals over discrete valuation rings

In this section, we concentrate on handling the case where R is a discrete valuation
ring. Several properties that are specific to this case are found out in this section.
Just for convenience, we write complexes as chain complexes, rather than as cochain
complexes. We start by studying complexes with zero differentials.

Proposition 7.1. Let X =
⊕

i>0 X i [i] = (· · ·
0
−→ X3

0
−→ X2

0
−→ X1

0
−→ X0→ 0) be

a complex in D−(R). Then it holds that thick⊗ X = thick⊗ Y in D−(R), where

Y =
⊕
i>0

( i⊕
j=0

X j

)
[i]

= (· · ·
0
−→ X3⊕ X2⊕ X1⊕ X0

0
−→ X2⊕ X1⊕ X0

0
−→ X1⊕ X0

0
−→ X0→ 0).

Proof. Putting F=
⊕

j>0 R[ j], we have X⊗L
R F=

(⊕
i>0 X i [i]

)
⊗

L
R

(⊕
j>0 R[ j]

)
=⊕

i, j>0 X i [i + j] = Y . Hence, thick⊗ X contains thick⊗ Y . The opposite inclusion
also holds as X is a direct summand of Y . �

Proposition 7.2. Let X =
⊕

i>0 X i [i] = (· · ·
0
−→ X3

0
−→ X2

0
−→ X1

0
−→ X0→ 0) be a

complex in D−(R). Then for all integers ai > 0, the thick ⊗-ideal closure thick⊗ X
in D−(R) contains⊕

i>0

X⊕ai
i [2i] = (· · · → X⊕a3

3 → 0→ X⊕a2
2 → 0→ X⊕a1

1 → 0→ X⊕a0
0 → 0).

Proof. The complex
⊕

i>0 X⊕ai
i [2i] =

⊕
i>0(X i ⊗

L
R R⊕ai )[2i] is a direct summand

of
⊕

i, j>0(X i⊗
L
R R⊕a j )[i+ j]=

(⊕
i>0 X i [i]

)
⊗

L
R

(⊕
j>0 R⊕a j [ j]

)
= X⊗L

R Y in the
category D−(R), where Y =

⊕
j>0 R⊕a j [ j] = (· · · 0

−→ R⊕a2 0
−→ R⊕a1 0

−→ R⊕a0→ 0)
is a complex in D−(R). Thus, the assertion follows. �

Corollary 7.3. Let X =
⊕

i>0 X i [i] = (· · ·
0
−→ X3

0
−→ X2

0
−→ X1

0
−→ X0→ 0) be a

complex in D−(R). Then for any integers ai > 0 the complex

Y =
⊕
i>0

X⊕ai
i [i] = (· · ·

0
−→ X⊕a3

3
0
−→ X⊕a2

2
0
−→ X⊕a1

1
0
−→ X⊕a0

0 → 0)
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is in thick⊗{Xeven, Xodd}, where Xeven=
⊕

i>0 X2i [i] = (· · ·
0
−→ X6

0
−→ X4

0
−→ X2

0
−→

X0→ 0) and Xodd =
⊕

i>0 X2i+1[i] = (· · ·
0
−→ X7

0
−→ X5

0
−→ X3

0
−→ X1→ 0).

Proof. The complex Y is the direct sum of A= (· · ·→ 0→ X⊕a4
4 → 0→ X⊕a2

2 →

0→ X⊕a0
0 → 0) and B = (· · · → X⊕a5

5 → 0→ X⊕a3
3 → 0→ X⊕a1

1 → 0→ 0).
Proposition 7.2 shows that A is in thick⊗ Xeven and B is in thick⊗ Xodd. Therefore,
Y belongs to thick⊗{Xeven, Xodd}. �

A natural question arises from Proposition 7.2 and Corollary 7.3:

Question 7.4. Does thick⊗(· · · → 0→ X2→ 0→ X1→ 0→ X0→ 0) contain
(· · ·

0
−→ X2

0
−→ X1

0
−→ X0 → 0)? Does thick⊗(· · ·

0
−→ X1

0
−→ X0 → 0) contain

(· · ·
0
−→ X⊕a1

1
0
−→ X⊕a0

0 → 0) for all integers ai > 0?

We do not know the general answer to this question. The following example
gives an affirmative answer.

Example 7.5. Let (R, x R) be a discrete valuation ring. Then

thick⊗(· · ·
0
−→ R/x3 0

−→ R/x2 0
−→ R/x→ 0)

= thick⊗(· · · → 0→ R/x3
→ 0→ R/x2

→ 0→ R/x→ 0).

Proof. In fact, the inclusion (⊇) follows from Proposition 7.2. To check the
inclusion (⊆), set A = (· · · 0

−→ R/x3 0
−→ R/x2 0

−→ R/x→ 0) and B = (· · · → 0→
R/x3

→ 0→ R/x2
→ 0→ R/x→ 0). Note that for each integer n > 0 there is

an exact sequence 0→ R/xn xn+1
−−→ R/x2n+1

→ R/xn+1
→ 0 of R-modules. This

induces an exact sequence 0→ C → A→ B→ 0 of complexes of R-modules,
where

C =
(
· · ·

0
−→ R/xn 0

−→ R/x2n 0
−→ R/xn−1 0

−→ R/x2(n−1)

0
−→ · · ·

0
−→ R/x2 0

−→ R/x4 0
−→ R/x 0

−→ R/x2
→ 0

)
.

We see that C = B[2] ⊕ D, where D = (· · · → 0→ R/x2n
→ 0→ · · · → 0→

R/x4
→ 0→ R/x2

→ 0), and have an exact sequence 0→ B[1]→ D→ B[1]→ 0
of complexes. The assertion now follows. �

The Loewy length of a finitely generated R-module M , denoted by ``R(M), is
by definition the infimum of integers i such that the ideal (rad R)i kills M . Let us
consider thick ⊗-ideals defined by Loewy lengths.

Notation 7.6. Let R be a local ring with maximal ideal m. Let c > 0 be an integer.

(1) Let Lc be the subcategory of D−
fl (R) consisting of complexes X such that there

exists an integer t > 0 with ``(Hi X)6 tic−1 for all i � 0.

(2) When c > 1, let Gc be the complex
⊕

i>0(R/m
ic−1
)[i] = (· · · 0

−→ R/m3c−1 0
−→

R/m2c−1 0
−→ R/m→ 0).
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Proposition 7.7. Let (R,m, k) be local. One has L0 ( L1 ( L2 ( · · · and L0 =

Db
fl(R)= thickD−(R) k.

Proof. Fix an integer n > 0. It is clear that Ln is contained in Ln+1. We have
``(Hi Gn+1) = in for each i > 0, which shows Ln 6= Ln+1. Hence, the chain
L0 (L1 (L2 ( · · · is obtained. Let X be a complex in D−(R). Suppose that there
exists an integer t > 0 such that ``(Hi X)6 ti−1 for i � 0. Then we have to have
``(Hi X)= 0 for i � 0, which says that H j X = 0 for j � 0. Thus, we obtain L0 =

Db
fl(R)= thickD−(R) k, where the second equality is shown in Proposition 1.4. �

Recall that an abelian category A is called hereditary if it has global dimension
at most one, that is, if Ext2A(A,A)= 0. Recall also that a ring R is called hereditary
if R has global dimension at most one.

From now on, we study thick ⊗-ideals of D−(R) when R is local and hereditary.
In this case, R is either a field or a discrete valuation ring. If R is a field, then by
Corollary 2.20 there are only trivial thick ⊗-ideals. So, we mainly consider the
case of a discrete valuation ring. First, we mention a well known fact, saying that
each complex in the derived category of a hereditary abelian category has zero
differentials.

Lemma 7.8 [Krause 2007, §1.6]. Let A be a hereditary abelian category. Then for
each object M ∈ D(A) there exists an isomorphism M ∼= H(M)=

⊕
i∈Z Hi (M)[i]

in D(A).

The lemma below is part of our first main result in this section.

Lemma 7.9. Let R be a discrete valuation ring. Then Lc is a thick ⊗-ideal of
D−(R) for every c > 1.

Proof. By Proposition 1.10(3), it suffices to show Lc is a thick ⊗-ideal of D−
fl (R).

We do this step by step.

(1) Take any complex X in Lc. There exist integers t, u > 0 such that ``(Hi X)6
tic−1 for all i > u. Let Y be a direct summand of X in D−

fl (R). Then Hi Y is a direct
summand of Hi X , and we have ``(Hi Y )6 ``(Hi X)6 tic−1 for all i > u. Hence,
Y belongs to Lc.

(2) Let X→ Y → Z  be an exact triangle in D−
fl (R). Suppose that both X and Z

belong to Lc. Then there exist integers t, u, a, b> 0 such that ``(Hi X)6 tic−1 and
``(H j Z)6 u j c−1 for all i > a and j > b. An exact sequence · · ·→Hk X→HkY→
Hk Z→· · · is induced, and from this we see that ``(HkY )6 ``(Hk X)+``(Hk Z)6
(t + u)kc−1 for all k >max{a, b}. Therefore, Y belongs to Lc.

(3) Let X be a complex in Lc. Then there exist integers t, u> 0 such that ``(Hi X)6
tic−1 for all i > u. It holds that ``(Hi (X [1]))= ``(Hi−1 X)6 t (i − 1)c−1 6 tic−1

for all i > u+1 for all i > u+1, where the second inequality holds as c> 1. Also,



Thick tensor ideals of right bounded derived categories 1731

``(Hi (X [−1])) = ``(Hi+1 X) 6 t (i + 1)c−1 6 t (i + i)c−1
= (2c−1t) · ic−1 for all

i >max{1, u−1}, where the first inequality holds as i > u−1, and the second one
holds since i > 1 and c > 1. Thus, the complexes X [1] and X [−1] belong to Lc.

(4) Let X, Y be complexes in D−
fl (R). Suppose that X belongs to Lc. We want to

show that X ⊗L
R Y also belongs to Lc. Taking into account (3) and Lemma 7.8,

we may assume that X =
⊕

i>1 X i [i] and Y =
⊕

j>0 Y j [ j] with X i , Y j being R-
modules, and that there exist s > 1 and t > 0 such that ``(X i )6 tic−1 for all i > s.
Set u=max{``(X i ) | 16 i 6 s−1}; note that each X i has finite length, whence has
finite Loewy length. We have X⊗L

R Y =
⊕

i>1, j>0(X i⊗
L
R Y j )[i+ j], and from this

we get Hk(X ⊗L
R Y ) =

⊕
i>1, j>0, i+ j6k TorR

k−i− j (X i , Y j ) for all integers k. Note
here that TorR

k−i− j (X i , Y j )= 0 for i + j > k.
We claim that ``(X i ) 6 (t + u)ic−1 for all i > 1. In fact, recall c > 1 and

t, u > 0. If i > s, then ``(X i ) 6 tic−1 6 (t + u)ic−1. If 1 6 i 6 s − 1, then
``(X i )6 u 6 t + u 6 (t + u)ic−1. The claim follows.

Fix three integers i, j, k with i > 1, j > 0, and i + j 6 k. Then (t + u)kc−1 >
(t + u)ic−1 since k > i and c > 1. The claim shows that X i is killed by m(t+u)kc−1

,
and so is TorR

k−i− j (X i , Y j ), where m stands for the maximal ideal of R. Hence,
``(Hk(X ⊗L

R Y ))6 (t + u)kc−1 for all k ∈ Z, which implies X ⊗L
R Y ∈ Lc.

It follows from the above arguments (1)–(4) that Lc is a thick⊗-ideal of D−
fl (R). �

Remark 7.10. Let (R,m, k) be a local ring. When c = 0, the subcategory Lc is
never a thick ⊗-ideal of D−(R). Indeed, by Proposition 7.7 we have L0 = Db

fl(R).
The module k is in L0, but the complex (· · · 0

−→ k 0
−→ k→ 0)= k⊗L

R (· · ·
0
−→ R 0

−→

R→ 0) is not in L0.

Now we have our first theorem concerning the subcategories Lc of D−(R) for a
discrete valuation ring R. This especially says that the equality of Proposition 4.3(2)
does not necessarily hold.

Theorem 7.11. Let R be a discrete valuation ring. Then Lc is a prime thick⊗-ideal
of D−(R) for all integers c > 1. In particular, one has

dim(SpcD−(R))=∞> 1= dim R.

Proof. Lemma 7.9 says that Lc is a thick ⊗-ideal of D−(R). Proposition 7.7
especially says Lc 6= D−(R). Let X, Y be complexes in D−(R) with X ⊗L

R Y ∈Lc,
and we shall prove that either X or Y is in Lc. Applying Lemma 7.8 and taking
shifts if necessary, we may assume X =

⊕
i>0 X i [i] and Y =

⊕
j>0 Y j [ j], where

X i , Y j are finitely generated R-modules. Assume that X is not in D−
fl (R). Then

Xa has infinite length for some a > 0. As R is a discrete valuation ring, Xa

has a nonzero free direct summand. Hence, R[a] is a direct summand of X ,
and Y [a] = R[a] ⊗L

R Y is a direct summand of X ⊗L
R Y . As X ⊗L

R Y is in Lc,
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so is Y . Similarly, if Y /∈ D−
fl (R), then X ∈ Lc. This argument shows that we

may assume that both X and Y belong to D−
fl (R), or equivalently, that all X i

and Y j have finite length as R-modules. Since X ⊗L
R Y belongs to Lc, there

exist integers t, u > 0 such that Hn(X ⊗L
R Y ) has Loewy length at most tnc−1 for

all n > u. Assume that X is not in Lc. Then we can find an integer e > u such that
``(Xe) > tec−1. We have X ⊗L

R Y =
⊕

i, j>0(X i ⊗
L
R Y j )[i + j], which gives rise

to Hn(X ⊗L
R Y )=

⊕
i, j>0 Torn−i− j (X i , Y j ) for all integers n. Setting ai = ``(X i )

and b j = ``(Y j ) for i, j > 0, we obtain for every integer n > e

Hn(X ⊗L
R Y )mTorn−e−(n−e)(Xe, Yn−e)

= Xe⊗R Yn−e m R/xae ⊗R R/xbn−e = R/xmin{ae,bn−e}.

It is seen that min{ae, bn−e} 6 tnc−1 for all n > e. As ae > tec−1, we must have
ae > bn−e, and bn−e 6 tnc−1 for all n > e. Hence, ``(Hn(Y [e])) = ``(Yn−e) =

bn−e 6 tnc−1 for n > e, which implies that Y [e] is in Lc, and so is Y . Similarly,
if Y is not in Lc, then X is in Lc. Thus, Lc is a prime thick ⊗-ideal of D−(R).
Now L1 ( L2 ( L3 ( · · · from Lemma 7.9 is an ascending chain of prime thick
⊗-ideals with infinite length, which shows the inequality in the proposition; see
Proposition 4.3(1). �

To give an application of the above theorem, we state and prove a lemma.

Lemma 7.12. For each prime ideal p of R, dim SpcD−(Rp)6 dim SpcD−(R).

Proof. We first show that the localization functor L : D−(R)→ D−(Rp) is an
essentially surjective. Let X = (· · · d2

−→ X1
d1
−→ X0→ 0) be a complex in D−(Rp).

What we want is a complex Y ∈ D−(R) such that X ∼= L(Y ). For each integer
i > 0, choose a finitely generated R-module Yi with (Yi )p = X i , and R-linear
maps dY

i : Yi → Yi−1 and si ∈ R \ p such that d X
i = dY

i /si in HomRp(X i , X i−1)=

Hom(Yi , Yi−1)p. Then (dY
i−1dY

i )/(si−1si ) = d X
i−1d X

i = 0, and there is an element
ti ∈ R \ p such that ti dY

i−1dY
i = 0. Define a complex Y = (· · · ti+1dY

i−1−−−−→ Yi
ti dY

i−−→

· · ·
t2dY

2−−→ Y1
t1dY

1−−→ Y0→ 0) in D−(R). Then there is an isomorphism

Yp

��

(· · · // (Yi )p

ti dY
i

1
//

ui∼=

��

(Yi−1)p //

ui−1∼=

��

· · · // (Y2)p

t2dY
2

1
//

u2∼=

��

(Y1)p

t1dY
1

1
//

u1∼=

��

(Y0)p // 0)

X (· · · // X i
d X

i
// X i−1 // · · · // X2

d X
2
// X1

d X
1
// X0 // 0)

of complexes, where ui := t1 · · · ti s1 · · · si . Thus, we obtain L(Y )= Yp
∼= X .

The essentially surjective tensor triangulated functor L induces an injective
continuous map Spc L : SpcD−(Rp)→ SpcD−(R) given by P 7→ L−1(P) [Balmer
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2005, Corollary 3.8]. This map sends a chain P0 ( · · · ( Pn of prime thick ⊗-
ideals of D−(Rp) to the chain L−1(P0)( · · ·( L−1(Pn) of prime thick ⊗-ideals
of D−(R). The lemma now follows. �

The following corollary of Theorem 7.11 provides a class of rings R such that
the Balmer spectrum of D−(R) has infinite Krull dimension. This class includes
normal local domains for instance.

Corollary 7.13. If Rp is regular for some p with ht p> 0, then dim SpcD−(R)=∞.

Proof. We may assume ht p= 1. We have dim SpcD−(R)> dim SpcD−(Rp)=∞,
where the inequality follows from Lemma 7.12, and the equality is shown in
Theorem 7.11. �

Next we study generation of the thick tensor ideals Lc. In fact each of them
possesses a single generator.

Theorem 7.14. Let (R, x R, k) be a discrete valuation ring, and let c > 1 be
an integer. It then holds that Lc = thick⊗

D−(R)Gc. In particular, one has L1 =

thick⊗
D−(R)k.

Proof. Clearly, Gc is in Lc. Lemma 7.9 implies that thick⊗ Gc is contained in Lc.
We establish a claim.

Claim. Let 0 6 n 6 c− 1 be an integer. Let X ∈ D−
fl (R) be a complex. Suppose

that there exists an integer t > 0 such that ``(Hi X) 6 tin for all i � 0. Then X
belongs to thick⊗ Gc.

Once we show this claim, it will follow that Lc is contained in thick⊗ Gc, and
we will be done.

First of all, note that k is a direct summand of Gc. Combining this with
Proposition 1.4, we have

thick⊗ Gc ⊇ thick⊗ k ⊇ thick k = Db
fl(R). (7.14.1)

Let X be a complex as in the claim. Using Lemma 7.8, we may assume X =⊕
i>s X i [i] for some integer s and R-modules X i of finite length. There is an integer

u > s with ``(X i )6 tin for all i > u. We have X =
(⊕

i>u X i [i]
)
⊕
(⊕u−1

i=s X i [i]
)
,

whose latter summand is in Db
fl(R). In view of (7.14.1), replacing X with the former

summand, we may assume u = s. When s > 0, we set X i = 0 for 0 6 i 6 s − 1.
When s < 0, we have X =

(⊕
i>0 X i [i]

)
⊕
(⊕
−1
i=s X i [i]

)
, whose latter summand

is in Db
fl(R). By similar replacement as above, we may assume s = 0. Thus,

X =
⊕

i>0 X i [i] and ``(X i )6 tin for all i > 0.
Since R is a discrete valuation ring with maximal ideal x R, for every i > 1 there

is an integer ai j > 0 such that X i is isomorphic to
⊕tin

j=1(R/x j )⊕ai j . Therefore, it
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holds that

X ∼=
⊕
i>0

( tin⊕
j=1

(R/x j )⊕ai j

)
[i]l

⊕
i>0

( tin⊕
j=1

R/x j
)⊕ai

[i]

∈ thick⊗
{⊕

i>0

(t (2i)n⊕
j=1

R/x j
)
[i],

⊕
i>0

(t (2i+1)n⊕
j=1

R/x j
)
[i]
}

= thick⊗
{

A1, A2⊕

( t⊕
j=1

R/x j
)}
,

where ai := max{ai j | 1 6 j 6 tin
} and Al :=

⊕
i>1
(⊕t (2i−l+2)n

j=t (2i−l)n+1 R/x j
)
[i] for

l = 1, 2. The relations “∈” and “=” follow from Corollary 7.3 and Proposition 7.1,
respectively. Since

⊕t
j=1 R/x j is in thick⊗ Gc by (7.14.1), it suffices to show that

Al belongs to thick⊗ Gc for l = 1, 2.
We prove this by induction on n. When n= 0, we have A1= A2= 0∈ thick⊗ Gc,

and are done. Let n > 1. Fix l = 1, 2. The exact sequences

0→ R/x t (2i−l)n x j

−→ R/x j+t (2i−l)n
→ R/x j

→ 0 (i > 1, 16 j 6 tbil)

with bil = (2i − l + 2)n − (2i − l)n induce exact sequences

0→ (R/x t (2i−l)n )⊕tbil →

t (2i−l+2)n⊕
j=t (2i−l)n+1

R/x j
→

tbil⊕
j=1

R/x j
→ 0 (i > 1),

which induce an exact triangle Bl → Al → Cl  in D−
fl (R), where we set Bl =⊕

i>1(R/x t (2i−l)n )⊕tbil [i] and Cl =
⊕

i>1
(⊕tbil

j=1 R/x j
)
[i]. Since ``(Hi Cl)= tbil

has degree at most n− 1 as a polynomial in i , the induction hypothesis implies that
Cl is in thick⊗ Gc. By Corollary 7.3, Bl belongs to

thick⊗
{⊕

i>0

(R/x t (4i+r)n )[i]
∣∣∣∣ 06 r 6 3

}
.

Let f (i) be a polynomial in i over N with leading term ein . The exact sequences

0→ R/x (t−1) f (i) x f (i)

−−→ R/x t f (i)
→ R/x f (i)

→ 0 (i > 0)

induce an exact triangle Dt−1 → Dt → D1  in D−
fl (R), where we put Dt =⊕

i>0 R/x t f (i)
[i]. An inductive argument on t shows that Dt belongs to the thick

closure of D1. The exact sequences

0→ R/x f (i)−(m+1)in x in

−→ R/x f (i)−min
→ R/x in

→ 0 (i > 0)
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induce an exact triangle Em+1→ Em→Gc , where Em :=
⊕

i>0(R/x f (i)−min
)[i]

for 06 m 6 e. Hence, E0 is in the thick closure of Gc and Ee. Since ``(Hi Ee)=

f (i)− ein has degree at most n− 1 as a polynomial in i , the induction hypothesis
shows that Ee is in thick⊗ Gc. Hence, D1 = E0 is also in thick⊗ Gc, and so is Dt .
Therefore, Bl is in thick⊗ Gc. Thus, Al belongs to thick⊗ Gc for l = 1, 2. �

Remark 7.15. Let (R, x R, k) be a discrete valuation ring, and let c > 2 be an
integer. Then Supp Gc = {x R} = Supp k. In particular, we have Supp Gc 6= Spec R,
so that R is not in thick⊗ Gc by Proposition 4.11. Krull’s intersection theorem
implies Ann Gc = 0= Ann R. Proposition 7.7 and Theorem 7.14 imply that Gc is
not in L1 = thick⊗ k. In summary,

(1) Supp Gc is contained in Supp k, but Gc does not belong to thick⊗ k, and

(2) V(Ann R) is contained in V(Ann Gc), but R does not belong to thick⊗ Gc.

This guarantees that in Proposition 2.9 one cannot replace V(Ann X) by Supp X ,
or Supp Y by V(Ann Y).

Example 7.16. Let us deduce the conclusion of Proposition 6.2(1) directly in the
case where (R,m, k) is a discrete valuation ring. In this case, we have Spcl(Spec)=
{∅, {m},Spec R}. Using Proposition 5.4, we obtain Cpt = {0, thick⊗ k,D−(R)}.
Example 3.2 and Theorems 7.14 and 7.11 say that 0 and thick⊗ k are prime. Thus,
the compact prime thick ⊗-ideals of D−(R) are 0 and thick⊗ k. It follows from
Corollary 3.10 that s(thick⊗ k) does not contain m, which implies s(thick⊗ k)= 0.
Hence, Cpt∩ s−1(m)= {0}.

Let us consider for a discrete valuation ring R the tameness and compactness of
the thick ⊗-ideals Lc.

Proposition 7.17. Let R be a discrete valuation ring, and let c > 1 be an integer.
Then Lc is a nontame prime thick⊗-ideal of D−(R). If c>2, then Lc is noncompact.

Proof. It is shown in Theorem 7.11 that Lc is a prime thick ⊗-ideal of D−(R).
Denote by x R the maximal ideal of R. Using Proposition 7.7 and Theorem 7.14,
we easily see that Supp Lc = V(x)= {x R}.

Suppose that Lc is tame. Then Lc = Supp−1
{x R} by Proposition 5.3. For

example, consider the complex E =
⊕

i>0(R/x i !)[i]. We have Supp E = {x R},
which shows E ∈Lc. Hence, there exists an integer t > 0 such that i ! = ``(Hi E)6
tic−1 for all i � 0. This contradiction shows that Lc is not tame.

Suppose that Lc is compact. Then Lc=〈Supp Lc〉= thick⊗ k=L1 by Proposition
5.4 and Theorem 7.14. This gives a contradiction when c > 2; see Proposition 7.7.
Thus, Lc is not compact for all c > 2. �

Remark 7.18. Theorem 7.14 implies that Lc is generated by the complex Gc,
whose support is the closed subset {m} of Spec R. Proposition 7.17 says that Lc
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is not compact for c > 2. This gives an example of a noncompact thick ⊗-ideal
which is generated by objects with closed supports.

In the proof of Proposition 7.17, a complex defined by using factorials of integers
played an essential role. In relation to this, a natural question arises.

Question 7.19. Let (R, x R) be a discrete valuation ring. Consider the complex

E =
⊕
i>0

(R/x i !)[i]

= (· · ·
0
−→ R/x120 0

−→ R/x24 0
−→ R/x6 0

−→ R/x2 0
−→ R/x 0

−→ R/x→ 0)

in D−(R). Is it possible to establish a similar result to Theorem 7.14 for thick⊗ E?
For example, can one characterize the objects of thick⊗ E in terms of the Loewy
lengths of their homologies?

We have no idea how to answer this question. In relation to it, in the next example
we will consider complexes defined by using not factorials but polynomials. To do
this, we provide a lemma.

Lemma 7.20. Let x be a nonzerodivisor of R. Then the complex
⊕

i>0(R/xai+bi )[i]
belongs to the thick closure of

⊕
i>0(R/xai )[i] and

⊕
i>0(R/xbi )[i] for all integers

ai , bi > 0. In particular, the complex
⊕

i>0(R/xcai )[i] is in the thick closure
of
⊕

i>0(R/xai )[i] for all integers c, ai > 0.

Proof. For each i > 0 there is an exact sequence 0→ R/xai
xbi
−→ R/xai+bi →

R/xbi → 0. From this we induce an exact sequence 0 →
⊕

i>0(R/xai )[i] →⊕
i>0(R/xai+bi )[i] →

⊕
i>0(R/xbi )[i] → 0. The first assertion follows from this.

The second assertion is shown by induction and the first assertion. �

Example 7.21. Let x ∈ R be a nonzerodivisor. For integers a, b, c > 0, define a
complex

X (a, b, c)=
⊕
i>0

(R/ fi )[i] =
(
· · ·

0
−→ R/ f2

0
−→ R/ f1

0
−→ R/ f0→ 0

)
,

where fi = xai2
+bi+c

∈ R. Then it holds that thick⊗{X (a, b, c) | a, b, c > 0} =
thick⊗{X (1, 0, 0)}.

Proof. It is obvious that the left-hand side contains the right-hand side. In view of
Lemma 7.20, the opposite inclusion will follow if we show that X (1,0,0), X (0,1,0),
X (0, 0, 1) are in thick⊗{X (1, 0, 0)}, whose first containment is evident. The com-
plex X (1, 0, 0) has the direct summand (R/x)[1], so the module R/x belongs to
thick⊗{X (1, 0, 0)}. We have X (0, 0, 1) = R/x ⊗L

R (· · ·
0
−→ R 0

−→ R→ 0), which
is in thick⊗{X (1, 0, 0)}. The exact sequences 0 → R/x i2 x2i+1

−−−→ R/x (i+1)2
→

R/x2i+1
→ 0 and 0 → R/x2i+1 x

−→ R/x2i+2
→ R/x → 0 with i > 0 induce
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exact sequences 0→ X (1, 0, 0)→ X (1, 0, 0)[−1] → X (0, 2, 1)→ 0 and 0→
X (0, 2, 1)→ X (0, 2, 2)→ X (0, 0, 1)→ 0, which shows that thick⊗{X (1, 0, 0)}
contains X (0, 2, 1)= (· · · 0

−→ R/x5 0
−→ R/x3 0

−→ R/x→ 0) and X (0, 2, 2)= (· · · 0
−→

R/x6 0
−→ R/x4 0

−→ R/x2
→ 0). Applying Corollary 7.3, we see that X (0, 1, 0)

belongs to thick⊗{X (1, 0, 0)}. �

Remark 7.22. One can consider a general statement of Example 7.21 by defining
fi = xa0id

+a1id−1
+···+ad , so that it is nothing but the example for d = 2. We do not

know if it holds for d > 3.
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