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On the local Tamagawa number conjecture
for Tate motives over tamely ramified fields

Jay Daigle and Matthias Flach

The local Tamagawa number conjecture, which was first formulated by Fontaine
and Perrin-Riou, expresses the compatibility of the (global) Tamagawa number
conjecture on motivic L-functions with the functional equation. The local con-
jecture was proven for Tate motives over finite unramified extensions K/Qp by
Bloch and Kato. We use the theory of (ϕ,0)-modules and a reciprocity law due
to Cherbonnier and Colmez to provide a new proof in the case of unramified
extensions, and to prove the conjecture for Qp(2) over certain tamely ramified
extensions.

1. Introduction

Let K/Qp be a finite extension and V a de Rham representation of GK :=Gal(K/K ).
The local Tamagawa number conjecture is a statement describing a certain Qp-basis
of the determinant line detQp R0(K , V ) of (continuous) local Galois cohomology
up to units in Z×p . It was first formulated by Fontaine and Perrin-Riou [1994, 4.5.4]
as conjecture CEP and independently by Kato [1993, Conjecture 1.8] as the “local
ε-conjecture”. Both conjectures express compatibility of the (global) Tamagawa
number conjecture on motivic L-functions with the functional equation. The fact
that the local Tamagawa number conjecture is equivalent to this compatibility still
constitutes its main interest. For example, the proof of the Tamagawa number
conjecture for Dirichlet L-functions at integers r ≥ 2 [Burns and Flach 2006]
uses the conjecture at 1− r and compatibility with the functional equation (no
other more direct proof is known). Fukaya and Kato [2006] generalized [Kato
1993, Conjecture 1.8] to de Rham representations with coefficients in a possibly
noncommutative Qp-algebra, and in fact to arbitrary p-adic families of local Galois
representations.

In this paper we shall only consider Tate motives V =Qp(r) with r ≥ 2 (for the
case r = 1 see [Bley and Cobbe 2016; Breuning 2004]). If K/Qp is unramified
the local Tamagawa number conjecture for Qp(r) was first proven by Bloch and
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Kato [1990] in their seminal paper on the global Tamagawa number conjecture,
and has since been reproven by a number of authors (e.g., [Perrin-Riou 1994;
Benois and Berger 2008]). These later proofs also cover the case where K/Qp

is a cyclotomic extension, or more generally where V is an abelian de Rham
representations of Gal(Qp/Qp) [Kato 1993, Theorem 4.1; Venjakob 2013]. All
proofs have two main ingredients: Iwasawa theory and a “reciprocity law”. The
latter is an explicit description of the exponential or dual exponential map for
the de Rham representation V , which however very often only holds in restricted
situations (e.g., V ordinary or absolutely crystalline). The aim of this paper is
to explore the application of the very general reciprocity law of Cherbonnier and
Colmez [1999], which holds for arbitrary de Rham representations, to the local
Tamagawa number conjecture for Tate motives.

In Section 2 we give a first somewhat explicit statement (Proposition 2) which
is equivalent to the local Tamagawa conjecture for Qp(r) over an arbitrary Galois
extension K/Qp. We in fact work with the refined equivariant conjecture over the
group ring Zp[Gal(K/Qp)], following Fukaya and Kato [2006]. In Section 3 we
focus on the case where p - [K : Qp]. In Section 4 we state the reciprocity law
of Cherbonnier and Colmez in the case of Tate motives. In Section 5 we show
that it also can be used to give a proof of the unramified case (which however
has many common ingredients with the existing proofs). Finally, in Section 6
we formulate our main result, Proposition 44, which is a fairly explicit statement
equivalent to the equivariant local Tamagawa number conjecture for Qp(r) over
K/Qp with p - [K : Qp]. We show that it can be used to prove some new cases;
more specifically we have:

Proposition 1. Assume K/Qp is Galois of degree prime to p and with ramification
degree e< p/4. Then the equivariant local Tamagawa number conjecture holds for
V =Qp(2).

The only cases where the conjecture for tamely ramified fields was known
previously are cyclotomic fields, i.e., where e | p−1, and in this case one can allow ar-
bitrary r [Perrin-Riou 1994; Benois and Berger 2008]. We believe many more cases
can be proven with Proposition 44 and hope to return to this in a subsequent article.

2. The conjecture

Throughout this paper p denotes an odd prime. Let K/Qp be an arbitrary finite
Galois extension with group G and r ≥ 2. In this section we shall explicate the
consequences of the local Tamagawa number conjecture of Fukaya and Kato [2006,
Conjecture 3.4.3] for the triple

(3, T, ζ )= (Zp[G], IndGQp
GK

Zp(1− r), ζ ).
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Here ζ = (ζpn )n ∈ 0(Qp,Zp(1)) is a compatible system of pn-th roots of unity
which we fix throughout this paper. The conjectures for a triple (3, T, ζ ) and
its dual (3op, T ∗(1), ζ ) are equivalent. We find it advantageous to work with
Qp(1− r) rather than Qp(r) as in [Bloch and Kato 1990] since we are employing
the Cherbonnier–Colmez reciprocity law [Cherbonnier and Colmez 1999] which
describes the dual exponential map.

In order to give an idea what the conjecture is about, consider the Bloch–Kato
exponential map [Bloch and Kato 1990]

exp : K −→∼ H 1(K ,Qp(r)).

In a first approximation one may say that the local Tamagawa number conjecture
describes the relation between the two Zp-lattices exp(OK ) and im(H 1(K ,Zp(r)))
inside H 1(K ,Qp(r)). Rather than giving a complete description of the relative po-
sition of these two lattices, the conjecture only specifies their relative volume, that is
the class in Q×p /Z

×
p which multiplies DetZp exp(OK ) to DetZp(im(H

1(K ,Zp(r))))
inside the Qp-line DetQp H 1(K ,Qp(r)). The equivariant form of the conjecture is
a finer statement which arises by replacing determinants over Zp by determinants
over Zp[G]. If G is abelian and im(H 1(K ,Zp(r))) is projective over Zp[G], the
conjecture thereby does specify the relative position of the two lattices in view
of the fact that H 1(K ,Qp(r)) is free of rank one over Qp[G] and so coincides
with its determinant. If G is nonabelian, even though H 1(K ,Qp(r)) remains free
of rank one over Qp[G], the conjecture is an identity in the algebraic K-group
K1(Q

ur
p [G]))/K1(Z

ur
p [G])) and is again quite a bit weaker than a full determination

of the relative position of the two lattices.
Determinants in the sense of [Deligne 1987] (see also [Fukaya and Kato 2006,

1.2]) are only defined for modules of finite projective dimension, or more generally
perfect complexes, and so the first step is to replace the Zp-lattice im(H 1(K ,Zp(r)))
by the entire perfect complex R0(K ,Zp(r)). There still is an isomorphism

R0(K ,Zp(r))⊗Zp Qp ∼= R0(K ,Qp(r))∼= H 1(K ,Qp(r))[−1] (1)

since the groups H 1(K ,Zp(r))tor and H 2(K ,Zp(r)) are finite. If K/Qp is Galois
with group G then R0(K ,Zp(r)) is always a perfect complex of Zp[G]-modules
whereas im(H 1(K ,Zp(r))) or OK need no longer have finite projective dimen-
sion over Zp[G]. A further simplification occurs if one does not try to compare
R0(K ,Zp(r)) to exp(OK ) directly. Instead one uses the “period isomorphism”

per :Qp⊗Qp K ∼=Qp⊗Qp

(
IndGQp

GK
Qp
)
∼=Qp[G]

and tries to compare DetZp R0(K ,Zp(r)) to a suitable lattice in this last space. The
left-Zp[G]-module IndGQp

GK
Zp is always free of rank one whereas OK need not be.

After choosing an embedding K→Qp one gets an isomorphism ψ :GQp/GK ∼=G
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and an isomorphism
IndGQp

GK
Zp ∼= Zp[G] (2)

so that the Zp[G]-linear left action of γ ∈ GQp is given by

Zp[G] 3 x 7→ xψ(γ−1). (3)

The period isomorphism is then given for x ∈ K by

per(x) := per(1⊗ x)=
∑
g∈G

g(x) · g−1
∈Qp[G].

The dual of exp identifies with the dual exponential map

exp∗Qp(r) : H
1(K ,Qp(1− r))→ K

by local Tate duality and the trace pairing on K . Let β ∈ H 1(K ,Zp(1− r)) be an
element spanning a free Zp[G]-submodule and let Cβ be the mapping cone of the
ensuing map of perfect complexes of Zp[G]-modules

(Zp[G] ·β)[−1] → H 1(K ,Zp(1− r))[−1] → R0(K ,Zp(1− r)).

Then Cβ is a perfect complex of Zp[G]-modules with finite cohomology groups,
i.e., such that Cβ ⊗Zp Qp is acyclic. It therefore represents a class [Cβ] in the
relative K -group K0(Zp[G],Qp) for which one has an exact sequence

K1(Zp[G])→ K1(Qp[G])→ K0(Zp[G],Qp)→ 0.

Hence we may also view [Cβ] as an element in K1(Qp[G])/ im(K1(Zp[G])). Ex-
tending scalars to Qp we get an isomorphism of free rank-one Qp[G]-modules

H 1(K ,Qp(1− r))⊗Qp Qp
exp∗⊗Qp
−−−−−→ K ⊗Qp Qp

per
−→Qp[G]

sending the Qp[G]-basis β to a unit per(exp∗(β))∈Qp[G]×. As such it has a class

[per(exp∗(β))] ∈ K1(Qp[G])

via the natural projection map Qp[G]×→ K1(Qp[G]) (recall that for any ring R
we have maps R×→GL(R)→GL(R)ab

=: K1(R)). In Section 2.2 below we shall
define an ε-factor ε(K/Qp, 1− r) ∈ K1(Qp[G]) such that

ε(K/Qp, 1− r) · [per(exp∗(β))] ∈ K1(Q
ur
p [G]).

Let F ⊆ K denote the maximal unramified subfield, 6=Gal(F/Qp) and σ ∈6 the
(arithmetic) Frobenius automorphism. Then Qp[6] is canonically a direct factor of
Qp[G] and Qp[6]

× ∼= K1(Qp[6]) a direct factor of K1(Qp[G]). For α ∈Qp[6]
×

we denote by [α]F its class in K1(Qp[G]). Finally, note that if R is a Q-algebra then
any nonzero rational number n has a class [n] ∈ K1(R) via Q×→ R×→ K1(R).
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Proposition 2. Let K/Qp be Galois with group G and r ≥ 2. The local Tamagawa
number conjecture for the triple

(3, T, ζ )= (Zp[G], IndGQp
GK

Zp(1− r), ζ ).

is equivalent to the identity

[(r − 1)!] · ε(K/Qp, 1− r) · [per(exp∗(β))] · [Cβ]−1
·

[
1− pr−1σ

1− p−rσ−1

]
F
= 1 (4)

in the group K1(Q
ur
p [G])/ im(K1(Z

ur
p [G])).

Before we begin the proof of the proposition we explain what we mean by the
local Tamagawa number conjecture for (Zp[G], IndGQp

GK
Zp(1− r), ζ ). The local

Tamagawa number conjecture [Fukaya and Kato 2006, Conjecture 3.4.3] claims
the existence of ε-isomorphisms ε3,ζ (T ) for all triples (3, T, ζ ), where 3 is a
semilocal pro-p ring satisfying a certain finiteness condition [Fukaya and Kato 2006,
1.4.1], T a finitely generated projective 3-module with continuous GQp -action and
ζ a basis of 0(Qp,Zp(1)), such that certain functorial properties hold. One of these
properties [Fukaya and Kato 2006, Conjecture 3.4.3(v)] says that if L :=3⊗Zp Qp

is a finite extension of Qp and V := T ⊗Zp Qp is a de Rham representation, then

L̃ ⊗3̃ ε3,ζ (T )= εL ,ζ (V ),

where εL ,ζ (V ) is the isomorphism in C L̃ defined in [Fukaya and Kato 2006, 3.3].
Here, for any ring R, CR is the Picard category constructed in [Fukaya and Kato
2006, 1.2], equivalent to the category of virtual objects of [Deligne 1987], S⊗R− :

CR → CS is the Picard functor induced by a ring homomorphism R → S and
R̃ = W (Fp)⊗Zp R for any Zp-algebra R. The construction of εL ,ζ (V ) involves
certain isomorphisms and exact sequences which we recall in the proof below.
If A is a finite dimensional semisimple Qp-algebra and V an A-linear de Rham
representation, those isomorphisms and exact sequences are in fact A-linear and
therefore lead to an isomorphism εA,ζ (V ) in the category C Ã. If A :=3⊗Zp Qp is
a semisimple Qp-algebra and V := T ⊗Zp Qp is a de Rham representation, we say
that the local Tamagawa number conjecture holds for the particular triple (3, T, ζ )
if

Ã⊗3̃ ε3,ζ (T )= εA,ζ (V )

for some isomorphism ε3,ζ (T ) in C3̃.

Proof of Proposition 2. For a perfect complex of Qp[G]-modules P , we set

P∗ = HomQp[G](P,Qp[G]),
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which is a perfect complex of Qp[G]op-modules. Fix r ≥ 2 and set

V = IndGQp
GK

Qp(1− r) and V ∗(1)= IndGQp
GK

Qp(r),

which are free of rank one over Qp[G] and Qp[G]op, respectively. We recall the
ingredients of the isomorphism θQp[G](V ) of [Fukaya and Kato 2006, 3.3.2] (or
rather of its generalization from field coefficients to semisimple coefficients). The
element ζ determines an element t = log(ζ ) of BdR. We have

Dcris(V )= F · tr−1, DdR(V )/D0
dR(V )= 0,

Dcris(V ∗(1))= F · t−r , DdR(V ∗(1))/D0
dR(V

∗(1))= K ,

C f (Qp,V ) : F
1−pr−1σ
−−−−−→ F,

C f (Qp,V ∗(1)) : F
(1−p−rσ,⊆)
−−−−−−−→ F ⊕ K ,

and commutative diagrams

DetQp[G](0)
η(Qp,V )

// DetQp[G] C f (Qp,V )·DetQp[G] DdR(V )/D0
dR(V )

DetQp[G](0)

[1−pr−1σ ]−1
F

OO

η′(Qp,V )
// DetQp[G](0)·DetQp[G](0)

−1
·DetQp[G](0)

c

OO

DetQp[G](0)
η(Qp,V ∗(1))∗,−1

//
DetQp[G] C f (Qp,V ∗(1))∗

×(DetQp[G] DdR(V ∗(1))/D0
dR(V

∗(1)))∗

DetQp[G](0)

[1−p−rσ−1
]F

OO

η′(Qp,V ∗(1))∗,−1
// DetQp[G](0)·DetQp[G](K

∗)−1
·DetQp[G](K

∗)

c

OO

DetQp[G] C f (Qp,V ∗(1))∗
DetQp [G] 9 f (Qp,V ∗(1))∗,−1

// DetQp[G]
(
C(Qp,V )/C f (Qp,V )

)

DetQp[G](K
∗)−1 9 ′

//

c

OO

DetQp[G] H •(Qp,V )

c

OO

where the vertical maps c are induced by passage to cohomology. The morphism
9 ′ is (Det−1

Qp[G] of) the inverse of the isomorphism

H 1(Qp,V )
T
−→ H 1(Qp,V ∗(1))∗

exp∗V∗(1)
−−−−→ K ∗,

where T is the local Tate duality isomorphism. For the isomorphism

θQp[G](V )= η(Qp,V ) ·
(
DetQp[G]9 f (Qp,V ∗(1))∗,−1

◦ η(Qp,V ∗(1))∗,−1)
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we obtain a commutative diagram

DetQp[G](0)
θQp [G](V )

// DetQp[G] C(Qp,V ) ·DetQp[G] DdR(V )

DetQp[G](0)
θ ′

//

[
1−p−r σ−1

1−pr−1σ

]
F

OO

DetQp[G] H •(Qp,V ) ·DetQp[G](K )

c

OO

where θ ′ is induced by the dual exponential map

H 1(Qp,V )
exp∗V∗(1)
−−−−→ K .

The isomorphism 0Qp[G](V ) · εQp[G],ζ,d R(V ) of [Fukaya and Kato 2006, 3.3.3] is
the isomorphism

[(−1)r−1(r − 1)!] · ε(K/Qp, 1− r) ·DetQp[G](per)

and the isomorphism

εQp[G],ζ (V )= 0Qp[G](V ) · εQp[G],ζ,d R(V ) · θQp[G](V )

fits into a commutative diagram

DetQur
p [G](0)

εQp [G],ζ (V )
// Qur

p [G] ⊗
Qp[G]

(
DetQp[G] R0(K ,Qp(1− r)) ·DetQp[G](V )

)

DetQur
p [G](0)

[
1−p−r σ−1

1−pr−1σ

]
F

OO

θ ′′
// Qur

p [G] ⊗
Qp[G]

(
Det−1

Qp[G] H 1(K ,Qp(1− r)) ·DetQp[G](Qp[G])
)c

OO

where
θ ′′ = [(−1)r−1(r − 1)!] · ε(K/Qp, 1− r) ·DetQp[G](per) · θ ′

and c involves passage to cohomology as well as our identification V ∼= Qp[G]
chosen above. Now passage to cohomology is also the scalar extension of the
isomorphism

Det−1
Zp[G](Zp[G] ·β) ·DetZp[G](Cβ)∼= DetZp[G] R0(K ,Zp(1− r))

induced by the short exact sequence of perfect complexes of Zp[G]-modules

0→ R0(K ,Zp(1− r))→ Cβ→ Zp[G] ·β→ 0

combined with the acyclicity isomorphism

can : DetQp[G](0)∼= DetQp[G](Cβ,Qp).
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Since the class of Cβ in K0(Zp[G]) vanishes, we can choose an isomorphism

a : DetZp[G](0)∼= DetZp[G](Cβ),

which leads to another isomorphism

c′ : Det−1
Zp[G](Zp[G] ·β)∼= DetZp[G] R0(K ,Zp(1− r))

defined over Zp[G]. Setting

λ := (c′Qp
)−1c ∈ Aut

(
Det−1

Qp[G] H 1(K ,Qp(1− r))
)
= K1(Qp[G]),

we obtain a commutative diagram

DetQur
p [G](0)

εQp [G],ζ (V )
// Qur

p [G] ⊗
Qp[G]

(
DetQp[G] R0(K ,Qp(1− r)) ·DetQp[G](V )

)

DetQur
p [G](0)

[
1−p−r σ−1

1−pr−1σ

]
F

OO

θ ′′′
// Qur

p [G] ⊗
Qp[G]

(
Det−1

Qp[G] H 1(K ,Qp(1− r)) ·DetQp[G](Qp[G])
)c′

Qp

OO

where

θ ′′′ = λ ◦ θ ′′ = λ · [(−1)r−1(r − 1)!] · ε(K/Qp, 1− r) ·DetQp[G](per) · θ ′.

The local Tamagawa number conjecture claims that εQp[G],ζ (V ) is induced by an
isomorphism

DetZur
p [G](0)

εZp [G],ζ (T )
−−−−−−→ Zur

p [G] ⊗
Zp[G]

(
DetZp[G] R0(K ,Zp(1− r)) ·DetZp[G](T )

)
and this will be the case if and only if

θ iv
:= θ ′′′ ·

[
1− pr−1σ

1− p−rσ−1

]
F

is induced by an isomorphism

DetZur
p [G](0)

θ iv
Zp [G]
−−−→ Zur

p [G] ⊗
Zp[G]

(
Det−1

Zp[G](Zp[G] ·β) ·DetZp[G](Zp[G])
)
.

The isomorphism of Qp[G]-modules

τ : H 1(K ,Qp(1−r))⊗Qp Qp
exp∗⊗Qp
−−−−−→ K⊗Qp Qp

per
−→Qp[G]

· per(exp∗(β))−1

−−−−−−−−→Qp[G]

is clearly induced by an isomorphism of Zp[G]-modules

τZp[G] : Zp[G] ·β
∼
−→ Zp[G]
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and we have

θ iv
=

[
1− pr−1σ

1− p−rσ−1

]
F
· λ · [(−1)r−1(r − 1)!]

· ε(K/Qp, 1− r) · [per(exp∗(β))] ·DetQp[G](τ ).

Hence θ iv is induced by an isomorphism θ iv
Zp[G] if and only if the class in K1(Q

ur
p [G])

of [
1− pr−1σ

1− p−rσ−1

]
F
· λ ◦ [(−1)r−1(r − 1)!] · ε(K/Qp, 1− r) · [per(exp∗(β))]

lies in K1(Z
ur
p [G]). Now note that [(−1)] ∈ K1(Z) ⊂ K1(Z

ur
p [G]) and that λ =

[Cβ]−1, so we do indeed obtain identity (4). In order to see this last identity, note
that we have

λ−1
= a−1

· can

and that a−1
· can ∈ K1(Q

ur
p [G]) is a lift of [Cβ] ∈ K0(Z

ur
p [G],Qp) according to

the conventions of [Fukaya and Kato 2006, 1.3.8, Theorem 1.3.15(ii)]. �

2.1. Description of K1. For any finite group G we have the Wedderburn decom-
position

Qp[G] ∼=
∏
χ∈Ĝ

Mdχ (Qp),

where Ĝ is the set of irreducible Qp-valued characters of G and dχ = χ(1) is the
degree of χ . Hence there is a corresponding decomposition

K1(Qp[G])∼=
∏
χ∈Ĝ

K1(Mdχ (Qp))∼=
∏
χ∈Ĝ

Q×p , (5)

which allows one to think of K1(Qp[G]) as a collection of nonzero p-adic numbers
indexed by Ĝ. Note here that for any ring R one has K1(Md(R))= K1(R) and for
a commutative semilocal ring R one has K1(R)= R×.

If p - |G| then all characters χ ∈ Ĝ take values in Zur
p , the Wedderburn de-

composition is already defined over Zur
p and so is the decomposition of K1. One

has
K1(Z

ur
p [G])∼=

∏
χ∈Ĝ

K1(Mdχ (Z
ur
p ))
∼=

∏
χ∈Ĝ

Zur,×
p

and
K1(Q

ur
p [G])/ im(K1(Z

ur
p [G]))∼=

∏
χ∈Ĝ

Qur,×
p /Zur,×

p
∼=

∏
χ∈Ĝ

pZ, (6)

which allows one to think of elements in K1(Q
ur
p [G])/ im(K1(Z

ur
p [G])) as a collec-

tion of integers (p-adic valuations) indexed by Ĝ.
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2.2. Definition of the ε-factor. If L is a local field, E an algebraically closed field
of characteristic 0 with the discrete topology, µL a Haar measure on the additive
group of L with values in E , ψL : L→ E× a continuous character, the theory of
Langlands–Deligne [Deligne 1973] associates to each continuous representation r
of the Weil group WL over E an ε-factor ε(r, ψL , µL) ∈ E×.

We shall take E = Qp and always fix µL and ψL so that µL(OL) = 1 and
ψL =ψQp ◦TrL/Qp where ψQp(p

−n)= ζpn for our fixed ζ = (ζpn )n ∈0(Qp,Zp(1)).
Setting

ε(r) := ε(r, ψL , µL) ∈ E×

and leaving the dependence on ζ implicit, we have the following properties (see
also [Benois and Berger 2008] for a review, [Fukaya and Kato 2006] only reviews
the case L =Qp). Let π be a uniformizer of OL , δL the exponent of the different
of L/Qp and q = |OL/π |.

(a) If r :WL → E× is a homomorphism, set

r] : L×
rec
−→W ab

L
r
−→ E×

where rec is normalized as in [Deligne 1973, (2.3)] and sends a uniformizer to a
geometric Frobenius automorphism in W ab

L . Then we have

ε(r)=
{

qδL if c = 0,
qδL r](π c+δL )τ (r], ψπ ) if c > 0,

where c ∈ Z is the conductor of r and

τ(r], ψπ )=
∑

u∈(OL/π c)×

r−1
] (u)ψπ (u) (7)

is the Gauss sum associated to the restriction of r] to (OL/(π
c))× and the additive

character
u 7→ ψπ (u) := ψK (π

−δL−cu)
of OL/(π

c).

(b) If L/K is unramified then ε(r)= ε(IndWK
WL

r) for any representation r of WL .

(c) If r(α) is the twist of r with the unramified character with FrobL -eigenvalue
α ∈ E×, and c(r) ∈ Z is the conductor of r , then

ε(r(α))= α−c(r)−dimE (r)δL ε(r).

Here FrobL denotes the usual (arithmetic) Frobenius automorphism.
For a potentially semistable representation V of GQp one first forms Dpst(V ), a

finite dimensional Q̂ur
p -vector space of dimension dimQp V with an action of GQp ,

semilinear with respect to the natural action of GQp on Q̂ur
p and discrete on the

inertia subgroup. Moreover, Dpst(V ) has a Frob-semilinear automorphism ϕ. The
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associated linear representation rV of WQp over E = Q̂ur
p is the space Dpst(V ) with

action
rV (w)(d)= ι(w)ϕ

−ν(w)(d),

where ι : WQp → GQp is the inclusion and ν(w) ∈ Z is such that Frobν(w) is the
image of w in GFp .

From now on we are interested in V = (IndGQp
GK

Qp)(1− r). Here one has

Dpst(V )= (IndGQp
GK

Q̂ur
p ) · t

r−1, rV = (IndWQp
WK

Q̂ur
p )(p

1−r ),

and we notice that rV is the scalar extension from Qur
p to Q̂ur

p of the representation
(IndWQp

WK
Qur

p )(p
1−r ). So completion of Qur

p is not needed in this example. Associated
to rV ⊗Qur

p
Qp is an ε-factor in ε(rV )∈Q×p = K1(Qp). However, as explained above

before (3), rV carries a left action of Qur
p [G] commuting with the left WQp-action,

so we will actually be able to associate to rV ⊗Qur
p

Qp a refined ε-factor

ε(K/Qp, 1− r) ∈ K1(Qp[G]).

For each χ ∈ Ĝ define a representation rχ of WQp over E =Qp by

WQp

ι
−→ GQp

ψ
−→ G

ρχ
−→ GLdχ(E), (8)

where ρχ : G→GLdχ(E) is a homomorphism realizing χ . Let Edχ be the space of
row vectors on which G acts on the right via ρχ and define another representation
of WQp over E =Qp

rV,χ = Edχ ⊗Qur
p [G] rV = Edχ ⊗Qur

p [G] (IndWQp
WK

Qur
p )(p

1−r )∼= Edχ .

By (3), the left WQp-action on this last space is given by the contragredient
tρχ (ψ(g))−1 of rχ , twisted by the unramified character with eigenvalue p1−r . So
we have

rV,χ ∼= rχ̄ (p1−r ),

where χ̄ is the contragredient character of χ . We view the collection

ε(K/Q, 1− r) := (ε(rV,χ ))χ∈Ĝ = (ε(rχ̄ )p
(r−1)c(rχ̄ ))χ∈Ĝ (9)

as an element of K1(Qp[G]) in the description (5).

3. The conjecture in the case p - |G|

In this section and for most of the rest of the paper we assume that p does not divide
|G| = [K :Qp]. In particular K/Qp is tamely ramified with maximal unramified
subfield F . Although our methods probably extend to an arbitrary tamely ramified
extension K/Qp (i.e., where p is allowed to divide [F : Qp]) this would add an
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extra layer of notational complexity which we have preferred to avoid. The group
G = Gal(K/Qp) is an extension of two cyclic groups

6 := Gal(F/Qp)∼= Z/ f Z,

1 := Gal(K/F)∼= Z/eZ,

where the action of σ ∈ 6 on 1 is given by δ 7→ δ p and we have e | p f
− 1. By

Kummer theory K = F( e
√

p0), where p0 ∈ (F×/(F×)e)6 has order e. We can
and will assume that p0 has p-adic valuation one, and in fact that p0 = λ · p with
λ ∈ µF . Writing p0 = λ

′
· p′0 with p′0 ∈Qp we see that K is contained in F ′( e

√
p′0),

where F ′ := F( e
√
λ′) is unramified over Qp and p′0 is any choice of element in

µQp · p = µp−1 · p. Since for the purpose of proving the local Tamagawa number
conjecture we can always enlarge K , we may and will assume that

K = F( e
√

p0), p0 ∈ µp−1 · p ⊆Qp.

We then have
G = Gal(K/Qp)∼=6n1

since Gal(K/Qp( e
√

p0)) is a complement of 1. If (e, p− 1) = 1, then the fields
K = F( e

√
p0) for p0 ∈ µp−1 · p are all isomorphic; in fact any Galois extension

K/Qp with invariants e and f is then isomorphic to the field F( e
√

p).
The choice of p0 (in fact just the valuation of p0) determines a character

η0 :1−→
∼ µe ⊂ F× ⊂Qur,×

p ⊂Q×p (10)

by the usual formula δ( e
√

p0)= η0(δ) · e
√

p0. Let

η :1→ F×

be any character of 1 and

6η := {g ∈6 | η(gδg−1)= η(δ) for all δ ∈1}

the stabilizer of η. Then for any character η′ :6η→Qur,×
p we obtain a character

η′η : Gη :=6ηn1→Qur,×
p

and an induced character
χ := IndG

Gη
(η′η)

of G. By [Lang 2002, Exercise XVIII.7], all irreducible characters of G are obtained
by this construction, and in fact each χ ∈ Ĝ is parametrized by a unique pair ([η], η′)
where [η] denotes the 6-orbit of η. The degree of χ is given by

dχ = χ(1)= fη := [6 :6η] = [Fη :Qp], (11)

where Fη ⊆ F is the fixed field of 6η.
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We have
rχ = IndWQp

WFη
(rη′η),

where rχ and rη′η are the representations of WQp and WFη , respectively, defined as
in (8). By [Serre 1979, Chapter VI, Corollary to Propoposition 4] we have

c(rχ )= fηc(rη)=
{

0, η = 1,
fη, η 6= 1.

Using (b), (c) and (a) of Section 2.2 we have

ε(rχ )= ε(rη′η)

=

{
1, η = 1,
ε(rη)rη′(FrobFη)

−c(rη) = η(rec(p))τ (rη,], ψp)η
′(σ fη)−1, η 6= 1.

(12)

3.1. Gauss sums. If kη denotes the residue field of Fη, we have a canonical char-
acter

ω : k×η ←−∼ µp fη−1 ⊆ F×η ⊆ K× ⊆Q×p ,

where the first arrow is reduction mod p. On the other hand we have our character

rη,] : F×η
rec
−→W ab

Fη
ι
−→ Gab

Fη
ψ
−→ Gab

η

η
−→Q×p

of order dividing e. So there exists a unique mη ∈ Z/eZ such that

rη,]|µ
p fη−1
= ωmη(p

fη−1)/e (13)

and formula (7) gives

τ(rη,], ψp)= τ(ω
−mη(p

fη−1)/e),

where
τ(ω−i ) :=

∑
a∈k×η

ω(a)−iζ
Trkη/Fp (a)
p

is a Gauss sum associated to the finite field kη. The p-adic valuation of these sums
is known:

Lemma 3 [Washington 1997, Proposition 6.13 and Lemma 6.14]. For 0≤ i≤ p fη−1,
let i = i0 + pi1 + p2i2 + · · · + i fη−1 p fη−1 be the p-adic expansion with digits
0≤ i j ≤ p− 1. Then

vp(τ (ω
−i ))=

i0+ i1+ · · ·+ i fη−1

p− 1
=

fη−1∑
j=0

〈
i p j

p fη − 1

〉
,

where vp :Q
×
p →Q is the p-adic valuation on Qp normalized by vp(p)= 1 and

0≤ 〈x〉< 1 is the fractional part of the real number x.
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Corollary 4. For all η ∈ 1̂ we have

vp(τ (rη,], ψp))=

fη−1∑
j=0

〈mη p j

e

〉
.

After this interlude on Gauss sums we now prove a statement about periods
of certain specific elements in K which will eliminate any further reference to
ε-factors in the proof of Equation (4).

Proposition 5. Let K/Qp be Galois with group G of order prime to p. Then any
fractional OK -ideal is a free Zp[G]-module of rank one and

(ε(rχ̄ ))χ∈Ĝ · [per(b)] ∈ im(K1(Z
ur
p [G]))

for any Zp[G]-basis b of the inverse different ( e
√

p0)
−δK OK = ( e

√
p0)
−(e−1)OK .

Proof. This is a classical result in Galois module theory which can be found in
[Fröhlich 1976] but rather than trying to match our notation to that paper we go
through the main computations again. In this proof σ will temporarily denote a
generic element of 6 rather than the Frobenius.

The image of [per(b)] in the χ-component of the decomposition (5) is the
(dχ× dχ )-determinant

[per(b)]χ := det ρχ

(∑
g∈G

g(b) · g−1
)
= det

∑
g∈G

g(b)ρχ (g)−1
∈Q×p .

This character function is traditionally called a resolvent. With notation as above,
( e
√

p0)
−(e−1)OK is a free Zp[Gη]-module with basis σ(b), where σ ∈Gη\G∼=6η\6

runs through a set of right coset representatives. The image of this basis under the
period map is

per(σ (b))=
∑
g∈G

gσ(b) · g−1
=

∑
τ∈6η\6

(∑
g∈Gη

τ−1gσ(b) · g−1
)
τ

and if χ = IndG
Gη
(χ ′) is an induced character we have by [Fröhlich 1976, (5.15)]

ρχ

(∑
g∈G

g(b) · g−1
)
=

(∑
g∈Gη

τ−1gσ(b) · ρχ ′(g)−1
)
σ,τ

.

In our case of interest χ ′ = η′η is a one-dimensional character. Write

b = ξ · x,
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where x is an OF [1]-basis of ( e
√

p0)
−(e−1)OK fixed by 6 and ξ a Zp[6]-basis

of OF . Then writing g = δσ ′ with δ ∈1 and σ ′ ∈6η this matrix becomes(∑
σ ′∈6η

τ−1σ ′σ(ξ)η′(σ ′)−1
∑
δ∈1

τ−1δ(x) · η(δ)−1
)
σ,τ

and its determinant is

det
(∑
σ ′∈6η

τ−1σ ′σ(ξ)η′(σ ′)−1
)
σ,τ

·

∏
τ∈6η\6

∑
δ∈1

τ−1δτ(x) · η(δ)−1.

The first determinant is a group determinant [Washington 1997, Lemma 5.26] for
the group 6η\6 and equals

ξη′ :=
∏

κ∈(6η\6)∧

∑
σ∈6η\6

( ∑
σ ′∈6η

σ ′σ(ξ)η′(σ ′)−1
)
κ(σ )−1

=

∏
κ

∑
σ∈6

σ(ξ)κ(σ )−1,

where this last product is over all characters κ of 6 restricting to η′ on 6η. The
sum

∑
σ∈6 σ(ξ)κ(σ )

−1 clearly lies in Zur,×
p since its reduction modulo p is the

projection of the Fp[6]-basis ξ̄ of OF/(p)⊗Fp Fp into the κ̄-eigenspace (up to the
unit |6| = f ), hence nonzero. So we find

ξη′ ∈ Zur,×
p . (14)

We now analyze the second factor

xη :=
∏

τ∈6η\6

∑
δ∈1

τ−1δτ(x) · η(δ)−1

which is the product over the projections of x into the ηpi
-eigenspaces for i =

0, . . . , fη − 1 (up to the unit |1| = e). For 0 ≤ j < e the η− j
0 -eigenspace of the

inverse different is generated over OF by ( e
√

p0)
− j and since x was a OF [1]-basis

of the inverse different its projection lies in O×F · ( e
√

p0)
− j . So by Lemma 6 below

we have

xη ∈O×F ·
fη−1∏
i=0

( e
√

p0)
−e〈pi (−mη)/e〉 ⊂ K

and hence

vp(xη)=−
fη−1∑
i=0

〈
−mη pi

e

〉
=−vp(τ (rη̄,], ψp)), (15)

using Corollary 4 and the fact that η̄= η−mη
0 . One checks that τ(rη̄,], ψp)∈Qur

p (ζp)

is an eigenvector for the character

% = η
−mη(p

fη−1)/(p−1)
0
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of the group Gal(Qur
p (ζp) ∩ K ur/Qur

p ). Also, since xη is an eigenvector for %−1,
Equation (15) implies

τ(rη̄,], ψp) · xη ∈ Zur,×
p .

Combining this with (14) and (12) we find

ε(rχ̄ ) · [per(b)]χ = η̄(rec(p))τ (rη̄,], ψp)η̄
′(σ fη) · xη · ξη′ ∈ Zur,×

p

and hence
(ε(rχ̄ ))χ∈Ĝ · [per(b)] ∈ im(K1(Z

ur
p [G])). �

Lemma 6. We have η = ηmη
0 , where η0 is the character (10) associated to the

element p0 of valuation 1 and mη was defined in (13).

Proof. It suffices to show that the composite map

ω′ : µp fη−1 ⊂ F×
rec
−→ Gab

F → Gal(K/F)
ηmη

0
−−→ µe

agrees with the (mη(p
fη − 1)/e)-th power map. By definition [Neukirch 1999,

Theorem V.3.1] of the tame local Hilbert symbol and the fact that our map rec is
the inverse of that used in [Neukirch 1999], we have

ω′(ζ )=

(
ζ−1, pmη

0

F

)
,

which by [Neukirch 1999, Theorem V.3.4] equals(
ζ−1, pmη

0

F

)
=

(
(−1)αβ

pβ0
ζ−α

)(p fη−1)/e

= ζmη(p
fη−1)/e,

where α = vp(pmη
0 )= mη and β = vp(ζ

−1)= 0. �

Denote by γ a topological generator of

0 := Gal(Qp(ζp∞)/Qp)

and by
χ cyclo

: Gal(Qp(ζp∞)/Qp)∼= Z×p

the cyclotomic character. As in the proof of Proposition 5 choose b such that

Zp[G] · b = ( e
√

p0)
−(e−1)OK .

Denote by e1 =
1
|6|

∑
g∈6 g ∈ Zp[6] the idempotent for the trivial character of 6.

Proposition 7. If p - |G| then one can choose β ∈ H 1(K ,Zp(1− r)) such that

H 1(K ,Zp(1− r))= H 1(K ,Zp(1− r))tor⊕Zp[G] ·β
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and the local Tamagawa number conjecture (4) is equivalent to the identity

[(r−1)!]·(p(r−1)c(χ))χ∈Ĝ ·[per(b)]−1
·[per(exp∗(β))]·[Cβ]−1

·

[
1− pr−1σ

1− p−rσ−1

]
F
=1

in the group K1(Q
ur
p [G])/ im K1(Z

ur
p [G]). The projection of this identity into the

group K1(Q
ur
p [6])/ im K1(Z

ur
p [6]) is

[(r − 1)!] · [per(exp∗(β))]F ·
[
χ cyclo(γ )r − 1
χ cyclo(γ )r−1− 1

e1+ 1− e1

]
·

[
1− pr−1σ

1− p−rσ−1

]
F
= 1

and in the components of K1(Q
ur
p [G])/ im K1(Z

ur
p [G]) indexed by χ = ([η], η′) with

η|Gal(K/K∩F(ζp)) 6= 1

this identity is equivalent to

((r − 1)!) fη · p(r−1) fη · [per(b)]−1
χ · [per(exp∗(β))]χ ∈ Zur,×

p . (16)

Proof. If p - |G| then the module H 1(K ,Zp(1− r))/tor is free over Zp[G] since
this is true for any lattice in a free rank-one Qp[G]-module. The first statement is
then clear from (9) and Proposition 5.

Since
R0(K ,Zp(1− r))⊗L

Zp[G] Zp[6] ∼= R0(F,Zp(1− r)),

the projection [Cβ]F of [Cβ] into K1(Q
ur
p [6])/ im K1(Z

ur
p [6]) is the class of the

complex
H 1(F,Zp(1− r))tor[−1]⊕ H 2(F,Zp(1− r))[−2]

and both modules have trivial 6-action. Any finite cyclic Zp[6]-module M with
trivial 6-action has a projective resolution

0→ Zp[6]
|M |e1+1−e1
−−−−−−−→ Zp[6] → M→ 0

and the class of M in K0(Zp[6],Qp) is represented by [|M |e1 + 1 − e1]
−1
∈

K1(Qp[6]). Using Tate local duality we have

[Cβ]F = [H 1(F,Zp(1− r))tor]
−1
· [H 2(F,Zp(1− r))]

= [H 0(F,Qp/Zp(1− r))]−1
· [H 0(F,Qp/Zp(r))]

= [(χ cyclo(γ )r−1
− 1)e1+ 1− e1] · [(χ

cyclo(γ )r − 1)e1+ 1− e1]
−1

=

[
χ cyclo(γ )r−1

− 1
χ cyclo(γ )r − 1

e1+ 1− e1

]
.
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By Proposition 5 [per(b)]χ is a p-adic unit if η = 1, which gives the second
statement. The third statement follows from the fact that Gal(K/K ∩ F(ζp)) acts
trivially on R0(K ,Zp(1− r)) which implies that [Cβ]χ = 1 if the restriction of η
to Gal(K/K ∩ F(ζp)) is nontrivial. �

4. The Cherbonnier–Colmez reciprocity law

Now that we have reformulated Equation (4) according to Proposition 7 we see
that we must compute the image of exp∗(β). In order to do this we will use an
explicit reciprocity law of [Cherbonnier and Colmez 1999], which uses the theory
of (ϕ,0K )-modules and the rings of periods of Fontaine. Rather than developing
this machinery in full, we will give only the definitions and results needed to state
the reciprocity in our case; the reader is invited to read [Cherbonnier and Colmez
1999] to see the theory and the reciprocity law developed in full generality.

4.1. Iwasawa theory. In this subsection and the next we recall results of [Cher-
bonnier and Colmez 1999] specialized to the representation V =Qp(1). For this
discussion we temporarily suspend our assumption that p - |G|. So let K again be
an arbitrary finite Galois extension of Qp, define

Kn = K (ζpn ), K∞ =
⋃
n∈N

Kn,

0K := Gal(K∞/K ), 3K = Zp[[Gal(K∞/Qp)]]

and

H m
Iw(K ,Zp(1))= lim

←−−
n

H m(Kn,Zp(1))∼= lim
←−−

n
H m(K , IndGK

G Kn
Zp(1))∼= H m(K , T ),

where the inverse limit is taken with respect to corestriction maps, the second
isomorphism is Shapiro’s lemma and

T := lim
←−−

n
IndGK

G Kn
Zp(1)∼= lim

←−−
n

Zp[Gal(Kn/K )](1)∼= Zp[[0K ]](1)

is a free rank-one Zp[[0K ]]-module with GK -action given by ψ−1χ cyclo, where

ψ : GK → 0K ⊆ Zp[[0K ]]
×

is the tautological character (see the analogous discussion of (2)). From this it is
easy to see that for any r ∈ Z one has an exact sequence of GK -modules

0→ T
γK ·χ

cyclo(γK )
r−1
−1

−−−−−−−−−−−→ T −−→ Zp(r)→ 0 (17)
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where γK ∈ 0K is a topological generator (our assumption that p is odd assures
that 0K is procyclic for any K ). It is clear from the definition that

H m
Iw(K ,Zp(1))∼= H m

Iw(Kn,Zp(1)) (18)

for any n≥ 0. So H m
Iw(K ,Zp(1)) only depends on the field K∞, and it is naturally a

3K -module. Since our base field K was arbitrary an analogous sequence holds with
K replaced by Kn and T by the corresponding G Kn -module Tn so that T ∼= IndGK

G Kn
Tn .

In view of (18) we obtain induced maps

prn,r : H
1
Iw(K ,Zp(1))→ H 1(Kn,Zp(r)) (19)

for any n ≥ 0 and r ∈ Z.

Lemma 8. Set γn = γKn . If r 6= 1 then the map prn,r induces an isomorphism

H 1
Iw(K ,Zp(1))/(γn −χ

cyclo(γn)
1−r )H 1

Iw(K ,Zp(1))∼= H 1(Kn,Zp(r)).

Proof. The short exact sequence (17) over Kn induces a long exact sequence of
cohomology groups

0 // H 0
Iw(K ,Zp(1))

γn−χ
cyclo(γn)

1−r
// H 0

Iw(K ,Zp(1)) // H 0(Kn,Zp(r))

rr

H 1
Iw(K ,Zp(1))

γn−χ
cyclo(γn)

1−r
// H 1

Iw(K ,Zp(1))
prn,r
// H 1(Kn,Zp(r))

rr

H 2
Iw(K ,Zp(1))

γn−χ
cyclo(γn)

1−r
// H 2

Iw(K ,Zp(1)) // H 2(Kn,Zp(r)) // 0.

By Tate local duality there is a canonical isomorphism of Gal(Kn/K )-modules

H 2(Kn,Zp(1))∼= Zp

for each n, and the corestriction map is the identity map on Zp. Hence,

H 2
Iw(K ,Zp(1))∼= Zp

with trivial action of 0Kn . This implies that for r 6= 1 multiplication by

γn −χ
cyclo(γn)

1−r
= 1−χ cyclo(γn)

1−r

is injective on H 2
Iw(K ,Zp(1)). Hence prn,r is surjective and we obtain the desired

isomorphism. �
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4.2. The ring AK and the reciprocity law. The theory of (ϕ,0K )-modules [Cher-
bonnier and Colmez 1999] involves a ring

AK =
(
OF ′[[πK ]][1/πK ]

)∧
=

{∑
n∈Z

anπ
n
K : an ∈OF ′, lim

n→−∞
an = 0

}
,

where πK is (for now) a formal variable and F ′ ⊇ F is the maximal unramified
subfield of K∞. (The notation (−)∧ means −̂.) The ring AK carries an operator ϕ
extending the Frobenius on OF ′ and an action of 0K commuting with ϕ, which are
somewhat hard to describe in terms of πK . However, on the subring

AF ′ =
(
OF ′[[π ]][1/π ]

)∧
⊆ AK

one has
ϕ(1+π)= (1+π)p, γ (1+π)= (1+π)χ

cyclo(γ ) (20)

for γ ∈ 0K .
The ring AK is a complete, discrete valuation ring with uniformizer p. We denote

by EK ∼= k((πK )) its residue field and by BK = AK [1/p] its field of fractions. We
see that ϕ(BK ) is a subfield of BK (of degree p), and thus we can define

ψ = p−1ϕ−1 TrBK /ϕBK

and
N = ϕ−1 NBK /ϕBK

as further operators on BK . We observe that if f ∈ BK , then

ψ(ϕ( f ))= f.

Thus ψ is an additive left inverse of ϕ. We write Aψ=1
K ⊂ AK for the set of elements

fixed by the operator ψ . The (ϕ,0K )-module associated to the representation Zp(1)
is AK (1)where the Tate twist refers to the 0K -action being twisted by the cyclotomic
character.

By [Cherbonnier and Colmez 1999, III.2] the field BK is contained in a field B̃
on which ϕ is bijective and B̃ contains a GK -stable subring B̃†,n consisting of
elements x for which ϕ−n(x) converges to an element in BdR. So one has a GK -
equivariant ring homomorphism

ϕ−n
: B̃†,n

→ BdR,

which again is rather inexplicit in general but is given by

ϕ−n(π)= ζpn et/pn
− 1

on the element π .
The main result [Cherbonnier and Colmez 1999, théorème IV.2.1] specialized to

the representation V =Qp(1) can now be summarized as follows.
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Theorem 9. Let K/Qp be any finite Galois extension and

3K := Zp[[Gal(K∞/Qp)]]

its Iwasawa algebra.

(a) There is an isomorphism of 3K -modules

Exp∗Zp
: H 1

Iw(K ,Zp(1))∼= Aψ=1
K (1).

(b) There is n0 ∈ Z such that for n ≥ n0 the following hold:

(b1) Aψ=1
K ⊆ B̃†,n .

(b2) The GK -equivariant map ϕ−n
: Aψ=1

K → BdR factors through

ϕ−n
: Aψ=1

K → Kn[[t]] ⊆ BdR.

(b3) One has

p−nϕ−n(Exp∗Zp
(u))=

∞∑
r=1

exp∗Qp(r)(prn,1−r (u)) · t
r−1

for any u ∈ H 1
Iw(K ,Zp(1)).

Theorem 9 contains all the information we shall need when analyzing the case
of tamely ramified K in Section 6 below. However, the paper [Cherbonnier and
Colmez 1999] contains further information on the map Exp∗Zp

, which we summarize
in the next proposition. We shall only need this proposition when reproving the
unramified case of the local Tamagawa number in Section 5 below. First recall
from [Cherbonnier and Colmez 1999, p. 257] that the ring BK carries a derivation

∇ : BK → BK ,

uniquely specified by its value on π :

∇(π)= 1+π.

We set

∇ log(x)= ∇(x)
x

and denote by

M̂ := lim
←−−

n
M/pn M

the p-adic completion of an abelian group M .
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Proposition 10. There is a commutative diagram of 3K -modules, where the maps
labeled by ∼= are isomorphism.

H 1
Iw(K ,Zp(1))

Exp∗
Zp

∼=

**

A(K∞) := lim
←−−m,n K×n /(K

×
n )

pm ιK

∼=

//

δ

∼=

55

(E×K )
∧ (AN=1

K )∧
∼=

mod p
oo

∼=

∇ log
// Aψ=1

K (1)

U := lim
←−−m,n O

×

Kn
/(O×Kn

)pm ιK |U

∼=

//
?�

OO

1+π K k[[π K ]]
?�

OO

Proof. The isomorphism δ arises from Kummer theory. The theory of the field of
norms gives an isomorphism of multiplicative monoids [Cherbonnier and Colmez
1999, proposition I.1.1]

lim
←−−

n
OKn −→

∼= k[[πK ]],

which induces our isomorphism ιK |U after restricting to units and passing to p-adic
completions and our isomorphism ιK by taking the field of fractions and passing to
p-adic completions of its units.

By [Cherbonnier and Colmez 1999, corollaire V.1.2] (see also [Daigle 2014,
3.2.1] for more details), the reduction-mod-p-map (AN=1

K )∧→ (E×K )
∧ is an iso-

morphism.
By [Cherbonnier and Colmez 1999, proposition V.3.2(iii)] the map ∇ log makes

the upper triangle in our diagram commute. Since all other maps in this triangle
are isomorphisms, the map ∇ log is an isomorphism as well. �

4.3. Specialization to the tamely ramified case. We now resume our assumption
that p does not divide the degree of [K :Qp] together with (most of) the notation
from Section 3. In addition we assume that

ζp ∈ K ,

which implies that K∞/K is totally ramified and hence that F = F ′ is the maximal
unramified subfield of K∞. The theory of fields of norms [Cherbonnier and Colmez
1999, remarque I.1.2] shows that EK is a Galois extension of EF of degree

e := [K∞ : F∞] = [K : F(ζp)]

with group
Gal(EK /EF )∼= Gal(K∞/F∞)∼= Gal(K/F(ζp)).

Note that with this notation the ramification degree of K/Qp is e(p− 1) whereas
it was denoted by e in Section 3. The element p0 of Section 3 we choose to be −p,
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i.e., we assume that

K = F( e(p−1)
√
−p).

An easy computation shows that (ζp−1)p−1
=−p ·u with u ∈ 1+ (ζp−1)Zp[ζp]

and hence we can choose the root (p−1)
√
−p such that

ζp − 1= (p−1)
√
−p · u′ (21)

with u′ ∈ 1+ (ζp − 1)Zp[ζp]. By Kummer theory we then also have

K = F( e
√
ζp − 1)

and BK = BF (
e
√
π). Any choice of πK =

e
√
π fixes a choice of

e
√
ζp − 1= ϕ−1(πK )|t=0

and of
e(p−1)
√
−p = e

√
ζp − 1 · (u′)−1/e.

We have

G ∼=6n1

with 6 cyclic of order f and 1 cyclic of order e(p− 1) and

3K ∼= Zp[[G×0K ]] ∼= Zp[6n1][[γ1− 1]],

where γ1 = γ
p−1 is a topological generator of 0K .

Proposition 11. There is an isomorphism of 3K -modules

H 1
Iw(K ,Zp(1))∼=3K ·βIw⊕Zp(1).

Proof. In view of the Kummer theory isomorphism

δ : A(K∞)∼= H 1
Iw(K ,Zp(1))

it suffices to quote the structure theorem for the 3K -module A(K∞) given in
[Neukirch et al. 2000, Theorem 11.2.3] (where k =Qp and our group 6n1 is the
group 1 of [loc. cit.]). �

Corollary 12. There is an isomorphism of Zp[G]-modules

H 1(K ,Zp(1− r))∼= Zp[G] ·β⊕ H 1(K ,Zp(1− r))tor,

where β = pr0,1−r (βIw)= pr1,1−r (βIw).
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Proof. This is clear from Proposition 11 and Lemma 8 (with r replaced by 1− r )
in view of the isomorphisms

Zp[G] −→∼ 3K /(γ1−χ
cyclo(γ1)

r )3K

and

Zp(1)/(γ1−χ
cyclo(γ1)

r )Zp(1)= Zp/(χ
cyclo(γ1)−χ

cyclo(γ1)
r )Zp

∼= H 0(K ,Qp/Zp(1− r)))
∼= H 1(K ,Zp(1− r))tor. �

If we choose the element β of Corollary 12 to verify the identity in Proposition 7
it remains to get an explicit hold on some 3K -basis βIw, or rather of its image

α = Exp∗Zp
(βIw) ∈ Aψ=1

K (1). (22)

Since α is a (infinite) Laurent series in πK it will be amenable to somewhat explicit
analysis. In the unramified components of Proposition 7 (η = 1) we can compute α
in terms of the well-known Perrin-Riou basis (see Proposition 24 below) which is a
main ingredient in all known proofs of the unramified case of the local Tamagawa
number conjecture. In the other components (η 6=1) we shall simply use Nakayama’s
lemma to analyze α as much as we can in Section 6.

In order to compute exp∗
Qp(r)(β) we also need to be able to apply Theorem 9 for

n = 1.

Proposition 13. Part (b) of Theorem 9 holds with n0 = 1.

Proof. It will follow from an explicit analysis of elements in Aψ=1
K in Corollary 37

below that ϕ−1(a) converges for a ∈ Aψ=1
K , which shows (b1). Since π e

K = π and
ϕ−n(π)= ζpn et/pn

− 1 it is also clear that the values of ϕ−n on AK , if convergent,
lie in F( e

√
ζpn − 1)[[t]] = Kn[[t]]. This shows (b2). By [Cherbonnier and Colmez

1999, théorème IV.2.1] the right-hand side of (b3) is given by Tnϕ
−m(Exp∗Zp

(u))
for m ≥ n large enough (see the next section for the definition of Tn). The statement
in (b3) then follows from Corollary 17 below. �

4.4. Some power series computations. The purpose of this section is simply to
record some computations justifying Theorem 9(b3) for n ≥ 1. Another aim is
to write the coefficients of the right-hand side of Theorem 9(b3) in terms of the
derivation ∇ applied to the left-hand side. First we have

Lemma 14 [Cherbonnier and Colmez 1999, lemme III.2.3]. Suppose ϕ−n f and
ϕ−n(∇ f ) both converge in BdR. Then

ϕ−n(∇ f )= pn d
dt
(ϕ−n( f )).
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Proof. It’s enough to check that ϕ−n
◦∇ and pn d

dt ◦ϕ
−n both agree on 1+π , since

they are both derivations. We see that

ϕ−n
∇(1+π)= ϕ−n(1+π)= ζpn et/pn

pn d
dt
ϕ−n(1+π)= pn d

dt
ζpn et/pn

= ζpn et/pn
. �

The next Lemma shows that ∇ is compatible with other operators that we have
introduced. The ring B is defined as in [Cherbonnier and Colmez 1999].

Lemma 15. Let f ∈ BK . Then we have

(a) ∇γ f = χ cyclo(γ ) · γ∇ f ,

(b) ∇ϕ f = p ·ϕ∇ f ,

(c) ∇ TrB/ϕB f = TrB/ϕB ∇ f ,

(d) ∇ψ f = p−1
·ψ∇ f .

Proof. This is a straightforward computation. For example, to see (c) note that
(1+π)i , i = 0, . . . , p− 1 is a ϕB-basis of B and

TrB/ϕB(x)= TrB/ϕB

(p−1∑
i=0

ϕxi · (1+π)i
)
= p ·ϕx0.

Hence

TrB/ϕB(∇x)= TrB/ϕB

(p−1∑
i=0

∇ϕxi · (1+π)i +ϕxi · i · (1+π)i
)

= TrB/ϕB

(p−1∑
i=0

ϕ(p∇xi + xi · i) · (1+π)i
)

= p2ϕ∇x0 =∇(p ·ϕx0)=∇ TrB/ϕB(x).

See [Daigle 2014, Lemma 3.1.3] for more details. �

Recall the normalized trace maps

Tn : K∞→ Kn

from [Cherbonnier and Colmez 1999, p. 259] which are given by

Tn(x)= p−m TrKm/Kn x

for any m ≥ n such that x ∈ Km , and extend to a map

Tn : K∞[[t]] → Kn[[t]]

by linearity. By [Cherbonnier and Colmez 1999, théorème IV.2.1] the right-hand
side of Theorem 9(b3) is given by Tnϕ

−m( f ) for f = Exp∗Zp
(u) ∈ Aψ=1

K and m ≥ n
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large enough. In order to get access to individual Taylor coefficients of the right-
hand side we wish to compute dr−1

dtr−1 Tnϕ
−m( f ), but from Lemmas 14 and 15 we see

that
dr−1

dtr−1 Tnϕ
−m
= p−m(r−1)Tnϕ

−m
∇

r−1

and thus we can study the map Tnϕ
−m on ∇r−1 Aψ=1

K . But since ψ∇x = p∇ψx ,
we see that ∇r−1 Aψ=1

K ⊆ Aψ=pr−1

K , and so we wish to study Tnϕ
−m on Aψ=pr−1

K .

Lemma 16. Let P ∈ Aψ=pr−1

K be such that

(ϕ−n P)(0) := ϕ−n P|t=0

converges and assume m ≥ n. Then if n ≥ 1 we have

(Tnϕ
−m P)(0)= p(r−1)m−rn(ϕ−n P)(0). (23)

and if n = 0 we have

(T0ϕ
−m P)(0)= p(r−1)m(1− p−rσ−1)(ϕ−0 P)(0). (24)

Proof. Since P ∈ Aψ=pr−1

K , we know that ψ(P)= pr−1 P and thus that

p−r TrB/ϕB(P)= ϕ(P).

Recall that we can choose πK such that π e
K = π . Then {((1+π)ζ −1)1/e : ζ ∈ µp}

is the set of conjugates of πK over ϕ(B) in an algebraic closure of B, so this gives

p−r
∑
ζ∈µp

P
(
((1+π)ζ − 1)1/e

)
= Pσ

(
((1+π)p

− 1)1/e
)
.

Whenever ϕ−(l+1)P converges for some l ∈ N, the operator ϕ−(l+1)P|t=0 corre-
sponds to setting π = ζpl+1 − 1 and applying σ−(l+1) to each coefficient. We get

p−r
∑
ζ∈µp

Pσ
−(l+1)

((ζ · ζpl+1 − 1)1/e)= Pσ
−l
((ζpl − 1)1/e). (25)

If l ≥ 1, this simplifies to

p−r TrKl+1/Kl Pσ
−(l+1)

((ζpl+1 − 1)1/e)= Pσ
−l
((ζpl − 1)1/e),

and by induction, we see that for any 1≤ n < m,

pm−r(m−n)Tn Pσ
−m
((ζpm − 1)1/e)= Pσ

−n
((ζpn − 1)1/e). (26)
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Since Pσ
−m
((ζpm − 1)1/e)= (ϕ−m P)(0), this proves Equation (23). If l = 0 then

Equation (25) becomes

p−r
∑
ζ∈µp

Pσ
−1
((ζ · ζp − 1)1/e)= (ϕ−0 P)(0).

The left-hand side is now equal to

p−r Pσ
−1
(0)+ p−r TrK1/K0 Pσ

−1
((ζp − 1)1/e)

and we have

p−r TrK1/K0(P
σ−1
((ζp − 1)1/e))= (1− p−rσ−1)(ϕ−0 P)(0).

By induction we get

pm−rm T0 Pσ
−m
((ζpm − 1)1/e)= (1− p−rσ−1)(ϕ−0 P)(0),

which proves Equation (24). �

Corollary 17. If P ∈ Aψ=1
K is such that ϕ−n P converges and m ≥ n, then we have

Tnϕ
−m P = p−nϕ−n P

if n ≥ 1, and

T0ϕ
−m P = (1− p−1σ−1)ϕ−0 P

if n = 0.

Proof. This follows by combining Lemma 16 for all r . �

5. The unramified case

In this section we reprove the local Tamagawa number conjecture (4) in the case
where K = F is unramified over Qp. This was first proven in [Bloch and Kato
1990] and other proofs can be found in [Perrin-Riou 1994; Benois and Berger 2008].
The proofs differ in the kind of “reciprocity law” which they employ but all proofs,
including ours, use the “Perrin-Riou basis,” i.e., the 3F -basis in Proposition 24
below.

5.1. An extension of Proposition 10 in the unramified case. In this section we
use results of Perrin-Riou [1990] to extend the diagram in Proposition 10 to the



1248 Jay Daigle and Matthias Flach

diagram in Corollary 21 below. Define

PF :=

{∑
n≥0

anπ
n
∈ F[[π ]] : nan ∈OF

}
,

PF := PF/pOF [[π ]],

PF,log := { f ∈ PF : (p−ϕ)( f )= 0},

PF,log := { f ∈ PF : f̄ ∈ PF,log} = { f ∈ PF : (p−ϕ)( f ) ∈ pOF [[π ]]},

OF [[π ]]log := { f ∈OF [[π ]]
×
: f mod pOF [[π ]] ∈ 1+πk[[π ]]}

= 1+ (π, p).

Note that PF is the space of power series in F whose derivative with respect to
π lies in OF [[π ]]. Observe that the map d log is given by an integral power series,
and therefore logOF [[π ]]log ⊆ PF where the logarithm map

log(1+ x)=
∑
n≥1

(−1)n−1 xn

n

is given by the usual power series. Since ϕ reduces modulo p to the Frobenius, i.e.,
to the p-th power map, the logarithm series in fact induces a map

log :OF [[π ]]log→ PF,log.

We wish to show that this map is an isomorphism, and to do this we first recall a
couple of lemmas from [Perrin-Riou 1990].

Lemma 18 [Perrin-Riou 1990, lemme 2.1]. Let

f ∈ 1+πk[[π ]] = Ĝm(k[[π ]])

and let f̂ be any lift of f to OF [[π ]]log. Then

log( f̂ ) mod pOF [[π ]] ∈ PF,log

does not depend on the choice of f̂ , and the map f 7→ log( f̂ ) mod pOF [[π ]] is an
isomorphism logk : 1+πk[[π ]] −→∼ PF,log.

Lemma 19 [Perrin-Riou 1990, lemme 2.2]. Let f ∈ PF,log. Then the sequence
pmψm( f ) converges to a limit f∞ ∈ PF,log, and we have

(1) f∞ ≡ f mod pOF [[π ]],

(2) ψ( f∞)= p−1 f∞,

(3) (1− p−1ϕ) f∞ ∈OF [[π ]],

(4) f∞ = 0 if f ∈OF [[π ]],

(5) f∞ = g∞ if f ≡ g mod pOF [[π ]].
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Corollary 20. (1) The map log :OF [[π ]]log→ PF,log is an isomorphism.

(2) One has a commutative diagram of isomorphisms

OF [[π ]]
N=1
log

log

∼=

//

mod p∼=

��

Pψ=p−1

F,log

mod p∼=

��

1+πk[[π ]]
logk

∼=

// PF,log

Proof. To see the first part, note that we have a commutative diagram

1

��

0

��

1+ pOF [[π ]]

��

log

∼=

// pOF [[π ]]

��

OF [[π ]]log

��

log
// PF,log

��

1+πk[[π ]]

��

logk

∼=

// PF,log

��

1 0

and that the logarithm map on 1+ pOF [[π ]] is an isomorphism since its inverse
is given by the exponential series. By the five lemma, the middle arrow is an
isomorphism. For the second part, it suffices to note that Lemma 19 shows that any
element in PF,log has a unique lift in Pψ=p−1

F,log and that logN (x)= pψ log(x). �

Corollary 21. For K = F the commutative diagram from Proposition 10 extends
to a commutative diagram of 3F -modules:

A(F∞)= lim
←−−m,n F×n /(F

×
n )

pm
(E×F )

∧
∼=

oo (AN=1
F )∧

∼=

mod p
oo

∼=

∇ log
// Aψ=1

F (1)

U = lim
←−−m,n O

×

Fn
/(O×Fn

)pm
?�

OO

1+πk[[π ]]
∼=

oo
?�

OO

OF [[π ]]
N=1
log

∼=

mod p
oo

∼=

log
//

?�

OO

Pψ=p−1

F,log

?�
∇

OO

Proof. This is immediate from Corollary 20(2). �
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This diagram allows us to determine the exact relationship between Pψ=p−1

F,log and

Aψ=1
F (1) since the relationship between A(F∞) and U is quite transparent. There

is an exact sequence of 3F -modules

0→U → A(F∞)
v
−→ Zp→ 0,

where v is the valuation map and Zp carries the trivial 6×0-action. By [Neukirch
et al. 2000, Theorem 11.2.3], already used in the proof of Proposition 11, there is
an isomorphism

A(F∞)∼=3F ⊕Zp(1) (27)

and the torsion submodule Zp(1) is clearly contained in U . Hence we obtain an
exact sequence

0→Utf→ A(F∞)tf
v
−→ Zp→ 0,

where Mtf := M/Mtors. The module A(F∞)tf is free of rank one and since the
(6×0)-action on Zp is trivial we find

Utf = I ·A(F∞)tf,

where

I := (σ − 1, γ − 1)⊆3F

is the augmentation ideal.

Lemma 22. The augmentation ideal I is principal, generated by the element

(1− e1)+ (γ − 1)e1,

where e1 ∈ Zp[6] is the idempotent for the trivial character of 6.

Proof. This hinges on our assumption that p does not divide the order of 6, which
implies that e1 has coefficients in Zp. Using e2

1 = e1 we then find immediately

σ − 1= (σ − 1)(1− e1)= (σ − 1)(1− e1) · [(1− e1)+ (γ − 1)e1],

γ − 1= ((γ − 1)(1− e1)+ e1) · [(1− e1)+ (γ − 1)e1]. �

Lemma 23. There are elements α ∈ Aψ=1
F (1), α̃ ∈ Pψ=p−1

F,log such that

(1) Aψ=1
F (1)=3F ·α⊕Zp(1) · 1,

(2) Pψ=p−1

F,log =3F · α̃⊕Zp · log(1+π),

(3) ∇α̃ = ((1− e1)+ (γ − 1)e1) ·α.
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Proof. Part (1) follows from (27) and Corollary 21. For part (2) one checks easily
that Zp · log(1+π) is the torsion submodule of Pψ=p−1

F,log and that (Pψ=p−1

F,log )tf is free
of rank one over 3F , since it is isomorphic under ∇ to the free module

I ·α =3F · ((1− e1)+ (γ − 1)e1) ·α

by Lemma 22. Note that we view α here as an element of AF (1), i.e., the action
of γ is χ cyclo(γ ) times the standard action (20) of γ on AF . Setting

α̃ := ∇−1((1− e1)+ (γ − 1)e1) ·α

we obtain (3). �

5.2. The Coleman exact sequence and the Perrin-Riou basis. Lemma 23 tells us
that (Pψ=p−1

F,log )tf is generated over 3F by a single element α̃, but not what this α̃ is.
By studying one more space, OF [[π ]]

ψ=0, we are able to describe α̃ and hence α.

Proposition 24. (1) There is an exact sequence of 3F -modules

0→ Zp · log(1+π)→ Pψ=p−1

F,log
1−ϕ/p
−−−→OF [[π ]]

ψ=0
→ Zp(1)→ 0. (28)

(2) OF [[π ]]
ψ=0 is a free 3F -module of rank one generated by ξ(1+ π), where

ξ ∈OF is a basis of OF over Zp[6].

Proof. Part (1) is Theorem 2.3 in [Perrin-Riou 1990] and goes back to Coleman
[1979]. See also [Daigle 2014, Proposition 4.1.10]. Part (2) is Lemma 1.5 in
[Perrin-Riou 1990]. �

Corollary 25. The bases α and α̃ in Lemma 23 can be chosen such that

(1−ϕ/p) · α̃ =
(
(1− e1)+ (γ −χ

cyclo(γ ))e1
)
· ξ(1+π). (29)

Proof. The cokernel of (1−ϕ/p) in (28) is isomorphic to

Zp(1)∼=3F/(σ − 1, γ −χ cyclo(γ ))

so the image of (1−ϕ/p)must be (σ−1, γ−χ cyclo(γ ))·ξ(1+π). As in Lemma 22
we can show that this ideal is principal, and is generated by

(1− e1)+ (γ −χ
cyclo(γ ))e1. �

5.3. Proof of the conjecture for unramified fields. We now have the tools we
need to explicitly compute exp∗

Qp(r)(H
1(F,Zp(1− r))) and prove the equality of

Proposition 7 for K = F (i.e., e = 1). By Lemma 8 we can take

β := pr0,1−r (βIw),



1252 Jay Daigle and Matthias Flach

where βIw satisfies

α = Exp∗Zp
(βIw),

∇α̃ = ((1− e1)+ (γ − 1)e1) ·α,

(1−ϕ/p) · α̃ =
(
(1− e1)+ (γ −χ

cyclo(γ ))e1
)
· ξ(1+π),

(30)

using (22), Lemma 23(3) and (29). We cannot immediately apply Theorem 9 to
n = 0, but going back to [Cherbonnier and Colmez 1999, théorème IV.2.1] we have

∞∑
r=1

exp∗Qp(r)(pr0,1−r (u)) · t
r−1
= T0ϕ

−m Exp∗Zp
(u).

Applying this to

u = ((1− e1)+ (γ − 1)e1) ·βIw (31)

assures that

Exp∗Zp
(u)=∇α̃ ∈OF [[π ]]

and therefore

ϕ−0 P := ϕ−0
∇

r−1 Exp∗Zp
(u)= ϕ−0

∇
r α̃

converges in BdR for any r ≥ 1. Lemma 16 then implies

exp∗Qp(r)(pr0,1−r (u))=
1

(r−1)!

( d
dt

)r−1
T0ϕ
−m Exp∗Zp

(u)
∣∣
t=0

=
1

(r−1)!
T0 p−(r−1)mϕ−m

∇
r−1 Exp∗Zp

(u)
∣∣
t=0

=
1

(r−1)!
(1− p−rσ−1)ϕ−0

∇
r α̃
∣∣
t=0

=
1

(r − 1)!
(1− p−rσ−1)∇r α̃

∣∣
π=0.

Applying ∇r to (29) and using Lemma 15 we have

(1− pr−1ϕ) · ∇r α̃ =
(
(1− e1)+ (χ

cyclo(γ )rγ −χ cyclo(γ ))e1
)
· ∇

rξ(1+π)

=
(
(1− e1)+ (χ

cyclo(γ )rγ −χ cyclo(γ ))e1
)
· ξ(1+π)

and so we find

exp∗Qp(r)(pr0,1−r (u))

=
1

(r − 1)!
·

1− p−rσ−1

1− pr−1σ
·
(
(1− e1)+ (χ

cyclo(γ )r −χ cyclo(γ ))e1
)
· ξ.
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By Lemma 8 the action of γ ∈ 3F on H 1(F,Zp(1 − r)) is via the character
χ cyclo(γ )r . Hence, for our choice (31) of u, we have

pr0,1−r (u)= ((1− e1)+ (χ
cyclo(γ )r − 1)e1) · pr0,1−r (βIw)

= ((1− e1)+ (χ
cyclo(γ )r − 1)e1) ·β

and we can finally compute

exp∗Qp(r)(β)=
1

(r − 1)!
·

1− p−rσ−1

1− pr−1σ
·
(1− e1)+ (χ

cyclo(γ )r −χ cyclo(γ ))e1

(1− e1)+ (χ cyclo(γ )r − 1)e1
· ξ.

This verifies the identity of Proposition 7.

6. Results in the tamely ramified case

We resume our notation and assumptions from Section 4.3. Our first aim in this
section is to prove Proposition 44 below which is a yet more explicit reformulation
of the identity (16) in Proposition 7. We then prove this identity for e< p and r = 1
as well as for e< p/4 and r =2. In the isotypic components where η|Gal(K/F(ζp))=1
this can easily be done (for any r ) using computations similar to those in Section 5.3
with

β1 := pr1,1−r (βIw)

and βIw defined in (30). The notation here is relative to the base field K = F . In
any case, the equivariant local Tamagawa number conjecture is known for any r in
those isotypic components by [Benois and Berger 2008]. We shall therefore entirely
focus on isotypic components with

η|Gal(K/F(ζp)) 6= 1.

In this case we need to verify Equation (16). The main problem is that we do not
have any closed formula for a 3K -basis of (the torsion free part of) Aψ=1

K . We shall
analyze a general basis using Nakayama’s lemma, and to do this we first need to
analyze which restrictions are put on a power series

a =
∑

n

anπ
n
K ∈ AK

by the condition ψ(a)= a.

6.1. Analyzing the condition ψ = 1. Proposition 34 below, which is the main
result of this subsection, gives the rate of convergence of an→ 0 as n→−∞ for
a ∈ Aψ=1

K .
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Definition 26. For n ∈ N0 and m ∈ Z(p) define

bm,n := p−1
∑
ζ∈µp

ζm(1− ζ−1)n

= p−1 TrQ(ζp)/Q ζ
m
p (1− ζ

−1
p )n, if n ≥ 1.

Clearly bm,n only depends on m (mod p).

Lemma 27. One has bm,n ∈ Z and

bm,n =

{
(− 1)m

( n
m

)
, 0≤ n < p,

(− 1)m
( n

m

)
− (−1)m

( n
m+p

)
, p ≤ n < 2p,

(32)

where 0≤ m < p is the representative for m (mod p). Moreover,

p
⌊ n+p−2

p−1

⌋
−1 ∣∣ bm,n

for n ≥ 1 and hence
p j
| bm,n

for j (p− 1) < n ≤ ( j + 1)(p− 1).

Proof. Formula (32) follows from the binomial expansion of (1− ζ−1)n and the
fact that ∑

ζ∈µp

ζ k
=

{
0, p - k,
p, p | k.

In particular bm,0 = 0, 1 according to whether p - m or p | m. The different of the
extension Q(ζp)/Q is (1− ζp)

p−2, so we have

TrQ(ζp)/Q

(
ζm

p (1− ζ
−1
p )n

)
⊆ pN Z

⇐⇒ ((1− ζp)
n)⊆

(
pN (1− ζp)

2−p)
=
(
(1− ζp)

N (p−1)+2−p)
⇐⇒ n ≥ N (p− 1)+ 2− p⇐⇒ N ≤

n+ p− 2
p− 1

. �

Definition 28. Define integers βn, j ∈ Z by β1, j :=
1
p

(p
j

)
for 1≤ j ≤ p− 1 and(p−1∑

j=1

β1, j x j
)n

=

n(p−1)∑
j=n

βn, j x j .

Proposition 29. An element a =
∑

i aiπ
i
K ∈ AK lies in Aψ=1

K if and only if for all
N ∈ Z one has
∞∑

n=0

aN+en

( N
e + n

n

)
b(N/e)+n,n =

∑
0≤n≤ j≤n(p−1)

aσ(N+ je)/p

( N+ je
pe
n

)
βn, j · pn (33)
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with the convention that ar = 0 for r /∈ Z. Equation (33) holds for all N ∈ Z if and
only if it holds for all N ∈ pZ.

Proof. This is just comparing coefficients in the identity p−1 TrB/ϕ(B)(a)= ϕ(a).
One has ϕ(π)= (1+π)p

− 1= π p(1+ p · y) with y =
∑p−1

j=1 β1, jπ
− j and hence

ϕ(πK )= π
p

K · λ · (1+ p · y)1/e

with λ ∈ µe and (1+ Z)1/e the binomial series. In fact, λ = 1 since ϕ(πK ) ≡ π
p

K
mod p. Therefore

ϕ(πm
K )= π

pm
K (1+ p · y)m/e = π pm

K

∞∑
n=0

(m
e
n

)
yn
· pn

=

∞∑
n=0

(m
e
n

) n(p−1)∑
j=n

βn, jπ
pm−ej

K · pn

and the coefficient of π N
K in ϕ(a)=

∑
m aσmϕ(π

m
K ) is∑

m,n, j,N=pm−ej

aσm

(m
e
n

)
βn, j · pn,

which is the right-hand side of (33). The conjugates of π over ϕ(B) are

(1+π)ζ − 1= π · ζ · (1+ (1− ζ−1)π−1),

hence the conjugates of πm
K are

πm
K · ζ

m/e
·
(
1+ (1− ζ−1)π−1)m/e

= πm
K · ζ

m/e
·

∞∑
n=0

(m
e
n

)
(1− ζ−1)nπ−n

and

p−1 TrB/ϕ(B)(π
m
K )= π

m
K ·

∞∑
n=0

(m
e
n

)
bm/e,nπ

−n
=

∞∑
n=0

(m
e
n

)
bm/e,nπ

m−en
K ,

and the coefficient of π N
K in p−1 TrB/ϕ(B)(a) is the left-hand side of (33). Note

here that B(ζ )/ϕ(B) is totally ramified, so all the conjugates must be congruent
modulo 1− ζ .

Denote by (33)m the equation (33) modulo pm . By Lemma 30 below, (33)1 for
all N ∈ Z is equivalent to (33)1 for all N ∈ pZ. We shall show by induction on
m that this equivalence holds for all m. Suppose a ∈ AK satisfies (33)m+1 for all
N ∈ pZ. Let b ∈ Aψ=1

K be a lift of ā ∈ Eψ=1
K , which exists by Lemma 32 below, and

write a− b = c · p. Then a− b satisfies (33)m+1 for all N ∈ pZ, hence c satisfies
(33)m for all N ∈ pZ. By the induction assumption c satisfies (33)m for all N ∈ Z.
But then p · c satisfies (33)m+1 for all N ∈ Z, hence so does a = b+ c · p. �
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Lemma 30. An element a =
∑

i aiπ
i
K ∈ EK lies in Eψ=1

K if and only if for all k ∈ Z

one has
p−1∑
n=0

akp+ne(−1)n = aσk . (34)

Proof. The only nonzero term on the right-hand side of (33)1 is aσN/p, corresponding
to n = j = 0, and the nonzero terms on the left-hand side are for n ≤ p− 1 by
Lemma 27. For m ∈ Z(p) one has(

m
n

)(
n
m

)
=

m(m− 1) · · · (m− n+ 1)
n!

·
n!

m!(n−m)!
≡

{
0, m < n,
1, m = n,

since for m < n one of the factors in m(m − 1) · · · (m − n+ 1) is divisible by p,
whereas for m = n this product is congruent to m! modulo p. For m > n one has(n

m

)
= 0, so

(m
n

)(n
m

)
≡ 0 whenever m 6= n. Using (32) the left-hand side of (33)1 is

p−1∑
n=0

aN+en

(
m
n

)(
n
m

)
(−1)m

for m = (N/e)+ n. So the left-hand side vanishes for N /∈ pZ and is equal to the
left-hand side of (34) for N = pk. �

For later reference we also record here a more explicit version of (33)2.

Lemma 31. Let H0 = 0 and Hn =
∑n

i=1 1/ i be the harmonic number. Then (33)2

holds if and only if for all k ∈ Z one has

p−1∑
n=0

akp+ne(−1)n
(

1+ kp
e

Hn

)
+

2(p−1)∑
n=p+1

akp+ne(−1)n−p
· p·Hn−p

(
1+ k

e

)
≡aσk . (35)

Proof. The only nonzero term on the right-hand side of (33)2 for N = kp is aσk ,
corresponding to n = j = 0, since for n = 1 there is no 1 ≤ j ≤ (p − 1) with
p | (N+ je)= kp+ je. The nonzero terms on the left-hand side are for n≤ 2(p−1)
by Lemma 27. Note that for 1 ≤ j ≤ n < 2p only j = p is divisible by p. So
computing modulo p2 we have( kp

e + n
n

)
=

∏n
j=1
( kp

e + j
)

n!
≡

n! + kp
e

∑n
j=1

n!
j +

( kp
e

)2∑
1≤ j1< j2≤n

n!
j1 j2

n!

≡ 1+ kp
e

Hn +

(kp
e

)2 ∑
1≤ j1< j2≤n

1
j1 j2

≡

{
1+ kp

e Hn, n < p,
1+ k

e +
kp
e Hn−p +

( k
e

)2
· p · Hn−p, p ≤ n < 2p.
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Here we have used Hp−1 ≡ 0 mod p and
∑n

j=p+1 1/j ≡ Hn−p mod p. By (32)
we have

b(kp/e)+n,n =


(n

n

)
(−1)n = (−1)n, n < p,

0, n = p,
(−1)n−p

(( n
n−p

)
−
(n

n

))
, p < n < 2p

and( n
n− p

)
−

(n
n

)
=
(p+ n− p)(p+ n− p− 1) · · · (p+ 1)

(n− p)!
− 1≡ p ·

n−p∑
j=1

1
j
.

So the summand for n = p vanishes and for p < n < 2p we have( kp
e +n

n

)
b(kp/e)+n,n ≡

(
1+ k

e
+

kp
e

Hn−p+

(k
e
)2
· p ·Hn−p

)
(−1)n−p

· p ·Hn−p

≡ (−1)n−p
(

1+ k
e

)
· p ·Hn−p. �

Lemma 32. The map Aψ=1
K → Eψ=1

K is surjective.

Proof. This follows from the snake lemma applied to

0 // AK
p

//

ψ−1

��

AK //

ψ−1

��

EK //

ψ−1

��

0

0 // AK
p

// AK // EK // 0

and the fact that AK /(ψ − 1)AK ∼= H 2
Iw(K ,Zp(1)) ∼= Zp (see [Cherbonnier and

Colmez 1999, remarque II.3.2.]) is p-torsion free. �

Definition 33. For a =
∑

i aiπ
i
K ∈ AK and ν ≥ 1 we set

lν(a) :=min{i | pν - ai }.

In particular
l(a) := l1(a)= vπK(ā)

is the valuation of ā ∈ EK .

Note that l(a) is independent of a choice of uniformizer for AK , but for ν ≥ 2,
lν(a) is not.

Proposition 34. Let a ∈ Aψ=1
K .

(a) For all ν ≥ 1 we have

lν(a)≥−
ν(p− 1)+ 1

p
· e.
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In particular l(a)≥−e.

(b) If l(a) <−e+ e(p− 1) then

l2(a) > l(a)− e(p− 1),

while if l(a)≥−e+ e(p− 1) then l2(a)≥−e.

(c) If l(a) <−e+ 2e(p− 1) and l2(a)≥ l(a)− e(p− 1) then

l3(a) > l(a)− 2e(p− 1),

while if l(a)≥−e+ 2e(p− 1) and l2(a)≥ l(a)− e(p− 1) then l3(a)≥−e.

Remark 35. Part (b) is a small improvement of part (a) for ν = 2 and a with

l(a) >−
(

2− 1
p

)
e+ e(p− 1),

while part (c) improves (a) for ν = 3 and a with

l(a) >−
(

3− 2
p

)
e+ 2e(p− 1)

and l2(a)≥ l(a)− e(p− 1).

Proof. Suppose a =
∑

i aiπ
i
K ∈ Aψ=1

K . Part (a) is equivalent to the statement

i <−
ν(p− 1)+ 1

p
· e ⇒ pν | ai , (36)

which we denote by (36)ν if we want to emphasize dependence on ν. We shall
prove (36)ν by induction on ν, the statement (36)0 being trivial. Now assume (36)ν′
for ν ′ ≤ ν and assume pν+1 - ai for some

i <−
(ν+ 1)(p− 1)+ 1

p
· e.

We shall show that there is another i ′ < i with pν+1 - ai ′ . Hence there are infinitely
many i < 0 with pν+1 - ai which contradicts the fact that a ∈ AK . This proves
(36)ν+1.

In order to find i ′ we look at (33) for N = pi

∞∑
n=0

api+en

( pi
e + n

n

)
b(pi/e)+n,n=aσi +

∑
1≤n≤pλ≤n(p−1)

aσi+λe

( i
e + λ

n

)
βn,pλ · pn (37)

and first notice that
pν+1−n

| ai+λe
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for n/p ≤ λ≤ n(p− 1)/p. This is because of

i + λe <−
(ν+ 1)(p− 1)+ 1

p
· e+

n(p− 1)
p

· e =−
(ν+ 1− n)(p− 1)+ 1

p
· e

and the induction assumption. Since
(
(i/e)+λ

n

)
βn,pλ is a p-adic integer we conclude

that pν+1 divides the sum over λ, n in the right-hand side of (37) and hence does
not divide the right-hand side of (37).

Considering the left-hand side of (37) we first recall that Lemma 27 implies that

p j
| b(pi/e)+n,n (38)

for j (p− 1) < n ≤ ( j + 1)(p− 1). For n in this range we have

pi+ne ≤ pi+( j+1)(p−1)e <−
(
(ν+1)(p−1)+1

)
e+( j+1)(p−1)e

=−
(
(ν+1− j)(p−1)+1

)
e+(p−1)e

≤−
(ν+1− j)(p−1)+1

p
·e (39)

provided this last inequality holds which is equivalent to

p
(
(ν+ 1− j)(p− 1)+ 1

)
− p(p− 1)≥ (ν+ 1− j)(p− 1)+ 1

⇐⇒ (p− 1)
(
(ν+ 1− j)(p− 1)+ 1

)
≥ p(p− 1)

⇐⇒
(
(ν+ 1− j)(p− 1)+ 1

)
≥ p

⇐⇒ (ν+ 1− j)≥ 1⇐⇒ ν ≥ j.

So for 1≤ j ≤ ν inequality (39) holds, and the induction assumption implies

pν+1− j
| api+ne.

Using (38) we conclude that pν+1 divides all summands in the left-hand side of
(37) except perhaps those with n < p (corresponding to j = 0). Since pν+1 does
not divide the right-hand side, it does not divide the left-hand side of (37). So
there must be one summand with n < p not divisible by pν+1 and hence some
i ′ := pi + en with n ≤ p− 1 such that pν+1 - ai ′ . It remains to remark that

i ′ = pi + en ≤ pi + e(p− 1) < pi − i(p− 1)= i (40)

since i <−e.
To prove (b) we use the same argument. Assuming the existence of

i ≤min{l(a)− e(p− 1),−e− 1}

with p2 - ai we find another i ′< i with p2 - ai ′ . On the right-hand side of (37), apart
from aσi , all summands are divisible by p2 (note there are none with n = 1 since λ
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has to be an integer). On the left-hand side, summands for n> 2(p−1) are divisible
by p2 by Lemma 27. For p≤ n≤ 2(p−1) we have, assuming l(a)<−e+e(p−1),

pi + en ≤
(
l(a)− e(p− 1)

)
+ 2(p− 1)e = l(a)+ (p− 1)l(a)− (p− 2)(p− 1)e

< l(a)+ (p− 1)(−e+ e(p− 1))− (p− 2)(p− 1)e = l(a)

and therefore p | api+en . If l(a)≥−e+ e(p− 1) we have

pi + en < p(−e)+ 2(p− 1)e =−e+ e(p− 1)≤ l(a)

and again conclude p | api+en . So all summands on the left-hand side with n ≥ p
are divisible by p2. Hence some i ′ := pi + en with n ≤ p − 1 satisfies p2 - ai ′ .
Moreover, (40) holds since i <−e.

For (c) we use this argument yet another time. Assume

i ≤min{l(a)− 2e(p− 1),−e− 1}

and p3 -ai . On the right-hand side of (37) we need p |ai+λe for 2/p≤λ≤2(p−1)/p,
i.e., λ= 1. But

i + e ≤min{l(a)− 2e(p− 1)+ e,−1}< l(a),

so p | ai+e. Assume first l(a) <−e+ 2e(p− 1). On the left-hand side we have for
p ≤ n ≤ 2(p− 1)

pi + en ≤ p
(
l(a)− 2e(p− 1)

)
+ 2(p− 1)e

= l(a)− e(p− 1)+ (p− 1)l(a)+ e(p− 1)− (2p− 2)(p− 1)e

< l(a)− e(p− 1)+ (p− 1)(−e+ 2e(p− 1))− (2p− 3)(p− 1)e

= l(a)− e(p− 1)≤ l2(a)

and therefore p2
| api+en . For 2p− 1≤ n ≤ 3(p− 1) we just add (p− 1)e to this

last estimate to conclude

pi + en ≤ p
(
l(a)− 2e(p− 1)

)
+ 3(p− 1)e

< l(a)− e(p− 1)+ e(p− 1)= l(a)

and hence p | api+en . Now assume l(a)≥−e+ 2e(p− 1). For p ≤ n ≤ 2(p− 1)
we have

pi + en ≤ p(−e)+ 2(p− 1)e ≤ l(a)− e(p− 1)≤ l2(a)

and therefore p2
| api+en . For 2p−1≤ n ≤ 3(p−1) we again add (p−1)e to this

last estimate to conclude pi + en < l(a) and p | api+en . As before we conclude
that, for some i ′ := pi + en with n ≤ p− 1, we have p3 - ai ′ . Moreover (40) holds
since i <−e. �
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Before drawing consequences of Proposition 34 we make the following definition.

Definition 36. Let $ be the uniformizer of K given by

$ = e
√
ζp − 1= ϕ−1(πK)|t=0

and denote by v$ the unnormalized valuation of the field K , i.e.,

v$ (p)= e(p− 1).

For a ∈ B†,1
K define

v$ (a) := v$ (ϕ−1(a)|t=0).

Corollary 37. For all a ∈ Aψ=1
K the series ϕ−1(a) converges, i.e., Aψ=1

K ⊆ B†,1
K .

Proof. By (a) we have pν | ai for

−
(ν+ 1)(p− 1)+ 1

p
· e ≤ i <−

ν(p− 1)+ 1
p

· e

and hence

vp(ai )≥ ν ≥−
i p+ e

e(p− 1)
− 1

and
v$ (ai$

i )≥−(i p+ e)− e(p− 1)+ i =−(p− 1)i − pe. (41)

This implies
lim

i→−∞
v$ (ai$

i )=∞

and hence the series
∑

i∈Z ai$
i converges in K ⊆ Q̂p. By [Colmez 1999, proposi-

tion II.25] this implies that ϕ−1(a) converges in BdR. �

Proposition 38. For each a∈ Eψ=1
K we have l(a)≥−e. If l(a)>−e then l(a) 6≡−e

mod p. Conversely, for each c ∈ k× and n ∈ Z with

−e < n 6≡ −e mod p

there is an element a ∈ Eψ=1
K with l(a)= n and leading coefficient c.

Proof. That l(a)≥−e is Proposition 34(a). Assume that l(a) >−e and l(a)≡−e
mod p. Then l(a)= kp+ (p− 1)e for some k ∈ Z and

k =
l(a)− (p− 1)e

p
= l(a)−

(
1− 1

p

)
(l(a)+ e) < l(a),

so we have ak = 0. Further, akp+ie = 0 for i = 0, .., p− 2 since kp+ ie < l(a).
Hence there is only one nonzero term in (34) which gives a contradiction.
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To show the second part one can solve (34) by an easy recursion. Alternatively,
Proposition 10 implies that ∇ log(a) ∈ Eψ=1

K for any a ∈ E×K . Now compute

∇ log(1+ cπn
K )=

∇(1+ cπn
K )

1+ cπn
K
=

cn/e · (πn−e
K +πn

K )

1+ cπn
K

=
cn
e
·πn−e

K + · · ·

and note that for p - n one can produce any leading coefficient. �

Remark 39. Elements a ∈ Eψ=1
K with l(a)=−e exist, e.g.,

∇ log(π j )= j ·π−1
+ j = j ·π−e

K + j,

but their leading coefficient is restricted to elements in Fp.

Corollary 40. If a ∈ Aψ=1
K and

l(a) <−e+ e(p− 1),

we have v$ (a)= l(a).

Proof. Since v$ (al(a)$
l(a))= l(a) we need to show

v$ (ai$
i ) > l(a)

for i 6= l(a). This is clear for i > l(a), and also for

l(a)− e(p− 1) < i < l(a)

since in that range p | ai and so v$ (ai$
i )≥ e(p− 1)+ i > l(a). For

l(a)− 2e(p− 1) < i ≤ l(a)− e(p− 1)

we have p2
| ai by part (b) and hence v$ (ai$

i )≥ 2e(p−1)+ i > l(a). Finally for

i ≤ l(a)− 2e(p− 1) <−e− e(p− 1)=−ep <−2e

we have by (41)

v$ (ai$
i )≥−(p− 1)i − pe > (p− 1)2e− pe = (p− 2)e > l(a),

using the assumption on l(a). �

In order to study v$ (a) for a ∈ Aψ=1
K with l(a) >−e+ e(p−1) we need to use

Lemma 31. The next proposition will show that v$ (a) cannot only depend on l(a)
in this case. In the situation of Proposition 41(b) one can have v$ (a) = l(a) but
for any b ∈ Aψ=1

K with l(b) < l(a)− e(p− 1) and p2 - al(b)+ pbl(b) one has

l(a+ pb)= l(a), v$ (a+ pb)≤ l(b)+ e(p− 1) < l(a)= v$ (a).
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Proposition 41. Let a′ ∈ Aψ=1
K with

l(a′)= µp− e+ e(p− 1)

for some µ ∈ Z with 1≤ µ < e(p−1)
p .

(a) There exists a ≡ a′ mod p with

l2(a)≥ µp− e = l(a)− e(p− 1).

(b) For a as in (a) we have v$ (a) ≥ l(a) with equality if p - µ− e. This last
condition is automatic for e < p.

Proof. First note that l2(a′) ≥ −e by Proposition 34(b). If l2(a′) = −e then
Equation (35) for k := −e reads

a′σ
−e ≡ a′kp+e(p−1) = a′

−e

since i = kp+ en < l2(a′) for n < p− 1 and i = kp+ en ≤−e+ e(p− 1) < l(a′)
for p+1≤ n ≤ 2(p−1). Hence a′

−e/p mod p ∈ Fp. Adding an element pb to a′,
where b with l(b)=−e is as in Remark 39, we can assume that l2(a′) >−e. More
generally, as long as l2(a′) < l(a′), we can add elements pb to a′ whose existence
is guaranteed by Proposition 38 and increase l2(a′) until l2(a′) is not one of the
possible l(b), i.e.,

l2(a′)= µ′ p− e = (µ′− e)p+ (p− 1)e

for some µ′ ≥ 1. Equation (35) for k := µ′− e then reads

0≡ a′kp+e(p−1)+

2(p−1)∑
n=p+1

a′kp+ne · (−1)n−p
· p · Hn−p

(
1+ k

e

)
(42)

since i = kp + en < l2(a′) for n < p − 1 and also i = k < l2(a′), so a′i ≡ 0 for
those i . If µ′ < µ we have for p+ 1≤ n ≤ 2(p− 1)

kp+ ne < (µ− e)p+ 2(p− 1)e = l(a′)

and hence p | a′kp+ne. So if µ′ <µ then a′kp+e(p−1) is the only nonzero term in (42)
and we arrive at a contradiction. Therefore µ′ ≥ µ and we have found our a, or
otherwise we arrive at an a with l2(a)= l(a). In either case this proves part (a).

Equation (42) for k := µ− e gives

0≡ akp+e(p−1)+ al(a) · (−1) · p · Hp−2

(
1+ µ−e

e

)
≡ akp+e(p−1)− al(a) · p ·

µ

e
(mod p2) (43)
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since p | akp+ne for kp+ ne < kp+ 2(p− 1)e = l(a). Note also

Hp−2 = Hp−1−
1

p−1
≡ 0− (−1)= 1 (mod p).

For part (b) we need to show that v$ (ai$
i )≥ l(a) for all i ∈ Z (and compute the

sum over those i for which there is equality). As in the proof of Corollary 40 for
i > l(a) and l(a)− e(p− 1) < i < l(a) we obviously have v$ (ai$

i ) > l(a). By
(43) we have

al(a)−e(p−1)$
l(a)−e(p−1)

+al(a)$
l(a)
≡

( pµ
$ e(p−1)e

+1
)

al(a)$
l(a)

=

(
−
µ

e
+1
)

al(a)$
l(a)
+O($ l(a)+1) (44)

since

$ e(p−1)
= (ζp − 1)p−1

≡−p (mod (ζp − 1)p).

So if p -−(µ/e)+ 1 this is the leading term of valuation l(a). For

l(a)− 2e(p− 1) < i < l(a)− e(p− 1),

since l2(a) ≥ l(a)− e(p− 1) by part (a), we have p2
| ai and hence v$ (ai$

i ) ≥

2e(p− 1)+ i > l(a). For

l(a)− 3e(p− 1) < i ≤ l(a)− 2e(p− 1)

we have p3
| ai by (c) of Proposition 34 and hence v$ (ai$

i )≥ 3e(p−1)+i > l(a).
Finally for

i ≤ l(a)− 3e(p− 1) <−e− e(p− 1)=−ep

we have by (41)

v$ (ai$
i )≥−(p− 1)i − pe > (p− 1)pe− pe = (p− 2)pe ≥ (2p− 3)e > l(a)

using the assumption on l(a). �

6.2. Isotypic components. We introduce some notation for isotypic components.
Recall that

G ∼=6n1

with 6 cyclic of order f and 1 cyclic of order e(p− 1). For any 6-orbit [η] we
define the idempotent

e[η] =
∑
η′∈6̂η

eχ ∈ Zp[G],
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where the irreducible characters χ = ([η], η′) of G are parametrized as in Section 3.
For any Zp[G]-module M its [η]-isotypic component

M [η] := e[η]M

is a again a Zp[G]-module. The 6-orbit

[η] = {η, ηp, ηp2
, . . . , ηp fη−1

} = {η
n1
0 , . . . , η

n fη
0 } (45)

corresponds to an orbit {n1, . . . , n fη} ⊆ Z/e(p − 1)Z of residue classes modulo
e(p−1) under the multiplication-by-p map, i.e., we have ni+1∼=ni p mod e(p−1)
where we view the index i as a class in Z/ fηZ. We shall use the notation

[η] = {n1, . . . , n fη} = [ni ]

to denote both the orbit of residue classes in Z/e(p−1)Z and the orbit of characters.
By (21) the group

1e := Gal(K/F(ζp))

acts on e
√
ζp − 1=ϕ−1(πK )|t=0 via the character η0 defined in Section 3 and acts on

πK via ηp
0 . The [η] = {n1, . . . , n fη}-isotypic component of the Zp[6n1e]-module

AK is {
a =

∑
anπ

n
K

∣∣ an = 0 for n mod e /∈ {n1, . . . , n fη}

}
,

but A[η]K is much harder to describe since πK is not an eigenvector for the full
group 1. However, there is the following fact about leading terms.

Lemma 42. Fix ν≥1, a=
∑

j a jπ
j

K ∈ AK and denote by eη∈OF [1] the idempotent
for η = ηn

0 . If
p · lν(a)≡ n mod e(p− 1), (46)

then
lν(eηa)= lν(a)

and the leading coefficients modulo pν of eηa and a agree. If a = eηa is an
eigenvector for 1 then (46) holds.

Proof. Denote by
ω :1→ Gal(F(ζp)/F)→ Z×p

the Teichmüller character. For δ ∈1 we have

δ(πK )=
(
(1+π)ω(δ)− 1

)1/e
=

( ∞∑
i=1

(
ω(δ)

i

)
π i
)1

e

= λ(δ)πK

(
1+

∞∑
i=2

1
ω(δ)

(
ω(δ)

i

)
π i−1

)1
e
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where λ(δ) ∈ µe(p−1) satisfies λ(δ)e = ω(δ) and (1 + Z)1/e denotes the usual
binomial series. Applying ϕ−1

|t=0 we find

δ( e
√
ζp − 1)≡ λ(δ)1/p

·
e
√
ζp − 1 mod $ 2

and since e
√
ζp − 1 ≡ e(p−1)

√
−p mod $ 2 we obtain λ(δ) = η0(δ)

p. In particular,
for any a ∈ AK

δ(a)≡ η0(δ)
p·lν(a) · alν(a) ·π

lν(a)
K mod (pν, π lν(a)+1

K )

and

eηa =
1

e(p−1)

∑
δ∈1

η−1(δ)δ(a)≡ 1
e(p−1)

∑
δ∈1

η0(δ)
p·lν(a)−n

· alν(a) ·π
lν(a)
K

≡

{
alν(a) ·π

lν(a)
K if p · lν(a)≡ n mod e(p− 1),

0 if p · lν(a) 6≡ n mod e(p− 1),

where the congruences are modulo (pν, π lν(a)+1
K ). This implies both statements in

the lemma. �

Remark 43. With the notation introduced in this section we have

e[η] =
fη∑

i=1

e
ηpi .

6.3. The main result. We view 6 as a subgroup of G such that e(p−1)
√
−p ∈ K6 ,

where e(p−1)
√
−p is the choice of root corresponding to our choice of root πK of π .

Then the Zp[6]-algebra Zp[G] is finite free of rank e(p− 1). For each choice of η
the [η]-isotypic component of Zp[G] is free of rank fη over Zp[6] and for each
η 6= ω the [η]-isotypic component

(Aψ=1
K (1))[η]

of Aψ=1
K (1) is free of rank fη over Zp[6][[γ1− 1]]. Write

[η] = {n1, . . . , n fη} = [n1] ⊆ Z/e(p− 1)Z

and pick representatives ni ∈ Z with

0< ni < e(p− 1), i = 1, . . . , fη.

Note that our running assumption η|1e 6= 1 implies e - ni .

Proposition 44. Fix η|1e 6= 1 and let {αi | i = 1, . . . , fη} be a Zp[6][[γ1−1]]-basis
of (Aψ=1

K (1))[η]. Let ni,r be representatives for the residue classes

[n1− re] ⊆ Z/e(p− 1)Z
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with
0< ni,r < e(p− 1)

indexed such that ni − re ≡ ni,r mod e(p− 1). Consider the two Zp[6]-lattices

Lr :=

fη⊕
i=1

Zp[6] · (∇
r−1ασ

−1

i )( e
√
ζp − 1)

and

O[n1−re]
K =

fη⊕
i=1

OF · (
e(p−1)
√
−p)ni,r

in the [n1− re]-isotypic component

K [n1−re]
=

fη⊕
i=1

F · ( e(p−1)
√
−p)ni,r =

fη⊕
i=1

F · ( e(p−1)
√
−p)ni−re

of K . Then the conjunction of (16) (in Proposition 7) for χ = ([n1− re], η′) over
all η′ holds if and only if Lr and O[n1−re]

K have the same Zp[6]-volume, i.e.,

DetZp[6] Lr = DetZp[6]O
[n1−re]
K (47)

inside DetQp[6] K [n1−re].

Proof. Let α be a 3K e[n1]-basis of (Aψ=1
K (1))[n1]. Then

βIw := (Exp∗Zp
)−1(α)

is a 3K e[n1]-basis of H 1
Iw(K ,Zp(1))[n1] and the element

β = pr1,1−r (βIw)

of Corollary 12 is a Zp[G]e[n1−re]-basis of (H 1(K ,Zp(1− r))/tor)[n1−re]. This
follows from the fact that the isomorphism pr1,1−r of Lemma 8 is not 3K -linear but
3K -κ−r -semilinear, where κ j is the automorphism of3K given by g 7→ gχ cyclo(g) j

for g ∈ G×0K . Theorem 9 and Proposition 13 imply

exp∗Qp(r)(β)=
1

(r − 1)!

(
d
dt

)r−1

p−1ϕ−1(α)|t=0

=
p−r

(r − 1)!
(∇r−1ασ

−1
)( e
√
ζp − 1).

Hence the Zp[G]e[n1−re]-lattice

Zp[G] · (r − 1)! · pr−1
· exp∗Qp(r)(β)⊂ K [n1−re] (48)

is free over Zp[6] with basis

(r − 1)! · pr−1
·

p−r

(r − 1)!
(∇r−1ασ

−1

i ) e
√
ζp − 1= p−1

· (∇r−1ασ
−1

i )( e
√
ζp − 1),
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where i = 1, . . . , fη. Now the conjunction of (16) for χ = ([n1 − re], η′) over
all η′ is equivalent to the statement that the lattice (48) and the [n1− re]-isotypic
component of the inverse different(

e
√
ζp − 1

)−(e(p−1)−1)OK

have the same Zp[6]-volume. Since e - n1 we have((
e
√
ζp − 1

)−(e(p−1)−1)OK
)[n1−re]

= (p−1OK )
[n1−re]

and the statement follows. �

6.4. Proof for r = 1, 2 and small e. We retain the notation of the previous section.
As in Proposition 24 denote by ξ a Zp[6]-basis of OF .

Proposition 45. There exists a Zp[6][[γ1− 1]]-basis

αi = ξ ·π
l(αi )
K + · · · ∈ Aψ=1

K , i = 1, . . . , fη

of (Aψ=1
K )[n1−e] with

l(αi )=

{
ni − e if p - ni ,

ni − e+ e(p− 1) if p | ni .

Proof. By Nakayama’s lemma it suffices to find a Fp[6]-basis for

(Aψ=1
K )[n1−e]/(p, γ1− 1)∼=

(
Aψ=1

K /(p, γ1− 1)
)[n1−e]

. (49)

By Lemma 32 we have Aψ=1
K /p Aψ=1

K = Eψ=1
K . By Proposition 38 (reductions

mod p of) elements αi as described in Proposition 45 exist in Eψ=1
K . By projection

and Lemma 42 we can also assume that they are in the [n1−e]-isotypic component.
Let a′ be a nonzero Zp[6]-linear combination of the αi and assume

a′ ≡ (γ1− 1)a mod p

for some a ∈ Aψ=1
K . By Lemma 46 below we have l(a′) ≥ −e+ e(p− 1). Since

l(a′)= l(αi ) for some i , this implies

l(a′)≡−e+ e(p− 1)≡−2e mod p.

Using Lemma 46 again we have l(a) ≤ l(a′)− e(p − 1) ≡ −e mod p. Since
l(a) 6≡ −e mod p by Proposition 38 we have strict inequality. Lemma 46 then
shows p | l(a) and hence p | l(a′), contradicting l(a′)≡−2e mod p. We conclude
that the αi are linearly independent in (49). Since the Fp[6]-rank of (49) is fη this
finishes the proof. �
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Lemma 46. For a ∈ Eψ=1
K with l(a)= j pκ with p - j we have

l((γ1− 1)a)= ( j + e(p− 1))pκ .

In particular
l((γ1− 1)a)≥ l(a)+ e(p− 1)

with equality if and only if p - l(a), and

l((γ1− 1)a)≥−e+ e(p− 1)

for all a ∈ Eψ=1
K .

Proof. Since χ cyclo(γ1)= 1+ p we find from (20) that (in EK )

γ1(π)= π +π
p
+π p+1

and hence for n = j pκ

(γ1− 1)πn
K = (π +π

p
+π p+1)n/e−πn/e

= πn
K
(
(1+π p−1

+π p)n/e− 1
)

= πn
K
(
(1+π pκ (p−1)

+π pκ+1
) j/e
− 1

)
=

j
e
·π

n+epκ (p−1)
K + · · ·

and this is indeed the leading term since p - j . The last assertion follows from
Proposition 34(a). �

Proposition 47. If e < p, the identity (47) holds for r = 1.

Proof. We first remark that for each i we have

v$ (αi )= l(αi )=

{
ni − e if p - ni ,

ni − e+ e(p− 1) if p | ni

by Corollary 40 and Proposition 41. Note that there is at most one ni , n1 say, with

0< n1 ≤ e− 1

since all the ni lie in the same residue class modulo p− 1 and e ≤ p− 1. Then

n2 = pn1 ≤ ep− p < ep− e = e(p− 1)

and conversely, p | n2 if and only if 0 < n1 := n2/p ≤ e− 1. For all other i we
have ni − e = ni,1. So if no ni − e is negative then

qi := α
σ−1

i
(

e
√
ζp − 1

)
∈ K

is already a basis of O[n1−e]
K . Otherwise

p · q1, p−1
· q2, q3, . . . , q fη
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is a basis of O[n1−e]
K . Since L1 is the span of the qi the statement follows. �

Remark 48. Although not covered by Proposition 2, it is in fact true that the
equivariant local Tamagawa number conjecture for r = 1 is equivalent to (47) for
r = 1 and so Proposition 47 proves this conjecture for e < p. However, for r = 1
one can give a direct proof without any assumption on e other than p - e by studying
the exponential map instead of the dual exponential map. Since the exponential
power series gives a G-equivariant isomorphism

exp : p ·OK ∼= 1+ p ·OK ,

the (equivariant) relative volume of exp(OK ) and (O×K )
∧
⊆ H 1(K ,Zp(1)) can be

easily computed. For more work on the case r = 1, see [Bley and Cobbe 2016] and
references therein.

To prepare for the proof of Proposition 51 below we need to compute v$ (∇αi ),
i.e., prove the analogues of Corollary 40 and Proposition 41 for ∇a ∈ Aψ=p

K .

Lemma 49. Assume e < p/2. For a ∈ Aψ=1
K with

p - l(a) <−e+ e(p− 1)
or with

l(a)= µp− e+ e(p− 1)

and chosen as in Proposition 41(a) we have

v$ (∇a)= l(∇a)= l(a)− e.

Proof. Since

∇π
j

K =
j
e
π

j−e
K +

j
e
π

j
K , (50)

it is clear that l(∇a)= l(a)− e if p - l(a). To compute v$ (∇a), note that from the
proof of Corollary 40 we already know

v$ (a j$
j ) > l(a)

for j 6= l(a). But this implies

v$

(
a j

j
e
$ j−e

)
> l(a)− e, v$

(
a j

j
e
$ j

)
> l(a) > l(a)− e (51)

for j 6= l(a). This finishes the proof for the case p - l(a) <−e+ e(p− 1). If

l(a)= µp− e+ e(p− 1)

then recall from the proof of Proposition 41(b) that we had to compute modulo p2

and there were two terms in (44) with valuation l(a) arising from j = l(a) and
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j = l(a)− e(p− 1). Normalizing the leading coefficient to be ξ (as in the αi ) we
have

a ≡ ξ ·
µp
e
·π

l(a)−e(p−1)
K + · · ·+ ξ ·π

l(a)
K + · · · mod p2

and

∇a ≡ ξ ·
µp
e
·
µp− e

e
·π

l(a)−e−e(p−1)
K + · · ·+ ξ ·

l(a)
e
·π

l(a)−e
K + · · · mod p2

and hence
µp
e
·
µp− e

e
·$ l(a)−e−e(p−1)

+
l(a)

e
·$ l(a)−e

≡

(
−
µ

e
·
µp− e

e
+

l(a)
e

)
·$ l(a)−e mod p2.

Computing the leading coefficient modulo p we find(
µ

e
+
−2e

e

)
=
µ

e
− 2,

which is divisible by p if and only if p | µ− 2e. Since e < p/2 we have

−p <−2e < µ− 2e <
e(p− 1)

p
− 2e =

(
−1− 1

p

)
e < 0

and hence p -µ−2e. In the proof of Proposition 41(b) we showed v$ (a j$
j )> l(a)

for j 6= l(a), l(a)−e(p−1) and as above this implies that the corresponding terms
in ∇a all have valuation larger than l(a)− e. �

We handle the case p | l(a) in a separate lemma. Similar to Proposition 41 we
need to compute modulo p2.

Lemma 50. Assume e < p/4 and 0 < µp < −e + e(p − 1). Then there exists
a ∈ (Aψ=1

K )[µp] with l(a)= µp and

v$ (∇a)= l(∇a)= µp− e+ e(p− 1).

Moreover we can choose a with any leading coefficient.

Proof. The statement about the leading coefficient will be clear from the proof,
so to alleviate notation we take the leading coefficient to be 1. First we can find
a′ ∈ Aψ=1

K with
a′ ≡ πµp

K −π
µp+e(p−1)
K + · · · (mod p2),

i.e., with a′i ≡ 0 for all i <µp+e(p−1) and i 6=µp. To see this, first note that (35)
is satisfied for k = µ since Hp−1 ≡ 0 (mod p) (and we take a′µp+ne arbitrary but
divisible by p for n = p+1, . . . , 2(p−1)). In any Equation (35) with index k <µ
the coefficient a′µp does not occur on the left-hand side since kp+ ne is a multiple
of p only for n=0 among n∈{0, . . . , p−1, p+1, . . . , 2(p−1)}. On the right-hand
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side we always have a′k ≡ 0 since k <µ<µp. Similarly, the coefficient a′µp+e(p−1)
does not occur on the left-hand side for k<µ since kp+ne=µp+e(p−1) implies
n ≡−1 (mod p), i.e., n = p−1. So the fact that a′i 6≡ 0 for i = µp, µp+ e(p−1)
forces no further nonzero terms in equations with index k <µ. Equations (35) with
index k >µ can always be satisfied inductively by adjusting the variable a′kp+(p−1)e
since a′kp+(p−1)e does not occur in any equation with index k ′ < k.

With the notation introduced in Section 6.2 set

a = e[µp]a′ ∈ (A
ψ=1
K )[µp]

so that l(a)= l2(a)= µp by Lemma 42. We have

∇a′ ≡
µp
e
·π

µp−e
K +

µp
e
·π

µp
K −

µp+ e(p− 1)
e

·π
µp−e+e(p−1)
K + · · · (mod p2)

and hence

∇a =∇e[µp]a′ = e[µp−e]∇a′

≡
µp
e
·π

µp−e
K +· · ·−

(
µp+e(p−1)

e
−
µp
e

x
)
·π

µp−e+e(p−1)
K +· · · (mod p2),

where x is the coefficient of πµp−e+e(p−1)
K in the expansion of e[µp−e](π

µp−e
K +π

µp
K ).

Moreover

l(∇a)= l(∇e[µp]a′)= l(e[µp−e]∇a′)= l(∇a′)= µp− e+ e(p− 1).

In order to show that v$ (∇a)= l(∇a) write

∇a =
∑

i

bi ·π
i
K .

The terms for i = µp− e and i = µp− e+ e(p− 1) contribute the leading term in
the variable $

µp
e
·$µp−e

−

(
µp+ e(p− 1)

e
−
µp
e

x
)
·$µp−e+e(p−1)

+ · · ·

=

(
−
µ

e
−
µp+ e(p− 1)

e
+
µp
e

x
)
·$µp−e+e(p−1)

+ · · ·

since, similarly to (44), we have p - −µe + 1 as e < p. For the terms with i 6=
µp− e+ e(p− 1), µp− e we must again verify that

v$ (bi$
i ) > µp− e+ e(p− 1).

This is clear for i > µp− e+ e(p− 1) and for

µp− e < i < µp− e+ e(p− 1)



On the local Tamagawa number conjecture for Tate motives 1273

since then p | bi . For i < µp− e it suffices to show by (51) that we have instead

v$ (ai$
i ) > µp+ e(p− 1)

for i < µp. Since l2(a)= µp we have v$ (ai )≥ 2e(p− 1) for

µp− e(p− 1) < i < µp

and hence v$ (ai$
i ) > µp+ e(p− 1). For

µp− 2e(p− 1) < i ≤ µp− e(p− 1)

we have by v$ (ai )≥ 3e(p− 1) by Proposition 34(a) since

i ≤ µp− e(p− 1) <−
(

3− 2
p

)
· e.

Indeed this last inequality is equivalent to

µp <
(
(p− 1)−

(
3− 2

p

))
· e⇐⇒ µ < e−

( 4
p
−

2
p2

)
· e,

which holds by our assumption 4e< p, noting that e−1 is the maximal value for µ.
Finally for

i ≤ µp− 2e(p− 1) <−e− e(p− 1)=−ep

we have by (41)

v$ (ai$
i )≥−(p− 1)i − pe > (p− 1)pe− pe = (p− 2)pe

≥ (2p− 3)e =−e+ 2e(p− 1) > µp+ e(p− 1). �

Proposition 51. If e < p/4 the identity (47) holds for r = 2.

Proof. By Lemmas 49 and 50 we can choose αi such that

v$ (∇αi )= l(∇αi )=

{
ni − 2e if p - ni and p - ni − e,
ni − 2e+ e(p− 1) if p | ni or p | ni − e.

As in the proof of Proposition 47, for each 0< n1 < e there is a unique n2 = pn1

divisible by p. Similarly for each nh with e < nh < 2e (which is unique if it exists)
there is a unique

nh+1− e = p(nh − e)

divisible by p. Note here that nh ≤ 2e− 1 and hence

nh+1 ≤ p(e− 1)+ e < e(p− 1)

using 2e < p. Let
qi := ∇α

σ−1

i ( e
√
ζp − 1) ∈ K
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be the basis of L2. We again find that

p · q1, p−1
· q2, . . . , p · qh, p−1

· qh+1, . . . , q fη if n1 < e and e < nh < 2e,

p · q1, p−1
· q2, . . . , qh, qh+1, . . . , q fη if n1 < e and 6 ∃ e < nh < 2e,

q1, q2, . . . , p · qh, p−1
· qh+1, . . . , q fη if 6 ∃ n1 < e and e < nh < 2e,

q1, q2, . . . , qh, qh+1, . . . , q fη if 6 ∃ n1 < e nor e < nh < 2e,

is a basis of O[n1−2e]
K and the statement follows. �
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