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We prove that the double covers of the alternating and symmetric groups are
determined by their complex group algebras. To be more precise, let n � 5 be
an integer, G a finite group, and let yAn and yS˙n denote the double covers of An
and Sn, respectively. We prove that CG Š CyAn if and only if G Š yAn, and
CG ŠCySCn ŠCyS�n if and only if G Š ySCn or yS�n . This in particular completes the
proof of a conjecture proposed by the second and fourth authors that every finite
quasisimple group is determined uniquely up to isomorphism by the structure
of its complex group algebra. The known results on prime power degrees and
relatively small degrees of irreducible (linear and projective) representations of
the symmetric and alternating groups together with the classification of finite
simple groups play an essential role in the proofs.

1. Introduction

The complex group algebra of a finite group G, denoted by CG, is the set of formal
sums

˚P
g2G agg j ag 2C

	
, equipped with natural rules for addition, multiplication,

and scalar multiplication. Wedderburn’s theorem implies that CG is isomorphic to
the direct sum of matrix algebras over C whose dimensions are exactly the degrees
of the (nonisomorphic) irreducible complex representations of G. Therefore, the
study of complex group algebras and the relation to their base groups is important
in group representation theory.

In an attempt to understand the connection between the structure of a finite group
and its complex group algebra, in Question 2 of the landmark paper [Brauer 1963]
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it was asked: when do nonisomorphic groups have isomorphic complex group
algebras? Since this question might be too general to be solved completely, it
is more feasible to study more explicit questions/problems whose solutions will
provide a partial answer to Brauer’s question. For instance, if two finite groups
have isomorphic complex group algebras and one of them is solvable, is it true that
the other is also solvable? Or, if two finite groups have isomorphic complex group
algebras and one of them has a normal Sylow p-subgroup, can we conclude the
same for the other group? We refer the reader to [Brauer 1963] or Section 9 of the
survey paper [Navarro 2010] for more discussions on complex group algebras.

A natural problem that arises from Brauer’s question is the following: given
a finite group G, determine all finite groups (up to isomorphism) with complex
group algebras isomorphic to that of G. This problem is easy for abelian groups
but difficult for solvable groups in general. If G is any finite abelian group of
order n, then CG is isomorphic to a direct sum of n copies of C, so the complex
group algebras of any two abelian groups are isomorphic if and only if the two
groups have the same order. For solvable groups, the probability that two groups
have isomorphic complex group algebra is often fairly “high”. For instance, it was
pointed out in [Huppert 2000] that among 2328 groups of order 27, there are only 30
different complex group algebra structures. In contrast to solvable groups, simple
groups or more generally quasisimple groups seem to have a stronger connection
to their complex group algebras. In [Nguyen and Tong-Viet 2014], two of the four
current authors have conjectured that every finite quasisimple group is determined
uniquely up to isomorphism by its complex group algebra, and proved it for all
quasisimple groups except the nontrivial perfect central covers of the alternating
groups.

Let An denote the alternating group of degree n. (Throughout the paper we
always assume that n� 5, unless otherwise stated.) The Schur covers (or covering
groups) of the alternating and symmetric groups were first studied and classified
in [Schur 1911] in connection with their projective representations. It is known
that An has one isomorphism class of Schur covers, which is indeed the double
cover yAn except when n is 6 or 7, where triple and 6-fold covers also exist. We are
able to prove that every double cover of an alternating group of degree at least 5 is
determined uniquely by its complex group algebra.

Theorem A. Let n � 5. Let G be a finite group and yAn the double cover of An.
Then G Š yAn if and only if CG Š CyAn.

We prove a similar result for the triple and 6-fold (perfect central) covers of A6
and A7, and therefore complete the proof of the aforementioned conjecture.

Theorem B. Let G be a finite group and H a quasisimple group. Then G ŠH if
and only if CG Š CH .
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Proof. This is a consequence of Theorem A, Theorem 6.2, and [Nguyen and Tong-
Viet 2014, Corollary 1.4]. �

The symmetric group Sn has two isomorphism classes of Schur double covers,
denoted by yS�n and ySCn . It turns out that these two covers are isoclinic, and therefore
their complex group algebras CySCn and CyS�n are isomorphic [Morris 1962]. Our
next result solves the above problem for the double covers of the symmetric groups.

Theorem C. Let n � 5. Let G be a finite group and yS˙n the double covers of Sn.
Then CG Š CySCn (or equivalently CG Š CyS�n ) if and only if G Š ySCn or G Š yS�n .

Let Irr.G/ denote the set of all irreducible representations (or characters) of
a group G over the complex field. As mentioned above, two finite groups have
isomorphic complex group algebras if and only if they have the same set of degrees
(counting multiplicities) of irreducible characters. Therefore, the proofs of our main
results as expected depend heavily on the representation theories of the symmetric
and alternating groups, their double covers, and quasisimple groups in general. In
particular, we make use of known results on relatively small degrees and prime
power degrees of the irreducible characters of yAn and yS˙n .

The remainder of the paper is organized as follows. In the next section, we give a
brief overview of the representation theory of the symmetric and alternating groups
and their double covers, and then collect some results on prime power character
degrees of these groups. The results on minimal degrees are then presented in
Section 3. In Section 4, we establish some useful lemmas that will be needed later
in the proofs of the main results. The proof of Theorem A is carried out in Section 5
and exceptional covers of A6 and A7 are treated in Section 6.

The last four sections are devoted to the proof of Theorem C. Let G be a finite
group such that CG Š CyS˙n . We will show that G0 D G00, and therefore there
exists a normal subgroup M of G such that M �G0 and the chief factor G0=M is
isomorphic to a direct product of k copies of a nonabelian simple group S . To prove
that G is isomorphic to one of yS˙n , one of the key steps is to show that this chief
factor is isomorphic to An. We will do this by using the classification of finite simple
groups to eliminate almost all possibilities for k and S . As we will see, it turns out
that the case of simple groups of Lie type in even characteristic is most difficult.

In Section 7, we prove a nonexistence result for particular character degrees of
yS˙n , and we apply it in Section 8 to show that S cannot be a simple group of Lie
type in even characteristic. We then eliminate other possibilities for S in Section 9,
and complete the proof of Theorem C in Section 10.

Notation. Since CySCn Š CyS�n , when working with character degrees of yS˙n , it
suffices to consider just one of the two covers. For the sake of convenience, we will
write ySn to denote either one of the two double covers of Sn. If X and Y are two
multisets, we write X � Y , and say that X is a submultiset of Y , if the multiplicity
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of any element in X does not exceed that of the same element in Y . For a finite
group G, the number of conjugacy classes of G is denoted by k.G/. We write
Irr20.G/ to mean the set of all irreducible characters of G of odd degree. The set
and the multiset of character degrees of G are denoted respectively by cd.G/ and
cd�.G/. Finally, we denote by di .G/ the i-th smallest nontrivial character degree
of G. Other notation is standard or will be defined when needed.

2. Prime power degrees of ySn and yAn

In this section, we collect some results on irreducible characters of prime power
degree of ySn and yAn. The irreducible characters of the double covers of the
symmetric and alternating groups are divided into two kinds: faithful characters,
which are also known as spin characters, and nonfaithful characters, which can be
viewed as ordinary characters of Sn or An.

2A. Characters of Sn and An. To begin with, let us recall some notation and
terminology of partitions and Young diagrams in connection with representation
theory of the symmetric and alternating groups. A partition � of n is a finite
sequence of natural numbers .�1; �2; : : : ; �m/ such that �1 � �2 � � � � � �m and
�1C�2C � � � C�m D n. If �1 > �2 > � � � > �m, we say that � is a bar partition
of n (also called a strict partition of n). The Young diagram associated to � is an
array of n nodes with �i nodes on the i-th row. At each node .i; j /, we define
the hook length h.i; j / to be the number of nodes to the right and below the node
.i; j /, including the node .i; j /.

It is well known that the irreducible characters of Sn are in one-to-one correspon-
dence with partitions of n. The degree of the character �� corresponding to � is
given by the hook-length formula of Frame, Robinson and Thrall [Frame et al. 1954]:

f� WD ��.1/D
nŠQ

i;j h.i; j /
:

Two partitions of n whose Young diagrams transform into each other when
reflected about the line y D�x, with the coordinates of the upper-left node taken
to be .0; 0/, are called conjugate partitions. The partition conjugate to � is denoted
by �. If �D �, we say that � is self-conjugate. The irreducible characters of An can
be obtained by restricting those of Sn to An. More explicitly, �� #AnD �� #An is
irreducible if � is not self-conjugate. Otherwise, �� #An is the sum of two different
irreducible characters of An of the same degree. In short, the degrees of irreducible
characters of An are labeled by partitions of n and are given by

Qf� D

�
f� if �¤ �;
f�=2 if �D �:
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Irreducible representations of prime power degree of the symmetric and alternat-
ing groups were classified by A. Balog, C. Bessenrodt, J. B. Olsson and K. Ono
[Balog et al. 2001]. This result is critical in eliminating simple groups other than
An involved in the structure of finite groups whose complex group algebras are
isomorphic to CyAn or CySn.

Lemma 2.1 [Balog et al. 2001, Theorem 2.4]. Let n� 5. An irreducible character
��2 Irr.Sn/ corresponding to a partition � of n has prime power degree f�Dpr >1
if and only if one of the following occurs:

(1) nD pr C 1, �D .n� 1; 1/ or .2; 1n�2/, and f� D n� 1.

(2) nD 5, �D .22; 1/ or .3; 2/, and f� D 5.

(3) n D 6, � D .4; 2/ or .22; 12/, and f� D 9; � D .32/ or .23/, and f� D 5;
�D .3; 2; 1/ and f� D 16.

(4) nD 8, �D .5; 2; 1/ or .3; 2; 13/, and f� D 64.

(5) nD 9, �D .7; 2/ or .22; 15/, and f� D 27.

Lemma 2.2 [Balog et al. 2001, Theorem 5.1]. Let n� 5. An irreducible character
degree Qf� of An corresponding to a partition � of n is a prime power pr > 1 if and
only if one of the following occurs:

(1) nD pr C 1, �D .n� 1; 1/ or .2; 1n�2/, and Qf� D n� 1.

(2) nD 5, �D .22; 1/ or .3; 2/, and Qf� D 5; �D .3; 12/ and Qf� D 3.

(3) n D 6, � D .4; 2/ or .22; 12/ and Qf� D 9; � D .32/ or .23/ and Qf� D 5;
�D .3; 2; 1/ and Qf� D 8.

(4) nD 8, �D .5; 2; 1/ or .3; 2; 13/, and Qf� D 64.

(5) nD 9, �D .7; 2/ or .22; 15/, and Qf� D 27.

2B. Spin characters of Sn and An. We now recall the spin representation theory
of the symmetric and alternating groups, due to Schur [Hoffman and Humphreys
1992; Morris 1962; Schur 1911; Wagner 1977]. To each bar partition � D

.�1; �2; : : : ; �m/ (i.e., �1 > �2 > � � � > �m) of n, there corresponds one or two
irreducible characters (depending on whether n�m is even or odd, respectively)
of ySn, of degree

g� D 2
b.n�m/=2c

Ng�;

where Ng� denotes the number of shifted standard tableaux of shape �. This number
can be computed by an analogue of the hook-length formula, the bar formula
[Hoffman and Humphreys 1992, Proposition 10.6]. The length b.i; j / of the .i; j /-
bar of � is the length of the .i; j C 1/-hook in the shift-symmetric diagram of �
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(obtained by reflecting the shifted diagram of � along the diagonal and pasting it
onto �; see [Macdonald 1995, p. 14] for details). Then

Ng� D
nŠQ

i;j b.i; j /
:

The spin character degree may also be computed by the formula

g� D 2
b.n�m/=2c nŠ

�1Š�2Š � � ��mŠ

Y
i<j

�i ��j

�i C�j
:

Again, one can get faithful irreducible characters of yAn by restricting those of
yS˙n to yAn in the following way. If n�m is odd, then the restrictions of the two
characters of yS˙n labeled by � to yAn are the same and irreducible. Otherwise, the
restriction of the one character labeled by � is the sum of two irreducible characters
of the same degree g�=2. Let Qg� be the degree of the irreducible spin character(s)
of yAn labeled by the bar partition �; we then have

Qg� D

�
g� if n�m is odd;
g�=2 if n�m is even:

The classification of spin representations of prime power degree of the symmetric
and alternating groups has been done by the first and third authors of the current
paper in [Bessenrodt and Olsson 2002].

Lemma 2.3 [Bessenrodt and Olsson 2002, Theorem 4.2]. Let n� 5, and let � be a
bar partition of n. The spin irreducible character degree g� of ySn corresponding to
� is a prime power if and only if one of the following occurs:

(1) �D .n/ and g� D 2b.n�1/=2c.

(2) nD 2r C 2 for some r 2 N, �D .n� 1; 1/, and g� D 22
r�1Cr .

(3) nD 5, �D .3; 2/, and g� D 4.

(4) nD 6, �D .3; 2; 1/, and g� D 4.

(5) nD 8, �D .5; 2; 1/, and g� D 64.

Lemma 2.4 [Bessenrodt and Olsson 2002, Theorem 4.3]. Let n� 5, and let � be a
bar partition of n. The spin irreducible character degree Qg� of yAn corresponding to
� is a prime power if and only if one of the following occurs:

(1) �D .n/ and Qg� D 2b.n�2/=2c.

(2) nD 2r C 2 for some r 2 N, �D .n� 1; 1/, and Qg� D 22
r�1Cr�1.

(3) nD 5, �D .3; 2/, and Qg� D 4.

(4) nD 6, �D .3; 2; 1/, and Qg� D 4.

(5) nD 8, �D .5; 2; 1/, and Qg� D 64.
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3. Low degrees of ySn and yAn

We present in this section some results on minimal degrees of both ordinary and
spin characters of the symmetric and alternating groups. We start with ordinary
characters:

Lemma 3.1 [Rasala 1977]. The following hold:

(1) d1.Sn/D n� 1 if n� 5.

(2) d2.Sn/D n.n� 3/=2 if n� 9.

(3) d3.Sn/D .n� 1/.n� 2/=2 if n� 9.

(4) d4.Sn/D n.n� 1/.n� 5/=6 if n� 13.

(5) d5.Sn/D .n� 1/.n� 2/.n� 3/=6 if n� 13.

(6) d6.Sn/D n.n� 2/.n� 4/=3 if n� 15.

(7) d7.Sn/D n.n� 1/.n� 2/.n� 7/=24 if n� 15.

Lemma 3.2 [Tong-Viet 2011]. If n� 15, then di .An/D di .Sn/ for 1� i � 4, and,
if n� 22, then di .An/D di .Sn/ for 1� i � 7.

The minimal degrees of spin irreducible representations of yAn and ySn were ob-
tained in [Kleshchev and Tiep 2004; 2012]. These minimal degrees are indeed the de-
grees of the basic spin and second basic spin representations. Let d1.yAn/ and d1.ySn/

denote the smallest degrees of irreducible spin characters of yAn and ySn, respectively.

Lemma 3.3 [Kleshchev and Tiep 2004, Theorem A]. Let n � 8. The smallest
degrees of the irreducible spin characters of yAn and ySn are d1.yAn/ D 2

b.n�2/=2c

and d1.ySn/D 2
b.n�1/=2c respectively, and there is no degree between d1.yAn/ and

2d1.yAn/ in the alternating case or d1.ySn/ and 2d1.ySn/ in the symmetric one.

Using the above results, we easily deduce the following:

Lemma 3.4. The following hold:

(1) If n� 31, then di .ySn/D di .Sn/ for 1� i � 7.

(2) If n� 34, then di .yAn/D di .An/ for 1� i � 7.

Proof. We observe that d1.ySn/D 2b.n�1/=2c >n.n�1/.n�2/.n�7/=24D d7.Sn/
if n� 31. Therefore part (1) follows by Lemmas 3.1 and 3.3. Similarly, we have
d1.yAn/ D 2

b.n�2/=2c > n.n� 1/.n� 2/.n� 7/=24 D d7.An/ if n � 34, and thus
part (2) follows. �

Lemma 3.5. Let G be either yAn or ySn.

(1) If n� 8, then d1.G/D n� 1.

(2) If n � 10, then d2.G/ D minfn.n� 3/=2; d1.G/g. Furthermore, if n � 12,
then d2.G/ > 2n.
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(3) If n� 16, then d3.G/D .n�1/.n�2/=2 and d4.G/Dminfn.n�1/.n�5/=6;
d1.G/g.

(4) If n� 28, then d4.G/D n.n�1/.n�5/=6, d5.G/D .n�1/.n�2/.n�3/=6,
d6.G/Dn.n�2/.n�4/=3, and d7.G/Dminfn.n�1/.n�2/.n�7/=24;d1.G/g.

Proof. When n � 8, we see that d1.ySn/ � d1.yAn/ D 2b.n�2/=2c > n � 1 and
d1.Sn/D d1.An/Dn�1, which implies that d1.yAn/D d1.ySn/Dn�1, and part (1)
follows. When n� 10, we observe that d2.An/D d2.Sn/D n.n�3/=2, and part (2)
then follows from part (1).

Suppose that n � 16. It is easy to check that 2b.n�2/=2c > .n� 1/.n� 2/=2D
d3.An/Dd3.Sn/. It follows that d3.yAn/Dd3.ySn/D .n�1/.n�2/=2 and d4.G/D
minfn.n� 1/.n� 5/=6; d1.G/g, as claimed.

Finally suppose that n � 28. We check that 2b.n�2/=2c > n.n� 2/.n� 4/=3D
d6.An/D d6.Sn/, and part (4) then follows. �

4. Some useful lemmas

We begin with an easy observation:

Lemma 4.1. There always exists a prime number p with n<p�d2.G/ forGD yAn
or ySn, provided that n� 9.

Proof. It is routine to check the statement for 9� n� 11 by using [Conway et al.
1985]. So we can assume that n � 12. By Lemma 3.5, it suffices to prove that
there exists a prime between n and 2n. However, this is the well-known Bertrand–
Chebyshev theorem [Harborth and Kemnitz 1981]. �

The next three lemmas are critical in the proof of Theorem A.

Lemma 4.2. Let S be a simple group of Lie type of rank l defined over a field of q
elements, with q even. Then

jIrr20.S/j �

8̂̂̂<̂
ˆ̂:
ql=.l C 1; q� 1/ if S is of type A;
ql=.l C 1; qC 1/ if S is of type 2A;
ql=3 if S is of type E6; 2E6;
ql otherwise.

Proof. Let Ssc be the finite Lie-type group of simply connected type corresponding
to S . By [Brunat 2010, Corollary 3.6], Ssc has ql semisimple conjugacy classes.
To each semisimple class s of Ssc, Lusztig’s classification of complex characters of
finite groups of Lie type says that there corresponds a semisimple character of the
dual group, say S�sc, of Ssc of degree

jSscj20=jCSsc.s/j20 :
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This means that the dual S�sc of Ssc has at least ql irreducible characters of odd
degree.

If S is of type A, we have S�sc D PGLlC1.q/D S:.l C 1; q� 1/, and the lemma
follows for linear groups. A similar argument works for unitary groups and E6 as
well as 2E6. If S is not of these types, we will have S D Ssc D S

�
sc and the lemma

also follows. �

Lemma 4.3. Let n� 5, and let nD 2k1 C 2k2 C � � �C 2kt be the binary expansion
of n, with k1 > k2 > � � �> kt � 0. Then

jIrr20.yAn/j � jIrr20.ySn/j D 2k1Ck2C���Ckt :

Proof. If �D .�1; �2; : : : ; �m/ is a bar partition of n, then the 2-part of the spin
character degree g� of ySn labeled by � is at least

2b.n�m/=2c;

which is at least 2 as n� 5 and n�m� 3. We note that if n�mD 3 then Qg�D g�.
Therefore, the 2-part of the degree Qg� of yAn is at least 2 as well. In particular, we
see that every spin character degree of yAn as well as ySn is even. It follows that

jIrr20.yAn/j D jIrr20.An/j and jIrr20.ySn/j D jIrr20.Sn/j:

As mentioned in [McKay 1972], the number of odd degree irreducible characters
of An does not exceed that of Sn. Now the lemma follows from the formula for the
number of odd degree characters of Sn given in [Macdonald 1971, Corollary 1.3]. �

Lemma 4.4. Let n D 2k1 C 2k2 C � � � C 2kt be the binary expansion of n, with
k1 > k2 > � � �> kt � 0.

(1) If k1C k2C � � �C kt �
p
.n� 3/=2, then n < 215.

(2) if k1C k2C � � �C kt �
p
n� 3� 3, then n < 213.

(3) if k1C k2C � � �C kt � .n� 3/=18, then n < 210.

(4) if k1C k2C � � �C kt � .n� 3/=30, then n < 211.

Proof. We only give here a proof for part (2). The other statements are proved
similarly. As nD 2k1 C 2k2 C � � �C 2kt , we get k1 D blog2 nc and hence

k1C k2C � � �C kt � blog2 nc.blog2 ncC 1/=2:

However, it is easy to check that
p
.n� 3/�3> blog2 nc.blog2 ncC1/=2 if n�214.

For 213 � n < 214, the statement follows by direct computation. �

The following lemma is probably known, but we include a short proof for the
reader’s convenience. It will be needed in the proof of Theorem C.
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Lemma 4.5. Let k.yAn/ and k.ySn/ denote the number of conjugacy classes of yAn
and ySn, respectively. Then

k.ySn/ < 2k.yAn/:

Proof. Let Irrfaithful.G/ and Irrnonfaithful.G/ denote the sets of faithful irreducible
characters and nonfaithful irreducible characters, respectively, of a group G. Let a
and b be the numbers of self-conjugate partitions and of pairs of nonself-conjugate
partitions, respectively, of n. Also, let c and d be the numbers of bar partitions of
n with n�m even and odd, respectively. We have

jIrrnonfaithful.ySn/j D k.Sn/D aC 2b; jIrrfaithful.ySn/j D cC 2d;

jIrrnonfaithful.yAn/j D k.An/D 2aC b; jIrrfaithful.yAn/j D 2cC d:

Therefore,

k.ySn/D aC 2bC cC 2d and k.yAn/D 2aC bC 2cC d;

and the lemma follows. �

5. Complex group algebra of yAn — Theorem A

The aim of this section is to prove Theorem A. Let G be a finite group such that
CG Š CyAn. Then G has exactly one linear character, which is the trivial one, so
that G is perfect. Let M be a maximal normal subgroup of G. We then have that
G=M is nonabelian simple, and moreover

cd�.G=M/� cd�.G/D cd�.yAn/:

To prove the theorem, it is clear that we first have to show G=M Š An. We will
work towards this aim.

Proposition 5.1. Let S be a nonabelian simple group such that cd�.S/� cd�.yAn/.
Then S is isomorphic to An or to a simple group of Lie type in even characteristic.

Proof. We will eliminate other possibilities for S by using the classification of finite
simple groups. If 5 � n � 9, then the set of prime divisors of S is contained in
that of yAn, which in turn is contained in f2; 3; 5; 7g; hence by using [Huppert and
Lempken 2000, Theorem III] and [Conway et al. 1985], the result follows easily.
From now on we assume that n� 10.

(i) Alternating groups: Suppose that S D Am with 5 � m ¤ n. Since cd.Am/ �
cd.yAn/, we get d1.Am/� d1.yAn/. As d1.yAn/D n�1� 9 by Lemma 3.5, it follows
that d1.Am/ � 9. Thus m � 10, and so m� 1 D d1.Am/ � d1.yAn/ D n� 1. In
particular, we have m> n as m¤ n. It follows that jS j> 2jAnj and this violates
the hypothesis that cd�.S/� cd�.yAn/.
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(ii) Simple groups of Lie type in odd characteristic: Suppose that S D G.pk/, a
simple group of Lie type defined over a field of pk elements with p odd. Since
jS jp is the degree of the Steinberg character of S , we have jS jp 2 cd.yAn/. As
jS jp is an odd prime power, Lemma 2.4 implies that jS jp must be the degree of
a nonfaithful character of yAn. In other words, jS jp 2 cd.An/. Using Lemma 2.2,
we deduce that jS jp D n � 1. Hence, jS jp D d1.yAn/ is the smallest nontrivial
degree of yAn by Lemma 3.5. However, by [Tong-Viet 2012, Lemma 8] we have
d1.S/ < jS jp D d1.yAn/, which is impossible as cd.S/� cd.yAn/.

(iii) Sporadic simple groups and the Tits group: Using GAP (version 4.4.12), we
can assume that n� 14. To eliminate these cases, observe that n�maxfp.S/; 14g,
where p.S/ is the largest prime divisor of jS j, and that di .S/� di .yAn/ for all i � 1.
With this lower bound on n, we find the lower bounds for di .yAn/ with 1� i � 7
using Lemmas 3.4 and 3.5. Choose i 2 f2; 3; : : : ; 7g such that di .yAn/ > dj .S/ for
some j � 1 such that ji �j j is minimal. If j � i , then we obtain a contradiction. If
j < i , then dj .S/ 2 fdk.yAn/gi�1kDj

. Solving these equations for n, we then obtain
that either these equations have no solution, or that, for each solution of n, we can
find some k� 1 with dk.yAn/ > dk.S/. As an example, assume that S DO0N. Then
n � 31 since p.S/D 31. We have d7.yAn/D n.n� 1/.n� 2/.n� 7/=24 � 26970.
As d4.S/ D 26752 < d7.yAn/, it follows that d4.S/ 2 fd4.yAn/; d5.yAn/; d6.yAn/g.
However, one can check that these equations have no integer solutions. �

Proposition 5.2. Let S be a nonabelian simple group such that jS j jnŠ and cd�.S/�
cd�.yAn/. Then S Š An.

Proof. In light of Proposition 5.1 and its proof, it remains to assume that n� 9 and
prove that S cannot be a simple group of Lie type in even characteristic. Assume to
the contrary that S DGl.2k/, a simple group of Lie type of rank l defined over a
field of q D 2k elements. As above, we then have jS j2 2 cd.yAn/. By Lemmas 2.2
and 2.4, we have that jS j2 D n�1, jS j2 D 2b.n�2/=2c, or jS j2 D 2n=2Clog2.n�2/�2

when nD 2r C 2. Since the case jS j2 D n� 1 can be eliminated as in the proof of
the previous proposition, we can assume further that

jS j2 D 2
b.n�2/=2c or jS j2 D 2n=2Clog2.n�2/�2 when nD 2r C 2:

Recalling the hypothesis that cd�.S/� cd�.yAn/, we have

jIrr20.S/j � jIrr20.yAn/j: (5-1)

(i) S D Bl.2
k/ Š Cl.2

k/, Dl.2k/, or 2Dl.2k/. Then jS j2 D 2kl
2

or 2kl.l�1/.
In particular,

jS j2 � 2
kl2 :
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As jS j2 � 2b.n�2/=2c, it follows that

kl2 � b.n� 2/=2c � .n� 3/=2:

Therefore

kl �
p
.n� 3/=2:

Using Lemma 4.2, we then obtain

jIrr20.S/j � ql D 2kl � 2
p
.n�3/=2:

Now Lemma 4.3 and the inequality (5-1) imply

k1C k2C � � �C kt �
p
.n� 3/=2;

where nD2k1C2k2C� � �C2kt is the binary expansion of n. Invoking Lemma 4.4(1),
we obtain that n < 215.

(ii) S D Al.2k/ or 2Al.2k/. Arguing as above, we have

k1C k2C � � �C kt �
p
n� 3� 3;

which forces n < 213 by Lemma 4.4(2).

(iii) S is a simple group of exceptional Lie type. Using Lemma 4.4(3,4), we deduce
that n < 211.

For each of the above cases, a computer program has checked that either jS j
does not divide nŠ or S has an irreducible character degree not belonging to cd.yAn/
for “small” n. This contradiction completes the proof. Let us describe the example
where S D Sp2l.2

k/Š�2lC1.2
k/. Then we have

kl2 D b.n� 2/=2c or kl2 D n=2C log2.n� 2/� 2 when nD 2r C 2:

Moreover, the condition jS j jnŠ is equivalent to

2kl
2
lY
iD1

.22ki � 1/ jnŠ :

By computer calculations, we can determine all triples .k; l; n/ with n < 215

satisfying the above conditions. It turns out that, for each such triple, n is at most
170 and one of the three smallest character degrees of S is not a character degree
of yAn. The low-degree characters of simple groups of Lie type can be found in
[Tiep and Zalesskii 1996; Lübeck 2001; Nguyen 2010]. �

We are now ready to prove the first main result:
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Proof of Theorem A. Recall the hypothesis that G is a finite group such that CG Š

CyAn. Therefore cd�.G/D cd�.yAn/. In particular, we have jGj D jyAnj and G DG0

since yAn has only one linear character. Let M be a maximal normal subgroup
of G. Then G=M is a nonabelian simple group, say S . It follows that cd�.S/D
cd�.G=M/� cd�.G/ and hence

cd�.S/� cd�.yAn/:

We also have
jS j j jGj D jyAnj D nŠ :

Applying Propositions 5.1 and 5.2, we deduce that S Š An.
We have shown that G=M Š An. Since jGj D jyAnj D 2jAnj, we obtain jM j D 2.

In particular, M is central in G and therefore M � Z .G/\G0. Thus G Š yAn,
as desired. �

6. Triple and 6-fold covers of A6 and A7

In this section, we aim to prove that every perfect central cover of A6 or A7 is
uniquely determined up to isomorphism by the structure of its complex group
algebra. To do that, we need the following result from [Nguyen and Tong-Viet
2014, Lemma 2.5]. Here and in what follows, we write Mult.S/ and Schur.S/ to
denote the Schur multiplier and the Schur covering group (or the Schur cover for
short), respectively, of a simple group S .

Lemma 6.1. Let S be a nonabelian simple group different from an alternating group
of degree greater than 13. Assume that S is different from PSL3.4/ and PSU4.3/.
Let G be a perfect group and M CG such that G=M Š S , jM j � jMult.S/j, and
cd.G/ � cd.Schur.S//. Then G is uniquely determined up to isomorphism by S
and the order of G.

Now we prove the main result of this section:

Theorem 6.2. Let G be a finite group and H a perfect central cover of A6 or A7.
Then G ŠH if and only if CG Š CH .

Proof. First, as A6 Š PSL2.9/, every perfect central cover of A6 can be viewed as
a quasisimple classical group, a case which is already studied in [Nguyen 2013,
Theorem 1.1]. So it remains to consider the perfect central covers of A7. Let H be
one of those, and assume that G is a finite group such that CG Š CH .

As before, we see thatG is perfect and, ifM is a normal maximal subgroup ofG,
we have that G=M is nonabelian simple and cd�.G=M/� cd�.H/. In particular,

cd�.G=M/� cd�.Schur.A7//;
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where Schur.A7/ is the Schur cover (or the 6-fold cover) of A7. It follows that
jG=M j � 6jA7j D 7560. Inspecting [Conway et al. 1985], we come up with

G=M Š PSL2.q/ with 5� q � 23; or PSL3.3/; or PSU3.3/; or A7:

Since each of the possibilities for G=M except A7 does not satisfy the inclusion
cd�.G=M/� cd�.Schur.A7//, we deduce that G=M Š A7.

On the other hand, as CG Š CH , we have jGj D jH j. It follows that jM j D
jZ .H/j � 6. Using Lemma 6.1, we conclude that G ŠH . �

7. Excluding critical character degrees of ySn

In this section, we prove a nonexistence result for special character degrees of ySn
which will be applied in the next section. Indeed, with the following proposition,
we prove a little more, as only the case of even n will be needed (in fact, the proof
shows that also versions with slightly modified 2-powers can be obtained).

Proposition 7.1. Let n 2 N. If 2Œ
n�2
2
�.n � 1/ is a character degree of ySn, then

n� 8 and the degree is an ordinary degree f� for � 2 f.2/; .2; 1/; .4; 22/g (or their
conjugates), or the spin degree g� for �D .4; 2/.

The strategy for the proof is inspired by the methods used in [Balog et al. 2001;
Bessenrodt and Olsson 2002] to classify the irreducible characters of prime power
degrees. A main ingredient is a number-theoretic result which is a variation of
[Balog et al. 2001, Theorem 3.1].

First, we define M.n/ to be the set of pairs of finite sequences of integers
s1 < s2 < � � �< sr � n, t1 < t2 < � � �< tr � n, with all numbers different from n�1,
that satisfy

(i) si < ti for all i ,

(ii) s1 and t1 are primes > n=2, and

(iii) for 1� i � r � 1, siC1 and tiC1 contain prime factors exceeding 2n� si � ti
and not dividing n� 1.

We then set t .n/ WDmaxftr j ..si /iD1;:::;r ; .ti /iD1;:::;r/2M.n/g, and t .n/D 0 when
M.n/D∅. Note that, for all n� 15, there are at least two primes p; q¤ n�1 with
n=2 < p < q � n (e.g., use [Harborth and Kemnitz 1981]); hence for all n� 15 the
set M.n/ is not empty.

Theorem 7.2. Let n 2 N. Then n� t .n/� 225.
For 15� n� 109, we have the tighter bounds

n� t .n/

8<:
D 7 for n 2 f30; 54g;
D 5 for n 2 f18; 24; 28; 52; 102; 128; 224g;
� 4 otherwise:
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Proof. For n > 3:9 � 108, the proof follows the lines of the arguments for [Balog
et al. 2001, Theorem 3.1], noticing that in the construction given there the numbers
in the sequences are below n� 1 and that the chosen prime factors do not divide
n� 1; this then gives n� t .n/� 225.

A computer calculation (with Maple) shows that, for all n� 109, we have the
claimed bounds and values for n� t .n/. �

For any partition � of n, we denote by l.�/ the length of �, and we let l1.�/
be the multiplicity of 1 in �. We put hi D h.i; 1/ for 1 � i � l.�/; these are the
first-column hook lengths of �. We set fch.�/D fh1; : : : ; hl.�/g.

First we want to show that Proposition 7.1 holds for ordinary characters. Via
computer calculations, the claim is easily checked up to nD 44, and in particular,
we find the stated exceptions for n < 9. Thus we have to show that

f� D 2
Œn�2
2
�.n� 1/ (�)

cannot hold for n� 9; if necessary, we may even assume that n > 44.
To employ Theorem 7.2, we need some preparation, which is similar to corre-

sponding results in [Balog et al. 2001].

Proposition 7.3. If q is a prime with n� l1.�/� q � n and q − f�, then

q; 2q; : : : ;
h
n

q

i
q 2 fch.�/:

Proof. Put wD Œn=q�, nDwqC r , 0� r < q. By assumption, we have .w�1/q �
.w�1/qCr D n�q � l1 WD l1.�/. Thus q; 2q; : : : ; .w�1/q 2 fch.�/. If wq � l1,
then we are done. Assume that l1 < wq. At most w hooks in � are of lengths
divisible by q (see, e.g., [Olsson 1993, Proposition (3.6)]). If there are only the
above w � 1 hooks in the first column of length divisible by q, then q jf� sinceQw
iD1.iq/ jnŠ, a contradiction. Let h.i; j / be the additional hook length divisible

by q. Since �¤ .1n/, l1 � h2. If h2 > l1, then h.i; j /C h.2; 1/ > qC l1 � n. By
[Balog et al. 2001, Corollary 2.8] we get j D 1. If h2 D l1, then �D .n� l1; 1l1/,
and since l1 <wq there has to be a hook of length divisible by q in the first row.
Since n� l1 � q we must have h1 D wq. �

In analogy to [Balog et al. 2001, Corollary 2.10], we deduce:

Corollary 7.4. Let 1 � i < j � l.�/. If h � n has a prime divisor q satisfying
2n� hi � hj < q and q − f�, then h 2 fch.�/.

We now combine these results with Theorem 7.2, similarly to [Balog et al. 2001];
as stated earlier we may assume that n� 15, and hence there are least two primes
p; q ¤ n�1 with n=2 < p < q � n. Assuming (�) for �, the hook formula implies
that there have to be hooks of length p and q in �. As argued in [Balog et al. 2001],
we then have p; q 2 fch.�/ or p; q 2 fch.�/; without loss of generality, we may
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assume p; q 2 fch.�/. Then the assumption (�) forces any prime between n=2 and
n, except n� 1 if this is prime, to be in fch.�/. This gives an indication towards
the connection with the sequences belonging to the pairs in M.n/.

Indeed, we have the following proposition, which is proved similarly to the
corresponding result in [Balog et al. 2001].

Proposition 7.5. Let n � 15. Let ..si /iD1;:::;r ; .ti /iD1;:::;r/ 2 M.n/. Let � be
a partition of n such that .�/ holds. Then fs1; : : : ; sr ; t1; : : : ; trg � fch.�/ or
fs1; : : : ; sr ; t1; : : : ; trg � fch.�/.

In particular, n�h1 � 225, and we have tighter bounds for n�h1 when n� 109

as given in Theorem 7.2.

Now we can embark on the first part of the proof of Proposition 7.1, showing
the nonexistence of ordinary irreducible characters of the critical degree for n� 9.
As remarked before, we may assume n� 44.

First part of the proof of Proposition 7.1. Set mD Œ.n� 2/=2�, and assume that the
partition � of n satisfies

f� D 2
m.n� 1/: (�)

Let c D n� h1. By [Balog et al. 2001, Proposition 4.1] we have the following
bound for the 2-part of the degree:

.f�/2 � n
2
� ..2cC 2/Š/2:

By Proposition 7.5, we have c � 225, and hence ..2cC 2/Š/2 � .452Š/2 D 2448.
Thus

2m � 2448n2 � 2448.2mC 3/2:

A short computation gives m� 467, and hence n� 937. By Proposition 7.5, c � 5,
unless nD 54, where we only get c � 7. But for nD 54 we can argue as follows:
As � satisfies (�), without loss of generality 43; 47 2 fch.�/. Then l1.�/� 35 (by
[Balog et al. 2001, Proposition 2.6]), and hence 17; 34 2 fch.�/; since 54 > 3 � 17,
by the hook formula there has to be one more hook of length divisible by 17 in �.
As c � 7, this is in the first row or column; if it is not in the first column, we get
a contradiction considering this hook and the one of length 43. Thus 51 2 fch.�/,
and hence c � 3.

Hence for all n� 937 we have ..2cC 2/Š/2 � .12Š/2 D 210, and

2m � 210n2 � 210.2mC 3/2:

This impliesm�20, and hence n�43, where the assertion was checked directly. �
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Next we deal with the spin characters of ySn. Recall that for a bar partition � of n,
Ng� is the number of shifted standard tableaux of shape �, and the spin character
degree associated to � is g� D 2Œ

n�l.�/
2

�
Ng�. Hence the condition on the spin degree

translates into the condition (�) on Ng� given below.

Proposition 7.6. Let � be a bar partition of n. Then

Ng� D

(
2d
l.�/�2
2
e.n� 1/ for n even,

2d
l.�/�3
2
e.n� 1/ for n odd,

(�)

only if n� 6 and �D .2/, �D .4; 2/.

We note that, for n� 34, the assertion is easily checked by computer calculation
(using John Stembridge’s Maple package QF), so we may assume that n > 34

when needed.
We set bi D b.1; i/ for the first row bar lengths of �, and frb.�/ for the set

of first row bar lengths of � (see [Olsson 1993] for details on the combinatorics
of bars).

In analogy to the case of ordinary characters where we have modified the results
in [Balog et al. 2001], we adapt the results in [Bessenrodt and Olsson 2002]
for the case under consideration now. Similarly to Proposition 7.3 before, we
have a version of [Bessenrodt and Olsson 2002, Proposition 2.5] where, instead
of the prime power condition for Ng�, the condition q − Ng� is assumed for the
prime q under consideration. For the corresponding variant of [Bessenrodt and
Olsson 2002, Lemma 2.6] that says that any prime q with n=2 < q � n and
q − Ng� is a first row bar length of �, we need two primes p1; p2 ¤ n � 1 with
p1Cp2�n> n=2. For n� 33, n¤ 42, we always find two primes p1; p2¤ n�1
such that 3

4
n < p1 < p2 � n. But for nD 42, the primes p1 D 31 and p2 D 37 are

big enough to have p1Cp2�n > n=2.
The largest bar length of � is b1D b.1; 1/D �1C�2. As before, the preparatory

results just described together with our arithmetical Theorem 7.2 show that n� b1
is small for a bar partition � satisfying (�). More precisely, we obtain:

Proposition 7.7. Let n � 15. Let ..s1; : : : ; sr/; .t1; : : : ; tr// 2M.n/. Assume that
� is a bar partition of n that satisfies .�/. Then s1; : : : ; sr ; t1; : : : ; tr 2 frb.�/.

In particular, if � satisfies .�/, then n� b1 � 225, and we have tighter bounds
for n� b1 when n� 109 as given in Theorem 7.2.

Now we can get into the second part of the proof of Proposition 7.1, showing
the nonexistence of spin irreducible characters of the critical degree for n� 7.
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Second part of the proof of Proposition 7.1. We have already seen that it suffices to
prove Proposition 7.6, and that we may assume n� 15. Set

r D

8̂̂̂<̂
ˆ̂:
�
l.�/� 2

2

�
for n even,�

l.�/� 3

2

�
for n odd,

and assume that � is a bar partition of n that satisfies (�).
Let c D n� b1. As seen above, we have c � 225, and hence l.�/ � 23. Thus

r � 11 in any case, and hence Ng� � 211.n� 1/.
Now, by [Bessenrodt and Olsson 2002, Proposition 2.2] we know that Ng� �

1
2
.n�1/.n�4/ unless we have one of the following situations: �D .n/and Ng�D 1,

or �D .n� 1; 1/ and Ng� D n� 2. None of these exceptional cases is relevant here,
and thus we obtain n� 4 � 212. But for n � 4100 we already know that c � 7.
Then l.�/� 6 and r � 2, and hence

1
2
.n� 1/.n� 4/� Ng� � 4.n� 1/:

But then n� 4 � 8, a contradiction. Thus we have now completed the proof of
Proposition 7.1. �

8. Eliminating simple groups of Lie type in even characteristic

Let G be a finite group whose complex group algebra is isomorphic to that of ySn.
In order to show that G is isomorphic to one of the two double covers of Sn, one
has to eliminate the involvement of all nonabelian simple groups other than An in
the structure of G. The most difficult case turns out to be the simple groups of Lie
type in even characteristic.

For the purpose of the next lemma, let C be the set consisting of the following
simple groups:˚
2F4.2/

0;PSL4.2/;PSL3.4/;PSU4.2/;PSU6.2/;

P�C8 .2/;PSp6.2/;
2B2.8/; G2.4/;

2E6.2/
	
:

Lemma 8.1. If S is a simple group of Lie type in characteristic 2 such that jS j2�24

and S 62 C, then jS j2 < 2.e.S/�1/=2, where e.S/ is the smallest nontrivial degree of
an irreducible projective representation of S .

Proof. Assume that S is defined over a finite field of size q D 2f . If jS j2 D qN.S/,
then the inequality in the lemma is equivalent to

e.S/ > 2N.S/f C 1: (8-1)
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The values of e.S/ are available in [Tiep and Zalesskii 1996, Table II] for classical
groups and in [Lübeck 2001] for exceptional groups. The arguments for simple
classical groups are quite similar. So let us consider the linear groups. Assume that
S D PSLm.q/ with m � 2. We have N.S/D m.m� 1/=2. First we assume that
mD 2. As jS j2 D q � 24, we deduce that e.S/D q � 1 and f � 4. In this case,
we obtain e.S/� 1D 2f � 2 and 2N.S/f C 1D 2f C 1. As f � 4, we see that
(8-1) holds. Next we assume that m� 3 and S ¤ PSL3.4/;PSL4.2/. As jS j2 � 24,
we deduce that S ¤ PSL3.2/. We have e.S/ D .qm� q/=.q� 1/. Now (8-1) is
equivalent to

qm� q

q� 1
> m.m� 1/f C 1:

It is routine to check that this inequality holds for any m� 3 and q � 2.
The arguments for exceptional Lie type groups are also similar. For instance, if

S D 2B2.2
2mC1/ with m � 1, then jS j2 D 22.2mC1/ and e.S/D 2m.22mC1� 1/.

The inequality can now be easily checked. �

Proposition 8.2. Let G be a finite group and S a simple group of Lie type in
characteristic 2. Suppose that M � G0 is a normal subgroup of G such that
G0=M Š S and jG WG0j D 2. Then cd�.G/¤ cd�.ySn/ for every integer n� 10.

Proof. By way of contradiction, assume that cd�.G/D cd�.ySn/ for some n � 10.
Let StS be the Steinberg character of G0=M Š S . As StS extends to G=M and
jG=M WG0=M j D 2, by Gallagher’s theorem (see [Isaacs 1994, Corollary 6.17] for
instance) G=M has two irreducible characters of degree StS .1/D jS j2. As n� 10,
Lemma 3.5(1) yields that d1.ySn/D n� 1.

We claim that jS j2 > d1.ySn/D n� 1. Suppose for a contradiction that jS j2 D
d1.ySn/. If G=M Š S � C2, then cd.G=M/ D cd.S/ � cd.ySn/, which implies
that d1.S/ � d1.ySn/ D jS j2. However, this is impossible since S always has a
nontrivial character degree smaller than jS j2 (see [Tong-Viet 2012, Lemma 8] for
instance). Now assume that G=M is almost simple with socle S . If S 6Š PSL2.q/
with q � 4, then d1.G=M/ < jS j2 D d1.ySn/ by [Tong-Viet 2011, Lemma 2.4],
which leads to a contradiction as before since cd.G=N/ � cd.ySn/. Therefore,
assume that S D PSL2.q/ with q D 2f � 4. Then q D jS j2 D n � 1 � 9.
If q � �1 .mod 3/, then d1.G/ D q � 1 < q D d1.ySn/ by [Tong-Viet 2011,
Lemma 2.5], which is impossible. Hence, q � 1 .mod 3/ and qC 1 2 cd.G=M/�

cd.ySn/. It follows that q C 1 D .n � 1/ C 1 D n 2 cd.ySn/. If n � 12, then
d2.ySn/ > 2n > n > d1.ySn/, hence n is not a degree of ySn. Thus 10 � n � 11.
However, we see that n � 1 is not a power of 2 in either case. The claim is
proved.
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Assume that nD 2kC 1� 11 is odd. By Lemmas 2.1 and 2.3, jS j2 D 2k is the
degree of the basic spin character of ySn. However, by [Wales 1979, Table I] such
a degree has multiplicity 1, which contradicts the fact proved above that G has at
least two irreducible characters of degree jS j2.

Assume nD 2k � 10 is even. By Lemmas 2.1 and 2.3 and [Wales 1979, Table I],
ySn always has the character degree 2k�1 with multiplicity 2, and, if nD 2r C 2,
then it has the character degree 2k�1.n� 2/D 22

r�1Cr with multiplicity 1. These
are in fact the only nontrivial 2-power character degrees of ySn. As in the previous
case, by comparing the multiplicity, we see that jS j2¤ 22

r�1Cr . Thus jS j2D 2k�1

is the degree of the basic spin character of ySn with multiplicity 2. Notice that k � 5
and hence jS j2 D 2k�1 � 24.

Now let  2 Irr.G/ with  .1/D n� 1. As jG W G0j D 2 and  .1/ is odd, we
deduce that �D #G02 Irr.G0/ and �.1/D n�1. Let � 2 Irr.M/ be an irreducible
constituent of � #M . Then � #MD e.�1 C � � � C �t /, where t D jG0 W IG0.�/j,
and each �i is conjugate to � 2 Irr.M/. If � is not G0-invariant, then �.1/ D
et�.1/ D n � 1 � min.S/, where min.S/ is the smallest nontrivial index of a
maximal subgroup of S . We see that min.S/ > d1.S/� e.S/, where e.S/ is the
minimal degree of a projective irreducible representation of S , and so n�1� e.S/.
If � is G0-invariant and � #MD e� with e > 1, then e is the degree of a projective
irreducible representation of S . It follows that n� 1� e � e.S/. In both cases, we
always have

k� 1D
n� 2

2
�
e.S/� 1

2
:

Therefore,
jS j2 D 2

k�1
� 2.e.S/�1/=2:

By Lemma 8.1, we deduce that S 2 C. Solving the equation jS j2 D 2.n�2/=2, we
get the degree n. However, by using [Conway et al. 1985] and Lemma 3.5, we
can check that cd.G=M/ ª cd.ySn/ in any of these cases. For example, assume
that S Š 2E6.2/. Then jS j2 D 236 D 2.n�2/=2, so n D 74. By Lemma 3.5,
we have d1.ySn/ D n � 1 D 73 and d2.ySn/ D n.n � 3/=2 D 2627. Using [Con-
way et al. 1985], we know that cd.G=M/ contains the degree 1938. Clearly,
d1.ySn/ < 1938 < d2.ySn/, so 1938 62 cd.ySn/, hence cd.G=M/ ª cd.ySn/, a contra-
diction.

Finally we assume that et D 1. Then � extends to � 2 Irr.G0/ and to  2 Irr.G/.
Hence � #MD � and so, by Gallagher’s Theorem, we have  � 2 Irr.G/ for every
� 2 Irr.G=M/. In particular,

2k�1.n� 1/D  .1/jS j2 2 cd.G/D cd.ySn/;

which is impossible by Proposition 7.1. �
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9. Eliminating simple groups other than An

We continue to eliminate the involvement of simple groups other than An in the
structure of G with CG Š CySn.

Proposition 9.1. Let G be an almost-simple group with nonabelian simple socle S .
Suppose that cd�.G/� cd�.ySn/ for some n� 10. Then S Š An or S is isomorphic
to a simple group of Lie type in characteristic 2.

Proof. We make use of the classification of finite simple groups.

(i) S is a sporadic simple group or the Tits group. Using GAP (version 4.4.12), we
can assume that n� 19. By Lemma 3.5(2), we have d2.ySn/D n.n� 3/=2� 152.
Since d2.G/� d2.ySn/� 152, using [Conway et al. 1985], we only need to consider
the following simple groups:

J3;Suz;McL;Ru;He;Co1;Co2;Co3;Fi22;O0N;HN;Ly;Th;Fi23; J4;Fi024; B;M:

To eliminate these groups, we first observe that n�p.S/, the largest prime divisor of
jS j, and di .G/�di .ySn/ for all i�1. Now with the lower bound n�maxf19; p.S/g,
we can find the lower bounds for di .ySn/ with 1� i � 7 using Lemmas 3.4 and 3.5.
Choose i 2 f2; 3; : : : ; 7g such that di .ySn/ > dj .G/ for some j � 1 such that
ji � j j is minimal. If i � j , then we obtain a contradiction. Otherwise, dj .G/ 2
fdk.ySn/g

i�1
kDj

. Solving these equations for n, we then obtain that either these
equations have no solution, or that, for each solution of n, we can find some k � 1
with dk.ySn/ > dk.G/.

For an example of such a demonstration, assume that S D O0N. In this case, we
have jOut.S/jD2, soGDS orGDS:2. Since p.S/D31, we have n�31. Assume
first that G D S DO0N. Then d4.O0N/D 26752 and, since n� 31, by Lemma 3.4
d7.ySn/� 26970 > d4.O0N/. It follows that d4.O0N/ 2 fdi .ySn/g6iD4. However, we
can check that these equations are impossible. Now assume G D O0N:2. Then
d2.G/D 26752 < 26970� d7.ySn/ so that d2.G/ 2 fdi .ySn/g6iD2. As above, these
equations cannot hold for any n� 31. Thus cd.G/ª cd.ySn/.

For another example, let S DM . Since jOut.S/j D 1, we have G D S so that
p.S/D 71 2 �.ySn/ and hence n� 71. As d1.M/D 196883 < 914480� d7.ySn/,
we deduce that d1.M/2 fdi .ySn/ j i D 1; : : : ; 6g. Solving these equations, we obtain
nD 196884. But then d2.ySn/ > 21296876D d2.M/. Thus cd.M/ª cd.ySn/.

(ii) S D Am with m� 7. Note that we consider A5 Š PSL2.5/ and A6 Š PSL2.9/
as groups of Lie type. Let �D .m� 1; 1/, a partition of m. Since m� 7, � is not
self-conjugate, hence the irreducible character �� of Sm is still irreducible upon
restriction to Am. Note that Aut.Am/ D Sm as m � 7. Then G 2 fAm; Smg and
G has an irreducible character of degree m� 1. Since cd.G/ � cd.ySn/, we have
m� 1� d1.ySn/D n� 1, so m� n. If mD n then we are done. On the other hand,
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if m> n then

jGj � jS j D jAmj> 4jAnj D jySnj;

and this violates the hypothesis cd�.G/� cd�.ySn/.

(iii) S is a simple group of Lie type in odd characteristic. Suppose that SDG.pk/, a
simple group of Lie type defined over a field of pk elements with p odd. Let StS be
the Steinberg character of S . Then, as St extends to G and StS .1/D jS jp , we have
jS jp 2 cd.ySn/. Using Lemma 2.3, which says that all possible prime power degrees
of spin characters of Sn are even, we deduce that jS jp 2 cd.Sn/. By Lemma 2.1,
we then obtain that jS jp D n� 1 since n � 10. By Lemma 3.5, n� 1 D d1.ySn/
is the smallest nontrivial degree of ySn. Assume first that S ¤ PSL2.q/. Then
d1.G/ < jS jp D d1.ySn/ by [Tong-Viet 2011, Lemma 2.4], which is a contradiction
as cd.G/ � cd.ySn/. Now it remains to consider the case S D PSL2.q/. We have
q D n� 1 � 9. If G has a character degree which is smaller than jS jp D q, then
we obtain a contradiction as before. So, by [Tong-Viet 2011, Lemma 2.5], we
have p ¤ 3 and q � 1 .mod 3/ or p D 3 and q � 1 .mod 4/. In both cases, G
has an irreducible character of degree qC 1 D n D d1.ySn/C 1. If n � 12, then
d2.ySn/ � 2n > n > d1.ySn/ by Lemma 3.5, so that n is not a character degree of
ySn. Assume that 10� n� 11. Then nD 10 and q D 9. However, using [Conway
et al. 1985], we can check that cd.G/ª cd.ySn/ for every almost-simple group G
with socle PSL2.9/Š A6. �

Combining Propositions 9.1 and 8.2, we obtain the following results, which will
be crucial in the proof of Theorem A:

Proposition 9.2. LetG be a finite group and letM �G0 be a normal subgroup ofG
such that G=M is an almost-simple group with socle S ¤ An, where jG WG0j D 2
and G0=M Š S . Then cd�.G/¤ cd�.ySn/.

Proof. If n� 10, then the result follows from Propositions 9.1 and 8.2. It remains to
assume that 5� n� 9 and suppose by contradiction that cd�.G/D cd�.ySn/. Then
jGj D 2nŠ and so jS j j 2nŠ, hence �.S/ � �.ySn/ � f2; 3; 5; 7g. By [Huppert and
Lempken 2000, Theorem III], one of the following holds:

(1) If �.S/D f2; 3; 5g, then S Š A5, A6 or PSp4.3/.

(2) If �.S/D f2; 3; 7g, then S Š PSL2.7/, PSL2.8/ or PSU3.3/.

(3) If �.S/D f2; 3; 5; 7g, then S Š Ak with 7� k � 10, J2, PSL2.49/, PSL3.4/,
PSU3.5/, PSU4.3/, PSp4.7/, PSp6.2/ or P�C8 .2/.

Now it is routine to check that cd.G=M/ª cd.ySn/ unless S Š An, where G=M is
almost simple with socle S . �



The double covers of the symmetric and alternating groups 623

Proposition 9.3. Let G be a finite group and let M � G0 be a normal subgroup
ofG. Suppose that cd�.G/D cd�.ySn/ andG=M ŠG0=M �C2ŠSk�C2 for some
positive integer k and some nonabelian simple group S . Then k D 1 and S Š An.

Proof. Since cd�.S/� cd�.Sk/, the hypotheses imply that

cd�.S/� cd�.ySn/:

Assume first that 5� n� 9. Since jSkj D jS jk divides jySnj D 2nŠ, we deduce
that �.S/ � �.ySn/ and, in particular, �.S/ � f2; 3; 5; 7g. The possibilities for S
are listed in the proof of Proposition 9.2 above. Observe that jS j is always divisible
by a prime r with r � 5. Hence, rk j jySnj, which implies that k D 1 as jySnj divides
2 � 9Š. Now the fact that S Š An follows easily.

From now on we can assume that n � 10. Using Proposition 9.1, we obtain
S D An or S is a simple group of Lie type in even characteristic. It suffices to show
that k D 1, and then the result follows from Proposition 8.2.

Assume that the latter case holds. Then S is a simple group of Lie type in
characteristic 2. By Lemmas 2.1 and 2.3, ySn has at most two distinct nontrivial 2-
power character degrees, which are n�1 and 2b.n�1/=2c, or 2b.n�1/=2c and 22

r�1Cr

with n D 2r C 2. By way of contradiction, assume that k � 2. If k � 3, then
G=M Š Sk �C2 has irreducible characters of degrees

jS jk2 > jS j
k�1
2 > jS jk�22 > 1:

Obviously, this is impossible as cd.G=M/ � cd.ySn/. Therefore, k D 2. In this
case, G=M has character degree jS j22 with multiplicity at least 2 and jS j2 with
multiplicity at least 4. It follows that either 2b.n�1/=2c D jS j22 and n� 1 D jS j2,
or 22

r�1Cr D jS j22 and 2b.n�1/=2c D jS j2. However, both cases are impossible by
comparing the multiplicity.

It remains to eliminate the case S Š An and k � 2. By comparing the orders,
we see that

2.nŠ=2/kjM j D 2nŠ:

After simplifying, we obtain

jM j.nŠ/k�1 D 2k :

Since n � 10, we see that, if k � 2, then the left side is divisible by 5, while the
right side is not. We conclude that k D 1, and the proof is now complete. �

10. Completion of the proof of Theorem C

We need one more result before proving Theorem C.
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Proposition 10.1. Let G be a finite group and let S be a nonabelian simple group.
Suppose that jG W G0j D 2 and G0 Š S2 is the unique minimal normal subgroup
of G. Then cd.G/ª cd.ySn/.

Proof. Assume, to the contrary, that cd.G/� cd.ySn/. Let ˛ 2 Irr.S/ with ˛.1/ > 1
and put � D ˛˝1 2 Irr.G0/. Observe that � is not G-invariant, so that IG.�/DG0;
hence �G 2 Irr.G/ and so �G.1/ D 2˛.1/ 2 cd.ySn/. On the other hand, if ' D
˛˝˛ 2 Irr.G0/, then ' is G-invariant and, since G=G0 is cyclic, we deduce that '
extends to  2 Irr.G/, so  .1/D ˛.1/2 2 cd.ySn/. Thus, we conclude that

if a 2 cd.S/nf1g then 2a; a2 2 cd.ySn/: (10-1)

Let r be an odd prime divisor of jS j. The Ito–Michler theorem then implies that
r divides some character degree, say a, of S . Since a2 2 cd.ySn/ by (10-1), we have
r2 j 2nŠ and hence n� 2r as r > 2. Thus, we have shown that

if r 2 �.S/�f2g then r2 j 2nŠ and n� 2r: (10-2)

Using the classification of finite simple groups, we consider the following cases:

(i) S D Am, with m � 7. As 7 2 �.S/, it follows from (10-2) that n � 14. Since
m�12cd.S/, both 2.m�1/ and .m�1/2 are in cd.ySn/ by (10-1). Asm�7, we also
have thatm.m�3/=2; .m�1/.m�2/=22 cd.S/ and som.m�3/; .m�1/.m�2/2
cd.ySn/. We claim that m< n. Suppose for a contradiction that m� n. As n� 14,
by Lemma 4.1, there exists a prime r such that n=2 < r � n. Hence, the r-part of
2nŠ is just r . However, as r � n �m, r divides jAmj and so r2 j 2nŠ by (10-2), a
contradiction. Thus m< n as claimed.

Since m� 7, we obtain that

1 < 2.m� 1/ < m.m� 3/ < .m� 1/.m� 2/ < .m� 1/2: (10-3)

By Lemma 3.5(1), we have d1.ySn/Dn�1, so 2.m�1/�n�1, and thus n� 2m�1.
As n� 14, we deduce that m� 8.

Assume first that m 2 f8; 9; 10g. Then .m� 1/2 2 cd.ySn/ is a prime power. As
33 ¤ .m� 1/2 > d1.ySn/, Lemmas 2.1 and 2.3 yield that .m� 1/2 is a power of 2,
and thus mD 9. Since f23; 33g � cd.A9/, we have f24; 26; 36g � cd.ySn/ by (10-2).
As n � 14, we have 2b.n�1/=2c > 24 and n.n � 3/=2 > 24, so d2.ySn/ > 24 by
Lemma 3.5(2). This forces 24 D d1.ySn/D n� 1 or, equivalently, nD 17. But then
Lemmas 2.1 and 2.3 yield 36 D d1.ySn/, which is impossible.

Assume next that m� 11. Then n� 22 by (10-2). By Lemma 3.5(2), we have
d2.ySn/>2n>2m. In particular, 2.m�1/<d2.ySn/. By (10-1), we have 2.m�1/2
cd.ySn/, hence 2.m� 1/ D d1.ySn/ D n� 1, which implies that n D 2m� 1. By
Lemma 3.5(3), we have d3.ySn/D .n�1/.n�2/=2 and thus by (10-3) we obtain that

.m� 1/.m� 2/� d3.ySn/D .n� 1/.n� 2/=2D .m� 1/.2m� 3/:
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After simplifying, we have m�2� 2m�3 or, equivalently, m� 1, a contradiction.

(ii) S is a finite simple group of Lie type in characteristic p, with S ¤ 2F4.2/
0. As

jS j is always divisible by an odd prime r � 5, we have n� 2r � 10 by (10-2). Let
StS denote the Steinberg character of S . We can check that StS .1/ D jS jp � 4.
Since StS .1/ 2 cd.S/, 2StS .1/ and StS .1/2 are character degrees of ySn by (10-1).
As 2StS .1/<StS .1/2, we have St.1/2>d1.ySn/Dn�1. Since n�10, Lemmas 2.1
and 2.3 yield that StS .1/2 is a 2-power. Hence, 2St.1/ is also a 2-power. By [Tong-
Viet 2012, Lemma 8], there exists a nontrivial character degree x of S such that 1<
x <StS .1/. It follows that 2x <2StS .1/ is also a character degree of ySn. Therefore,
2StS .1/ > d1.ySn/D n�1. Hence, ySn has two distinct nontrivial 2-power character
degrees, neither of which is n�1. It follows that nD 2rC2� 10, and furthermore

2StS .1/D 2b.n�1/=2c and StS .1/2 D 22
r�1Cr

by Lemma 2.3. We write StS .1/D 2N . Then 2r�1C r D 2N and 2r�1 DN C 1
since b.n � 1/=2c D 2r�1. Solving these equations, we have r D N � 1 and
2r�1 D r C 2. As n � 10, we deduce that r � 3. In this case, it is easy to check
that the equation 2r�1 D r C 2 has no integer solution.

(iii) S is a sporadic simple group or the Tits group. Since the arguments are fairly
similar, we consider just the case S D J3 as an example. Recall that p.S/ is the
largest prime divisor of jS j. By (10-2), we have n� 2p.S/. Since n� 2p.S/� 22,
we have d2.ySn/D n.n� 3/=2� p.S/.2p.S/� 3/ by applying Lemma 3.5(3). For
i D 1; 2, we have 2di .S/ 2 cd.G/� cd.ySn/ with 1 < 2d1.S/ < 2d2.S/. For each
possibility for S , we can check using [Conway et al. 1985] that p.S/.2p.S/�3/ >
2d2.S/; hence d2.ySn/ > 2d2.S/ > 2d1.S/, which is a contradiction. �

We are now ready to prove the main result, Theorem C, which we restate below
for the reader’s convenience:

Theorem C. Let n � 5. Let G be a finite group and yS˙n the double covers of Sn.
Then CG Š CySCn (or equivalently CG Š CyS�n ) if and only if G Š ySCn or G Š yS�n .

Proof. By the hypothesis that CG Š CySn, we have jGj D 2nŠ, and, as ySn has two
linear characters, we also have jG WG0j D 2.

First we claim that G0 DG00. Assume not. Then H WDG=G0 is a group whose
commutator subgroup H 0 is nontrivial abelian of index 2. Now the induction of any
nonprincipal (linear) character of H 0 to H must be irreducible and 2-dimensional.
This is not possible since ySn with n� 5 does not have any irreducible character of
degree 2. Thus G0 DG00.

As G0 D G00 and G0 is nontrivial, one can choose a normal subgroup M of G
such that M <G0 and

G0=M Š Sk;



626 C. Bessenrodt, H. N. Nguyen, J. B. Olsson and H. P. Tong-Viet

where S is a nonabelian simple group and Sk is a chief factor of G. Let

C=M WD CG=M .G
0=M/:

(A) First we consider the case C DM . Then G0=M is the unique minimal normal
subgroup of G=M . Therefore G=M permutes the direct factors of G0=M (which
is isomorphic to Sk). It then follows that k � 2 as jG W G0j D 2. Invoking
Proposition 10.1, we deduce that k D 1 and thus G0=M Š S . Therefore, G0=M
is the socle of G=M . As cd�.G=M/� cd�.ySn/, Proposition 9.2 then implies that
G0=M Š An. Thus G=M Š Sn and also jM j D 2. In particular, M is central in
G and therefore M � Z .G/\G0. We conclude that G is one of the two double
covers of Sn, as desired.

(B) It remains to consider the caseC >M . SinceC=M CG=M and Z .G0=M/D1,
it follows that G0 is a proper subgroup of G0C . As jG WG0j D 2, we then deduce
that G DG0C and hence

G=M DG0=M �C=M; where C=M Š C2:

Applying Proposition 9.3, we obtain that k D 1 and S is isomorphic to An. In other
words, G0=M Š An. So G=M Š An �C2. Comparing the orders, we get jM j D 2
and so M �Z .G/. As M �G0 DG00, it follows that M �Z .G0/\G00, which in
turn implies that G0 is the double cover of An. We have proved that

G0 Š yAn: (10-4)

Moreover, as C=M Š C2 and jM j D 2, we have

C Š C4 or C2 �C2: (10-5)

Now we claim that G is an (internal) central product of G0 and C with amalga-
mated central subgroup M . To see this, let x; y 2 G0 and c 2 C . Then the facts
C=M D CG=M .G

0=M/ and M �Z .G/ imply

Œx; y�c D Œxc ; yc�D Œxm1; ym2�D Œx; y�

for some m1; m2 2M . Therefore, C centralizes G0 D G00 and the claim follows.
This claim, together with (10-4) and (10-5), yield

4k.yAn/D 4k.G
0/D k.G0 �C/� k.M/k.G/D 2k.G/;

where the inequality comes from the well-known result that k.X/� k.N /k.X=N/
for N a normal subgroup of X (see [Nagao 1962] for instance). Since cd�.G/D
cd�.ySn/, we have k.G/ D k.ySn/. It follows that 2k.yAn/ � k.ySn/. This however
contradicts Lemma 4.5, and the theorem is now completely proved. �
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