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We use the doubling method to construct p-adic L-functions and families of
nearly ordinary Klingen Eisenstein series from nearly ordinary cusp forms on
unitary groups of signature (r, s) and Hecke characters, and prove the constant
terms of these Eisenstein series are divisible by the p-adic L-function, following
earlier constructions of Eischen, Harris, Li, Skinner and Urban. We also make pre-
liminary computations for the Fourier—Jacobi coefficients of the Eisenstein series.
This provides a framework to do Iwasawa theory for cusp forms on unitary groups.
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1. Introduction

Let p be an odd prime. Let 3 be a CM field with the maximal totally real subfield F
such that [F : Q] = d. Suppose p is totally split at 7. We fix an isomorphism
tp :=C, >~ C and a CM type X, which means a set of d different embeddings
J{ — C such that £, U XS, where ¢ means complex conjugation, is the set of all
embeddings of J{ into C. This determines a set of embeddings # < C, using ¢,,
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which we denote by X,. Let r > s > 0 be integers. We often write a =r — s
and b =s. Let U(r, s) be the unitary group associated to the skew-Hermitian matrix

where ¢ is a diagonal matrix such that i ~!¢ is positive definite.

Eischen et al. [> 2015] constructed the p-adic L-function for an irreducible
cuspidal automorphic representation of U(r, s) that is nearly ordinary at all primes
dividing p, which interpolates (the algebraic part of) critical values of the standard
L-function of the representation twisted by general CM characters at far-from-
center critical points. The main tool used in [loc. cit.] is the doubling method of
Piatetski-Shapiro and Rallis. This paper can be thought of as a continuation of
their work, but instead using a more general pullback formula of Shimura (which is
actually due to Garrett [1984; 1989] and is called the “Garrett map”) to construct
p-adic families of Klingen Eisenstein series on U(r 4- 1, s 4 1) from the original
automorphic representation.

The motivation for doing this is to provide a framework to generalize the im-
portant work of Skinner and Urban [2014] on the Iwasawa main conjectures for
GL; to forms on general unitary groups. The general strategy is, starting with a
family of cuspforms on the unitary group U(r, s) and a family of CM characters, we
construct a family of Klingen Eisenstein series on the bigger group U(r + 1, s + 1).
One tries to prove the constant terms of the Klingen Eisenstein family are divisible
by the standard p-adic L-function of the cuspforms on U(r, s) and, therefore, the
Eisenstein family is congruent to cuspidal families modulo this p-adic L-function.
Passing to the Galois side, such congruences enable us to construct elements in
the Selmer groups, proving one divisibility of the corresponding Iwasawa main
conjecture.

We have been able to use it to prove one divisibility of the Iwasawa main
conjectures for Hilbert modular forms and some kinds of Rankin—Selberg p-adic L-
functions; see [Wan 2013; 2015]. C. Skinner has recently been able to use the result
of [Wan 2015] to prove a converse of a theorem of Gross, Zagier and Kolyvagin
that states that, if the rank of the Selmer group of an elliptic curve is one and the
p-part of the Shafarevich—Tate group is finite, then the Heegner point is nontorsion
and the central L-value vanishes at order exactly one [Skinner 2014]. The first step
towards the plan outlined above is to construct the family of Klingen—Eisenstein
series and study the p-adic properties of its Fourier—Jacobi coefficients, which is
the main task of the present paper.

In [Eischen et al. > 2015] the interpolation formulas are proved at all arithmetic
points. However, in this paper we are only able to understand the pullback Eisenstein
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sections in the “generic case” (to be defined in Definition 4.42; basically this puts
restrictions on the ramification of the form at primes dividing p). The reason is
that it seems difficult in general to describe the nearly ordinary Klingen Eisenstein
sections. Fortunately, since along a Hida family the set of forms that are “generic”
is Zariski-dense, these computations are enough to construct the whole Hida family
of Klingen Eisenstein series (similar to the [Skinner and Urban 2014] case). Thus,
we only work with a Hida family of forms instead of a single cusp form, due to this
“generic” condition. We remark that when s = 0, by working with forms of general
vector-valued weights, we are able to construct a class of the p-adic L-function
and Klingen Eisenstein family for a single form unramified at p (not necessarily
ordinary; see [Eischen and Wan 2014]).

Now we state the main results. Let 3, be the maximal abelian pro-p-extension
of J{ unramified outside p. We write I'yy = Gal(H /J{). This is a free Z,-module
whose rank should be d + 1, assuming the Leopoldt conjecture. Take a finite
extension L over Q. Let Oy be the integer ring of L. Let O} be the completion of
the integer ring of the maximal unramified extension of L. We define Ay =0y [y ]
Let /c > 4 be an integer and 79 a Hecke character of 3\ Ay, whose infinite types are
( 2/(, 2 ) at all infinite places. We have a Ag-valued family of Hecke characters
of J*\AJ; containing 7y as a specialization (to be made precise later). Let A be
the weight algebra for U(r, s), defined later, and [ a normal domain containing A
which is finite over A. Let [ be the normalization of an irreducible component
of I®¢, 0Y". (In fact, for each such irreducible component we can make the following
construction.) Let Q4 € C¥> be the CM period of the CM field % and Q,e€ (Z‘“)Zoo
be the p-adic period (we refer to [Hida 2004a] for the definition). We write Q -
for the product of the d elements of 2., and define Q?w similarly. Throughout
this paper, we write

Ze=3k—r—s=1,

Zp =%k —r—5).

Theorem 1.1. Let f be an l-coefficient, nearly ordinary, cuspidal eigenform on
GU(r, s) such that the specialization fg at a Zariski-dense set of “generic” arith-
metic points ¢ is classical and generates an irreducible automorphic representation
of U(r, s). Let X be a finite set of primes containing all primes dividing any entry
of ¢, or the conductor of f, or K.

In the case when s # 0, we make the assumptions TEMPERED, Proj v and DUAL,
or assumptions TEMPERED, Proj y and Proj g (to be defined in Section 5A).

Then:

(1) There is an element $? w € [Ty 1| Qqur Fyor such that, for a Zariski-dense subset
of arithmetic points ¢ € Spec I"'[[T'y ]l (to be specified in Definition 4.42), we have
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that, if s = 0, then % € I""[T'y] and

DB )=l )((—2)d(a+2b)(Zni)d(a+2b)K¢(2/n)d(a+2b)(a+2b1)/2>—1.Cp
,T0 K XKy

l—la+2b I(K j— l)d

r
% 1_[(|pl‘l+"‘+tr |_K¢/2 X p_((r+1)/2) Zj:l Zj 1_[ g(XjT]_I)Xj_lrl (plj ))

vlp j=l1
L (g, T5, kg — 1)
X ngzm
If s #0, then
(L5 1)

L, (_2)—d(a+2b) (27Ti)d(a+2b)/(¢ (2/7T)d(a+2b)(a+2b—])/2 -1 CP
( K¢) +2b 1 . d e
1550 (kp—j—=1

y 1_[( p(r+s)(r+s71)/2 X (p _ 1)r+s
oy lr_ fi- (r+s—i)) . (l‘[le ptr+i(r+s—i)) . Hr-i—s( i—1
% p—SS2(1+a+2b)/2p— Z;:l tj(a+1)/2 Z;:l ty+i(a+b) Ipl1+"'+tr+s~sz |—K¢/2
r+s
< [T oG ' nits ' (p™) H oG D' <pff>>
i=r+1 j=1
E ~ -
y L*(7y,, t;), K —T1 —5)
(@9, 9p)

where the x; are defined in Definition 4.42 and ty , = (11, T, ) such that t; has
conductor p* with s, > s1. Also,

—(a+2b)/2

CZ: l_[ T()’v)’vxv)|()’vyv) xvxv|v Vol()y)
vip, vEX

(the x, and y, are the x and y in Section 4C1 and %), is defined in Definition 4.11.)
The c,(z) and c(z) are defined in Lemma 4.3 and k is the weight associated to the
arithmetic point ¢. The ¢4 and (pord are the specialization of f and the f" provided
by the assumption Proj ¢ (notzce that they are ordinary vectors with respect to
different Borel groups, e.g., when s = 0, the level group for ¢y at p is with respect
to the upper-triangular Borel subgroup, while that for (pord is with respect to the
lower-triangular Borel subgroup). The factor

p(r—i-s)(r—',-s—l)/Z X (p _ 1)r+s
(H;zl pt,-~(r+sfi)) . (Hf,:l pfr+i(r+3*i)) .]‘[’“ (p/ =1




Families of nearly ordinary Eisenstein series on unitary groups 1959

is the volume of a set K’ defined in Definition 4.34 (this is smaller than the level
group for (ﬁgrd). The Fyr is the fraction field of I"". The ty are specializations
of the family of CM characters containing ty. The p' are conductors of some
characters defined in Definition 4.21. The B.v is defined in (17), whose p-order is
Z?:l latbyi(a+b—k).

(i1) There is a set of formal q-expansions Ef ;) := {2,3 a[hg] (B)g” }([g]’h) for
Zﬁ a{lg](ﬁ)q’8 € ([I“r[[Fg{]](f@ZP?]t[g],oo) ®pur Fur, where Rig) 00 is Some ring to be
defined later, in Section 5, and ([g], h) are p-adic cusp labels (Definition 2.6) such
that, for a Zariski-dense set of arithmetic points ¢ € Spec [T’y ll, ¢ (E ¢ 1) is the
Fourier—Jacobi expansion of the holomorphic, nearly ordinary Klingen Eisenstein
series E( fKiing.¢» 2k, —) We construct in Section 5C (see the interpolation formula
in Proposition 5.8). Here, fxing is a certain “Klingen section” to be defined there.

(ii1) The terms afg] (0) are divisible by LP? - -S.B?,, where 33?, is the p-adic L-function
’ 0 0
of a Dirichlet character to be defined in the text.

The assumption “TEMPERED” is included so that we can easily write down the
explicit range of absolute convergence for pullback formulas. It is not serious
and may be relaxed using ideas of [Harris 1984]. Besides the theorem, we also
make some preliminary computations for the Fourier—Jacobi coefficients for Siegel
Eisenstein series. This is crucial for analyzing the p-adic properties of the Klingen
Eisenstein series we construct. When doing arithmetic application we need to prove
that certain Fourier—Jacobi coefficient of this Eisenstein family is prime to the
p-adic L-function.

This paper is organized as follows. In Section 2 we recall various backgrounds.
In Section 3 we recall the notion of p-adic automorphic forms on unitary groups
and Fourier—Jacobi expansion. In Section 4 we recall the notion of Klingen and
Siegel Eisenstein series, the pullback formulas relating them and their Fourier—
Jacobi coefficients, and then do the local calculations. (This is the most technical
part of this paper.) We manage to take the Siegel sections so that, when we are
moving our Eisenstein datum p-adically, these Siegel Eisenstein series also move
p-adic analytically. The hard part is to choose the sections at p-adic places. At
non-Archimedean cases prime to p the choice is more flexible. (We might change
this choice whenever doing arithmetic applications; see [Wan 2013; 2015].) At the
Archimedean places we restrict ourselves to the parallel scalar weight case, which
is enough for doing Hida theory. In Section 5 we make the global calculations and
construct the nearly ordinary Klingen Eisenstein series by the pullbacks of a Siegel
Eisenstein series from a larger unitary group. Finally, we include an Appendix by
Kai-Wen Lan for detailed proofs of some facts used for the p-adic g-expansion
principle. (This is not strictly needed in our construction. But we think it is good to
include it for completeness and for the convenience of readers.)
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2. Background

In this section we recall notations for holomorphic automorphic forms on unitary
groups, Eisenstein series and Fourier—Jacobi expansions.

2A. Notation. Suppose F is a totally real field such that [F: Q] =d and ¥ is a
totally imaginary quadratic extension of F'. For a finite place v of F or K, we usually
write @, for a uniformizer and g, for the cardinality of its residue field. Let ¢ be
the nontrivial element of Gal(¥/F). Let r and s be two integers with r > s > 0.
We fix an odd prime p that splits completely in #/Q. We fix is, : @ < C and
1:C~C, and write i, for tois. Let ¥ be the set of Archimedean places of F.
We take a CM type of J, still denoted by Y (thus Yoo U XS are all embeddings
J— C, where X5 ={toc |1 € Zx}).

We use € to denote the cyclotomic character and w the Teichmiiller character.
We will often adopt the following notation: for an idele class character x = ), xv,
we write x,(x) = Hvl » Xv (xy). For a character ¥ of ¥ or A;{, we often write
¥’ for the restriction to F* or A. For a character t of %* or A, we define t¢
by t¢(x) = t(x¢). (Note: we will write T(x) for the complex conjugation of t(x)
while the “c” means taking complex conjugation for the source.)

If v is a prime of F with characteristic £ and 0,0f, = (d,), d, € F is the
different of F/Q at v and, if v, is a character of F and (cy ,) C OF, is the
conductor, then we define the local Gauss sums

9(Yy, Cw,vdv) = Z Yy(a)e <Tro/@g< a )),

a€(Of,u/cy.)" Cyvdy

where £ is the rational prime above v. If ) v, is an idele class character of A;
then we set the global Gauss sum,

g(®@ ) = [ ¥y (Cyd)a (W, cyudy).

This is independent of all the choices of d, and Cy ;.. Also, if F, ~Q,, and (p') is
the conductor for vr,, then we write g(v/,) := g(¥, p'). We define the Gauss sums
for i similarly.

Let J{» be the maximal abelian Z,-extension of J unramified outside p. Write
[y := Gal(J o /H) and Gy the absolute Galois group of J. Define Ag; :=Z,[T'y].
For any finite extension A of Z,, define Ay 4 := A[I'y]l. Let &y : Gy — I'yy — A;}
be the canonical character. We define Wy to be the composition of ey with the reci-
procity map of global class field theory, which we denote as recy; : H*\Aj — Gg}’.
Here we used the geometric normalization of class field theory. We make the
corresponding definitions for F as well.
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Let S, (R) be the set of matrices S € M,,(R ®¢, Oy) such that § = 'S, where
conjugation is with respect to the second variable of R ®¢, Oy. We write B = B,
and N = N, for the upper-triangular Borel subgroup and unipotent radical of the
group GL,,. Let N°PP or N~ be the opposite unipotent radical of N. We define the
function ep, = ]—[U e, with e, the function on Q7 such that e, (x,) = 27l for {x,)
the fractional part of x, and ex (x) = e~ ¥**. We will usually write = (_lm 1’”)
if m is clear from the context.

2B. Unitary Groups. We define

where ¢ is a fixed diagonal matrix such that i =1 ¢ is totally positive. Let V =V (r, s)
be the skew-Hermitian space over J with respect to this metric, i.e., #'* equipped
with the metric given by (u, v) := u6, ;'v. We define algebraic groups GU(r, s)
and U(r, s) as follows: for any Of-algebra R, the R points are

GU(r, s)(R) := {g € GLr-‘rs(@f]{ o R) | ger,mf< = M(g)er,s» M(g) € Rx}
(where g* = g and u : GU(r, s) — G, F is called the similitude character) and
U(r, s)(R) :={g € GU(r, s)(R) | n(g) = 1}.

So the unitary group U(r, s) in this paper really means the unitary group with
respect to our fixed metric 6, ;. Sometimes we write GU, and U,, for GU(n, n)
and U(n, n). For two forms ¢, ¢, on U(r, s)(AFr), we define the inner product by

(1, 02) = / 01(8)p2(g) dg,
U(r,s)(F)\U(r,s)(AF)

where the measure is chosen so that U(r, 5s)(Of,) = 1 for all finite v and we take
the measure at Archimedean places as in [Shimura 1997, (7.14.5)].
We have the embedding

GU(r, s) x Reso, /0, G — GU(r + 1,5 + 1),

a b ¢
abc n(g)x~!
gxx=|de f|]|xx—|d e f
hl k h I k
X

We write m (g, x) for the right-hand side. The image of the above map is the
Levi subgroup of the Klingen parabolic subgroup P of GU(r 4+ 1, s 4+ 1), which
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consists of matrices in GU(r 4+ 1, s 4+ 1) such that the off-diagonal entries of the
(s+1)-st column and the last row are 0. We denote this Levi subgroup by Mp. We
also write Np for the unipotent radical of P. We also define B = B(r, s) to be the
standard Borel subgroup, consisting of matrices

Ag Bg>
e (1)
Dg

where the blocks are with respect to the partition r + s and we require that A, is
lower-triangular and D, is upper-triangular.

We write —V (r, s) = V (s, r) for the Hermitian space whose metric is —6, ;. We
define some embeddings of GU(r 4+ 1,5 + 1) x GU(—V (r, s)) into some larger
unitary groups. These will be used in the doubling method. Recall we wrote a =r —s
and b = s at the beginning of the introduction; we define GU(r +s+1,r +s+ 1)
to be the unitary similitude group associated to

1,

_lb

1

and G(r +s,r +s)’ to be associated to

We define an embedding

a:{g1 xgeGUr+1,s+1) xGU(=V(r,s)) | n(g) =n(g)}
—GU@r+s+1,r+s+1)

by viewing g; as a block matrix with respect to the partition s + 14+ (r —s) +s+ 1
(this means we use this partition to divide both the rows and the columns into blocks)
and g; as a block matrix with respect to s+ (r —s) +s, then we define o by requiring
the 1, 2, 3, 4, 5-th (blockwise) rows and columns of GU(r + 1, s + 1) embed to the
1,2,3,5, 6-th (blockwise) rows and columns of GU(r +s + 1, r + s+ 1)’ and the
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1, 2, 3-rd (blockwise) rows and columns of GU(V (s, r)) embed to the 8, 7, 4-th
rows and columns (blockwise) of GU(r +s +1,r +s+1)".
We also define an embedding

o' {g1 x g2 € GU(r, ) x GU(=V(r, 9)) | n(g1) = n(g2)} = GUGr +5, 7 +5)

in a similar way to above: Consider GU(r, s) and GU(—V (r, s5)) as block matrices
with respect to the partition s + (r — s) + 5. Put the 1, 2, 3-rd (blockwise) rows
and columns of the first GU(r, s) into the 1, 2, 4-th (blockwise) rows and columns
of GU(r + s, r + )’ and put the 1, 2, 3-rd (blockwise) rows and columns of the
second GU(r, s) into the 6, 5, 4-th rows and columns of GU(r + s, r +s)’.

We also define isomorphisms

B:GUr+s+1,r+s+1) = GUr+s+1,r+s+1), g+ S 'gs,

and
B :GU(r+s,r+5) => GU(r+s.r+s), g+ S 'gs,
where
Ly —3 1y
1
1, —1¢
-1, 1.1
S = b% b (1)
ly 5-1p
1
_la _%g
—1p —3 L
and
1b _%'lb
1a _%C
-1, 1.1
s = b2rh (2)
Iy 5-1p
_111 _%g
—1;, _%'117

Remark 2.1 (about unitary groups). In order to have Shimura varieties for doing
p-adic modular forms and Galois representations, we need to use a unitary group
defined over Q. More precisely, consider V as a skew-Hermitian space over (2 and
still write 6, ; for the metric on it. Let T be a Oy lattice that we use to define GU (7, ).
Then the correct unitary similitude group should be

GU'(r, 5)(A) :={g € GLoyg, (T ®z A) | 86,.58" = 11(8)6,.5, 11(g) € A}

for any commutative ring A. This group is smaller than the one we defined before.
However, this group is not convenient for local computations, since we cannot treat
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the primes of F independently. So what we do (implicitly) is: For the analytic
construction, we write down forms on the larger unitary similitude group defined
above and then restrict to the smaller one. For the algebraic construction, we only
do the pullbacks for unitary (instead of similitude) groups.

We are going to fix some bases of the various Hermitian spaces. We let

be the standard basis of V such that the Hermitian forms is given above. Let
W be the span over % of w!, ..., w ™. Let XV = Oyx' ® --- ® Oy%x* and
Y =03y'®---®0yy*. Let L be an Oy-maximal lattice such that L, =L®zZ,=
>0y @7 Z,)w'. We define a Oy-lattice M of V by

M =Y®L&®X".

Let M, =M ®z Z,,. A pair of sublattices Pol, = (N~1, N%) of M, is called an
ordered polarization of M, if N ~!'and N° are maximal isotropic direct summands
in M, and they are dual to each other with respect to the Hermitian pairing. More-
over, we require that, for each v = ww* with w € £, rank N I'= rank NS)(. =r
and rank Nu}.l = rank N0 = 5. The standard polarization of M p 1s given by
M;' =Y, ®Ly, ® Yy and M? = Xyc @ Lyc ® X,,. We let —V be the Her-
mitian space V with the metric given by the negative of V. We let 3!, ..., 3",
w', ..., w5, %!, ..., %% be the corresponding basis. Let #y**t! @ Hx**! be a
2-dimensional Hermitian space with metric (_, '). We define

W:=VaeHyt ok & (V).

Let Y € U(n+ 1, n+ 1)(F),) be such that, for each v|p with v = ww*, where w is
in our p-adic CM type £,, T, = S, !, We define another basis of W by

ys+],w1,...,wr_s,xl,...,xs+1,y1,...,ys,wl,...,wr_s,xl,...,xs)T

te,1 r+s+1 1 r+s+1
='(y,....,y X, X ).

...,

Then Y := @gf“ (O ®zZp)y" and X := @f:f“ (0% ®z Z,)x" gives another
polarization (Y, X) of L, := M, ® (—M,) & Oy y* 1 @ Oyx+1.

2C. Automorphic forms.

2C1. Hermitian symmetric domain. Suppose r > s > 0. Then the Hermitian
symmetric domain for G := GU(r, s) is

X . e
XT=X,,= {1:: (y) ‘xGMS(CE), yGM(,,S)XS(CE), i(x*—x)>—iy"0 ly}.
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For @ € GU(r, 5s)(Fx), Where Foo := F ®g R, we write
abc

a=|d e f

hl d

according to the standard basis of V together with the block decomposition with
respect to s + (r —s) +s. There is an action of & € G(Fuo)™" (here the superscript +
means the component with positive similitude factor at all Archimedean places)
on X, ;, defined by

X ax +by+c _1
= hx +ly+d)~".
a<y) <z<>’X+ey+f)(x+y+ )

If rs =0, X, ; consists of a single point, written x(, with the trivial action of G (Fuo) ™.
For an open compact subgroup U of G(Af r), put

Mg(X",U)=GF)"\X" x GAF,)/U,
where U is an open compact subgroup of G(Ar, r). We let
q:r,s — C(ZC)S ® C(ZC)r—S ® C(E)v

and define a map ¢, on it by (uy, ua, uz)c, s = (u1, uz, u3z). We define the map
p(T):V®gR=C" by p(r)v=vB(t)c,s. Let
% %k

B(t) =

—_— O =
O Y =
R

s N

We define the automorphic factors « (o, ) and u(«a, ) by
aB(t) = B(at)(k(a, T), u(a, T))

for @ € G(R) and T € X*. We sometimes write k. s(, T), i,s(, T) to emphasize
the group U(r, s). We define j (g, z) := det(u(g, z)). For z € X, 511, we define
% (z) € X, 5 to be the lower-right r x s submatrix. For z; = ();i) and z € ()yc), we
define n(z1, z) = i(x} —x) — y;(i¢ ™1y and 8(z1, z) = 27 det(n(z1, 2)).

2C2. Automorphic forms. We will mainly follow [Hsieh 2014] to define the space
of automorphic forms, with slight modifications. We define a cocycle

J 1 RroG(R)" x XT — GL,(C¥) x GL,(C*) := H(C),
(o, 7) = (k (o, T), (e, 7)),
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where

o7y = hix+d h'y+10
T\ =0 @i+ f) 07 1gly+067ed

. a
forr:()anda: g
Y h

Let i be the point (i(l)s) on the Hermitian symmetric domain for GU(r, s) (here 0
means the (r —s) x s matrix 0). Let GU(r, s)(R)™ be the subgroup of GU(r, s)(R)
whose similitude factor is totally positive. Let K1 be the compact subgroup of
U(r, 5)(R) stabilizing i and K, be the group generated by K1 and diag(1,4, —15).
Then J : K ;g — H(C), koo > J (kso, ), defines an algebraic representation of K ;g

) and u(a,t)=hx+Ily+d

~ 0 &

c
f
d

Definition 2.2. A weight £ is defined by a set {k,}sex,, Where

]_CG = (CH»s,a, vy Cs41,05Clos + C&,o)
withci o > > C56 > Cs410 +r+5> > Cyp0 + 1+ for the ¢; » in Z.

Remark 2.3. Our convention is different from others in the literature. For example,
in [Hsieh 2014] the a,_; there for 1 <i <r is our —c,,;, and by _; there for
l<j<sisourc;. Weletk':=(ay,...,a,; b1, ..., bs). We also note that if each
ke =(0,...,0;,...,k) then L¥(C) is 1-dimensional with p*(h) = det u(h, i)~.

For a weight k = (¢4, ..., Cs+1; €1, - . ., C5), We define the representation of
GL, x GL; with minimal weight —k by

Ly =1{f €Ocr, xar, | ftnsg) =K' ) f(g), t € T, x Ty, ny € N, x "Ny},

where Ogr, x gL, is the structure sheaf of the algebraic group GL, x GL;; see
[Hsieh 2014, Section 3]. The group action is denoted by pr. We define the
functional/l; on Lj by evaluating at the identity and define a model LX(C) of the
representation H (C) with the highest weight k as follows. The underlying space of
LE(C) is L (C) and the group action is defined by

Py = pe('h™"),  h e H(O).
For a weight k, define ||k|| = {||kll;}oex € Z* by
kllo := —Cs+1.6 =+ = Csro +Clo + -+ Cs0
and |k| € Z=“* by

|]_€| = Z(Cl,(r + .- +Cs,(r) ‘0 — (Cs-‘rl,(r +--- +Cs+r,zf) o€,

oex
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Let x be a Hecke character of 3 with infinite type |k|, i.e., the Archimedean part
of x is given by

U+"'+ §,0 —\Cs U+"'+ s+r,o
X (2o0) = <1_[ o )>.
o

Definition 2.4. Let U be an open compact subgroup in G(Af ). We denote by
M; (U, C) the space of holomorphic LX(C)-valued functions fon Xt x G(AF, )
such that, for r € X*, « € G(F)' and u € U, we have

flat, agu) = (@) ok (J (@, ) f (1, g).

Now we consider automorphic forms on unitary groups in the adelic language.
Leti € Xt and K;g C U(r, s)(Fx) be the stabilizer of i. The space of au-
tomorphic forms of weight k£ and level U with central character x consists of
smooth and slowly increasing functions F : G(Ar) — L(C) such that, for every
(o, koo, u,2) € G(F) x KI x U x Z(AF),

F (zagkoout) = p* (J (koo, 1) D F(9)x ' (2).

2C3. The group GU(s, r). Now we consider the unitary group GU(s, r) which has
the same Hermitian space as GU(r, s) but with the metric (, ), :== —(, ),s. We
define the symmetric domain X; , = X, ; but with the complex structure such that
a function is holomorphic on Xj , if and only if it is holomorphic on X, ; after
composition with the map

Xy = Xors (") > <_’f) .
y -y

We let C°" = C(2)’ @ C(2) ° ® C(X°)* and define ¢, , by (u1, u2, u3)cs,, =
(u1, u2, u3). For GU(s, r), we define p(r) : V®@q R~ C*" by p(r)v =vB(1)cs,,.
We define the automorphic factors «; (o, T) and pg (o, T) by

aB(t) = B(at)(ts,r(a, 7), k5 r (@, T)).

We define a weight k of U(r, s) such that k = (¢, 41,6, -+, Crt5.0: Clios -+ +» Cro)o
withci o > > Cro > Crplo +Fr+5 >+ > cCryso +1+s. Using these we can

develop the theory of holomorphic automorphic forms on GU(s, r) similar to the
GU(r, s) case.

2C4. Embeddings of symmetric domains. We still follow [Shimura 1997]. Pick one
Archimedean place. Write z = ();) € Xr41.5+1, Xrs, and w = (ﬁ) € X;.r. We define
the embeddings ¢ from X, 41 s1+1 X Xsr Or Xy g X X 10 Xpqo1 rs+1 OF Xppg ris
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X 0 0
t(z, w) —> y 3¢ 0

_é-flv*y —v* —yu*

(The ¢ really means the image of ¢ at this Archimedean place.) Let U = RT Q,
for

1 Ty
1 1 2711, 2711,
1
A
1 ¢! ¢!
-1 —3¢ 1,

1
2

where A = (1 1). (The U here is the U, defined in [Shimura 1997, Section 22] and
other notations are slightly different.) We also define Q' to be Q with the second
and sixth rows and columns (blockwise) deleted. Let

1

2711, —2-11,

B
A
¢! ¢!
I

with A’ = 1;. Define U’ = R'T'Q’. Let g (z) be the lower-right r x s block for
2 € Xpt1,54+1 and w(z, w) = (U™ '1(z, w) as in [Shimura 1997, (22.2.D)]. If z = ()
and z; = (;C;), let8(zy1,2)=2"" det[i(xi“—x)—y’f@‘ly]. If we write [h]g for S~'hS
then we have [diag(g, g1)]Istv(z, w) = ty(gz, g1w), [diag(g, g1)lstv(z, w) =
ty(8z, g1w) and

J([diag(g, )]s, tw (2, w)) = 8 (w, 9 (2)) '8 (gw, 9 (g12))det(y) jo (W) jg, (2). (3)

For a function g on X, 4541 4541 OF Xy4s r+s, Wwe define the pullback g° to be
the function on X, 441 X X, or X, ¢ X X, given by

g°(z, w) = 8w, () Fglw (@ w)).
Definition 2.5. We define a scalar weight « of U(s, r) to be the weight

(—k,...,—k;0,...,0).
—_—— ——
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2D. Shimura varieties and Igusa varieties. Fix a neat open compact subgroup K
of GUO(r, 5)(Ay) whose p-component is GUO(r, 5)(Zp); we refer to [Hsieh 2014]
for the definitions and arithmetic models of Shimura varieties over the reflex field E,
which we denote by S (K). It parameterizes isomorphism classes of the quadruples
(A, A, 1, 1) s, where O is a finite set of primes, (A, 1) is a polarized abelian
variety over some base ring S, X is an orbit (see [Hsieh 2014, Definition 2.1])
of prime-to-[] polarizations of A, ¢ is an embedding of Oy into the endomor-
phism ring of A, and 7™ is some prime-to-[J level structure of A. To each point
(t,8) € X* x G(AF, £), we attach a quadruple as follows:

The abelian variety 4 (7) :=V Q@ R/ M) (M|g) := Hi (A4 (7), 21’)).

The polarization of o is given by the pullback of —(, ), on C"* to V ®g R
via p(7).

The complex multiplication ¢ is the Oy-action induced by the action on V.

« The prime-to-p level structure 13" : M®ZP ~ My, is defined by 13" (x) = gsx
forx e M.

We have a similar theory for Shimura varieties for GU(s, r) as well.

There is also a theory of compactifications of S¢(K), developed in [Lan 2008].
We let Sg(K) be a fixed choice of a toroidal compactification and S;;(K) the
minimal compactification.

We define some level groups at p, as in [Hsieh 2014, Section 1.10]. Recall that
G(Ay) 2 K =]y K, is an open compact subgroup such that K, = G(Z,) and let
Y be a finite set of primes including all primes above p such that K, is spherical
forall v ¢ X. If we write g, = (é g) for the p-component of g, then define

(1, % n
ey ) mer]
K'={geK|AeN,(Z,) mod p", D e N;(Z,) mod p", C =0},
Ky={geK|AeB.(Z,) modp", De B; (Z,) mod p", C =0}.

K":{geK

Now we recall briefly the notion of Igusa schemes over 0y, (the localization of
the integer ring of the reflex field at the p-adic place vy determined by ¢, : C~C,)
in [Hsieh 2014, Section 2]. Let V be the Hermitian space for U(r, s), M be a
standard lattice of V and M, = M ®z Z,. Let Pol, = {N “1. N% bea polarization
of M. The Igusa variety I(K") of level p" is the scheme representing the usual
quadruple for a Shimura variety together with

Jimpn @z NO— A[p"],
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where A is the abelian variety in the quadruple. Note that the existence of j implies
that if p is nilpotent in the base ring then A must be ordinary. For any integer m > 0,
let 0,, :==0,,/p™.

Igusa schemes over Sg(K). To define p-adic automorphic forms one needs Igusa
schemes over Sg(K). We fix such a toroidal compactification and refer to [Hsieh
2014, Section 2.7.6] for the construction. We still denote it by I (K"). Then,
over 0,,, I(K") is a Galois covering of the ordinary locus of the Shimura vari-
ety with Galois group Hvlp GL,(OF,/p") x GLy(OF,/p"). We write Ig(Ky) =
I6(K"Xo and I(K) = Ig(K™)XT over O,,.

Cusps. Let 1 <t <s. We let P; be the maximal parabolic subgroup of GU(r, s)
consisting of matrices which, in the block form with respect to r + (r +s5 — 2¢) 4 ¢,
are of the form
X X X
X X
X

Let G p, be the unitary similitude group with respect to the skew-Hermitian space
for ¢. Let Y; be the Oy span of {y', ..., y’}. We define the set of cusp labels by

Ci(K) == (GL(Y)) x Gp,(Ap)Np (A\GAf) /K.

This is a finite set. We write [g] for the class represented by ¢ € G(Ay). For
each such g whose p-component is 1, we define K f’, =Gp(Ar)NgkK g ! and
write Spg) := Sg,, (K f,j) the corresponding Shimura variety for the group G p with
level group K f,’). By the strong approximation we can choose a set C,(K) of
representatives of C,;(K) consisting of elements g = pko for p € P, (A?) and
k® € KO for K° the spherical compact subgroup. ‘

Definition 2.6 (p-adic cusps). Asin [Hsieh 2014], each pair (g, h) € C;(K)x H (Z )
can be regarded as a p-adic cusp, i.e., cusps of the Igusa tower.

Igusa schemes for unitary groups. We refer to [Hsieh 2014, Section 2.5] for the
notion of Igusa schemes for the unitary groups U(r, s) (not the similitude group). It
parameterizes quintuples (A, A, ¢, 77, j) /s similar to the Igusa schemes for unitary
similitude groups but requiring A to be a prime-to-p polarization of A (instead of an
orbit). In order to use the pullback formula algebraically we need a map of Igusa
schemes, given by

i([(Ay, Ay ol Ky, D1 [(Az, Aoy 2,05 Ko, j)])
=[(A1 X Az, A X A2, 1, 12, (0] x n5) K3, ji x jo)].
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Similar to [Hsieh 2014], we know that, taking the change of polarization into
consideration,

i([z, g], [w, h]) = [u(z, w), (g, M) Y]
(Y is as defined at the end of Section 2B).

2D1. Geometric modular forms. Let H = l_[U| p(GLr x GLy) and let N C H be
nu|p(Nr x 'Ny). To save notation we also write H = ]_[U“p GL, (OF ) x GL(OF )
and let N C H be ]_[Ulp N, (OF.) X 'Ns(Op.,). We define w = e*Q%/S(;(K) for Q
the sheaf of differentials on the universal semiabelian scheme % over the toroidal
compactification (see [Hsieh 2014, Section 2.7.2] for a brief discussion). Recall that
for v|p we have v = ww in ¥ with w € . Let e,, and ey be the corresponding
projections for ¥, >~ K, x H; then w = ey, P eyw. We also define

+._

¢t = Isom(@’gc(K), eyw),
- e S _

€ = Isom(@SG(K), epw),
¢ =¢tp¢ .

This is an H-torsor over S¢ (K ). We can define the automorphic sheaf w; =€ x H Ly.
A section f of wy is a morphism f : € — L such that

fx, hw) = pe(h) f(x. @), heH, xeScK).

2E. p-adic automorphic forms on unitary groups. Let R be a p-adic Z ,-algebra
and let R, := R/p™. Let T, , := Ig(K") g, . Define
Vn,m = HO(Tn,mv @T,,,m),
ViKY, Ri) = H (T, )"+

Let Voo = lim, Vi, s and Vg oo =1lim, | Vg 1. Define V), (G, K) := Volg’oo, the
space of p-adic modular forms. Let T =T(Z,) C H and let Ay :=Z,[[T]. The
Galois action of T on VO’Z’m makes the space of p-adic modular forms a discrete
A r-module.

Suppose n > m. To each R,-quintuple (A, j) of level K", we can attach a
canonical basis w(j) of H O(A, Q4). Therefore, we have a canonical isomorphism

HO(Tn,m/Rm, wlg) = Vn,m ® ng(Rm)
given by
fe fA )= fA j.o().

We call f the p-adic avatar of f.
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Similarly, we can define an embedding of geometric modular forms into p-adic
modular forms by

fe fA )= fA 0().
We also define the morphism

B V(K Ru) = VN f Be(f) i=Le(f).

We can also pass to the limit for m — oo to get the embedding of Vi (K, R)
into V¥ .. We refer to [Hsieh 2014, Sections 3.8-3.9] for the definition of a U,
Hecke operator and define Hida’s ordinary projector

. !
e:=1imU".
)

2F. Algebraic theory for Fourier—Jacobi expansions. We suppose s > 0 in this
subsection. Let X,” = spang_{x', -+, x'} and ¥, =spang_{y', ..., y'}. Let W, be
the skew-Hermitian space span@%{y’“, cen Y wr, L, X x%) Let GY be
the unitary similitude group of W;. Let [g] € C;(K) and K¢, =G p,(Af)NgKg™!
(we suppress the subscript [g] so as to not make the notation too cumbersome). Let
s, be the universal abelian scheme over the Shimura variety S, (K¢, ). Write
g" =kg'y fory e G(F)" and k € K. Define X/ = X,g'y and Yg = Y, g,y Let
Xe={ye¥i®aZ) -y |y, X;) € Z}. Then we have

i Y, > X,

Let %[g] be

Homg, (X, ‘%t\/) X Homgy, (Ye. ;) Homg,, (Y, s4;)
= {(c,c") | ci(y)) =M(c" (), y €Yy}

Here the Hom are the obvious sheaves over the big étale site of Sg, , represented by
abelian schemes. Let ¢ and ¢” be the universal morphisms over Homg,, (X, 54,")
and Homg,, (Y,, s4;). Let Np, be the unipotent radical of P; and Z(Np,) be its center.
Let Hig):=Z(Np,(F))NgiKg; ! Note that if we replace the components of K at
v|p by K{ then the set Hj,) remains unchanged. Let I'[g) := GLgy(¥;) N g,-Kgi_].
Let %, be the Poincaré sheaf over sd, x s, /g[g] and 97’;2[ its associated G,,-torsor.
Let Sio) := Hom(Hg, Z). For any h € S, let c(h) be the tautological map
Fio1 = A x oA, and L(h) = c(h)*@’jd/ its associated G, torsor over ¥|g.

It is well known (see [Lan 2008, Chapter 7], for example) that the minimal
compactification S¢;(K) is the disjoint union of boundary components corresponding
toeachr=1,...,s. Let Oc, be the valuation ring for C,. The following proposition
is proved in [Lan 2008, Proposition 7.2.3.16]. Let [g] € C;(K) and x be a @@p-point
of the ¢-stratum of S¢;(K)(1/E) corresponding to [g].
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Proposition 2.7. Let [g] and x be as above. We write the subscript X to mean
formal completion along X. Let 7t be the map S (K) — S (K). Then m, (@gG(K)),;
is isomorphic to

0 Y gl
{Z H° (%), £())zq } :

T
heS

Here S[Jg,] means the totally nonnegative elements in Sig). The q" is just regarded as
a formal symbol and T4 acts on the set by a certain formula, which we omit.

For each [g] € C;(K) we fix an x corresponding to it as above. Now we consider
the diagram

TTn,m

*
Tn,m Tn,m

l l

SG(K)[1/Ele, —— SL(K)[1/Elg,,,

where T, ,, — Tnfm — S¢(K)[1/E]g,, is the Stein factorization. By [Lan 2013b,
Corollary 6.2.2.8], T,},, is finite €tale over S;(K)[1/E]o,, . Take a preimage of x
in Tnfm, which we still denote by x. (To do this, we have to extend the field of
definition to include the maximal unramified extension of L.) Then the formal
completion of the structure sheaf of Tnfm and S5 (K)[1/E]g, at x are isomorphic.
So, for any p-adic automorphic form f € lim  lim, H O(T,,,m, 0,.m) (with trivial
coefficients), we have a Fourier—Jacobi coefficient

FI(f) e { [T limlim H° g, L)z -qh} )
[¢]

+ m n
heS[g]

by considering f as a global section of 7, , (O7,,) = Oz and pullback at the x.
Note that if 7 = s = 1 then there is no need to choose the X and pullback, since the
Shimura variety for G, is O-dimensional (see [Hsieh 2014, (2.18)]). In application,
when we construct families of Klingen Eisenstein series in terms of Fourier—Jacobi
coefficients, we will take r = 1 and define

Rigroo = | [ limlim HO @), L(h))z - g™ ©)
hesi, mon

We remark that the map FJ is injective on the space of forms with prescribed
nebentypus at p (this is not needed for our result though). This can be seen using
the discussion in [Skinner and Urban 2014] right before Section 6.2 (which in turn
uses result of Hida [2011] about the irreducibility of Igusa towers for the group
SU(r, s) C U(r, s), the kernel of the determinant map). In particular, to see this injec-
tivity we need the fact that there is a bijection between the irreducible components
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of the generic and special fibers of S¢;(K) (see [Lan 2008, Section 6.4.1]) and that
there is at least one cusp of any given genus on the ordinary locus of each irreducible
component. (Note that the signature is (r, s) for r > s > 0 at all Archimedean
places, so there is at least one cusp in C,(K) at each irreducible component. Since
p splits completely in J{, the cusps of minimal genus must be in the ordinary locus.
On the other hand by the construction of minimal compactification the closure of
the stratum of any genus r is the union of all stratums of genus less than or equal
to r. Note also that, since the geometric fibers of the minimal compactification are
normal, their irreducible components are also connected components. This implies
the existence of such a cusp on the ordinary locus.) See the Appendix for more
details.

3. Eisenstein series and Fourier—Jacobi coefficients

The materials of this section are straightforward generalizations of parts of [Skinner
and Urban 2014, Sections 9 and 11] and we use the same notations as there, so
everything in this section should work out the same as [Skinner and Urban 2014]
when specialized to the group GU(2, 2) q.

3A. Klingen Eisenstein series. Let gu(R) be the Lie algebra of GU(r, s)(R). Let
8 be a character of the Klingen parabolic subgroup P such that §4T2/+! = §p (the
modulus character of P).

3A1. Archimedean picture. Let v be an infinite place of F, so that F,, ~ R. Let
i’ and i be the points on the Hermitian symmetric domain for GU(r, s) and
GU( + 1,s 4+ 1) which are (i(l)“) and (”6* 1), respectively (here 0 means the
(r —s) xsor (r—s) x (s + 1) matrix 0). Let GU(r, s)(R)* be the subgroup of
GU(r, 5)(R) whose similitude factor is positive. Let K1 and K’ be the compact
subgroups of U(r + 1, s + 1)(R) and U(r, s)(R) stabilizing i or i/, and let K,
(resp. K) be the group generated by K1 (resp. KI') and diag(1, 4511, —1541)
(resp. diag(lr-ﬂv _ls))~

Now let (;r, H) be a unitary tempered Hilbert representation of GU(r, s)(R) with
Hy, the space of smooth vectors. We define a representation of P(R) on Hy, as
follows: for p = mn, where n € Np(R) and m = m(g, a) € Mp(R) with a € C*,
geGUr+1,s+ D(R), put

p(pv:=1(@)m(gv, vE Hy.

We define a representation by smooth induction, I (Hs) := Indiﬁ%“’”l)(m p and

write I (p) for the space of Ko-finite vectors in I (Hs). For f € I(p) we also
define, for each z € C, a function

fo(g) = 8(m) @2V 5 £ (k), g =mk € P(R) Koo,
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and an action of GU(r 4+ 1, s + 1)(R) on it by

(0(p, 2)(8) k) := fz(kg).

Let (", V) be the irreducible (gu(R), K/, )-module given by 7V (x) =7 (n~'xn)
for

and x in gu(R) or K/ (this does not mean the contragradient representation!). Let
pY, 1(pY), IV(Hs), 0 (pY,z) and I (p") be the representations and spaces defined
as above but with 77 and t replaced by 7V ® (r o det) and T¢. We are going to
define an intertwining operator. Let

lpt1
w = 1,

—1pp

Forany z € C, f € I (Hx) and k € K, consider the integral

A(p,z, fk) = fz(wnk) dn. (6)
Np(R)
This is absolutely convergent when Re(z) > %(a +2b+1) and A(p,z,—) In
Homc¢ (I (Hy), 1Y (Hy)) intertwines the actions of o (p, z) and o (pV, —2z).
Suppose 7 is the holomorphic discrete series representation associated to the
(scalar) weight (0, ..., 0; x, ..., k); then it is well known that there is a unique (up
to scalar) vector v € w such that k - v = det u(k, i) (here u means the second
component of the automorphic factor J instead of the similitude character) for
any k € KX’. Then, by the Frobenius reciprocity law, there is a unique (up to
scalar) vector 9 € I (p) such that k - 0 = det pu(k, i) %0 for any k € KI,. We fix v
and multiply ¥ by a constant so that 9(1) = v. In 7", (w)v has the action of K,
given by multiplying by det . (k, i) ™. We define w’ € U(r +1,s 4+ 1) by

1y

There is a unique vector 0¥ € I(p“) such that the action of KF, is given by
det u(k, i)™ and vV (w’) = 7 (w)v. Then, by uniqueness, there is a constant c¢(p, z)
such that A(p, z, V) =c(p, 2)v".

Definition 3.1. We define F,, € I (p) to be the v as above.
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3A2. Prime-to-p picture. Our discussion here follows [Skinner and Urban 2014,
§9.1.2]. Let (;r, V) be an irreducible, admissible representation of GU(r, s)(F})
which is unitary and tempered. Let ¥ and t be unitary characters of J{; such
that v is the central character for 7. We define a representation p of P(F,) as
follows. For p =mn, where n € Np(F,) and m =m(g,a) € Mp(F,) witha € K
and g € GU(F),), let

p(pv:=t(a)m(g)v, vevV.

Let 1(p) be the representation defined by admissible induction, that is, I (p) =
Ind(;%:;r Ls+1)(F) p. As in the Archimedean case, for each f € I (p) andeachz € C

we define a function f, on GU(r + 1, s + 1)(F,) by
f2(8) i= 8(m) TV p(m) f (k) for g =mk € P(F))K,
and a representation o (p, z) of GU(r + 1, s + 1)(F,) on I (p) by
(0(p, (&) k) := fz(kg).

Let (", V) be givenby 7V (g) = w(n~'gn). This representation is also tempered
and unitary. We denote by p¥, I(p") and (o (p", z), I (p")) the representations
and spaces defined as above but with 7 and 7 replaced by 7¥ ® (t o det) and 7€,
respectively.

For f € I(p), k € K, and z € C, consider the integral

A(p, z,v)(k) = f f-(wnk) dn. @)

NP(Fv)

As a consequence of our hypotheses on 7 this integral converges absolutely and uni-
formly for z and k in compact subsets of {z ’ Re(z) > %(a +2b+ 1)} x K,. Moreover,
for such z, A(p, z, f) € I(p"), and the operator A(p, z, —) € Homc (I (p), I(p"))
intertwines the actions of o (p, z) and o (p", —2).

For any open subgroup U C K,, let 1(p)Y C I(p) be the finite-dimensional
subspace consisting of functions satisfying f(ku) = f (k) for all u € U. Then the
function

{z eC ‘ Re(z) > %(a +2b+ 1)} — Home (I (p)Y, I(p)Y), z+> A(p,z,—)

is holomorphic. This map has a meromorphic continuation to all of C.
We finally remark that, when 7 and t are unramified, there is a unique (up to
scalar) unramified vector F, € I(p).

3A3. Global picture. We follow [Skinner and Urban 2014, §9.1.4]. Let (i, V)
be an irreducible, cuspidal, tempered automorphic representation of GU(r, s)(Af).
This is an admissible (gu(R), K., )yjo0 X GU(r, 5)(A r)-module which is a restricted
tensor product of local irreducible admissible representations. Let ¢, t : Aj; — C*
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be Hecke characters such that ¥ is the central character of 7. Let T = (X) 7, and
Y = Q) ¥y, be their local decompositions, w running over places of F. Define a
representation of (P (Foo) N Kxo) X P(AF, ) by putting

p(p)v = ®(pw(pw)vw)a

Let I(p) be the restricted product ) I (p,,) with respect to the F,, at those w at
which 1y, ¥, and pi,, are unramified. As before, for each z € C and f € I(p), we
define a function f, on GU(r + 1,5 + 1)(AF) as

J2(8) = ® Juw.z(8w),

where f, . are defined as before, and an action o (p, z) of
(gu, Koo) @ GU(r + 1, s + 1)(Ay)

on I(p) by o(p, z) :=Q 0 (py, z). Similarly, we define p", I (p") and o (p", 2),
but with the corresponding things replaced by their v, and we have global versions
of the intertwining operators A(p, f, z).

Definition 3.2. Let X be a finite set of primes of F containing all the infinite places,
primes dividing p, and places where 7 or t is ramified. Then we call the triple
9 = (i, T, ¥) an Eisenstein datum.

3A4. Klingen-type Eisenstein series on G. We follow [Skinner and Urban 2014,
§9.1.5] in this subsubsection. Let 77, ¢ and t be as above. For f € I(p) and z € C,
there are maps from 7 (p) and I (p") to spaces of automorphic forms on P(Ar)
given by

[ — (g f2(g)(D).

In the following we often write f, for the automorphic form on P(Afr) given by
this recipe.
If g e GU(r+1,s+1)(Ap), it is well known that

E(f.z.8):= Y, [ (®)

YEP(F)\G(F)
converges absolutely and uniformly for (z, g) in compact subsets of
{zeC|Re(2) > 3(a+2b+ D} x GU( + 1,5+ 1)(AF).

Therefore, we get some automorphic forms which are called Klingen Eisenstein
series.

Definition 3.3. For any parabolic subgroup R of GU(r + 1, s + 1) and an auto-
morphic form ¢, we define g to be the constant term of ¢ along R, defined
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by

r(g) = / p(ng)dn.
neNgR(F)\Ngr(AF)

The following lemma is well known (see [Skinner and Urban 2014, Lemma 9.2]).

Lemma 3.4. Let R be a standard F-parabolic subgroup of GU(r + 1,5 + 1) (i.e,
R O B, where B is the standard Borel subgroup). Suppose Re(z) > %(a +2b+1).
Then:

() IfR # P then E(f,z, g)gr = 0.
(i) E(f,z,5)p = f: +Ap, [, 2) -

3B. Siegel Eisenstein series on G.

3B1. Local picture. Our discussion in this subsection follows [Skinner and Urban
2014, §§11.1-11.3] closely. Let Q = Q,, be the Siegel parabolic subgroup of GU,,
consisting of matrices (%" g’f ) It consists of matrices whose lower-left n x n block
is zero. !

For a finite place v of F and a character x of 3\, we let I,(x) be the space of
smooth K, ,-finite functions (here K, , means the open compact group G, (OF ,))
f K, — Csuchthat f(gk) = x(det D,) f (k) for all ¢ € Q,(F,) N K,, ,, where
we write g as a block matrix g = (/?)‘1 g‘f ) For z e Cand f € I(x), we also define
a function f(z, —) : G,(F,) > Cby f(z. gk) 1= x (det D,)|det AgDE £ (k)
forg € O,(F,) and k € K, ,,.

For f € I,(x), z € C and k € K, ,, the intertwining integral is defined by

Mz, f)(k) = X" (n (k) [z, wyrk)dr.
Ng, (Fy)
For z in compact subsets of {Re(z) > %n}, this integral converges absolutely and
uniformly, with the convergence being uniform in k. In this case it is easy to see
that M (z, f) € I,(x°). A standard fact from the theory of Eisenstein series says
that this has a continuation to a meromorphic section on all of C.

Let U € C be an open set. By a meromorphic section of 7,(x) on U we mean a
function ¢ : U — I,,()) taking values in a finite-dimensional subspace V C I,,(x)
and such that ¢ : W — V is meromorphic.

For Archimedean places there is a similar picture (see [loc. cit.]).

3B2. Global picture. For an idele class character x = @) x, of Aj;, we define a
space 1,,(x) to be the restricted tensor product defined using the spherical vectors
SR e 1 (), fph(l(n,v) = 1, at the finite places v where x, is unramified.

For f € I,(x) we consider the Eisenstein series

E(fiz.g):= Y.  [f@ve.

YE€Qu(F\Gn(F)
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This series converges absolutely and uniformly for (z, g) in compact subsets of
{Re(z) > %n} X G (AF). The automorphic form defined is called Siegel Eisenstein
series.

Let ¢ : U — I,(x) be a meromorphic section; then we put E(¢; z,8) =
E(p(2); z, g). This is defined at least on the region of absolute convergence and it
is well known that it can be meromorphically continued to all z € C.

Now, for f € I,(x), z € C and k € l_[vfoo Kny ]_[vloo Ko, there is a sim-
ilar intertwining integral M(z, f)(k) as above, but with the integration being
over Ng,(Ar). This again converges absolutely and uniformly for z in compact
subsets of {Re(z) > %n} x K,. Thus, z +— M(z, f) defines a holomorphic section
{Re(z) > %n} — I,(x°). This has a continuation to a meromorphic section on C.
For Re(z) > %n, we have

Mz )=Q,Mz, f), f=Q fo

The functional equation for Siegel Eisenstein series is

E(f,z,8)=x"(W@NEM(z, f); =z, 8),

in the sense that both sides can be meromorphically continued to all z € C and the
equality is understood as of meromorphic functions of z € C.

3B3. The pullback formulas. Let x be a unitary idele class character of Aj. Given
a unitary, tempered, cuspidal eigenform ¢ on GU(r, s) which is a pure tensor, we
formally define the integral

Fo(fiz, )= / £ S (g, gih) S)F (det g19)p(g1h) dg.
U(r,s)(Ar)

f€lis1(x), g €GU(r + 1, s + D(Arp), h € GU(r, s)(Ar), u(g) = pn(h).

This is independent of 4. (We suppress the x in the notation for F, since its choice
is implicitly given by f.) We also formally define

RUzo= [ s ahs) e et dg.
U(r,s)(AF)

felys(x), § €GU(r, 5)(AF), h € GU(r, s)(AF), u(g) = pn(h).
The pullback formulas are the identities in the following proposition.

Proposition 3.5. Let x be a unitary idele class character of Ay.

W) If f € I45(x), then Fy(f; z, g) converges absolutely and uniformly for (z, )
in compact sets of {Re(z) > r + s} x GU(r, 5)(Ap) and, for any h € GU(r, s)(AF)
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such that ;t(h) = u(g),

/ E(f;z, 8 'a(g, g1h)S)  (det g1h)p(g1h) dgi
UGr,) (F\U(r5)(AF)

=F)(fiz.8). )

(1) If f € Lys11(x), then Fy(f; z, g) converges absolutely and uniformly for
(z, g) in compact sets of{Re(z) >r+s+ %} x GU@r + 1, s + 1)(Ap) and, for any
h € GU(r, s)(AF) such that uw(h) = u(g),

/ E(f: 2, S alg. g1h)S)7 (det g1h)g(gih) g,
Ur,s)(F)\U(r,5)(AF)
= > Fo(fiz,v8), (10)

yeP(FO\G(r+1,s+1)(F)

with the series converging absolutely and uniformly for (z, g) in compact subsets of
{Re() > r+s+ 5} xGUr +1, s + D(Ap).

Proof. The global integral F, and Fq’) can be written as a product of local integrals.
The absolute convergence of local integrals for F; is proved in [Lapid and Rallis
2005, Lemma 2]. The absolute convergence for the global integral F(; follows
from this and the explicit computations in [Lapid and Rallis 2005] at all unramified
places, together with the assumption that ¢ is tempered. The absolute convergence
for F,, is proved in the same way. Then part (i) is proved by Piatetski-Shapiro and
Rallis [Gelbart et al. 1987] and (ii) is a straightforward generalization by Shimura
[1997], which is in turn due to earlier works of Garrett [1984; 1989]. Both are
straightforward consequences of the double coset decompositions in [Shimura 1997,
Propositions 2.4 and 2.7]. O

3C. Fourier-Jacobi expansion.

3C1. Fourier-Jacobi expansion. We will usually write e (x) = eay (Tra, /aq X)
for x € Ar. For any automorphic form ¢ on GU(r, s)(Afr), B € S, (F) form <s.
We define the Fourier—Jacobi coefficient at g € GU(r, s)(AFp) as

Y
wﬁ(g)zf ol o 4 o | ¢ [er=Tesn as.
S (F)\Su(Ar) r—s
0o 0 1

In fact, we are mainly interested in two cases: m = s, or r = s and arbitrary m <.
In particular, suppose G = G,, =GU(n, n), 0 <m <n are integers, and B € S, (F).
Let ¢ be a function on G(F)\G(A). The B-th Fourier—Jacobi coefficient ¢g of ¢
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at g is defined by

| SO0
vp(g) 1=/<p "00]|g|ea(—=TrBS)ds.
1,

Now we prove a useful formula on the Fourier—Jacobi coefficients for Siegel
Eisenstein series.

Definition 3.6. Put

| z 0
Z = "00)|ze S, @)},
0, 1,
1, x z \
| PR A
V=1 1 X,y € Myg—my(¥H), z—xy* € Su(¥) ¢,
m
O —x* luem
1,, x
Lo On
X = e 1 X € Mm(n_m)(f]f) ,
m
0, —x* 1y
1, 52
Y ;= n y* 0 ‘yEMm(n_m)(fjf)
\o, "1,

From now on we will usually write w,, for (_1 In )

Proposition 3.7. Let f be in I,,(t) and suppose B € S, (F) is totally positive. If
E(f;z, g) is the Siegel Eisenstein series on GU, defined by f for some Re(z)
sufficiently large, then the B-th Fourier-Jacobi coefficient Eg(f; z, g) satisfies

Eg(fiz,8) S

y
= Y 2 (w5 0)emting|ecTpsas,
Sm(A)

¥ €0 (F)\ GU,i_n (F) ye¥ 1,
where
1
Up—m(y) = b ! ¢
B A

ifgr= (é g), where A, B, C and D are (n —m) x (n —m) matrices.
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Proof. We follow [Ikeda 1994, Section 3]. Let H be the normalizer of V in G.
Then

Gu(F)=|_| Qu(F)&H (F)
i=1
for

Om i 0 _lm 1 0
o 0 ln—m-‘ri 0 0
Rl R 0nei 0
0 On—m-‘ri 0 1n—m-‘:—i

Unfolding the Eisenstein series, we get

Eg(fiz,9) = o o g | ea(=Tr(BS))dS

i>0 yEQn(F)\Qn(F)ElH(F) (

+
VEQn(F)\Qn(F)SoH(F)

00 g | ea(=Tr(BS)) ds.

By [Ikeda 1994, Lemma (3.1)] (see [ibid., p. 628]), the first term vanishes. Also,
we have [loc. cit.]
On(FO\Qn(F)soH (F) = 8§ Z(F)X(F) Qn-m(F)\Gp—m(F)
=& X(F) - Qn-m(F)\Gn—m(F) - Z(F)
= wWn Y (F) Sy (F)Wn—m Qn-m (F)\Gn—m (F)

(note that S,, commutes with X and G,,_,;). So

Sy
1
Efing= Y 3 /S(mf w [ 175 0] @nn(l g

VYE€Qn—m(F)\Gn—nm (F) yeY (F) ln
xen(—Tr(BS))dS
Note that the final integral is essentially a product of local ones. ([
Now we record some useful formulas:
Definition 3.8. If g, € U,_,,(F,) and x € GL,,(¥,), then define
Flg(fv; 2, ¥, 8, %)
Sy

:/ f | wn Ln 'y 0 | a(diag(x, l)f_l),g) er,(=TrBS)ds,
Sm (Fy) l}’l
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where
A B
ol )= D’ C’ oo — A B _ A" B
g17g2 - C D gl_ C D ’gz— C/ D/ .
B’ A’
We also define
1, S
Jo.pz(8) == f| 2z, wn L) e ey(—TrBS)dS.
n
Since
L l, XBA™! S—XB'X XA
S X - - 1, o
Lo A A A'X
X =
1m 1m
1, - - 1,
BA™! A BA™! A

it follows that:

(e (o)
= tS(det A)~'|det AA|ST 2, (— Tr('XBX B)) Flg(f; 2, XA, g, Y).
Also, we have
Flg(f: 2, y, 8 x) = tp(detx)|det xx [ ST * 7™ Flugpe (F: 2. x 'y, g, 1).

3C2. Weil representations. We define the Weil representations which will be used
in calculating local Fourier—Jacobi coefficients in the next section.

The local set-up. Let v be a place of F. Let h € S,,(F,),deth # 0. Let U, be
the unitary group of this metric and denote by V, the corresponding Hermitian
space. Let V,_,, := fl(,"_m) ® f]fl(,"_m) = X, @Y, be the skew-Hermitian space
associated to U@n —m,n —m). Let W =V, ®%, Vi—m,». Then (—, —) =
Try, /r,((—, =)0 ®3%, (—, —)n—m) 1s a F, linear pairing on W that makes W into
a 4m(n—m)-dimensional symplectic space over F),. The canonical embedding of
U, x U, into Sp(W) realizes the pair (U, U,_,,) as a dual pair in Sp(W). Let
Ay be a character of ) such that A, | X = Xg?/ Foo It is well known (see [Kudla
1994]) that there is a splitting Uy, (F,) X U, (Fy) < Mp(W, F,) of the metaplectic
cover Mp(W, F,) — Sp(W, F,) determined by the character A,. This gives the
Weil representation wy, ,(u, g) of Uy (F,) x U,_,,(Fy), where u € Uy (F,) and
g € U,_,,(F,), via the Weil representation of Mp(W, F},) on the space of Schwartz
functions ¥(V, ®y, X,). Moreover, we write oy, ,(g) to mean wy, (1, g). For
X € Myx(n—m)(Jy), we define (X, X)), := ’)?,BX (note thisis an (n —m) X (n —m)
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matrix). We record here some useful formulas for wy , which are generalizations
of the formulas in [Skinner and Urban 2014, Section 10]:

o wpyu, 9)P(X) =wp (1, )P X).

» wp(diag(A, 'A=1) D (X) = A(det A)|det Al P (X A).

o wpp(r(8)P(x) =@ (x)ey (Tr(X, X)sS).

o wp (MNP (x) =|deth|, [ D(Y)ey(Try, r,(Te(Y, X)p)) dY.
Global setup. Let h € S,,(F) be positive definite. We can define global versions of
Uy, GUp, X, Y, W, and (—, —), analogously to the local case. Fixing an idele class
character 2 = ) A, of Ag; /% such that A| px = xg, -, the associated local splitting
described above then determines a global splitting Uy, (Ar) x U (Ar) — Mp(W, Ar)

and hence an action wy, := Qwy , of Uy (Ar) x U (Af) on the Schwartz space
F(Vay, ®y X).

4. Local computations

In this section we do the local computations for Klingen Eisenstein sections real-
ized as the pullbacks of Siegel Eisenstein sections. We will compute the Fourier
and Fourier—Jacobi coefficients for the Siegel sections and the pullback Klingen
Eisenstein sections.

4A. Archimedean computations. Let v be an Archimedean place of F'.
4A1. Fourier coefficients.
Definition 4.1.  f (2, 8) = Ju(g, i 1,) " [Ja(g, i 1) 7",

Now we recall [Skinner and Urban 2014, Lemma 11.4]. Let J,(g,il,) :=
det(C4il, 4 D,) for g = (éﬁ gi)‘
Lemma 4.2. Suppose B € S,,(R). Then the function z — f, g(z, &) has a meromor-
phic continuation to all of C. Furthermore, if k > n then f, , g(z, g) is holomorphic
at ze 7= 5(k —n) and, for y € GLy(C), fin,p(zc, diag(y, '77") =0if det p <0,
while, if det B8 > 0, then

fx,n,ﬂ(ZK, diag(y, t)';*l))
(=) Qmiy™ (2/m)" D2

ey(i Tr(By'y)) det(B)<~" det j*.

—1 .
[Tizok —j =1
4A2. Pullback sections. Now we assume that our 7 is the holomorphic discrete
series representation associated to the (scalar) weight (0, ..., 0; «, ..., «x) and let

¢ be the unique (up to scalar) vector such that the action of K Ot;/ (see Section 3A)
is given by det i (k, i) 7. Recall also that in Section 3A we defined the Klingen
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section F(z, g) (denoted F). Recall we have defined S and S’ in equations (1)
and (2). Let

1.

Silp

2 1
; 211;,

¢

1-
jllb

=

¢

=

il
be the distinguished point in the symmetric domain for GU(n, n) or GU(n+1, n+1),

for n = a + 2b. We define Archimedean sections to be

Ji (@) = Jutr1(g, i)_K|Jn+1(g, i)|K—22—n—1
and

FL(8) = Jug, D)™ Jn(g, DI

and the pullback sections on GU(a +b+ 1, b+ 1) and GU(a + b, a) to be

Fe(z,8) = / fe(z, S (g, g1)S)T(det g1)m(g1)e dg
U(a+b,b)(R)

and
Fl(z, g) = / £z S Nale, g1)S)F (det g1) (g1 dar.
U(a+b,b)(R)

Lemma 4.3. The integrals F, and F, are absolutely convergent for Re(z) suffi-
ciently large and, for such z, we have

(1) Fi(z, 8) = (D) Fi 1 (8);
(il) Fe(z, 8) = c () (g)¢;
where
@by (24 1 +x) —ay —by)

e, (z, 8)=2"|det |} X Tp (z+ 3 +K0)"" ifb>0,
1 otherwise.

and ¢ (z, 8) = ¢, (z + % g). Here Ty (s) := gmmtD/2 ]_[km;O1 I'(s—k)andv =
(a +2b)db (recall that d = [F : Q)).

Proof. See [Shimura 1997, Propositions 22.2 and A2.9]. Note that the action
of (B,y) € U(r,s) x U(s, r) is given by (B, y’), defined there. Taking this into
consideration, our conjugation matrix S is Shimura’s S times X ~! (with notation
as there), which is defined in (22.1.2) in [Shimura 1997]. Also our result differs
from [Skinner and Urban 2014, Lemma 11.6] by a power of 2, since we are using a
different S here. O
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4A3. Fourier-Jacobi coefficients. We write Flg , for the Fourier—Jacobi coefficient
defined in Definition 3.8 with f, chosen as f; .

Lemma 4.4. Let 7, = %(K —n), BeS,(R), m<nanddetp > 0. Then:

() Flgu@e. .0, ) = femp(ze + 30 —m), 1)el Tr('XBX)).
(i) If g € Uy—m(R), then

FJ/S,K (2, X, 8, 1) =e(i Tr B)cwm (B, K)fom,n7m<ZKv g/)wﬁ(gl)qDﬁ,oo(x)’

/_ 1n 1,
g - _ln g 1n ’

(~2) @niy* @/m) D
c(B, ) = A
Hj:()(" —-Jj—D

and ®g oo (x) = e~ 2m Tr((x.x)p)

where

det <!

Proof. Our proof is similar to [Skinner and Urban 2014, Lemma 11.5]. For (i) we first
assume that m < %n; then there is a matrix U € U,,_,, such that XU = (0, A) for A
an m X m positive semidefinite Hermitian matrix. It follows that FJg (z, X, n, 1) =
Flg(z, (0, A),n, 1) and e(iTr('XBX)) = e(i Tr((U~''XBXU)), so we are re-
duced to the case when X = (0, A).

Let C be an m x m positive definite Hermitian matrix defined by C = v/ A% + 1.
(Since A is positive semidefinite Hermitian, this C exists by linear algebra.) We
have

AC™! c! —-C7'A c!

Write k(A) for the second matrix in the right of the above, which belongs to K ,f 00l
then, as in [Skinner and Urban 2014, Lemma 11.5],

C—l

X X
1 X X X u-'su-!
1 S X c! 1
= X X X X X n
wy X = Wy k(A).
C
La
1,
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Thus,

Flg.c (2. (0, A), . 1) = (det ©)*" > Flg (2. 0., 1), B’ = CBC
= (det C)*" > femp (2 + 3(n—m), 1)
= femp(z+30—m), 1)e(i Tr(CBC — B)).
But
e(i Tr(CBC — B)) = e(i Te(C*B — B)) = e(i Tr((C* — 1)B))
=e(i Tr(A%B)) = e(i Tr(ABA)).

This proves part (i).
Part (ii) is proved completely the same as [Skinner and Urban 2014, Lemma 11.5].
In the case when m > %n, we proceed similarly as in [Skinner and Urban 2014,
Lemma 11.5], replacing a and u there by corresponding block matrices just as
above. We omit the details. O

4B. Finite primes, unramified case.
4B1. Pullback integrals.

Lemma 4.5. Suppose w, v and t are unramified and ¢ € 7w is a new vector. If
Re(z) > %(a + b) then the pullback integral converges and

Lz, 7% z+1)
a+2b—1 .=,
[[iZ0" LQz+a+2b+1—i,1T'xy)

Fy(fSP™ 2, 8) = F, (),

where F), ; is the spherical section taking value ¢ at the identity and

L(7 7 2+3)
1957 L@z +a+2b—i,T'x)

Fy(f: z,8) = 7(g)e.

This is computed in [Lapid and Rallis 2005, Proposition 3.3].

4B2. Fourier—Jacobi coefficients. Let v be a prime of F not dividing p and t a
character of J;\. For f € I,(t) and 8 € S,,(F,), 0 <m < n, we define the local
Fourier—Jacobi coefficient to be

SO

Ly
f8(z: 8) 12/ 1z wy 00]g]|e(—TrBS)ds.
Sm (Fy) ln

We first record straightforward generalizations of [Skinner and Urban 2014,
Lemmas 11.7 and 11.8] to any fields [Shimura 1997, Propositions 18.14 and 19.2].
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Lemma 4.6. Let 8 € S,,(F,) and let r := rank(B). Then, for y € GL,, (¥*,),

sph . - - — _ _
£ (2. diag(y, '571)) = T(det y)|det y§|,; /2 DD/
M= LQz+i—n+1,7 %)

—2z—n)
[T/ LQz+n—i, 7y

ho, 58y (T (@)q,

where hy, 158, € Z[X] is a monic polynomial depending on v and "y By but not on t.
If B € $,(0F,) and det 8 € @X’v, then we say that B is v-primitive and, in this
case, hy g = 1.

Lemma 4.7. Suppose v is unramified in . Let 8 € S,,(F,) with det8 # 0 and
let B € S;(OF,) and let A be an unramified character of X\ such that A px = 1.
If B € GL,,(OF,) then, for u € Ug(F,),

sph
Q- —_ 9 9 ¢
RIs(A™: 2. x. 8. 1) = v(detu) detia]; <+1/2 Lom (& )08 Pol)

My LQz4n—i, Txi)

4C. Prime-to-p ramified case.

4C1. Pullback integrals. Again let v be a prime of F not dividing p. We fix
some x and y in J which are divisible by some high power of @, (which can be
made precise from the proof of the following two lemmas). (When we are moving
things p-adically, the x and y are not going to change.) We define f' € I, (1)
to be the Siegel section supported on the cell Q(F,)wa425+1No(OF ), where
Wai2b+] = (71(”%+l 1““”“) and the value at No(OF ) equals 1. Similarly, we
define f ¥/ e I,(7) to be the section supported in Q(Fy)wa425No(OF, ) that takes
value 1 on Ng(OF ).

Definition 4.8. fv,sieg(g) = fT(gs‘vil);v) € In-H (T),

where p, is defined to be

1 (1/x)1p
1
la (L/(yyNla
I, (1/%)1,
1y
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and
lb _jlb
1
1
: —1 %lb
Su = 1, 11,
1
la
—1p —2l
Similarly, we define flg,sieg(g) = fT’/(gSU_lJ;;) for
1, —11,
lq
- —1p 51p
Su= 1y I b
lq
—lb _‘lb
and
1, (1/x)1p
1, (1/yNla
. I, (1/x)1
Vv = 1,
la
1p

Lemma 4.9. Let K\” be the subgroup of G(F,) of matrices of the form

—
2

—

>

—_—a 0 o K

where e = —'a, b="'d, g=—'f, be M(0,), ¢c— f¢'f € Op,, ac (x),

ec(x), fe(yy) and g € (2tyy). Then F,(z; g, f) is supported in Ple(,z) and
. . . )
is invariant under the action of K, .
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Proof. Let Sy, consist of matrices

S11 S12 S13 Sus
S21 S22 823 So4
S31 832 833 3
Sa1 Sa2 S43 Saa

in the space of Hermitian (a +2b + 1) x (a +2b + 1) matrices (the blocks are with
respect to the partition b 4+ 1 + a + b) such that the entries of S;3 and S>3 (resp.
S14 and Sp4, S31 and S3p, S41 and Syp) are divisible by y (resp. x, y, x), while
the entries of S33 (resp. S34, S43, Sa4q) are divisible by yy (resp. xy, xy, xx). Let
Oy = 0(F)- (g 1)

Write

As in [Skinner and Urban 2014, Proposition 11.16], for

ay ay az by by
a4 as deg b3 b4
g=|a7 ag a9 bs be |,
cy ¢ ¢3 dy dy
c4 €5 Ccg d3 dy

we have

y(g. 1) €Supp fosieg <= S, (g, DAwat2pi1de 7" € Ox,y
= S la(gw, ndiagx~', 1,x)Aw'd, 7 € Q.

Here,

1p
dyy =diag(l, 1, y,x,1, 1,51, 71,
dy =diag(1,1,y,1,1,1, 571, 1),
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and y=

lb lb

Here, x and y stand for the corresponding block matrices of the corresponding
size. Recall that y(m(g1, 1), g1) € Q; by multiplying this to the left for g; =
diag(x, 1, x_l)n_l, we are reduced to proving that, if y (g, l)w/dyJ?_1 € Qx,y, then
g€ Plegz)w_l. A computation tells us that y (g, l)w/dy)?_] equals the product

1p —31p
1
1(1
—1, 11,
1p
1
1
_1’7
a  a s¢azy—azy™! b1 b b azy~!
as  as %é“aéy—%i_l —b3 b3 Dy agy !
31 3as giy(ao—1)—5(ag+ 1)y~ —3bs 3bs b 5(ag+1)y~!
1
1 o o JCezy—c3y! l—dy di d 3yt ’
¢4 Cs 3Ccey—cey ! —dy d3 dy c6y !
—3a7 —3as —3(ao+1)y+3(ao— 1)~ 3bs —3bs —3be 3(1—ag)y~!
ai—1 a sCazy—azy~! b1 b1 b azy~ ' 1

where 3 = ¢!

One first proves that d4 # 0 by looking at the second row of the lower left of
the above matrix, so by left-multiplying g by some matrix in Np, we may assume
that d) = by = by = bg = 0, then the result follows by an argument similarly to the

proof of Lemma 4.36 later on. U

Now recall that
as dae a4
g=1|4as ag as
a as a
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Let 2 be the set of g such that the entries of a; are integers, the entries of as
(resp.a; — 1, 1 —as, as, as, ag, ay) are divisible by yy (resp. x, x, Xy, xXx,
%j}y{, yyx¢),and 1 —ag = yy{ (14 yyN) for some N with integral entries.

Lemma 4.10. Let ¢, = n(diag(x, 1, x ")~V e, where ¢ is invariant under the
action of ) defined above; then:

() Fpo(fosieas 72 w) = T(yyx)|(v7) 2k ], < “F 2 vo1(9) - 0.
(i) F), (] gogt 2 W) = TOIOI 322 E 2 Vol(®) - .

Proof. First, one computes

1 1 1
1 1 1
: 1 ! bt
1 ay as an 1
11 1 1
1 1 1
—¢! —¢! a;  agag -1 -1
1 1 a;  agds 1
1 1 1
1 1 1
1 y 1
1 1 1
X
1 1 —-11
1 1 1
-1 y! -1 1
1 1 -1 1
1
1
3as 1¢y(1—ag)—35~" (1+ao) —31a 57 '(+ag)  —3ias
| sasgy+asy~! a —a3y! a
| —a %a3§y~|—a3y_l ai—1 1 —azy~! a
1
¢lag —3y(+¢7a)+e 75 (=) —¢la; —¢ 75T (1—ag) —¢ lag
I I

1—as 3asty+asy~ ds —agy~ as

One checks the above matrix belongs to Q, , if and only if the a; satisfy the
conditions required by the definition of ). The lemma follows by a similar argument
to Lemma 4.38 below. ]

Definition 4.11. We will sometimes write ), for the ) above to emphasize the
dependence on v.
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4C2. Fourier—Jacobi coefficient. We first give a formula for the Fourier coefficients
for fv,sieg = Io();v)fj,sieg and flj,sieg = p()’;z;)flivs/ieg'

Lemma 4.12. (i) Let B = (Bij) € Sut1(Fy); then for all z € C we have

Fosieg.p(z, 1) = Vol(S,11(OF ,))ey (Trs;{m (

Bb+2,p42+ -+ ﬁb+1+a,b+1+u>
yy

Batb2,1+ -+ ,3a+2b+1,b)
X

_l’_

(i) Let B = (Bij) € Sy(F,). Then

~ Batbt1,1+ -+ Batobb
Fisien p@ 1) = Vol(Sy(OF.))e (Trgcu/Fv< — t

X

Bo+1p41+ -+ ,3b+a,b+a)
yy

+

The proof is straightforward.
Here we record a lemma on the Fourier—Jacobi coefficient for flf e I,(ty)
and B € S, (Fy).

Lemma 4.13. If 8 & S,,(OF,)* then FJﬁ(fT; z,u, g8, hy)=0.If B € S,(OF,)* then
Flg(ffz,u, 8, h) = f1(z, gmawp(h, gn)Po,yu) - VoI(S, (OF,)),

where g’ = (]"_’” _1n_n1)g(ln_m —1,1_,,1)'

The proof is similar to [Skinner and Urban 2014, Lemma 11.15].

4D. p-adic computations. In this subsection we first prove that, under some
“generic conditions”, the unique (up to scalar) nearly ordinary vector in I (p) is just
the unique (up to scalar) vector with certain prescribed action of level subgroup.
Then we construct a section F T in I (p") which is the pullback of a Siegel section f
supported in the big cell. We can understand the action of the level group of this
section. Then we define FO to be the image of F' under the intertwining operator.
By checking the action of the level subgroup on F°, we can prove that it is just the
nearly ordinary vector.

In our calculations we will usually use the projection to the first component of
Wy =Ty x Wy = Q) x Q).

4D1. Nearly ordinary sections. Let A1, ..., A, be n characters of F,, which we
identify with @, and = = Ind$"" (A1, . . ., A,).
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Definition 4.14. Let n =r + s and k = (¢45, - - -, Cs+1; €1, - - - , Cs) De a weight.
We say (A, ...A,) is nearly ordinary with respect to k if

{val,A1(p),...,val, A, (p)} = {c1+s—1—%n+%,cz+s—2—%n+%,...,cs—%n—l—%,
Cs+1+r+s—1— %n+%,...,cr+s +s5— %n+%}.

We write the elements of the right side in order as k1, .. ., ky4g, SOK] > -+ + > Kpps.
Letsd, :=2Z,[t1,t2, ..., t,, 1711 be the Atkin—Lehner ring of G(Q,), where t;

n

is defined by #; = N(Z,)a; N(Z,), o; = (1”*" p1~)' Then #; acts on 7wV Z») by
v|t; = Z xiai_lv.
xeNla;lNa,-

We also define a normalized action with respect to the weight k, following [Hida
2004b]:
vllt i= 8(a) 2 pr g

Definition 4.15. A vector v € & is called nearly ordinary if it is an eigenvector for
all ||#; with eigenvalues that are p-adic units.

We identify 7 as a set of smooth functions on GL,(Q)):
7 ={f:GLy(@,) = C| f(bx) = 1()sp(B)'* f(x)}.
Here, A(b) :=[]'_, 2:(b;) for

and 8 is the modulus function for the upper-triangular Borel subgroup. Let w, be
the longest Weyl element,

1
and let f* be the element in 77 (which is unique up to scalar) that is supported in
Bw¢N (Z,) and invariant under N(Z,). We have:
Lemma 4.16. f* is an eigenvector for all t;.

Proof. Note that, for any i, f*|#; is invariant under N(Z »). By looking at the
definition of v|f; for the above model of x, it is not hard to see that f¢|; is
supported in B(Q,)w¢B(Z,). So f¢|t; must be a multiple of f*. O



Families of nearly ordinary Eisenstein series on unitary groups 1995

Lemma 4.17. Suppose that (71, ..., A,) is nearly ordinary with respect to k and
suppose

Vp(}\l(p)) > Vp()\2(p)) > > Vp()\n(p));

then the eigenvalues of ||t; acting on f* are p-adic units. In other words, f* is an
ordinary vector.

Proof. A straightforward computation gives that
f(f”l‘i = )‘1 ce )"i (p_l)pKH'“"HCi fe,

which is clearly a p-adic unit by the definition of (A, ..., A,) being nearly ordinary
with respect to k. U

Remark 4.18. Hida proved [2004b, Theorem 5.3] that the nearly ordinary vector
is unique up to scalar.

Lemma 4.19. Let Ay, ..., Ay12p be characters of @; such that cond(hg12p) >

- > cond(Ap4+1) > cond(Ay) > --- > cond(Ap). We define the subgroup K, of
GLy42p(Z)) to be those matrices whose below-diagonal entries of the i-th column
are divisible by cond(Mg42p+1-i) for 1 <i <a+ b, and the left-to-diagonal entries
of the j-th row are divisible by cond(Ay12p+1-j) fora+b+2 < j <a+2b. Let
A°P be the character of K, defined by

Aat+26(811)Aar20—-1(822) - - - AM1(8at2b at2b)-

Then f* is the unique (up to scalar) vector in w such that the action of K,_is given
by multiplying by \°P.

Proof. We only need to prove the uniqueness. We use the model of induced
representation as above. Letn =a+2b and letey, ..., e, be the standard basis of the
standard representation of GL,,. Let p" be the conductor of A;. So #,12, = max{;};.
Write Ko(p) C GL,(Z ) for the subgroup consisting of elements in B(Z ,) modulo p.
Suppose f is any vector satisfying the requirement of the lemma. Let w be a Weyl
element of GL, such that f is not identically O on wKy(p). Then we see that

W - ej = e,4p by considering right-multiplication by diag(1 + pla+»=1 1,... 1).
Continuing this argument, we see that w - ey = e;42p—1, . ... Finally, we have
w = w' and the lemma is clear by Bruhat decomposition. U
We let
1
wp = 1
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Now let B = B”! and K; = K"

Corollary 4.20. Denote a; := v,(X;(p)). Suppose A, ..., Aqy2p are such that
cond(A) > --->cond(Agqpp) and ay < -+ < Agyp < Agaop <+ < Agyp+1. Then
the unique (up to scalar) ordinary section with respect to B is

Ford () = {)»1(811) Mavan(Qasaparan) if g € Ky,

otherwise.

Proof. We only need to prove that 77 (w;) £°"(x) is ordinary with respect to B! = B.
Let A} = Aatbt1s - -+ s Ay = hat2bs Ay = hatbs - - » Ay o, = A1 Then A’ satisfies
Lemma 4.17 and thus the ordinary section for B (up to scalar) is ff. Since A" also
satisfies the assumptions of Lemma 4.19, ff, is the unique section such that the
actlon of K is glven by Aa 4op(g11) - ¥ 1(8a+2b,a+2p). But A 1s clearly regular, so
In d Lav2b 3 ~ Ind Lat2p 37y So the ordmary section of Ind Lat2v 3) for B also
has the action of K, given by this character. It is easy to Check that 7w (w) f° has
this property and the uniqueness (up to scalar) gives the result. (]

4D2. Pullback sections. In this subsubsection we construct a Siegel section on
U(a+2b+1,a+2b+ 1) which pulls back to the nearly ordinary Klingen sections
on U(a+b+1,b+1). We need to rearrange the basis since we are going to study
large block matrices and the new basis will simplify the explanation. One can check
that the Klingen Eisenstein series we construct in this subsection, when going back
to our previous basis, is nearly ordinary with respect to the Borel subgroup

*

* % ¥

B] =

*
EE S

*

where the first four blocks are upper-triangular and the fifth is lower-triangular. But
the one we need is nearly ordinary with respect to the Borel subgroup

* ok % ok %
* ok % %

By := * k%

*

% %

(it is for this one that we can use the A-adic Fourier—Jacobi expansions). (Here the

blocks are with respect to the partition b+ 1 +a + b+ 1.) There is a Weyl element

Wgore) Of GLg12p42 such that wgolrel Bowg,, = B1. This wy_, is in fact in the Weyl

group of GLy4 14, embedded as the upper-left minor. In the case of the doubling

method (U(r, s) x U(s, r) < U(r +s, r +5)) we have a corresponding change of
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index and we write wy_ ., for the corresponding Weyl element. In Section 4D4 we
will come back to the original basis.

Now we explain the new basis. Let V, ;, and V, 541 be the Hermitian space with
respective matrices

¢1a ¢

1 b and 1 b+1
—1p —lpt1
(These are our skew-Hermitian spaces for U(r, s) and U(r + 1, s + 1) under the

new basis.) The matrix S for the embedding U(V,, p) X U(V, p41) = U(Vag2p+1)
becomes

=
=

=

1
-1 -1

Godement sections at p. Let v|p be a prime of F and ¥, ~ Q, x Q,. Lett
be a character of Q; x Q7. Suppose T = (71, 7, 1Y and let p* be the conductor
oft;,i=1,2. Let x1, ... Xa» Xat1s - - - Xas2p b€ characters of @; whose conductors
are p'', ..., p“*2, Suppose we are in the generic case:

Definition 4.21 (generic case).
Hh>th>--->1liqp>81>Ilggpsrl > > g2 > 52,

Also, let &; =X,-tf1 forl1 <i<a-+band§; =X;1r2 fora+b+2<j<a+2b+1.
Let &a4p1 =1

Let ®; be the following Schwartz function on M, 2,+1(Q,): let I' be the
subgroup of GL,2,+1(Z,) consisting of matrices y = (y;;) such that p’* divides
the below-diagonal entries (i.e., i > j) of the k-th column for 1 <k <a + b and
p’ divides y;j whena+b+2 <i <a+2b+1and j =a+b+ 1; while p'i-!
divides y;; whena+b+2 < j<a+2b+1andeitheri <a+b+1ori > j.

Leté{:xitz_l, l<i<a+b, Sj’. =Xj_l‘[1,a—|-b+2§j <a-+2b+1, and
& il =T t{l. (Thus, & = &1y r{l for any k.)

0 if I,
Definition 4.22.  &;(x) = { atb41 &/ 1 e
=1 &) if x el

Now we define another Schwartz function ®; on M;42,41(Q)).
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Let X be the following set: if

Al A Az Al
Az Axp Axz Ay
Azl Az A3z An
Ay Ay Agz Ay

is in block matrix form with respect to the partition a +2b+1=a+b+1+b, then

 x has entries in Z;

. (2‘; 2;1) has i-th upper-left minors A; such thatdet A; e Z fori=1, ..., a+b;

and
e Ay has i-th upper-left minors B; such that det B; € Z; fori=1,...,b.
We define

0 if x ¢ X,
&1 Eatb-1
D (x)= S—(detAl)' tor ———(det Ayyp—1)&arp(det Ayyp)
a+
x Satbt Satht2 (et By) - - | Sat2p (det By_1)Easops1(det By) if x € X.

f a+b+3 a+2b+1

(11)

This is a locally constant function with compact support. Let
D(x) i= P (x) = / @ (yep(Try x) dy
Ma+2b+l(®p
(where tilde stands for Fourier transform). Let ® be the Schwartz function on
Mayop+1,2a+2b+1)(Q)p) defined by
O(X,Y) :=21(X)Pa(Y)
and define a Godement section (terminology of Jacquet) by

@)= Tz(detg)|detg|;“'+(a+2b+1)/z

X f ®((0, X)g)1; ' Ta(det X)[det X |, > TP+ g X
GL4+26+1(Qp)

Lemma 4.23. Ify € T, then

a+2b+1
o (yX)= [] Glm)®e(X).
k=1
Proof. This is straightforward. For example, to see that the A4, block of 'y X has
invertible upper-left minors (i.e., has determinants in Z;) fory eT’, X € X, one
notes that all entries of the upper-right block of y are zero modulo p, and that
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multiplying by invertible matrices which are lower-triangular modulo p does not
change the property that all upper-left minors are invertible. U

Fourier coefficients. For z in the absolutely convergent range and B € S,12p41(Q))
(which is isomorphic to M,254+1(Q),) through the first projection), the Fourier
coefficient is defined by

Ly 1N
f,sq)(l,z) =/ f<1><( | +2b+1> ( 1))ep(—Tr,BN)dN
Ma+2b+1 (@p) —Lla+2b+1

:/ / CID((O X)< 1a+2b+1>)
My 2p41(Qp) Y GLa12p41(Q)) —lav2ps1 —N

x 1) ' Ta(det X)|det X |+ e (— Tr BN) dN d* X
:/ @1 (= X)Pe(— X781 ' 1a(det X)|det X[, d* X
GLg+26+1(Qp)
=‘L'1_1‘L'2(—1) Vol(I') ¢ ('B). (12)
Definition 4.24. Let fT = fj 1op41 be the Siegel section supported on

1 Ma+2b+l(Zp)>

0Qp)wayop11 ( )

and fT(wa+2b+l (l }f)) =1for X € My12p11(Zp).

1 if BeMupt1(Zy),
0 if BE Muyopi1(Zy),

(here we used the projection of B onto its first component in ¥, = F,, X Fy), where

Lemma 4.25. fg(l) = {

the first component corresponds to the element inside our CM-type X under
1 :=C = C, (see Section 2A).
fCD

Definition 4.26. fh=— .
T, 12 (—1) Vol(I')

Thus, f; = ().
We define

T/(pnt)p2ntz—tn(n+l)/2 if t > O,

! —
cn(t', 2) 1= {pznz—n(n+1)/2 £r0. (13)

Now we recall a lemma from Skinner and Urban [2014, Lemma 11.12], which will
be useful later.
Lemma 4.27. Suppose v|p and B € S,(Q,), det 8 # 0. Then:

() If B & Su(Z,) then M(z, f1)p(—=2,1) =0.
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(ii) Suppose B € S,(Z,). Let t :== ord,(cond(t")). Then
Mz, fHp(=z, 1) = t'(det B)|det B|; Zg(F)"ca(’, 2).

Note that our /1 is the % in [Skinner and Urban 2014] and our 7 is their x.
Now we want to write down our Godement section f® in terms of f'. First we
prove the following:

Lemma 4.28. Suppose ®¢ ,, is the function on M,(Q,) defined as follows: If
cond(&;) = (p") fort; > --- > t, and &; are characters Of@; with conductor p'i.
Let X,, be the subset of M,,(Z,) such that the i-th upper-left minor M; has determi-
nant in Z,. Define @ , to be

i—%det My) - (det My )8, (det M)
2 n
on X, and 0 otherwise. Let
L iz
Xen=Xe : =N(Zp) NPP(Z,).

Pz

Then the Fourier transform dADS of ®¢ is the function

Be(x) = {0 ] if x & X,
[Timi 0 [Tz & ip™)  if x € X,
1 x x X1 1
where x = X X .
1 Xn x x 1

Proof. First suppose x is in the “big cell” N(Q,)T (Q,)NPP(Q),). It is easily seen
that we can write x in terms of block matrices,

()

where z € GL,_1(Q)), w € Q}, u € M,_1 1(Q,) and v € M; ,_1(Q)). A first
observation is that d~>g is invariant under right-multiplication by N°PP(Z,) and
left-multiplication by N(Z,). We show that v € M ,-1)(Z)) if CTDE (x) #0. By
definition,
ben= [ @cey Ty dy.
Mﬂ

Qp)

= () ) C) = rn),

S0, writing



Families of nearly ordinary Eisenstein series on unitary groups 2001

we have

B (x) = / s e et bezs ((2 1) (a b) (1 nf))
<ol m((n ) () (DG D)
ol ol ) ()T o
()
<o (s i ) E L))

=l/(bg(<a b))epCﬁ(%z%—«5n4—v)b(%—%u)+lﬂu0)dy

(Note that ®¢ is invariant under transpose.)

If Ci)g (x) # 0, then it follows from the last expression that w € p""Z;. Suppose
vV & Mix—1)(Zp); then 'm +v & Mixu—1)(Z,). We let a, m and b be fixed
and let ¢ vary in My —1)(Z,); we find that this integral must be 0. (Notice
that a € X¢,—1 and w € p"”Z;, thus (‘m +v)'aw & Mixn,—1(Zp)). Thus, a
contradiction. Therefore, v € Myx,_1(Z,), and similarly u € M,,_ 1(Z,). Thus,
by the observation at the beginning of the proof, we may assume ¥ =0 and v =0
without loss of generality.

Thus, if we write ®¢ ,_1 as the restriction of ®¢ to the upper-left (n —1) x (n—1)

minor,
e (x) = f O ((a b)) ep(Tr(‘az+ ('m'a’t + byw)) dy

_ p—nt,lg(%-n)én(wpln) . (I)E,n_l(a)ep(taZ) dy.
A€EXE n—1

By an induction procedure one gets

if x&ZXen,

- 0
o = N
g(X) ip_z =1 i l_[l 19(%-1)1_[, 1§L(xlptl) if x G}:S,n-

We have thus proved that Cbg n» When restricted to the “blg cell”, has support in 365 n-
Since .’{g n 1S compact, CDg » itself must be supported in .’{g n- ]
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Lemma 4.29. Let .’%5 be the support of &, = Ci)g; then a complete set of represen-
tatives of X¢ mod M, 12p11(Z ) is given by the elements

where the blocks are with respect to the partition a+ b+ 1+ b and (é g) runs over
the set

L mp -+ migep X1 1
) : naj
T, Mayb—1.a+b . : . . '
1 Xa+b) \Ma+b,1 *** Natbat+b—1 1

where x; runs over p*’iZ; modZ,, m;; runs over Z, mod pl, nij runs over
Z, mod p'i, and E runs over the set

I kip -+ kip Y1 1
IR ' 21
o kp—1p ) ool ’
1 ) L1 - Lpp_1 1

s x ! j
where y; runs over p~'tet? 77 mod Zp, kij runs over Z, mod p'etti, and ¢;; runs
over Z,, mod ple+b+i,

Proof. This is elementary and we omit it here. ([

We also define, for g € GL;42,(Q)),

laxa ]bxb
g[ = Lpxp | & | laxa
Lpxp Lpxn

and

luxa Lpxp
8 = 1h><b 8 1a><oz
Lpxp Lpxp
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Corollary 4.30. We have

a+b

iz, ) = p~ T =X ternsi T g(&)& (— 1)1"[g<sa+b+1+,>sa+b+1+,( )

i=1 i=1

b

detA; - detD; .

X Z 1_[%_1 (det Az 1 ) H%‘a-ﬂ,a-ﬁ-t <det Difl p
A,B,C,D,E i=1 i=1

A B
C D

det E; A\ = | YA
XHSa+b+1+, —— et ) fT 2 g | T
det E;_

E
latopt1

Here A; is the i-th upper-left minor of A, D; is the (a+i)-th upper-left minor of
(é g) (not of D), E; is the i-th upper-left minor of E, and the sum runs over the set
of representatives of Lemma 4.29.

Proof. We only need to check the Siegel Eisenstein sections on both sides coincide
on WNg425+1(Q)), since the big cell Qu12p4+1(Qp)WNu4251+1(Q)) is dense in
GLj4+4p+2. To see this we just need to know that they have the same S-th Fourier
coefficients for all 8 € S;12p41(Q,). But this is seen by (12) and Lemmas 4.28
and 4.29. U

Now we define several sets. Let B’ be the set of (a+b) X (a+b) upper-triangular
matrices of the form

I mip -+ miaqp X1

Te. Mayb—1a+b .
1 Xa+b

where x; runs over Z; mod p" and m;; runs over Z, mod p".
Let ©' be the set of b x b lower-triangular matrices of the form

1
nai

Nayb,1 - Natbatb—1 1

where n;; runs over Z,, mod p'i+ett,
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Let &' be the set of b x b upper-triangular matrices of the form

1 ki -+ kip
okpip |
1

where k;; runs over Z, mod pe+v+i.
Let ¢’ be the set of (a + b) x (a + b) lower-triangular matrices of the form

n 1
: 1231

) Lo - Lpp_1 1

where y; runs over Z; mod p'+e+*Z, and ¢;; runs over Z,, mod p'e+t+i.
Thus, if B’, C’, D', E’ run over the set B/, ¢/, ®’, &, respectively, then
a+[7

b .
Vii=2 0 itatbti

ffz.9=p

a+b

x Y JJeEa- 1>1‘[g<sa+b+1+,>sa+b+1+,< 1)

B',C',D',E" i=1

a+b
x Y 1‘[5,<Bl,>1_[sa+b+,(cu>
B',C',D',E' i=1 i=1

~ . , , E' N /2 A
x f <z,ga (dlag(B .1, '), ( D/)) ( )
E, (\ —1
. / /
X o (dlag(B ,1,C'1), < D’) ) )

a+b
= i =Y itarpii4i

a+b
> JleG&- 1)1‘[g<sa+b+1+l)sa+b+l+,( 1
B',C',D',E’" i=1 i=1
a+b a+b

x Yy 1‘[51<B,,>1_[sa+b+l<c”>1‘[n<B”>1_[rz<c”>

B'.C'",D',E" i=1

oo (* ,))(4)



Families of nearly ordinary Eisenstein series on unitary groups 2005

where
ph
. ot
p_la-H
A= ptas (14)
0
pfta+b+l
p_ta+2b
We let
¢! - 1
1 1
1 1
1 1
Y = 1 1 and w/ =
2 2 -1
1 1 1
1 1

1 1 1)

Definition 4.31 (pullback section). If f is a Siegel section and ¢ € 7, then

Fy(z, f. 8) = / [ ya(g. gy~ Hi(detg)p(g)edg:.
GL4+25(Qp)

Now we define a subset K of GL42,42(Z)) so that k € K if and only if p"
divides the below-diagonal entries of the i-th column for 1 <i <a+b, p*! divides
the below-diagonal entries of the (a+b+1)-th column, and p'«++i divides the right-
to-diagonal entries of the (a+b+14j)-th row for 1 < j < b — 1. We also define v,
a character of K, by

v(k) = 11 (katp+1.a+b+1) T2 (Kat2042,a+26+2)
a+b b
X 1_[ xi (kii) 1_[ Xa+b+i (Katoti+1,at+bri+1)
i=1 i=1
forany k € K.
Definition 4.32. We define Y to be the element in U(n, n)(F,) (which equals

U(n, n)(Q,)) such that the projection to the first component of ¥, = F, x F,
equals that of y (note that y & U(n, n)(Fy)).
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Lemma 4.33. Let K' C K be the compact subgroup defined by, for k € K ,

ap ay az by by
a4 as deg b3 b4
k= az dag ag b5 b(, eK'
1 ¢ 3 dy dy
C4 C5 Cp d3 d4

(here the blocks are with respect to the partition (a +b+ 14 b+ 1)) if and only if
pletv+itli divides the (i, j)-th entry of ¢y for 1 <i <b, 1 < j <a, and p'«+o+itlat
divides the (i, j)-th entry of ca for 1 <i <b, 1 < j <b. (It is not hard to check that
this is a group.)

Then Fy(z, p() 7, gk) = v(k)Fy(z, p(X) f7, g) forany p e w and k € K.

Proof. This follows directly from the action of K’ on the Godement section f'. [J
We define K” to be the subgroup of K that consists of matrices

1

c1 ¢ 1
1

such that p' divides the (i, j)-th entry of ¢; for 1 <i <b, 1 < j <a, and p'+i
divides the (i, j)-th entry of ¢, for 1 <i <b,1 < j <b.

Definition 4.34. Let K C GL,425(Z)) be the set of matrices

ap asz az
ar ag ag
a4 de as

(the blocks are with respect to the partition (b 4+ a + b)) such that the columns
of a3 and ag are divisible by p", ..., p', the columns of a4 are divisible by
platt, ..., pletb, ple+i divides the below-diagonal entries of the i-th column of a;
(1 <i < b), p divides the below-diagonal entries of the j-th column of ag
(1 <j <a), and p'e++ divides the above-diagonal entries of the k-th row of as.
Let K' C K be those matrices such that p'e+s+itiati divides the (i, j)-th entry
of ag for 1 <i <b, 1 < j <b, and ple+s+*1i divides the (i, j)-th entry of ag for
1<i<b,1<j<a.Wealso define K" to be the subset of K consisting of matrices

1

ag a61
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such that p'a+i divides the (i, j)-th entry of a4 for 1 <i <b, 1 < j <b, and p'i
divides the (i, j)-th entry of ag for 1 <i < b, 1 < j < a. We also define v, a
character of K, by

b a b
k) = [ [ xari ®i) [ | i Rorios) | | tatori Raptiatni)-
i=1 i=1 i=1

The following lemma will be useful in identifying our pullback section:

Lemma 4.35. Suppose Fy(z, p(Y) f T, g) as a function of g is supported in PwK
and

Foz, p(0) T, gk) = v(k) Fy (z, (1) f T, &)

fork € K', and F,(z, (1) f¥, w) is invariant under the action of (K")". Then
Fy(a, (1) £, g) is the unique section (up to scalar) whose action by k € K is
given by multiplying by v (k).

Proof. This is easy from the fact that K = K'K” = K” K’. The uniqueness follows
from Lemma 4.19. U

From now on in this subsection we use w to denote

la la
Lyt or 1p
—1pi —1p

Lemma 4.36. If ya(g, 1)y~ € supp(p(Y) f7) then g € PwK. (Here p denotes
the action of GUy40p11(Fy) on the Siegel sections given by right-translation.)

Proof. Since fT is of the form f'(g) = D oAcx fT (g(l f)), where X is some set,
we only have to check the lemma for each term in the summation.

Recall we defined A’ in (14), where the blocks are with respect to the partition
(a+b+1+b). Let ¢, and y, be the projection of ¢ and y, to the first component
of H, ~ F, x F,; then

(c,;l -,
Iy

Vo
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Iy

1y

1y

We denote the last term by y, (different from the definition in the prime-to-p case).

Using the expression for f involving the various B’, C’, D' and E’ as above and
the fact that y (m(g, 1), g) € Q and that K is invariant under right-multiplication by
any B or C, we only need to check that if 7,e(g, )7, € supp(o(1)p((* ?)))f*
then g € PwK. Our calculations below are generalizations of the proof of [Skinner
and Urban 2014, Proposition 11.16]. If

then this is equivalent to

L

1p

1

1

x M

W =

@

aq
ar

1
C4

az
as
as

(%)
Cs

az
as
ag
2
Cs

as
ae
ag

3
Co

as
ae
ag
3
Ce

1y

by
b3
bs
d
ds

by
by
be
dp
dy

b
b3

dy
d3

(.

1,

1y

—1,

by
by

d>
dy

1

Iy

a(l,wil)w

/
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being in supp f¥, where
M =diag(p", ..., p, 1, 1, platt, ..., platt 14, 1,, 1, p~lavbtt | p~lat2b)
temporarily, which is equivalent to

_lb
141

wa | gw, 1, diag(p~fet+t oo phty Lo plert ) | w'y,
1p

belonging to

supp(p M~ wasap+1) f7).

The right-hand side is contained in

1
0::=0- <S 1)

where the blocks for S; are with respect to the partition a + b 4 1 + b and consist
of matrices S;; € M(Z,) such that p" divides the i-th column of the matrix §
for 1 <i <a, p'+ divides the (a+b+1+i)-th column for 1 <i <b, pla+t+i divides
the (a+b+1+i)-throw for 1 <i <b, and the (i, j)-th entry of S4; and Sy4 is divisible
by pletb+itli and pla+b+itlati respectively. Observe that we have only to show that
if pa(gw, Dw'y ! € Q; then g € PwK, i.e., gw e PKY for K¥ := wKw (note
that y (m(g1, 1), g1) € Q).

Si1 S12 S13 Sis
ses = |3 S20 823 So4

31 832 833 S34
Sa1 Sa2 Sa3 Saa

\h 0

Let
—ay a az —by a; by b
—ay as as —bs a4 b3 by
—a7;  ag ay —bs a; bs bg
1
~ 1 r~—1 — =H.
e (gw, Dw'y, —1—a; a a3 —b, a by b
—cy ¢ ¢33 1—dy ¢ di dy
—cy cs c6 —d3 c4 d3 dy

—as as—1 ag —b3y a4 by by 1

Thus, if H € Q;, then
a, by by
c1 dy dy
C4 d3 d4
as by by 1
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is invertible and there exists S € S; such that

—1 —daj ay as ——b1 aq b] bz
—C1 ) Cc3 1—d1 . C1 d] d2 S
—c4 s ¢ —ds cs dy dy '
—as as—1 ag —b3 as by by 1

By looking at the third row (blockwise), one finds d4 # 0, so by left-multiplying g
by a matrix
1y
L,

X X X

1
1}, X
d;!

(which does not change the assumption and conclusion) we may assume that ds =1
and dy = b, = by = bg = 0. So we assume that gw is of the form

ay ay as b]
a4 as deg b3
aj ag aog

c1 ¢ ¢y d;
cy c5 cg dy 1

Next, by looking at the second row (blockwise) and noting that d, = 0, we find
that d; is of the form

Z;( Zp ...... Zp

Pt““Zp Z; e 4y
plu+ZZp Z;

: L Ly

pla-HZp Cee eee e Z;

So, by multiplying by a matrix of the form

la
1p
1 x
Iy
1

on the left we may assume that b5 = 0. Also, by looking at the third row again
we see ¢4 = (p'"'Zp, ..., pZ,), cs5, c6 € M(Z,) and d3 € (p'+', ..., plath),
while, from the second row, ¢ € (Mpx1(p"Z,), Mpx1(pRZ,), ..., Mpx1(pZ)y)),
€2 € Mpxp(Z)p) and c3 € Mpx1(Z)p).
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By looking at the first row and noting that b, = 0, we know

sz, - - Z,

t . .

Pz, Z; .o 4
ae|  pZ, Z; .. |,

ptlZp Z;

az, az € M(Zp) and by € (Maxl(ptﬁlzp)v Maxl(ptaﬁzp)v cees Maxl(plﬁbzp))'
Finally, looking at the fourth row (blockwise), we note that b4 = 0. Similarly,
as € (Mpx1(p"Zp), My 1(pPZ)), ..., Mpx1(p"Z})),
b3 € (bel (Pt““Zp), bel(Pt””Zp)’ ceey bel(Pt“pr)),

Mlxb(Pt”b“Zp) pta+b+1zp

M latb+2 lavb+277
as—1e ]Xb(p. ») and age | P P

Mlxb(p.ta-%—Zth) pta-%—ébzp

Now we prove that gw € PK™ using the properties proven above. First we
right-multiply gw by

la
1y
1 e K%,
—d; ey —di'ey —d; ey dp!
—C4 —C5 —C6 —d3 1

which does not change the above properties or what needs to be proven, so without
loss of generality we assume that c4 =cs =cs=ds =c;=co=c3=0and d; = 1.
Moreover, we set (! az)_l(‘”) =T = (T‘) Then

, : n)-

ay as ag
1a Tl
I, T
1 e Kv.
Iy
1
By multiplying
1, T
1p )
1
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to the right we get an element in P. So it is clear that gw € PK". ]

Now suppose that 7 is nearly ordinary with respect to k. We define ¢ to be
the unique (up to scalar) nearly ordinary vector in = with respect to the Borel
subgroup B. Let ¢, = m(w)¢.

Now write

—1,\'

3

¢ =m | diag(p ot ., pit, L, plett L), la Ow.
Ly

Compute the value Fy (z, ,o(T)fT, w). Infact, Fy(z, ,o(T)fT, w) is equal to

B )
- 1 E Ly
/ [ pa|w w, g1< D>9ﬁ 1,
B.C.D,EY OLat2(@p) Cl —1p
xw'p T Bw | T(detgnolel)e’dg
with (temporarily)
M = diag(p e+, ..., p, ..., plt, L),
2= diag(p_”, e p_ta’ 1p, 1, p_ta+l’ el p_taer’ la, 1p, 1, ptaerJrl’ pta+2b),
where the sum is over B € B/, C € ¢/, D € ®' and E € €. A direct computation
gives
( —1, lq
1p
' 1
a; as a
vall, a7 a9 a wyp = b @ a“ @2
i —a9g—1, —ag a; 1, as
as ae as
—as —a ap—1p l, a
1
—ag 1p —as as as

Now we define 2) to be the subset of GL,2,(Z ) consisting of block matrices

ap az az
aj ag dag
a4 de as
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such that
ay az az [
vall, |ar a9 ag w'y !
as aeg as

is in the Q; defined in the proof of Lemma 4.36. It is not hard to prove that it can
be described as follows: the i-th columns of —ag — 1 and a3 (resp. a7 and a; — 1)
are divisible by p'i (resp. p'a+i) for 1 <i < a, the (i, j)-th entry of ag (resp. a4)
is divisible by platb+itli (resp. p'etb+itla+i) and the i-th row of 1 — as is divisible
by p'«+»+i. The entries in as and ag are in Z,,. Then the pullback section is equal to

> / fi(padl, ghw'y ™ Bw . )T detg)m (8@ g,
B,C,D.E
where

0= diag(pitl, e p*fa’ 1,1, p*faﬂ’ el P*taer’ 1,1,1, ptu+b+l’ ol pfa+2b)
and the integration is over elements (with superscript w meaning conjugation by w)

w 1,
81 €<Bc) @(ED> 1, diag(pta+b+1’”"p—tl,.”’p—tﬁb“”)
t conj \ —1,

for

1p
E . _ _ E
( D) .:= 1, dlag(pt”b“,...,p“,...,pt”‘,...)( D)
conj

_lb

_lb
n

x diag(p~ferrri . ph L pen o 1
1

Lemma 4.37. If ¢, is invariant under the action of (K")", then
Fy(z, p(0) f7, w)
is such that the action of K* on it is given by .

Proof. By the above two lemmas we only need to check that Fi/(z, p(T1) f T w)is
invariant under the action of K”. We first claim that 3 pem((F D)lconj)go’ is invari-
ant under (K”)*. The claim follows from direct checking. Also, for any k; € K", we
canfindak, € K" such that ky (B C):”kz_ ! runs over the same set of representatives
as (B C)ZU For any k; € K", we can find a k, € K” such that k1@k2_1 =9). The

lemma follows from these observations. O
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The value of f T at

1p
g1 = 1, diag(pletv+r ... . p7", ..., pTleth L)
_lb
is
T((pta+h+l+“'+ta+2h’ pt1+~~~+ta+b))|pt1+-~~+ta+2h |—z—(a+2b+l)/2.

So, a straightforward computation using the model for w = 7w (x1, ..., Xa+2p)
tells us the following:

Lemma 4.38. If ¢ and ¢’ are defined as after the proof of Lemma 4.36, then:

Fy(z, p(0) T, w)
— T((p11+~-~+tu+b’ pfa+b+1+--~+tu+2b))|pt1+~~~+ta+2b |*Z*((1+2b+1)/2 VO](IE,)

a+b b
a+b

x p~ T X iteosi TT g(60& (D [ | 0Gassri+0)Earsr1+:(~Du.
i=1 i=1

Combining the three lemmas above, we get the following:

Proposition 4.39. With assumptions as in the above lemma, Fy (z, p(Y) f T, g)is
the unique section supported in PwK such that the right action of K is given by
multiplying the character v, and its value at w is

Fy(z, p(0) T, w)
a+2b+1

— T((pll+"'+fa+b, pta+h+1+---+ta+2h))|pt1+~-+ta+2/;|—z— > VOI(IZ/)

a+b b
_ a+bl-‘_ b i R
x pm Zist it [T ()8 (=) [ [ 0Casps140)Eatp414i (=D,

i=1 i=l
Proof. Clearly ¢,, is invariant under (K" O

This F,(z, p(Y) f7, g) we constructed is not going to be the nearly ordinary
vector unless we apply the intertwining operator to it. So now we start with
some p = (7, 7). We define our Siegel section f0 e Iiiopi1(7) to be

@ g) =Mz fH.(g),

where fT € I,12541(7¢). We recall the following generalization of a proposition
from [Skinner and Urban 2014].

Proposition 4.40. Suppose our data (7, T) comes from the local component at v of
a global data. Then there is a meromorphic function y® (p, z) such that

Fp(=2,M(z, 1), 8) =v@(p, DA, 2, Fp(f3 2, =) ().
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Moreover, if Ty >~ (X1, - - ., Xa+2b) then, if we write y D (p, z) = y® (P’ Z+%)’

then
L(7,7¢ 4 —2)
yP 0 =vEha s el ) T

where ¢, (t’, 7) is the constant appearing in Lemma 4.27.
Proof. The same as [Skinner and Urban 2014, Proposition 11.13]. J

Remark 4.41. Here we are using the L-factors for the base change from the unitary
groups, while [Skinner and Urban 2014] uses the GL, L-factor for r, so our formula
appears slightly different.

Now we are going to show that
F(z: ) = Fy(z. p(0)f°, )

is a constant multiple of the nearly ordinary vector if our p comes from the
local component of the global Eisenstein data (see Section 3A). Return to the
situation of our Eisenstein data. Suppose that at the Archimedean places our
representation is a holomorphic discrete series associated to the (scalar) weight
k=(0,...0;«, ...k)withr zeroes and s kappas. Here r =a+b and s = b. Suppose

m ~1Ind(xy, ..., Xat2p) 1S nearly ordinary with respect to the weight k. We may
reorder the x; so that v,(x1(p)) =5 — %n + %, V(e (p))=r+s—1— %n—l— %,
V(s (P =K —3n+3, ., vyt (p)) =k +s—1—3n+3,and T = (11,75 )

is a character of @; X @; with v, (t1(p)) = v, (12(p)) = 3, 50
vp(X1(P) < -+ < Vp(Xatn(P)) < vp(2(p)p™™)
<vp(ti(p)p™)
<Vp(Xat+2o(P)) < -+ < Vp(Xatp+1(P)),

where z, = %(K —r —s —1). Itis easy to see that

I(Pu, ) Ind(XL coe Xrso - |ZK7 71| |_ZK)-
By definition, I (py, z,) is nearly ordinary with respect to the weight
©,...,0;k,...,K).
—— N —
r+1 s+1

Definition 4.42. With assumptions and conventions as above, we say (7, 7) is
generic if

cond(x;) > --- > cond(xs+p) > cond(tp)

> cond(Xg+p+1) > - -+ > cond(x4+25) > cond(zy).
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We suppose also that the conductor of 7; is p%. Notice that we have s, > 51 by
our assumption, which is different from Definition 4.21 (since we have applied the
intertwining operator here).

Let us record the following formula for the e-factor in Proposition 4.40:

e(r. 1% z+1%) Hg(x, )Xty (p") - HQ(X,+,T2)Xr+zfz (™)
i=1
r+s

T 1 1N — ; (LAY R
% |p2i:1t,+s sz|z+2 1_[9()(1'7:] I)X,‘ 11’1([9[’) . |p2[=| t,|Z+2. (15)
i=1

From the form of Fy/ (z, o(Y) f T ¢) and the above proposition we have a descrip-
tion in the “generic” case for F(z, g) as in [Skinner and Urban 2014, Lemma 9.6]:
it is supported in P(Q,)K,, with

FI?(Z, = )/(2) (p, _Z)-L'-C((ptl-i-'"-‘rl‘a-#b’ p1a+b+1+---+ta+2b))

X |p11+--~+fa+2h |Z—(ll+2b+1)/2 Vol([%/)p— Zf-‘i.”(iﬂ)ti—Zf:l (+Dlavpr1+i

a+b
x ]‘[g(& )& (— 1)Hg(sa+h+1+,>s§+,,+1+,.<—1)<o
=Cn( ,—Z— _) (-5 )”-L—C((pr' “Hatb pta+b+1+~~+ta+2b))

_ _ a+b .. h . .
x |pt1+---+ta+2b|z (a+2b+1)/2 VOI(K Vp Do =2 e b1

r-+s
< [T ot ' mxity (p’z)]_[g(xjrl )X T(pe(r T e
i=r+1 j=1

x [pEimiitrs =2 pisin

where the 5; are the &; defined in Definition 4.21 but using (7, 7€) instead of (i, 7).
Here we also used Proposition 4.40 and the formula for the epsilon factor there.
Notice that we have absorbed a factor p~ ST =Y a1 , which comes from
computing the i image under the intertwining operator of F (z p(1) fT; g) to get
the factor p = LI G0t =105 G+ Dtassiiti i the above expression. The right action

of K, is given by the character

X1(811) * - Xa+b(8a+b a+p)T2(gatb+1 at+b+1) Xatb+1(8atb+2 atb+2) X - -+
X Xa+2b(8a+2b+1 a+2b+1)T1(8a+2b+2 a+2b+2)-

(It is easy to compute A(p, z, F(pr(p(T)fT; z, —))—;(1) and we use the uniqueness
of the vector with the required K, action. Here, on the second row of the above
formula for F(z, 1), the power for p is slightly different from that for the section
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F(z, f7, w). This comes from the computations for the intertwining operators for
Klingen Eisenstein sections.)
Thus, Corollary 4.20 tells us that Fl? (z, g) is a nearly ordinary vector in I (p).
Now we describe f°:

Definition 4.43. Suppose (p') =cond(z’) for ¢ > 1, then define f; to be the section
supported in Q(Q,)Ko(p") with f;(k) = t(detdy) on Ko(p").

Lemma 4.44. fOoi=M(—z, f1), = fi..
Proof. This is just [Skinner and Urban 2014, Lemma 11.10]. U

Corollary 4.45. We have

a+b
a+b .
fO(Z, g = Piz"i‘ =Y arhsi 1_[9(51)‘51( 1) n9(§a+b+1+z)§a+b+1+z( 1)
i=1 i=1
b

detA; = detD; ,
X . g " plati
Z 1_[%-1 (d tAl 1 ) Héa+1,a+t (det Di—l P )
A.B,C,D,E i i=1
A B
b C D
= detf; ., .\ 7 lagop41
. a+b+i
XH§a+b+1+z (det Ei—lp )ft 2,8
i=1 E
lat2p+1

Here, A; is the i-th upper-left minor of A, D; is the (a+i)-th upper-left minor
Of(é g) and E; is the i-th upper-left minor of E.

We define the Siegel section f¥ € I, (1) by

a+b
_yath; l»’ 11
£z, g) = pm Zi=r i iim s T g8 (— 1)]‘[g<sa+b+1+,>sa+b+1+,< 1
i=1 i=1
b
detA; = detD; ,
X i . . a-+i
I ) | RO e
A,B,C,D,E i=1 i=1
b
_ det E; ¢ .
X . a+b+i
Efa+b+1+z <det Ei_ p )
A B
Xf’ <, gwl/Soiel T E wl/Borel

Lagops1
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Then, similar to before, the corresponding pullback section F(;, (z, (Y)Y fY, 1)
equals

Cn (.L./ , —Z)Q(T;,)n fc((ptl+"'+la+b, pla+b+1+~~~+ta+2b))|pt1+~~~+ta+2h |Z—(a+2b)/2 VOI(I%/)

r+s

Xp_Z(i—l)fi—Z(i—l)la+17+i 1_[ g(Xi_ITZ)XiTQ_I(Psz)
i=r+1

,
—1 —1 . X
<[ Ta0um )X T(pe(m, w2+ 5)
j=1
r 1 r+s 1
X |pz":1 [i+s's2|_z+§ . |p21:1 li |—Z+§‘

Fourier coefficients for f°. We record a formula here for the Fourier coefficients
for £° which will be used in p-adic interpolation.
Lemma 4.46. Suppose |det 8| # O; then:
() If B & Savap+1(Zy) then fg(z, 1) =0.
(ii) Lett :=ord,(cond(t")). If B € Sayop41(Z)) then
[, 1) =T/ (det B)ldet B2 g(z) " cunap i1 (B, —2) e (B),
where c,2p+1(—, —) is as defined in (13) and ®¢ is defined in (11).

Proof. This follows from [Skinner and Urban 2014, Lemma 11.12] and the argument
of Corollary 4.30, where we deduce the form of f from the section f . ([

4D3. Fourier-Jacobi coefficients. Now let m = b+ 1. For 8 € S,,(F,) NGL,,(0,)
we are going to compute the Fourier—Jacobi coefficient for f; at g.

Lemma 4.47. Let x := ( ll) ! ) (this is a block matrix with respect to (a+b)+(a+Db)).
Then:

@) Flg(fiiz,v.xn™ ', 1) =0if D & p'Muyp(Z)).
(b) If D € p'M,(Z,) then Flg(fr; z, v, xn7 1, 1) = ¢(B, T, 2) Do (v), where
c(B. 7, 2) :=T(—det B)|det BIZT " g(x)"cn(r/, —2 = F(n —m))
and cy, is as defined in Lemma 4.27.

Proof. Similar to the proof of [Skinner and Urban 2014, Lemma 11.20]. We only
give the detailed proof for the case when a = 0. The case when a > 0 is even easier
to treat.
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Assuming a = 0, we temporarily write n for b and save the letter b for other use.
We have

1
| S v ; n+1
war | T % D a(l,nph = 1 vn _g
12n+1 " D —'5 —1
n

This belongs to 02,4+1(Q,)Kg,,,, (p") (Where K¢, ., (p") consists of matrices
in Q2,+1(Z,) modulo p') if and only if S is invertible with S~'e p'M,;1(0,),
S™ € p"Mut1yxn(0y) and S~ 'v — D € p'M,(Z,). Since v =y (b, 0) for
some y € SL,1(0,) and b € M, (I,), we are reduced to the case v = (b, 0).
Writing b = (b1, by) with b; € M,(Q,), and S = (T, 'T) with T € M,11(Q))
and 77! = (Z: Zi), where a; € M, (Q)), a; € Myx1(Q)), a3 € M;,(Q,) and
as € M1(Q)), the conditions on S and v can be rewritten as

detT ?é Oa a; € ptMn(Zp)» albl € ptMn(Zp)a aSbl € ptMlxn(Zp)’

*
talbz € p[Mn(Zp), tazbz (S ptzp, [bzalbl —De ptMn(Zp). ( )
Now we prove that if the integral for Flg(f;; z, v, xn~', 1) is nonzero then
by, by € M,,(Z,,). Suppose otherwise; then without loss of generality we assume b
has an entry which has the maximal p-adic absolute value among all entries of b
and b;, Suppose it is p¥ for w > 0 (w means this only inside this lemma). Also,
for any matrix A of given size, we say A € b if and only 'b,A has all entries
in Z,, (of course we assume the sizes of the matrices are correct so that the product
makes sense).
Now let

L
= {y: (k ;) eGL,(Z,)

heGLy11(Zy), l€Zy, h—1€'byNp' M, (Z,),
JeZyN by, ke p’MlX,,(Z,,)}.

Suppose that our by, b, and D are such that there exist a; satisfying (*); then one
can check that I' is a subgroup and, if T satisfies (*), so does Ty for any y € I'.
Let I denote the set of T € M, 1(Q),) satisfying (*). Then

1 -1
F ; 1
Jﬂ (ﬁ’ @ U’ (D 1) n ’ )

= Z |detT|f,”+2—2Zfz’(—detTy)e,,(—TrﬁTy)dy.
TeJ/T r

Let T/ := BT = (C; Z) (with blocks with respect to the partition (n + 1)); then the

e
above integral is zero unless we have ¢; € p™' M, (Z,) ® ['b2luxn, cs € p~'Z,,
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€2 € p'My41(Z,) and c3 € ['br]ixn ® Mixn(Z,). Here ['by];«, means the set of
i X n matrices such that each row is a Z,-linear combination of the rows of ’b,.

But then
by 11 (b1 cia1by + crazb
=T7T = .
p (0) (0) <C3a1b1+C4a3b1)

Since B € GL,4+1(Z)), the left-hand side must contain some entry with p-adic
absolute value p™. But it is not hard to see that all entries on the right-hand side
have p-adic values strictly less than p*; a contradiction. Thus we conclude that
bieM,(Zp) andby e M, (Zp,). By (*), b2'a1by—D € p' M, (Z),) and a; € p' M,,(Z ).
So D e p'M,(Z,).

The value claimed in part (b) can be deduced similarly to in [Skinner and Urban
2014, Lemma 11.20] O

4D4. Original basis. Recall that we changed the basis at the beginning of this
subsection. Now we go back. We define the corresponding sections (we use the
same notations)

a+b b

fiz g) = p~ D - T g6 (—1) ]‘[ Earbri+)Earbiiri(—1)

i=1

det A; b detD; ,
X Z l—[ (detAi 1 )Héﬂ’aH(—detDi_]pu)

A,B,C,D,E i=1 i=1
b
- det E; ‘ )
X . a+b+i
il]-fa+b+1+z (det Ei—lp )
1y C D \
1
1, A B
~ _ 1, E
x f Z, ngolrel b 1, WBorel | >
1
la
1 )

and fO(z, g) the same except using f; in place of fT. Here, A; is the i-th upper-left
minor of A, D; is the (a+i)-th upper-left minor of (é g) and E; is the i-th upper-
left minor of E. The wgori 1s the element in G(F),) such that, for any v = ww
dividing p with w € X, its projection to the first factor of 3, >~ ¥, x Hy is the
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Weyl element defined at the beginning of Section 4D2. We also define

a+b
a+b -

fT/(Za g = P_Zi=‘ iti= Yoy ftasoe 1—[9(51)51 (=1 n9(§a+b+1+z)§a+b+l+l( 1)

i=1 i=1

det A; b det D,
< 3 TTE (e ) e ns)

A,B,C,D,E i=1

b

- det E;
% =

E§a+b+1+z(detEi_l>

1p C D
1, A B
1, E

/
w ’
1 b Borel

3 —1

X f Z, ngorel
la

1p

and f" the same except with f, instead of f T. The corresponding pullback section
Fy(f 0.z, —) is the nearly ordinary section with respect to the Borel B, defined in
Section 4D2 such that Fw/(fo, Z, WBorel) 18 given by

1 (T ( L —2— %)g(.[[’))n+lfc((pt1+"'+tcz+b’ pta+b+l+"'+ta+2b))

x |pt1+~~~+la+2h |—Z—(a+2b+1)/2 VOI(IZ/)p_ Do iti—) itatbti

r—+s
< [T et ' nits (pt')]_[g(x]fl )X (P, T 2)g.
i=r+1 j=1

Also, we have that F,(z, p (T 7, Whorey) 1S given by

Cn (T;, _Z)g(t;})”f(f((p[1+"'+ta+b’ pta+b+1+'"+la+2b))|pll+“'+[a+2b |—Z—(a+2b)/2 VOI(I%/)

r+s
X Pizltﬁzlt"”’“ l_[ Q(Xi_lfz)Xifz_l(Pti)
i=r+1

p
< [TaGm Hx;  mipe(m. = 2+ 1o
j=1
5. Global computations
5A. p-adic interpolation.

S5A1. Weight space and Eisenstein datum. Recall that we have the algebraic group
H = Hvlp GL, x GL; such that H(/Z,) is the Galois group of the Igusa tower
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over the ordinary locus of the toroidal compactified Shimura variety. Let 7z,
be the diagonal torus. Let T := T'(1 + Z,). We define the weight ring A = A,
as O, [T]. Fix throughout a finite-order character xo of T'(F,) (the torsion part
of T(Z,)); a Q p-point ¢ € Spec A is called arithmetic if there is a weight k =
(Cs41s---sCs4rsCly---,C5) =1(0,...,0; «, ..., k) such that ¢ is given by a char-
acter xoxel,' 't +‘1‘ -1+ of T for 4 a character of order and conductor
powers of p, with k > 2(a + b+ 1). We write this k as kg. Let Ay = Or[[Ty]l.

Definition 5.1. For [ a normal domain over A which is also a finite module over A,
a Q,-point ¢ € Spec is called arithmetic if its image in Spec A is arithmetic.

(1) If s > 0,1et V3! (K, [, xo) be the set of [-adic formal Fourier-Jacobi expansions

{fx :Zaﬂ(xv f)qﬁ}
ﬂ X

such that, for a Zariski-dense set of generic arithmetic points ¢ € Specl, the
specialization fj is the formal Fourier—Jacobi expansion of a form on U(r, s)
whose p-part nebentype at diag(¢y, .. ., t,4s) iS given by

s+1 S-r c —Cs
XC’XQw)(tlJr ’ tc+ tr+1l o ty)

for the weight (cs41, ..., Cspr; €1y ..., ¢) =(0,...,0; k¢, ..., k). Here, by x4
we also mean the character of T'(Z,) restricting to x4 on T that is trivial on
the torsion part of 7(Z,). We say f € VO’Z,OO(K , 1) is a family of eigenforms if
the specializations f} above are eigenforms. We define V2: Ord(K , 1, xo) for the
subspace such that the specializations above are nearly ordmary.

(ii) If s =0, then let K =[], K, and let

Ko(p) = [ Ko [ ] Ko(p)u

vip vlp

(with Ko(p)y, C G(OF,) be the set of matrices which are in B(Of ,) modulo p).
Then G(F)\G(Ar)/Ko(p) is a finite set with {g;}; a set of representatives. We
identify the set

S§(K) = G(F)\G(Ar)/K"N(OF,,)

with the disjoint union of g; - N~ (pOF ,)T (OF,,) and endow the latter with the
p-adic topology on N~ (pOr ,)T(OF ,). We define VOIX’OO(K, [, xo) to be the set
of continuous [-valued functions on Sg (K) such that, for a Zariski-dense set of
arithmetic points ¢ € Spec [, the specialization f; is a form on U(r, 0) whose p-part
nebentype at diag(?(, ..., ) is given by

Xoxew(ty" 1)
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for the weight (0, ..., 0). Note that, by the description of nebentypus at p, such
a family is determined by its values on g; - N (pOF ;). Similarly we define
Volgjgéd(l{ , I, xo) for the nearly ordinary part.

Remark 5.2. To see this is a good definition, we have to compare it with the
notion of Hida families in the literature. We refer to [Hida 2004b, Chapter 8;
Hsieh 2014, Sections 3—4] for the definition of Hida families. We have to check
that a Hida family in Hsieh’s terms does give a Hida family here. We need to
show that, if ks > 0 (depending on the p-part of the conductor at ¢)) when s > 0,
then any nearly ordinary p-adic cusp form is classical. If s > O this is proved
by the argument of [Hsieh 2014, Theorem 4.19]. (It is assumed that s = 1 in
[loc. cit.]; however, the proof for this particular theorem works in the general case.)
If s = O the situation is even easier: the contraction property of the U, operator
[Hsieh 2014, Proposition 4.4] (which again works in our case as well) shows that the
specialization at ¢ is right-invariant under an open subgroup of U(r)(Z,) depending
only on the conductor of the nebentypus (note also that we have trivial weight
if s = 0), and is thus classical.

Definition 5.3. We define an Eisenstein datum as a quadruple D := (I, f, to, xo0),
where xo is a finite-order character of 7(Z,), 7o is a finite-order character of
H*\Ag; whose conductors at primes above p divides (p), and f € Vé;’;ggd(l( D) is
a Hida family of eigenforms defined as above. We define Ap := A ®qg, Ax. We
calla @ p-point ¢ € Spec A p is arithmetic if ¢ |y is arithmetic with some weight k¢
and ¢ (y ) = (14 p)/?¢c,, ¢(y ™) = (1 + p)<¢/?¢_ for p-power roots of unity ¢..
We define 7y = ¢ o Wy;.

Let & be the set of arithmetic points. If fy is classical and generates an irreducible
automorphic representation 7 s, of U(r, s), we say that ¢ is generic if (7 ,, 7) is
generic (see Definition 4.42). Let &2°" be the set of generic arithmetic points.

S5B. Some assumptions.

5B1. Including types. Consider the group U(s, r). Suppose K? =K5x K> C G(A?)
for a finite set of primes ¥ and let Wy be a finite O7-module on which Ky
acts through a finite quotient. Let Ky C Ky be a normal subgroup contain-
ing HveE\{v\ ) Dy, defined in Definition 4.11 and acting trivially on Wy, and
let K'= G(Z,)K K*. The modules of modular forms of weight «, type Wy and
character v are

M (K, Ws; 01) = (M (K'; 01) ®q, Ws)X=.

Suppose for v € X\{v|p} we have open compact subgroups I?{, Cc K, C G(F,)
such that K is a normal subgroup of K, and an irreducible finite-dimensional rep-
resentation W, of K,,/K. Suppose ¢, € 7, is a vector in W,,. We fix a K,-invariant
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measure and let vy, vy, ... be a basis such that ¢, is v;. We also assume that 1%;
includes the 9)!, defined in Section 4. We let W’ be the dual representation and we
write v, vy, ... for the dual basis. We first prove the following lemma:

Lemma 5.4. Let G be a finite group and p : G — Aut(V) an irreducible repre-
sentation on an n-dimensional vector space V. We fix a G-invariant norm and a

unitary basis vy, . .., v,. Let p" be the dual representation on V" with dual basis
vy, ..., v). Then, as elementsin VQ V",

Y (g ®gv)) =0, i #J,

geG

n
Y (gui®gv) =Gy v @)
8 i=1

Proof. This is a straightforward application of the Schur orthogonal relation. [J
Definition 5.5. We define Wz\{p} = HveZ\{p} W, and v; = HveE\{p} Uy,1 € Wg\{p}.

We can also make a notion of Wy, (,)-valued Hida families in a similar manner
to Definition 5.1.

5B2. Assumption TEMPERED. Let f be a Hida family of eigenforms as defined in
Definition 5.1. We say it satisfies the assumption “TEMPERED” if the specializations
[ in the definition are tempered eigenforms.

5B3. Assumption DUAL. We first define an O -involution o : A — A sending any
diag(ty,...,t,) € T(1+Z)) to diag(tn_l, e, tl_l). We define [° to be the ring [ but
with the A-algebra structure given by composing the involution o with the original
A structure map of [.

Let f be an [-adic cuspidal eigenform on U(r, s) such that, for a Zariski-dense
set of generic arithmetic points ¢, the specialization f; is classical and generates an
irreducible automorphic representation 7, of U(r, s); we say it satisfies assumption
DUAL if there is an [°-adic nearly ordinary cusp form f on U(s, r) such that
f¢v € n}d) for all the arithmetic points ¢ € Specl that are in the image of some
point in ¥&°". (Here we identified U(r, s) and U(s, r) in the obvious way. At an
arithmetic point both f, and f¢v have scalar weight «. Note also that we only
require the specialization f to be “generic” (not required for f(pv ).)

5B4. Assumptions Proj ;v and Proj pv. We say a nearly ordinary cuspidal eigenform
fY on U(s, r) satisfies assumption Proj v if (mpv ® Weyg p})K is 1-dimensional
and there is a Hecke operator 1 v on U(s, r) that is an L-coefficient polynomial
of Hecke operators outside ¥ such that, for any g € M, (K, Wx\(,}), we have that
e . g —14ve. g is a sum of forms in irreducible automorphic representations
which are orthogonal to 7 ¢v.
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We say a nonzero nearly ordinary cuspidal [°-adic family of eigenforms f“
in (VO’X,OO(K, s Xo ) ® W\ (p) )K= satlsﬁes assumption PrOva if there is an ac-
od acting on (VY (K, [°, Xo He Ws\(p))X* interpolating the ¢°™ of spe-
cializations and there is a Hecke operator 1yv which is an Fj polynomial of
Hecke operators outside X such that, for Zariski-dense set of arithmetic points
XS Spec [°in the 1mage of &=, ( £y ® Ws\( p}) is 1-dimensional and, for any
g € (V3 (K, 1 ) ® Wx)k=, (eOrd lfveordg)¢, is a sum of forms in
1rredu01ble automorphlc representations Wthh are orthogonal to 7 e

tion e

Remark 5.6. If r +s5 =2 then these assumptions often hold, since the unitary group
is closely related to GL, or quaternion algebras. It is easy to see DUAL by simply
taking f¥ = f ® (x)~! for x the central character of f. To see Proj ¢ and Proj ¢v,
we first suppose r = s = 1 and f is a Hida family of GL; newforms with tame
level M such that (M, pdy) = 1 and trivial character. The existence of ¢ is as in
[Skinner and Urban 2014, Lemma 12.2] Since we have an isomorphism of algebraic
groups over F,

GU(I, l) ~ GL2 XG RCS%/F Gm,

m

we can obtain a family on U(1, 1) from f and the trivial character of Aj /3>,
which we still denote by f. Take an arithmetic point ¢ and a GL, Hecke operator ¢
involving only Hecke operators 7, at primes v outside ¥ which are split in 5/ F
such that the ¢-eigenvalue 7 ( f,) is different from its eigenvalues on other forms on
S,?;d(Fo(M YN T (p™), C) (the space of ordinary cusp forms on U(1, 1) of weight
(0, k) and level To(M) N T (p™), with p’ being the p-part level at ¢p. Also here
we use the U(1, 1) Hecke operators at split primes v = ww which are associated
to the elements (diag(w, 1), diag(1, @ 1))). This is possible since any form in
S,?;d(Fo(M YNT(p™), C) is the restriction of a form on GU(1, 1) obtained from
a GL, form of conductor dividing Nmy;,r8y/r M p'¢ and a character of A% JIH>
unramified outside p. Note that any cuspidal automorphic representation on GL; / F
with the same Hecke eigenvalue with f, on split primes is 7, or 7z, ® X/, and
that any element g € GL(F,) such that det(g) € Nmgy;, ¢ (}) can be written as ag’
witha € and g’ € U(l, 1)(F,). A simple representation-theoretic argument shows
that the only forms in S,?;d(Fo(M )NT(p'*), C) with the same Hecke eigenvalues
with fy at split primes are in the 1-dimensional space spanned by f. Let A be the
weight space for U(1, 1) and define

ST (M), 1) := SOUTo(M), A) @4 L.

It follows from Hida’s control theorem for unitary groups (see [Hsieh 2014, The-
orem 4.21], for example) that this is a free module over [ of finite rank, and the
specialization of this free module to ¢ gives the space S,?;d(Fo(M YN (p'), Op) for
some L finite over Q,, provided k4 >> 0 with respect to the p-part of the conductor
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of ¢. We consider det(T — t), where T is a variable and we regard ¢ as an operator
on this free [-module. We thus obtain an [-coefficient polynomial of 7. Moreover,
we can write det(T —t) = (T —t(f)) - g(T) for some polynomial g(T). Then we

define g )

1r=
T
(note that g(z(f)) is not identically zero.) This proves Proj ¢, and Proj ;v is seen in
a similar way. If (r, s) = (2, 0) we observe that if we set

D={ge M) |g'cg=det(g)c}

then D is a definite quaternion algebra over @ with local invariants inv, (D) =
(=s, —Dy/@)v (the Hilbert symbol). The relation between GU(2) and D is ex-
plained by

GU(Z) = DX X@m Ress;{/@ Gm.

We can similarly show that, if f is a Hida family of newforms on D* with trivial
character, tame level prime to p and all primes of 8y such that D is unramified, and
is the trivial representation at primes where D is ramified, then we can produce a
family f on U(2, 0) from f and the trivial character of A /J*. A similar argument
proves that Proj ; and Proj ;v is true.

5C. Klingen Eisenstein series and p-adic L-functions.

5C1. Construction. Now we are going to construct the nearly ordinary Klingen
Eisenstein series (and will p-adically interpolate them in families). First of all, let T
be a Hecke character which is of infinite type (—%K, %K) at all infinite places (here
the convention is that the first infinite place of ¥ is inside our CM type). Recall
that we write 9 := {m, , X} for the Eisenstein data (see Definition 3.2). We define

the normalization factor

B@ _ Q;l(zoo ((_2)—d(a+2b+1)(27.”-)d(a+2b+1)/( (z/n)d(a+2b+1)(a+2b)/2)l
Qi M550 Ge—j = 1y¢
a+2b
x [TL%Qac+a+2b+1-i, 7' xi) [ [(@GED T carap i (). —2) 7"
i=0 v|p
Béb _ Q;}KZOO ((_2)—d(a+2b)(27.”')d(a+2b)l((2/n)d(a+2b)(a+2b—l)/2)—1
Q™ [T555" = j =1

a+2b—1
x [] L*Qauc+a+2b—i, 7' xi) [ [0@) * caran(r), —z)~".
i=0 vlp
Here, z, = %(K —a—2b—1)and z, = %(fc —a —2b), c¢,, is defined in (13), and
Qo 1s the CM period in Section 2A.
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We construct a Siegel Eisenstein series Egeg associated to the Siegel section

Ja, s1eg—ngl_[fK1_[/O(T )f l_[ fv s1egl—[f € lyt2p+1(7, 2)

v|oco vlp Ve, vip

and E, associated to the section

fgbswg_B@nf l_[p(T )fO/ 1_[ fv31eg1_[fsph ela+2h(r Z)

v|oo vlp vVEXT,vip

Here Y, and Y, are as defined in Definition 4.32. First note that, since 7 is nearly
ordinary with respect to the scalar weight «, its contragradient is also nearly ordinary
on U(s, r) with respect to the scalar weight k. We denote this representation by 7.
We consider E(y (g, —)) as an automorphic form on U(s, r). For each v { p we
choose an open compact group K v.s CU(s, r)y such that

[T p(y(ndiagx, ", 1,x,).5,))(E(y (g, —)) @ T(det —))
veX,vip

is invariant under its action. We have the following lemma:

Lemma 5.7. There is a bounded measure €g sice on I'sy X T (1 + Z,,) with values
in the space of p-adic automorphic forms on U(r +s + 1, r +s + 1) such that, for
all arithmetic points ¢ € X" with the associated character ¢ on I'yy x T (1 +Z)),

we have
/ ¢ d%@,sieg
F?{XT(I‘i“Zp)

is the Siegel Eisenstein series ,0(]_[1)ez olp y(1, ndiag(iljl, 1, xv)gzjl))Esieg,g%,
where Egieg o IS the Siegel Eisenstein series we construct using the characters

(X1,¢> - - +» Xn.¢» Tp)- Similarly, we can define a measure €’ interpolating the

D,sieg
E éleg D"
Proof. 1t follows from our computations for Fourier coefficients, Lemmas 4.2, 4.6,
4.12 and 4.46, and [Skinner and Urban 2014, Lemma 11.2], that all the Fourier
coefficients of Ejeo and Egleg are interpolated by elements in A, s[[I'y]]. Then the
lemma follows from the abstract Kummer congruence. We refer to [Hsieh 2011,
Lemma 3.15, Theorem 3.16] for a detailed proof. O

Now we define our Klingen Eisenstein series using the pullback formula. Note
that by (3) the pullback of the Siegel Eisenstein series are still holomorphic auto-
morphic forms. Let 8 be the embedding given in Section 2B. Let K, be the open
compact subgroup of G(Of, x), which is IEU,S as above for v € X\ {v|p}, IEU forv|p
and spherical otherwise. We define Ep kiing by, for any points x and x; on the
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Igusa schemes of U(r 4+ 1, s + 1) and U(s, r),

OV N Trg ¢ (€™ (B (€D sieg) - T(det(g1))) ® v1)(x, x1)

= Ep Kiing(x) X f (x1)
(as a Wyx\(p)-valued form—recall vi € Wg\(,); see Section 5B1). Here we let
Ksx\(p} act on both € D,sieg and Wx\ (). We get a Ag-adic formal Fourier—Jacobi
expansion from the measure elov ,B_l (€D sieg) and then apply the Hecke operators to

the expansion. We also define the X-primitive p-adic L-function 55?%’70 e ""[[Ty1l
by, for elements x and x; in the Igusa schemes of U(r, s) and U(s, r),

N Trg g (¢ BT (€ ieg) - Tldet g1) @ v1)(x, x1)

= L7 5 IR Y (x).
The f; is the v)'-component of f (see Section 5SB1). This is possible by Lemma 5.4.
Here note that the necessity of enlarging the coefficient ring to include 0}" is caused

when specifying points on Igusa schemes (recall Section 2F).
Here we used the superscript “low” to mean that, under

Ua+b+1,b+1)xUb,a+b)—>U@+2b+1,a+2b+1),
the action is for the group U(b, a + b).

5C2. Identify with Klingen Eisenstein series constructed before. We define a Klin-
gen Eisenstein section by

fébj(ﬁ’Kling(Z’ 8) = Bg 1_[ Fgou (z; fv,siega g,
v

where the Fy, (2; fusieg» &) are the pullback sections we computed in Section 5 and
@y for v e £ \{v|p} is the v)’-component, as in Sections 5B1 and 5B4. We first look
at places dividing p. The pairing (, ) induces a natural pairing between 7 and 7.

Write
Pw = 1_[ Dv 1_[ @sPh l_[ Dy H‘pw,v-

v|oo vgx Ve, vip v|p

Then

<H Trz, ks P(v (1, ndiag(x, ', 1, x,).8,) (Esieg (v (g, =) T (det —)),

vip
L

—1,
0 1_[ diag(p ot . ph, L, et L)t la ¢w>
vlp Ly
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equals

<pl°w ( [ Jdiag(p'+t, ... pr, 1, lb)‘>

vlp

< [ 1Tz, k.. pOr (1 ndiag; ", 1, x) 8, ) (E(y (g, )T (det -)),

vip
L

—1,
o 1_[ diag(1,, p™, ..., pltt, .. )" 1, gow>.
vlp Iy

Since Eieg (v (g, —)) 7 (det —) satisfies the property that, if K" is the subgroup of
GL4425(Zp) (defined in the last section) consisting of matrices

ayp az ap
ar ag ag
a4 ae ds

such that the (i, j)-th entries of a7 and a4 are divisible by p’ita+v+i and pla+itla+b+i,
respectively, the i-th row of ag and the right-to-diagonal entries of ag are divisible by
plifori=1,...,a,the below-diagonal entries of the i-th column of a; are divisible
by pla++i, the up-to-diagonal entries of the i-th row of a5 are divisible by p'e+i, and
az, as, ag € M(Z ), then the right action of i for h € K" on E(y (g, —))T(det —)
is given by the character

AR = Xasp+1(hin) -+ Xat2p Bon) X1 (hos1,6+1) < - X (hagbatb)
X Xa+1aspi1,a+b+1) -+ Xa+b(May2p,a420)-

(This is easily checked from the definition of the Godement section.) It is elementary
to check that the above expression equals

1
1_[ Hf’:l ptct+b+i (a+b)

v|p

X <]‘[Z P (y) p'¥ (diag(p'e++1, ... 14, 15)Y)

vlp ¥
< [Tz, k. 0 (v (L ndiag(®, ", 1,2,)8,) (Esieg (v (8. —) T (det—)),
vip

—1,

p | [ [diag(1. p" ... p'+t. .. la ¢w>, (15)
vlp 1p
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where y runs over N(Z,)/BN(Z,) B~! for N consisting of matrices of the form

(1*? 3) with * having Z ,-entries and g = diag(p'eto+t, ..., 14, 15). Write the ex-
pression
eord,low 1_[ Z pIOW(y)pIOW(IBL)
vlp Yy
< [1Trz, 2, (v (1 ndiag(®", 1,%,)8,) (Esieg (v (g, =) T (det ). (16)
vip

Now let K” consists of matrices in GL,(Z,) whose below-diagonal entries of
the i-th row are divisible by p’, yppi for I <i <s. Let K" be the set of elements in
GL,2,(Z ) whose right-to-diagonal entries of the i-th row are divisible by p* for
1 <i <a+ b and whose lower-right b x b block is in

diag(p’“”’“ e pta+2b)[€b diag(pt‘””“ e, pta+2b)—1.

Then a similar argument as in Section 4D1 shows that there is a unique (up to
scalar) vector (;35 em(x, L X;rl%) such that the action of (k;;) € K % is given
by the character diag(x, ! k11), ..., xajrle (ka+2ba+26))- We use the model of the
induced representation from x, ' ® X;J:Zb on the space of smooth functions
on GL;42,(Z,). We take ¢5 such that, if (,Zl‘jrd takes value 1 on identity in this model,
then @5 also takes value 1 on identity (and has support K tc GL4425(Zp)). From the
action of the level group we know that the action of p'°% (K ) on the left part of the in-
ner product in (15) is given by the character diag(x,” ! (k11), -+ -y X, +12b (kat2ba+2p)).
For v|p define Téoz‘)’v to be the Hecke operator corresponding to B just in terms of
double cosets acting on JT(/\)/ (with no normalization factors involved). By checking
the actions of the level groups at primes dividing p (certain open compact subgroups
of G(OF,,)) we can see that the 7 component of the left part, when viewed as an
automorphic form on U(a + b, b), is a multiple of ¢°™. Suppose the eigenvalue for

the Hecke operator Té";” on ¢ is A g,v- It is easy to compute that

b

¥ b a i —i -1 a j

Mgy = pzlzll toti ((@F2b+1)/2—0) l—[ Xaabe1—s (pla+iri) (17)
j=1

with the convention on the y; after Remark 4.41.

Let
(p/zl_[(pvl_[‘pSph 1_[ Pv
v|oo vgX veX,vip
—1, ¢
X Hp diag(p ot . ph, L., plett, L)Y 1, Ow.v

vlp 1p
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and
(PN = l_l(pv 1_[ wsph 1_[ Do
v|oo vgX UEE,Ufp
3
—1,
xl_[,o diag(l, ..., p", ..., pltt, .. ) la Ow.v-
vlp lb

Here, for v|oo, the ¢, is the unique vector mentioned before Definition 3.1. Define
the Klingen Eisenstein section promised in the introduction as

fED¢,Kling = BQZ)¢< 1_[ |I€v/kv,s|)f€%,Kling‘
vEXT, vip
Then we have:

Proposition 5.8. For a classical generic arithmetic point ¢, we have
& (E D Kiing)

-~ Exiing(fa, Klings Zcs» &)
— 1_[ |K /Kv’s| mg ~;§rd mg K¢
(ZS >y

veX,vip

Xl_[( l_[ Xt (p r+/) l_[ X (p[j)p 1ta+b+i((a_l)/2+i),p_2j1tj((a+])/2_j)).

vlp

Proof. Here, let ® be the expression (15) and E the expression (16). We have

® (B, 9")Ap.y

(@0 Tp(Ticiejs P75 070) (@, )

(. @) = (@ ¢") - H( I1 p-)

vlp “1<i<j<s

and

(e.g., using the model of the induced representation). So
(E, ¢") . ® Hv\p(nlfifjfs pfa+b+i—ta+b+j)
(éord, (p//> Xﬂ’v«aﬁ, (p//>
® Hvlp (Hlfifjfs pta+1)+i_ta+b+j)
Hv‘p (Hlsisjgs platbti~latbtj ))‘-ﬂ,v (@ord’ )

We also have

~ord // 1_[X (P ) - P 1t_,-((a+1)/2—j).

The proposition follows. (]
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Then parts (i) and (ii) of Theorem 1.1 are just a corollary of the above proposition
(except the statement in the s = 0 case, which we are going to consider next).

Similarly, we obtain an interpolation formula for the p-adic L-function as in
Theorem 1.1, using also the formula (15).

5C3. Interpolating Petersson inner products for definite unitary groups. To sim-
plify the exposition we only discuss the case when F = Q) in this subsubsec-
tion. In the case when s = 0, we hope that the periods showing up are CM
periods. Thus, by our assumption, the Archimedean components of 7 are trivial
representations. For this purpose we prove that, under certain assumptions, the
Petersson inner products of two families can be interpolated by elements in the
Iwasawa algebra. Let K =[], K, be an open compact subgroup of U(r, s)(A )
which is G(Z ) at all primes dividing p and K((p), obtained from K by replacing
the v-component by Ké at all primes v dividing p. Now we take a set {g;}; of
representatives for U(r, s)(F)\U(r, s)(Ar)/Ko(p). We take K sufficiently small
so that for all i we have U(r,s)(F) N g Kg; "= 1. For the nearly ordinary
Hida family f of eigenforms (recall that this Hida family is nearly ordinary
with respect to the lower-triangular Borel subgroup) we construct a bounded
[-valued measure u; on N~ (pZ,) as follows. Let T~ be the set of elements
diag(p®, ..., p*) with a; < --- < a,. We only need to specify the measure for
sets of the form nt*N*(Zp)(f)*l, where n € N™(Z,) and t~ € T~. We assign
its measure p,,-(nt_N_(Zp)(t_)_l) by fV(gin-t7)A(t~)~', where A(t7) is the
Hecke eigenvalue of fV for U,-. This does define a measure. We briefly explain
the point when r = 2 (the general case is only notationally more complicated).
Write 77y, = 7(X1,p, X2,p) such that v, (x1,,(p)) = 1. vp(x2.p(p)) = —3%. Then
A(diag(1, p™) = (x2.,(p) - p'/*)". One checks that

D ((’711 1) )ﬂ(diag(l, POL
i ’ = G p(p) - PV (diag(1, p" ) £,
This implies that, for any m; € pr/p"*IZp,

Y. wilmimadiag(l, pYYN™(Z,) diag(1, p™™))
e = i (my diag(1, p"" )N (Z,) diag(1, p' ™)),

i.e., this u; does define a measure.

Proposition 5.9. If we define
(f:fv)3=Z/ f(gin)du; €1

eN— (pzp)

then, for all ¢ € X", the specialization of (f, f") to ¢ is ( fy. f¢v) -Vol(lzd,)_].
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Proof. For each ¢ € #%°", we choose ¢~ such that z‘_N_(pZ,,)(z‘_)_1 - Iiﬁ. We
consider

(fo. 75t S

Unfolding the deﬁmtlons note x (t )ép(t™) gives the Hecke eigenvalue A (1 7);
this gives dp (1~ )X¢ (= )Z fneN (vZ,) flgin)du; - Vol(K¢) On the other hand,
using the model of w f¢ pand £y p 3 the induced representation (1,4, - - ., Xr.¢)
and 71()(1 FYRT qus) of GL, (@ ), we get that

(oo 70 f, GV ) =88y ) fps £
This proves that the specialization of (f, f) to ¢ is (fs, fy') Vol(Kg)~'. O

So, to see the main theorem in the case when s = 0, instead of applying the Hecke
operator e®d. | fv we pair the pullback of Siegel Eisenstein series (I""[[T'y ]|-valued)
with the measure determined by the Hida family f using the above lemma. That is,
considering

Exiing (8, 2c) = Z/ Esieg(S™'a(g, gim)S, ze) diui,
i neN~(pOr,p)
where the {du;}; are the measures constructed from f as above. In our situation,
when restricting to U(s, r), the level group at p for Eisenstein series is lower-
triangular modulo a certain power of p while that for f is upper-triangular modulo
a certain power of p. The above construction works in the same way. The powers of
CM and p-adic periods enter when applying the comparison between the standard

basis and the Néron basis for differentials of CM abelian varieties while doing
pullback (see [Hsieh 2014, (3.14)]).

5D. Constant terms. We explain part (iii) of the main theorem.

SD1. p-adic L-functions for Dirichlet characters. There is an element £z in A g,
such that ¢ (7)) = L(f(;, Ky — r).t(;5 (p_l)117"‘1’_’9(%5)_1 at each arithmetic point ¢
in 2P°. For more details see [Skinner and Urban 2014, §3.4.3].

5D2. Archimedean computation. As in [Skinner and Urban 2014], we calculate
the Archimedean part of the intertwining operator for Klingen Eisenstein sections
and prove the “intertwining operator” part (see Lemma 3.4) of the constant term
vanishes. Suppose 7 is associated to the weight (0, ..., 0; «, ..., k); then it is well
known that there is a unique (up to scalar) vector v € 7 such that k-v =det w(k, i)~
for any k € KI;'v (with notations as in Section 3A1). Recall we defined c(p, z) in
Section 3A1.
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Lemma 5.10. With assumptions as above,

b—1 a—1
1

1 1
_ a+2b+1
clp.2)=n l—[( I )l_[—1+i—2z—|—2b

1 ; 1 1_
ig\etaKk—5—l—az—3k+t5—1/;

['(2z4a)2~ 7%+
X
F(fa+D+z+3)T(a+1)+z—3k)
Proof. This follows the same way as [Skinner and Urban 2014, Lemma 9.3]. [

det(ic) .

Corollary 5.11. When « > %a +2b, or k > 2b and a = 0, we have c(p, z) =0 at
the point 7 = %(K —a—2b-1).

In the case when « is sufficiently large, the intertwining operator

AP, e, F) = A(poo, 2, Fi) ® Alpy, 2y Fr)

and all terms are absolutely convergent. Thus, as a consequence of the above
corollary we have A(p, z,, F) = 0. Therefore the constant term of Ekjing 1S
essentially
L¥(#, 7%z +1)
Q%E(@ord’ (,0”)

LEQz +1, 7 x4,

up to a product of normalization factors at local places. Interpolating the calculations
in p-adic families, part (iii) of Theorem 1.1 follows from the above discussion,
Lemma 3.4 and our local descriptions for the Fy, (z; fy sieg, &) in Section 4. (See
also the proof of [Skinner and Urban 2014, Theorem 12.11].)

Index of symbols

A(p,z,—) 1975 H 1965 Mp 1962
B 1962 L(x) 1978 Np 1962
8(m) 1975 I 1984 P 1961
Ep 1977 k 1966 ¢’ 2012
Eg 1977 K 2005 Y 1975
Vil 1999 K’ 2006 O 1978
Yl 1999 K" 2006 oV 1975
fo.sieg 1989 K 2006 s’ 1985
£0 2014 K" 2006 Oy 1961
F, 1976 KL 1974 Y 2005
F) 2015 K., 1974 W 1981
F,, 1976 Ky 1978 xt 1965
G 1961 I 1966 (X, X), 1983

y 2005 Mz —) 1979
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Appendix: Boundary strata of connected components
in positive characteristics

by Kai-Wen Lan

Under the assumption that the PEL datum involves no factor of type D and that the
integral model has good reduction, we show that all boundary strata of the toroidal
or minimal compactifications of the integral model (constructed in earlier works of
the author) have nonempty pullbacks to connected components of geometric fibers,
even in positive characteristics.

A.1l. Introduction. Toroidal and minimal compactifications of Shimura varieties
and their integral models have played important roles in the study of arithmetic
properties of cohomological automorphic representations. While all known models
of them are equipped with natural stratifications, they often suffer from some impre-
cisions or redundancies due to their constructions. The situation is especially subtle
in positive or mixed characteristics, or when we need purely algebraic constructions
even in characteristic zero (for example, when we study the degeneration of abelian
varieties), where the constructions are much less direct than algebraizing complex
manifolds created by unions of explicit double coset spaces.

For example, integral models of Shimura varieties defined by moduli problems of
PEL structures suffer from the so-called failure of Hasse’s principle, because there
is no known way to tell the difference between two moduli problems associated with
algebraic groups which are everywhere locally isomorphic to each other. Similarly,
when their toroidal and minimal compactifications are constructed using the theory
of degeneration, the data for describing them are also local in nature. Unlike in the
complex analytic construction, one cannot just express all the boundary points as
the disjoint unions of some double coset spaces labeled by certain standard maximal
(rational) parabolic subgroups. (Even the nonemptiness of the whole boundaries
in positive characteristics was not straightforward — see the introduction to [Lan
2011].) As we shall see, in Example A.7.2, when factors of type D are allowed, it is
unrealistic to expect that the boundary stratifications in the algebraic and complex
analytic constructions match with each other.

Our goal here is a simple-minded one — to show that the strata of good reduction
integral models of toroidal and minimal compactifications constructed as in [Lan
2013a] have nonempty pullbacks to each connected component of each geometric
fiber, under the assumption that the data defining them involve no factors of type D
(in a sense we will make precise). We will also answer the analogous question for
the integral models constructed by normalization in [Lan 2014], allowing arbitrarily
deep levels and ramifications (that is, bad reductions in general).

This goal is motivated by the study of p-adic families of Eisenstein series,
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for which it is crucial to know that the strata on connected components of the
characteristic- p fibers are all nonempty. For example, this is useful for the consid-
eration of algebraic Fourier—Jacobi expansions. We expect it to play foundational
roles in other applications of a similar nature.

A.2. Main result. We shall formulate our results in the notation system of [Lan
2013a] —henceforth abbreviated [KWL]— which we shall briefly review. (We
shall follow [KWL, Notation and conventions, pp. xxi—xxiii] unless otherwise
specified. While for practical reasons we cannot explain everything we need from
there, we recommend the reader to make use of the reasonably detailed index and
table of contents there when looking for the numerous definitions.)

Let (O, %, L, (-, -), ho) be an integral PEL datum, where O, x, and (L, (-, - ), hp)
are as in [KWL, Definition 1.2.1.3], satisfying [KWL, Condition 1.4.3.10], which
defines a group functor G over Z as in [KWL, Definition 1.2.1.6], and the reflex
field Fy (as a subfield of C), as in [KWL, Definition 1.2.5.4], with ring of integers OF,.
Let p be any good prime, as in [KWL, Definition 1.4.1.1]. Let #? be any open
compact subgroup of G(Z”) that is neat, as in [KWL, Definition 1.4.1.8]. Then
we have a moduli problem My, over So = Spec(OF, (), as in [KWL, Definition
1.4.1.4], which is representable by a scheme that is quasiprojective and smooth
over Sg, by [KWL, Theorem 1.4.1.11 and Corollary 7.2.3.10]. By [KWL, Theorem
7.2.4.1 and Proposition 7.2.4.3], we have the minimal compactification Mg‘{ip“ of My,
which is a scheme that is projective and flat over Sy, with geometrically normal
fibers. Moreover, for each compatible collection X7 of cone decompositions for
Mgyep, as in [KWL, Definition 6.3.3.4], we also have the toroidal compactification
Mgéf,’z » of Mg, which is an algebraic space that is proper and smooth over S, by
[KWL, Theorem 6.4.1.1], and which is representable by a scheme projective over
Mo when X7 is projective, as in [KWL, Definition 7.3.1.3], by [KWL, Theorem
7.3.3.4]. Any such M} o, admits a canonical surjection ¢,,, : M&), 5, — Mmin,
which is constructed by Stein factorization as in [KWL, Section 7.2.3], whose fibers
are all geometrically connected. (The superscript “p” indicates that the objects are
defined using level structures “away from p”. We will also encounter their variants
without the superscript “p”, which also involve level structures “at p”.)

By [KWL, Theorem 7.2.4.1(4)], there is a stratification of Mgéip“ by locally
closed subschemes Z{(a.,,,s,»)1, Where [(®ger, d5r)] runs through the (finite) set
of cusp labels for Mg (see [KWL, Definition 5.4.2.4]). The open dense sub-
scheme Mg is the stratum labeled by [(0, 0)]; we call all the other strata the
cusps of Mgep. Similarly, by [KWL, Theorem 6.4.1.1(2)], there is a stratification
of M;};,Z,, by locally closed subschemes Z((¢.,, .8, ,07)> Where [(Pyer, Sger, 0P)]
runs through equivalence classes, as in [KWL, Definition 6.2.6.1], with ¢? C Pgw
and o” € Xo,, € X”. By [KWL, Theorem 7.2.4.1(5)], the surjection 55%17 induces
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a surjection from the [(®ypr, S5, 0P)]-stratum Zj(a,p, s,p,07)) OF M%‘éﬂﬂzp to the
[(Dger, S9¢r)]-stratum Z[(zp%p’g%],)] of M;]{Ln.

Let s — Sp be any geometric point with residue field k(s), and let U be any
connected component of the fiber My xs, s. Since Mg‘ei}‘ — Sy is proper and has
geometrically normal fibers, the closure U™" of U in M%ip“ Xs, § is a connected
component of M%}l Xs, s. Similarly, since Mggrp’x » —> So is proper and smooth, the
closure U'" of U in My} 5, Xs, s is a connected component of Mg}, 5, s, 5. (In
these cases the connected components are also the irreducible components of the
ambient spaces.)

The stratifications of M%p“ and M%’,z » induce stratifications of U™" and U,
respectively, by pullback. We shall denote the pullback of Z(,, s5,,) to U min
by Ul(oyp,s4»)1 and call it the [(DPger, dg¢r)]-stratum of U min Similarly, we shall
denote the pullback of Zj(a,,.5,0,07) t0 U by Uy, 540,07y, and call it the
[(Dyer, Syer, 0 P)]-stratum of U'™'. By construction, the surjection fw induces a
surjection U™ — U™™" which maps the [(®yer, Syr, o P)]-stratum Ul(@yp ,85p,07)]
of U'" surjectively onto the [(Dyep, S%p)]—stratum Ul(@yp 540 Of U min 1t is natural
to ask whether a particular stratum of U™" or U'" is nonempty.

From now on, we shall assume the following:

Assumption A.2.1. The semisimple algebra O ®z Q over Q involves no factor of
type D (in the sense of [KWL, Definition 1.2.1.15]).

Our main result is the following:

Theorem A.2.2. With the setting as above, all strata of U™™ are nonempty.
An immediate consequence is the following:

Corollary A.2.3. With the setting as above, all strata of U are nonempty.

Proof. Since the canonical morphism Uj(e,,5,p,07)] = U@y ,840)1 18 SUrjective for
each equivalence class [(®y»r, d3r, 07)] with underlying cusp label [(Pyer, d3¢r)]
as above, the nonemptiness of Uj(a.,,,s,»)] implies that of Uy, s,0,07)]- O

Remark A.2.4. Each stratum Zy(g.,, 7,)] (T€SP. Z[(®yp,z4p,07)]) 15 NONEMpty by
[KWL, Theorem 7.2.4.1(4)—(5), Corollary 6.4.1.2, and the explanation of the ex-
istence of complex points as in Remark 1.4.3.14]. The question is whether its
pullback to U™™ (resp. U'") is still nonempty for every U as above.

Remark A.2.5. It easily follows from Theorem A.2.2 and Corollary A.2.3 that their
analogues are also true when the geometric point s — Sy is replaced with morphisms
from general schemes, although we shall omit their statements. In particular, we
can talk about connected components of fibers rather than geometric fibers.

The proof of Theorem A.2.2 will be carried out in Sections A.3, A.4, and A.5. In
Sections A.5 and A.6, we will also state and prove analogues of Theorem A.2.2 in
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zero and arbitrarily ramified characteristics, respectively (see Theorems A.5.1
and A.6.1). We will give some examples in Section A.7, including one (see
Example A.7.2) showing that we cannot expect Theorem A.2.2 to be true without
the requirement (in Assumption A.2.1) that 0 ®7 Q involves no factor of type D.

A.3. Reduction to the case of characteristic zero. The goal of this section is to
prove the following:

Proposition A.3.1. Suppose Theorem A.2.2 is true when char(k(s)) = 0. Then it is
also true when char(k(s)) = p > 0.

Remark A.3.2. Proposition A.3.1 holds regardless of Assumption A.2.1.

Remark A.3.3. It might seem that everything in characteristic zero is well known
and straightforward. But Proposition A.3.1, which is insensitive to the crucial
Assumption A.2.1, shows that the key difficulty is in fact in characteristic zero.
By [KWL, Theorem 7.2.4.1(4)], each Z(o,, s,,)] 1S isomorphic to a boundary
moduli problem M%?’f," defined in the same way as Mg (but with certain integral
PEL datum associated with Zg,). Then it makes sense to consider the minimal
compactification Zﬁlg‘%p’ 80)] of Z{(®,,5,p)1» Which is proper flat and has geometri-
cally normal fibers over Mg, as in [KWL, Theorem 7.2.4.1 and Proposition 7.2.4.3].
(So the connected components of the geometric fibers of Z (q) P e Sp are
closures of those of Zj(e,,,5,»)] = So.) By considering the Stein factorizations of
the structural morphisms Z‘[‘(lil‘;%p’ sr)] So (see [EGAIII; 1961, Corollaire (4.3.3)

and Remarque (4.3.4), pp. 131-132]), we obtain the following:

Lemma A.3.4 (cf. [KWL, Corollary 6.4.1.2] and [Deligne and Mumford 1969,
Theorem 4.17]). Suppose char(k(s)) = p > 0. Then there exists some discrete valu-
ation ring R that is flat over OF, (), with fraction field K and residue field k(s), the
latter lifting the structural homomorphism O, () — k(s) such that, for each cusp
label [(®yr, d3r)] and each connected component V of Zj(d,p 4p)] Q0 () R, the
induced flat morphism V — Spec(R) has connected special fiber over Spec(k(s)).

Proof of Proposition A.3.1. Let R be as in Lemma A.3.4. Let U denote the
connected component of Mye» ®aoy, ,, R = Z[(0,0)1 @0y, (,, R such that U®grk(s) =

as subsets of Mg(p ®6r). k(s) = My» xs, s, and let Umin denote its closure
in M%‘p“ ®0y, » R, which is a connected component of Mmin ®0y, ., R because
Mf;‘e;“ R0, ) R 1s normal by [KWL, Proposition 7.2.4.3(4)]. For each cusp label
[(Dyr, S%r)], let U[(cpw s4p)] denote the pullback of Zj(¢,,, 5,,)) tO U™n Then
0[(q>w s,p)1 1s an open and closed subscheme of Zy(¢,, s,»)] ®0f, (,) R such that
U[(q;wp 89(,:)]®Rk(5) = U[(q;w, Sqep)] AS subsets of M%}P@@FO (mk(s) By Lemma A.3.4,
it suffices to show that U[(q> - Sxr)] OR K # @ for some algebraic closure K of K.
Also by Lemma A.3.4, U®gK # &, and so U™ @r K contains at least one
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connected component of M ®0r, () K. Thus, l~][(q>%p,,;%p)] ®r K # @ under the
assumption of the proposition, as desired. O

A.4. Comparison of cusp labels. Let ¥, := G(Z,) and 3 := #P¥,, the latter
being a neat open compact subgroup of G(z). By the same references to [KWL] as
in Section A.2, we have the moduli problem Mg and its minimal compactification
l\/Iglfin over So.g := So ®z Q = Spec(Fp). For each compatible collection %’ of cone
decompositions for Mg, we also have a toroidal compactification M;?f s together
with a canonical morphism ¢, : M;‘gz, — MZM over So . (Here X’ does not have
to be related to the X7 above.)

Each cusp label [(Zg, Dy, d3)] for Mg (where Zg has been suppressed in the
notation for simplicity) can be described as an equivalence class of the ¥-orbit

(Zg¢, Dy, 69¢) of some triple (Z, ®, &), where:

(1) Z ={Z_;};cz is an admissible filtration on L ®z 7 that is fully symplectic,
as in [KWL, Definition 5.2.7.1]. In particular, Z_; = (Z_; ®7z Q) N (L ®z Z),
the symplectic filtration Z ®7 Q on L ®z A*™ extends to a symplectic filtration
Zn on Z®z A, and each graded piece of Z or Z ®z Q) is integrable, as in [KWL,
Definition 1.2.1.23], that is, it is the base extension of some O-lattice.

2) d=(X,Y, ¢, 92, ¢o) is a torus argument, as in [KWL, Definition 5.4.1.3],
where ¢ : ¥ < X is an embedding of O-lattices with finite cokernel, and where
¥_p: GrZ_2 - Homy (X ®z Z 2(1)) and ¢ : Gr(z) = Y ®yz 7 are isomorphisms
matching the pairing (-, - )20 : Grz_2 X Grg — 2(1) induced by (-, -) with the
pairing (-, - )¢ : Homs(X ®7 Z, Z(1)) x (Y ®z Z) — Z(1) induced by ¢.

(3) 8 : Gr* = L is an O-equivariant splitting of the filtration Z.

(4) Two triples (Zg, Py, S%) and (Zi,, P, 8;,) are equivalent (as in [KWL, Defi-
nition 5.4.2.2]) if Zy = Z{, and there exists a pair of isomorphisms, yx : X’ = X
and yy : ¥ = Y’, matching ®y with ®7,.

Since % = #7 3, it makes sense to consider the p-part of (Zg, ®y, d3), which
is the J(,-orbit of some triple (Zz,, (9-2.2,,%0.2,), 8z,), where:

(D) Zz, = {ZZP,_,-},-ez is a symplectic admissible filtration on L ®z Z,, which
determines and is determined by a symplectic admissible filtration Zg, ={Zq, —i}icz
of L&z Qp by Zg, i =2z, -i®zQandZz, i =Zq, -iN(L®zZ),) foralli € Z.
(2) 922, :Gr 2 => Homy, (X ®7Z,, Z,(1)) and ¢y : Gry" <> ¥ ®; Z,, are
isomorphisms matching the pairing (-, - )20z, : GrZ_ZZ” X Gr(Z)Zp — Z,(1) induced by
(-, ) with the pairing (-, ).z, : Homz (X ®2 2, Z,(1)) X (Y @z Z ) — Z,(1)
induced by ¢.

3) (Szp (Gritr = L @77 p 18 a splitting of the filtration Zz,.
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By forgetting its p-part, each representative (Zg, ®y, d3%) for Mg, induces a
representative (Zyer, @ger, 89¢r) for Myger, and this assignment is compatible with
the formation of equivalence classes. Therefore, we have well-defined assignments

(Zge, Pye, d3¢) > (Zaer, Poer, S5¢r) (A4.1)
and
[(Zge, Py, 89¢) ] = [(Zger, Per, S5er) ] (A4.2)

By construction, these assignments are compatible with surjections on both their
sides (see [KWL, Definition 5.4.2.12]). We would like to show that they are both
bijective.

Lemma A.4.3. Let k be any field over Z ;). Consider the assignment to each flag W
of totally isotropic O ®z k-submodules of L ®z k (with respect to (-, -) Qz k) its
stabilizer subgroup Py in G ®z k. Then each such Py is a parabolic subgroup
of G ®z k and the assignment is bijective. Moreover, given any minimal parabolic
subgroup Pw, of G ®z k, which is the stabilizer of some maximal flag Wy of
totally isotropic O ®z k-submodules of L ®z k, every parabolic subgroup of G Q7 k
is conjugate under the action of G(k) to some parabolic subgroup of G @z k
containing Py, which is the stabilizer of some subflag of Wy.

Although the assertions in this lemma are well known, we provide a proof because
we cannot find a convenient reference in the literature in the generality we need.

Proof. Let k5P be a separable closure of k. Since the characteristic of k is either O
or p, the latter being a good prime by assumption, it follows from [KWL, Proposition
1.2.3.11] that each of the simple factors of the adjoint quotient of G ®z k*P is
isomorphic to one of the groups of standard type listed in the proof of [KWL,
Proposition 1.2.3.11]. Then we can make an explicit choice of a Borel subgroup B
of Gz kP stabilizing a flag of totally isotropic submodules, with a maximal torus T
of G®zk*P contained in B which is isomorphic to the group of automorphisms of the
graded pieces of this flag. By [Springer 1998, Theorem 6.2.7 and Theorem 8.4.3(iv)],
since all parabolic subgroups of G ®z k%P are conjugate to one containing B, the
parabolic subgroups of G ®z k°P are exactly the stabilizers of flags of totally
isotropic 0 ®z k*°P-submodules of L ®z k*P. Then the analogous assertion over k
follows, because the assignment of maximal parabolic subgroups of G ®z k5P is
compatible with the actions of Gal(k**?/k) on the set of flags of totally isotropic
submodules of L ®z k*P and on the set of parabolic subgroups of G ®z k*°P. The
last assertion of the lemma follows from [Springer 1998, Theorem 15.1.2(ii) and
Theorem 15.4.6(1)]. [l

Lemma A.4.4. The assignment

Zse —> Z;—}(fp (AA4.5)
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is bijective.

Proof. Let Zz, = {Zzp,—i}iez be a symplectic admissible filtration on L ®7 Z),
as above, which determines and is determined by a symplectic filtration Zg, =
{Zg,.—ilicz on L ®7 Q). By Lemma A.4.3, the action of G(Q,) on the set of
such filtrations Zg, is transitive, because the O-multirank (see [KWL, Definition
1.2.1.25]) of the bottom piece Zg,, > of any such Zg, is determined by the existence
of some isomorphism

027,:Gr 2 <> Homyz, (X ®72Z,, Z,(1)).

Let P denote the parabolic subgroup of G ®z Q) stabilizing any such Zg, (see
Lemma A.4.3). Since p is a good prime by assumption, the pairing (-, ) ®z Z,
is self-dual, and hence G(Z,) is a maximal open compact subgroup of G(Q,),
by [Bruhat and Tits 1972, Corollary 3.3.2]. Since G ®z Q, is connected under
Assumption A.2.1 (because the kernel of the similitude character of G ®z Q,,
factorizes over an algebraic closure of Q, as a product of connected groups, by
the proof of [KWL, Proposition 1.2.3.11]), we have the Iwasawa decomposition
G(Q,) = G(Z,)P(Q,), by [Bruhat and Tits 1972, Proposition 4.4.3] (see also
[Casselman 1980, (18) on p. 392] for a more explicit statement). Consequently,
#, = G(Z)p) acts transitively on the set of possible filtrations Zz, as above, and
hence the assignment (A.4.5) is injective.

As for the surjectivity of (A.4.5), it suffices to s}%ow that, for some symplectic ad-
missible filtration Zz,,, an isomorphism ¢ 7, : Gr_zz” = Homgz (X ®zZ,, Z,(1))
exists. By [Reiner 1975, Theorem 18.10] and [KWL, Corollary 1.1.2.6], it suffices
to show that there exists some symplectic filtration Zg, such that Zg, —» and
Homg, (X ®z Qp, Q,(1)) have the same O-multirank. Or, rather, we just need
to notice that the O-multirank of a totally isotropic 0 ®z Q,-submodule can be
any O-multirank below a maximal one (with respect to the natural partial order),
by Assumption A.2.1 and by the classification in [KWL, Proposition 1.2.3.7 and
Corollary 1.2.3.10]. O

Lemma A.4.6. The assignment (A.4.1) is bijective.

Proof. 1t is already explained in the proof of Lemma A.4.4 that an isomor-
phism ¢_> 7, : Gr_ZQ” => Homgz (X ®z Zp, Z,(1)) exists for any Zz, considered
there. Since p is a good prime, which forces both [L*: L] and [X : ¢(Y)] to
be prinzle to p, any choice of ¢_; 7, above uniquely determines an isomorphism
o : Groz” = Y ®z Z,. Also, by the explicit classification in [KWL, Proposition
1.2.3.7 and Corollary 1.2.3.10] as in the proof of Lemma A.4.4, there exists a
splitting 6z, : G’ = L @77 p» and the action of G(Z,) NP(Q,) acts transitively
on the set of possible triples (<p_2,zp, %02, (Szp). Hence the assignment (A.4.1) is
bijective, as desired. (]
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Lemma A.4.7. The assignment (A.4.2) is bijective.

Proof. By Lemma A 4.6, it suffices to show that (A.4.2) is injective. Suppose two
representatives (Zg, Py, 8y) and (Z},, P, 85,) with Py = (X, Y, ¢, 9_2 3, ¢0,%)
and &%, = (X", Y, ¢, (p/_z’%, (p{)’%) are such that the induced (Zge», ®yer, S3r) and
(Zhep, Dby, 85p) are equivalent to each other. By definition, Zy» = Zi,, so that
Zy = Zi, by Lemma A.4.4, and there exists a pair (yx : X' = X, yy: Y = Y)
matching ®g» with ®,,. Hence we may assume that (X, Y, ¢) = (X', Y, ¢'), take
any Z in Zg» = Zi,, and take any pairs

(2 : Grz_2 - Homy (X ®z Z, Z(l)), o : Grg = Y Q7 2)
and
(¢, : Gr*, => Homy(X ®z Z, Z(1)), ¢, : Gr§ => Y ®7 2)

inducing (¢_2 %, ¢o.3) and (¢_ 2.9¢ (p(’)’%), respectively, and inducing the same
(@—2.9r, ®0.9r) and (¢’ 2.9 <p67%,,). Then the injectivity of (A.4.2) follows from
that of (A.4.1). O

Lemma A.4.8. If (Zyr, Pyr, O3er) is assigned to (Zye, Py, S3¢) under (A.4.1), then
we have a canonical isomorphism
e, = o, (A4.9)
(see [KWL, Definition 6.2.4.1]). Moreover, we have a canonical isomorphism
S, = Sty (A.4.10)
which induces a canonical isomorphism
(S, )k = (So,)p (A4.11)

matching Pe, with Py, and PC;% with ngl,, both isomorphisms being equivariant

with the actions of the two sides of (A.4.9) above.

Proof. Since p is a good prime, with ¥, = G(Z,), the levels at p are not needed
in the constructions of I'g,, and S¢,, in [KWL, Sections 6.2.3-6.2.4], and hence
we have the desired isomorphisms (A.4.9) and (A.4.10). The induced morphism
(A.4.11) matches Pg,, with Pg,, and Py with P;%p because both sides of (A.4.11)
can be canonically identified with the space of Hermitian forms over Y ®z R, as
explained in the beginning of [KWL, Section 6.2.5], regardless of the levels ¥
and 77, [l

Therefore, we also have assignments
(g, 836, 0) = (Pyer, S5¢r, o) (A4.12)

and
[(Dse, 856, 0)] = [(Dger, S5er, 07)] (A.4.13)
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(see [KWL, Definition 6.2.6.2]), which are compatible with (A.4.1) and (A.4.2).
Here we have suppressed Zg and Zg» from the notation; also, o C (S%C)ﬁ and
o” C (So,, )y is the image of o under the isomorphism (A.4.11).

Lemma A.4.14. The assignment (A.4.12) is bijective.

Proof. This follows from Lemma A.4.6 and the definition of (A.4.12), based on
Lemma A.4.8. ([l

Lemma A.4.15. The assignment (A.4.13) is bijective.

Proof. By [KWL, Definition 6.2.6.2], given any representative (P, 83) of a cusp
label, the collection of the cones o C (So,)y defining the same equivalence class
[(Dye, b9, 0)] form a "¢, -orbit. Similarly, the collection of the cones o” C (So,,, )ﬁ
defining the same equivalence class [(Pyr, d3r, o?)] form a I',,, -orbit. Hence,
given (A.4.9), the lemma follows from Lemma A .4.7. O

Definition A.4.16. X is induced by X7 if, for each cusp label [(Zg¢, s, dg¢)] of My
represented by some (Zge, g, dy), with assigned (Zger, Py, dger) as in (A.4.1),
the cone decomposition ¥4, of Py, is the pullback of the cone decomposition
X, of Pg,, under (A.4.11).

By forgetting the p-parts of level structures, we obtain a canonical isomorphism
Mg => Myer @7 Q (A4.17)

over So.g (as in [KWL, 1.4.4.1]), by [KWL, Proposition 1.4.4.3 and Remark 1.4.4.4]
and by Assumption A.2.1. Given any X? for Mgy, with induced X for My as in
Definition A.4.16, by comparing the universal properties of MmrE and M%,, sp as
in [KWL, Theorem 6.4.1.1(5)—(6)], the isomorphism (A.4.17) above extends to a
canonical isomorphism

MLy 2> MY, ©7 @ (A.4.18)

over So ., Mapping Z(dy.sy,0)] isomorphically to Zy,, s,».07)] ®z @ when
[(DPyer, 5¢r, 0P)] is assigned to [(Py, S, o)] under (A.4.13), such that the pullback
of the tautological semiabelian scheme over M;‘éf,’z,, ®zQ is canonically isomorphic
to the pullback of the tautological semiabelian scheme over Mg‘éfz. Consequently,
by [KWL, Theorem 7.2.4.1(3)—(4)] and the fact that the pullback of the Hodge
invertible sheaf over Mggf, s» ®7 Q is canonically isomorphic to the pullback of the
Hodge invertible sheaf over M“’rE (because their definitions only use the tautological
semiabelian schemes), the canonical isomorphism (A.4.18) induces a canonical
isomorphism

Mmln M%,, ®zQ (A.4.19)

over Sp g, extending (A.4.17), compatible with (A.4.18) (under the canonical
morphisms ¢, : My — M@In and b ®2Q 1 M}, 5, ®7 Q — MIIN @, Q),
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and mapping Z{(¢.,s,)] isomorphically to Z{(.,,,s,,)] ®z Q when [(Dyp, 5r)] is
assigned to [(Pge, §%)] under (A.4.2) (where we have suppressed Zg and Zg» from
the notation).

A.5. Complex analytic construction. By Proposition A.3.1, in order to prove
Theorem A.2.2 we may and we shall assume that char(k(s)) = 0. Thanks to
the isomorphisms (A.4.17) and (A.4.19), we shall identify U with a connected
component of My ® , k(s), U min with the connected component of M%m ®F, k(s)
that is the closure of U, and U (e, 5,5)] With Uj(ay,s5)1, the pullback of the stratum
Z{(®y.8,)) Of MI™ under the canonical morphism U™ — MM, when [(Pger, S5r)]
is assigned to [(Dy, d3)] under (A.4.2).

Now, in characteristic zero we no longer need 7€ to be of the form 3 =" ¥, as in
Section A.4. We shall allow # to be any neat open compact subgroup of G(Z). Then
Mg, and Mgmgin are still defined over My g = Spec(Fy), with the stratification on the
latter by locally closed subschemes Zj(.,,s,)] labeled by cusp labels [(Py, d3)] for
Mg (see the same references as in Section A.2). For any geometric point s — So g
with residue field k(s) and for any connected component U of the fiber Mg X, s,
we define U™ to be the closure of U in M x5 s and Uy, s, to be the pullback
of Z[(@y.54) to of U™" for each cusp label [(Py, d%)]. (These are consistent with
what we have done before, when the settings overlap.)

Then we have the following analogue of Theorem A.2.2:

Theorem A.5.1. With the setting as above, every stratum Uy(a.,,s,)] IS nonempty.

Since MJM is projective over So g, we may and we shall assume that k(s) = C.
We shall denote base changes to C with a subscript, such as My ¢ = My ®F, C.

Let X denote the G(R)-orbit of /¢, which is a finite disjoint union of Hermitian
symmetric domains, and let X, denote the connected component of X containing /.
Let G(Q) denote the finite index subgroup of G(Q) stabilizing Xg. Let Shge :=
G(\X x G(A*)/¥. By [Lan 2012, Lemma 2.5.1], we have a canonical bijection
G(@Q)o\Xo X GA®)/FH — G(Q)\X x G(A>®) /7. Let {g;}ic; be any finite set of
elements of G(A*) such that G(A®) = | |,.; G(@)oh; ¥, which exists because of
[Borel 1963, Theorem 5.1] and because G(Q)y is of finite index in G(Q). Then we
have

Shye = G(@)o\Xo x G(A®) /% = | | TEN\X,, (A.5.2)
iel

where I'®) := (g;%g; ') N G(Q), for each i € I. By applying [Baily and Borel
1966, Theorem 10.11] to each "8\ Xy, we obtain the minimal compactification
Sh;}i“ of Shge, which is the complex analytification of a normal projective variety
Sh;}fglg over C. Th}ls, Shye is the analytification of a quasiprojective variety Shye a1
(embedded in Sh;“efglg).
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By [Lan 2012, Lemma 3.1.1], the rational boundary components Xy of Xg (see
[Baily and Borel 1966, Section 3.5]) correspond to parabolic subgroups of G ®7 Q
stabilizing symplectic filtrations Von LQzQ withV_3=0CV_, CV_; = sz CVp=
L ®7z Q. Consider the rational boundary components of X x G(A®°) as in [Lan 2012,
Definition 3.1.2], which are G(Q)-orbits of pairs (V, g), where the V are as above and
g € G(A®). Consider the boundary components G(Q)\ (G(Q)Xy) x G(A®) /¥ =
G(@)o\ (G(Q)oXy) x G(A*®) /F of Shye = G(Q)\Xo X G(A*)/¥. By the construc-
tion in [Baily and Borel 1966], each such component defines a nonempty, locally
closed subset and meets all connected components of ShT", corresponding to a
nonempty, locally closed subscheme of Sh%glg, called its G(Q)(V, g)¥-stratum.
Thus, we obtain the following:

Proposition A.5.3 (Satake, Baily—Borel). Each G(Q)(V, g)¥-stratum as above

min
meets every connected component of Shy' alg’

For each g € G(A®), let L(®) denote the O-lattice in L ®7 Q such that L&) ®ZZ =
g(L ®z Z) in L®zA®. Letr e @io be the unique element such that v(g) = ru
for some u € Z, and let (-, -)® : L® x L& — 7(1) denote the pairing induced
by r(-,-) ®z Q (see [Lan 2012, Section 2.4], the key point being that (-, - )@ is
valued in Z(1)).

Construction A.5.4. As explained in [Lan 2012, Section 3.1], we have an assign-
ment of a fully symplectic admissible filtration Z®) on Z®z Z and a torus argument
@ = (Xx® y© ¢©, go(gz), (p(()g)) to G(Q)(V, g), by setting:

(1) F® .= (F& .= v ;N L®);s.
@) 2@ = (25 = 7' F) @2 D))iez = (7' (V=i @ A®) N (L 82 D}z
(3) X® := Homz(F), Z(1)) = Homz(Gi™5 , Z(1)).
@) Y® =Gt =F® /F%).
(5) ¢©® :Y® < X(® equivalent to the nondegenerate pairing
(-, )Gy x GrE” - 7(1)

induced by (-,-)® : L& x L® — 7(1).

©) ¢ : Gr%) = Hom;(X® ®; Z, Z(1)), the composition

()

25 = Gify @77 = Homy(X® @77, 2(1)).

(7) (p(g) Gr? 2~y ®z 7, the composition

Gro(g) A A
GiZY = GrfY @2 = Y® @, 2.
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By the assumption that our integral PEL datum satisfies [Lan 2013a, Condition
1.4.3.10] and by the fact that maximal orders over Dedekind domains are hereditary
(see [Reiner 1975, Theorem 21.4 and Corollary 21.5]), there exists a splitting
e® G = L®, whose base extension from Z to Z defines, by pre- and post-
compositions with Gr(g) and g™, a splitting §© : Gr* = L ®7 7. These define
an assignment

G(@)(V, g) > [(2¥, ©®, 5], (A5.5)

which is compatible with the formation of ¥-orbits and induces an assignment
G@)(V, 9% > [(Z, D3¢, 5], (A5.6)

Definition A.5.7. For each cusp label [(Zge, Py, d5)], the [(Dge, d5)]-stratum of
Sh;’églg is the union of all the G(Q)(V, g)# -strata such that [(Zg, P, d%)] is as-
signed to G(Q)(V, g)3€ under (A.5.6).

Proposition A.5.8. Given the #-orbit Zy of any Z=1{Z_;};cz as above, there exists
some totally isotropic 0 ®7 Q-submodule V_» of L @7 Q such that V_, Qg A lies
in the #-orbit of Z_» @7 Q.

Proof. Up to replacing # with an open compact subgroup, which is harmless for
proving this proposition, we may and we shall assume that % = #5%g, where S is
a finite set of primes containing all bad ones for the integral PEL datum (see [KWL,
Definition 1.4.1.1]), such that 35 = G(Z5) = [],5 G(Z,) and #s C G(Zs) =
I1 1es G(Zy), where £ ¢ § means that ¢ runs through all prime numbers not in S.

By Assumption A.2.1, by reduction to the case where 0 ®7 Q is a product of
division algebras, by Morita equivalence (see [KWL, Proposition 1.2.1.14]) and,
by the local-global principle for isotropy in [Scharlau 1985, table on p. 347 and its
references], it follows that, if Z_, ®z Q is nonzero and extends to some isotropic
0 ®z A-submodule of L ®z A isomorphic to the base extension of some O-lattice,
then there exists some nonzero isotropic element in L ®7 (2. By induction on
the O-multirank of Z_, ®7 Q@ —by replacing L ®7 Q (resp. L ®z A*) with the
orthogonal complement modulo the span of a nonzero isotropic element in L ®z ()
(resp. L ®7z A®) — there exists some totally isotropic O ®z Q-submodule V(lz of
L ®7 Q such that V(l2 ®o A% and Z_, ®7 Q have the same O-multirank.

Let G’ denote the derived subgroup of G ®7 Q (see [SGA 3; 1970, Définition
7.2(vii), p. 364 and Corollaire 7.10, p. 373]). Then the pullback to G’ induces a
bijection between the parabolic subgroups of G ®z Q and those of G’ (see [SGA 31
1970, Propositions 6.2.4 and 6.2.8, pp. 264-266; Springer 1998, Theorem 15.1.2(ii)
and Theorem 15.4.6(i)]), and they both are in bijection with the stabilizers of flags
of totally isotropic 0 ®7 Q-submodules, as in Lemma A.4.3. Therefore, there
exists some element & = (hy) € G'(A*), where the index £ runs through all prime
numbers, such that V‘lz RoA® =h(Z_» ®7 Q).
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Since G’ is simply connected, by Assumption A.2.1 (because the kernel of the
similitude character of G ®z Q factorizes over an algebraic closure of QQ as a
product of groups with simply connected derived groups, by the proof of [KWL,
Proposition 1.2.3.11]), by weak approximation (see [Platonov and Rapinchuk 1994,
Theorem 7.8]) there exists y € G'(Q) such that y(h¢)ees € #Hs. On the other
hand, by using the Iwasawa decomposition at the places ¢ € S as in the proof of
Lemma A.4.4, up to replacing h, with a right-multiple of &, by an element of
G'(Qy) stabilizing Z_, ®5 Q¢, we may assume that y hy € G(Z,) for all £ ¢ S. Thus,
we can conclude by taking V_; := y(V(iz). O

Proposition A.5.9. For each cusp label [(Zy, Oy, d%)], there exists some ratio-
nal boundary component G(Q)(V, g) of X x G(A™) such that [(Zy, Py, S3)] is
assigned to G(Q)(V, g)¥ under (A.5.6).

Proof. Let (Z,® = (X, Y, ¢, ¢p_2,¢p),5) be any triple whose #-orbit induces
[(Zge, Dy, 5%¢)] and let V_, be as in Proposition A.5.8. Up to replacing (Z, ®, §)
with another such triple, we may and we shall assume that

Z=(V_®gA®)N(L®;2)=17"), (A.5.10)

where FO = (F)};cz, 20 = (2())icz and @D = (XD, ¥, 9D o1 oD are
assigned to (V, 1) as in Construction A.5.4, together with some noncanonical choices
of e and §(V.

Let P denote the parabolic subgroup of G®7Q stabilizing V_; (see Lemma A.4.3).
By (A.5.10), the elements of P(A) also stabilize Z_, ®z Q. Therefore, for
each g € P(A™), the filtration Z‘®) defined as in Construction A.5.4 coincides
with Z.

Using (A.5.10) and the compatibility among the objects, both ¢®12 and ¢V Q27

can be identified (under (¢_3, ¢o) and ((p(_lz), go(()l))) with the canonical morphism

()3 : Gr§ — Homy (Gr%,, Z(1)) (AS.11)
induced by the pairing (-, - ), which induce compatible isomorphisms

@0 op XV, 7 2> X®,7 (A.5.12)
and

oV op  Y®27 = YV @, 7. (A5.13)

By [KWL, Condition 1.4.3.10], there exists some maximal order 0’ in 0 ®7 Q,
containing O, such that the O-action on L extends to an 0’-action; hence the O-actions
on Y and YV also extend to 0’-actions. Using the local isomorphisms given
by (A.5.13), by [Reiner 1975, Theorem 18.10] (which is applicable because we
are now considering modules of the maximal order 0’) and [KWL, Corollary
1.1.2.6] there exists an element gy € GLog,ax (Gr(z) ®zQ) and an O-equivariant
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embedding hg: YD < Y ®7 @ such that (ho(Y (")) ®7 7 = (9o ®7 Q) (g0(Gr2))
inY @7 A%, Let g_»: go € GLgg,ax (Gr* , ®7Q), where the transposition
is induced by (A.5.11). Then there is a corresponding O-equivariant embedding
h_y:Homz (XM, Z(1)) & Homz (X, Z(1)) ®z Q such that

(h—2(Homz(X™, Z(1)))) ®2 Z = (p—» ®7 @) (g-2(Gr?,))

in Homz (X, Z(1)) @7z A*.

Take g € P(A™) such that Gr_,(g) = g_», Gro(g) = go, and v(g) = 1, which
exists thanks to the splitting . Then X‘® and Y® are realized as the preimages
of X and Y under 'h_, ®7 Q and hy ! ®z Q, respectively, and the induced pair
(yx : X® = X, yy 1 ¥ =5 Y®) matches ®© with ®. Such a (V, g) is what we
want. [l

As explained in [Lan 2012, Section 2.5], there is a canonical open and closed
immersion
Sh%,a]g —> M%’qj. (A514)

As explained in [Kottwitz 1992, §8, p. 399] (see also [KWL, Remark 1.4.3.12]),
Mg c is the disjoint union of the images of morphisms like (A.5.14), from certain
Sh%)alg defined by some (0, *, LD, (-, YD he) such that (LD, (-, VD)@, 2=
(L, (-, )®zZand (LY, (-, )@z R= (L, (-, -)) ® R, but not necessarily
satisfying (LY, (-, YY) ®7 Q= (L, (-,-)) ®7z Q, for all j in some index set J
(whose precise description is not important for our purpose). (Each (L), (-, -)())
is determined by its rational version (L"), (-, -){)) ®z Q by taking the intersection
of the latter with (LY, (-, YO)Y®zZ=(L, (-, -N®zZin (LW, (-, - )))@,A®
(L, {-,-))®zA>. Due to the failure of Hasse’s principle, J might have more than
one element.)
By [Lan 2012, Theorem 5.1.1], (A.5.14) extends to a canonical open and closed
immersion
Shiphg <> ML (A.5.15)

respecting the stratifications on both sides labeled by cusp labels (see Definition
A.5.7). Again, Mg}}c is the disjoint union of the images of morphisms like (A.5.15),
from the minimal compactifications Sh;é)alnglm of Sh(f o forall jelJ.

Everything we have proved remains true after replacing the objects defined by
(L, (-, -)) with those defined by (LD, (-, )Y for each j € J. Thus, in order
to show that Uj(a,,s,)] 1S nonempty, it suffices to note that, by Propositions A.5.3
and A.5.9, the [(Dy, dy)]-stratum of Sh;é) lm M meets every connected component
of Sh;é) 2 ™ forall j € J. The proof of Theorem A.5.1 is now complete.

By Proposition A.3.1, and by the explanations in Section A.4 and in the beginning
of this section, the proof of Theorem A.2.2 is also complete.
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A.6. Extension to cases of ramified characteristics. In this section, we shall no
longer assume that p is a good prime for the integral PEL datum (O, x, L, (-, - ), ho),
but we shall assume that the image #? of ¥ under the canonical homomorphism
G(z) — G(zl’) 18 neat.

Even for such general ¥ and p, for any collections of lattices stabilized by #
as in [Lan 2014, Section 2] we still have an integral model I\7Igg of My that is flat
over Sy, constructed by “taking normalization” (see [Lan 2014, Proposition 6.1 and
also the introduction]). Moreover, we have an integral model I\7If%i“ of Mg}i“ that is
projective and flat over S (see [Lan 2014, Proposition 6.4]), with a stratification
by locally closed subschemes 2[(%&5%)] labeled by cusp labels [(Py, d3)] for My,
which extends the stratification of Mg by the locally closed subschemes Z(a.,.5)]
(see [Lan 2014, Theorem 12.1]). For certain (possibly nonsmooth) compatible
collections X (not the same ones for which we can construct Mg‘érz over Mo @),
we also have the toroidal compactifications Mtor2 of My that are projective and
flat over Sy (see [Lan 2014, Section 7]), with a stratification by locally closed
subschemes Z[(¢7( 55.0)] (see [Lan 2014, Theorem 9.13]) and a canonical surjection
f g - Mg@rz — M%‘“ with geometrically connected fibers (see [Lan 2014, Lemma
12.9 and its proof]), inducing surjections Z[(qm,gn,g)] — Z [(Dy.85)] (see [Lan 2014,
Theorem 12.16]).

As in Section A.2, consider a geometric point s — Sog = Spec(Of,, (»)) with
algebraically closed residue field k(s) and consider a connected component U™™ of
the fiber M%“ Xs, S. For each cusp label [(Dy, 55)] for My, we define Up(ay,s,)]
to be the pullback of Z[(q;,( 5,0] to U™ . Since the fibers of f 4 are geometrically
connected, the preimage of U™ under 56 4 Xs, § is a connected component U'*"
of M;}rz Xs, 5. (In general, neither Mmln Xs, § nor MgérE Xs, § 18 normal) For
each equivalence class [(Dy, 53¢, 0)] deﬁnlng a stratum Z[(@y,sy4.0)] Of Mg‘zrz, we
define Uj(ay,s4,0)] to be the pullback of Z[(¢J(’5K,Q)J Then we also have a canonical
surjection Ujas.s.0)) = Ul@s.501 induced by f.

Theorem A.6.1. With the setting as above, all strata of U™™ are nonempty.

By using the canonical surjection Uj(ay,s4,0)] = Ul(@y,8%)] (@s in the proof of
Corollary A.2.3), Theorem A.6.1 implies the following:

Corollary A.6.2. With the setting as above, all strata of U are nonempty.
As in Section A.3, it suffices to prove the following:

Proposition A.6.3. Suppose Theorem A.6.1 is true when char(k(s)) = 0. Then it is
also true when char(k(s)) = p > 0.

Remark A.6.4. Since |\7|% ®z Q@ = My and I\7I§éin R7Q= Mgéi“ by construction, by
Theorem A.5.1 the assumption in Proposition A.6.3 always holds. Nevertheless, the
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proof of Proposition A.6.3 will clarify that the deduction of Theorem A.6.1 from
Theorem A.5.1 does not require Assumption A.2.1 (cf. Remark A.3.2).

The remainder of this section will be devoted to the proof of Proposition A.6.3.
We shall assume that char(k(s)) = p > 0.

While each Zj(@,.s,)) i3 isomorphic to some boundary moduli problem M 2
each stratum Z[(q;ﬂ sy0)] Oof Mmln is similarly isomorphic to some integral model
Mz% defined by taking normahzatlon (see [Lan 2014, Proposition 7.4 and Theorems
12 1 and 12. 16]) Hence it also makes sense to consider the minimal compactification
Zﬁ‘&‘;% 5,0] OF Z[(q,%,a%) which is proper flat (with possibly nonnormal geometric
fibers) over Sg, and we obtain the following:

Lemma A.6.5 (cf. Lemma A.3.4 and [Deligne and Mumford 1969, Theorem
4.17(i1)]). There exists some discrete valuation ring R that is flat over O, (p), with
fraction field K and residue field k(s), the latter lifting the structural homomorphism
OF,,(py = k(s), such that, for each cusp label [(®y, §3%)] and each connected
component V on[(éD 50)] ®0ky.» R, the induced flat morphism V — Spec(R) has
connected special ﬁber over Spec(k(s)).

Proof of Proposition A.6.3. By [Lan 2014, Corollary 12.4], it suffices to show that
Ul (04,541 = D when [(Py, d5)] is maximal with respect to the surjection relations,
as in [KWL, Definition 5.4.2. 13] In this case, by [Lan 2014 Theorem 12.1],
Z[(cp% 5] 18 a closed stratum of M""n and so Z[(qma%)] Z[(dm 5,]- Hence the
lemma follows from Theorem A.5.1 and the same argument as in the proof of
Proposition A.3.1, with the reference to Lemma A.3.4 replaced with an analogous
reference to Lemma A.6.5. (]

As explained in Remark A.6.4, the proof of Theorem A.6.1 is now complete.

A.7. Examples.

Example A.7.1. Suppose 0 ®7 Q is a CM field F with maximal totally subfield
FT, with positive involution given by the complex conjugation of F over F*.
Suppose L = @%’”b, where a > b > 0 are integers. Suppose (2w+/—1)71(-, ) is
the skew-Hermitian pairing defined in block matrix form

1y

—1,

where S is some (¢ — b) x (a — b) matrix over F such that v/—15 is Hermitian and
either positive or negative definite. Then, for each 0 < r < b, the O-submodule Z(r)
of L= ©®(a+b) with the last a + b — r entries zero is totally isotropic, and V(r)
F) »®zQ is a totally isotropic F-submodule of LQzQ = F ®@+bh) which is max1mal
When r = b. The stabilizer of V(r% either is the whole group (when r = 0) or defines a



Boundary strata of connected components 2051

maximal (proper) parabolic subgroup P of G®z Q (when r > 0), and all maximal
parabolic subgroups of G ®7 Q are conjugate to one of these standard ones, by
Lemma A.4.3. Similarly, Z(_r% = F(_r; Rz Zis a totally isotropic 0 ®z 7-submodule
of L ®7 Z, and the left G(Q)- and right %-double orbits of ), for 0 < r < b,
exhaust all the possible Zg appearing in cusp labels [(Zg, Py, d%¢)] for Mg, by
Proposition A.5.8. By Lemma A.4.7, by forgetting their p-parts, their left G(Q)- and
right #”-double orbits also exhaust all the possible Zy» appearing in cusp labels
[(Zger, Per, 89¢r)] for Myer. Let us say that a cusp label [(Zg, Py, 5% )] for My
is of rank r if Zy is in the double orbit of Z(_r%, and that a cusp [(Zgr, Pyr, d3r)]
for My is of rank r if it is assigned to one of rank r under (A.4.1). (This is
consistent with [KWL, Definitions 5.4.1.12 and 5.4.2.7].) On the other hand, as
a byproduct of the proof of Proposition A.5.9, any Zy in the double orbit of Z(_r%
does extend to some cusp label [(Zg, Py, d%)] for Mg, inducing some cusp label
[(Zger, Dger, S5¢r)] for Mger under (A.4.1). Then Theorem A.2.2 shows that, in the
boundary stratification of every connected component of every geometric fiber of
M%,n — So = Spec(0F,,(p)), there exist nonempty strata labeled by cusp labels
for Mg of all possible ranks 0 < r < b. (The theorem shows the more refined
nonemptiness for strata labeled by cusp labels, not just by ranks.)

The next example shows that we cannot expect Theorem A.2.2 to be true without
the requirement (in Assumption A.2.1) that 0 ®7 Q involves no factor of type D.

Example A.7.2. Suppose 0 ®z Q is a central division algebra D over a totally
real field F, as in [KWL, Proposition 1.2.1.13] such that D ® r ; R = H, the real
Hamiltonian quaternion algebra, for every embedding t : F — R, with x = ¢ given
by x = x®:=Trp,r(x) — x. Suppose that D is nonsplit at strictly more than two
places. Suppose L is chosen such that L ®7 @ = D®?. By the Gram—Schmidt
process, as in [KWL, Section 1.2.4] and by [KWL, Corollary 1.1.2.6], there is up
to isomorphism only one isotropic skew-Hermitian pairing over L ®z Q. But we
do know the failure of Hasse’s principle (see [Kottwitz 1992, §7, p. 393]) in this
case (see [Scharlau 1985, Remark 10.4.6]), which means there exists a choice of
(L, (-, -)) as above that is globally anisotropic but locally isotropic everywhere.
Thus, even when k(s) = C, there exists some connected component U of Shy ag
and some nonzero cusp label [($y, §3)] for My such that Uja,,5,)] = 9.
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