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The Tannakian formalism
and the Langlands conjectures

David Kazhdan, Michael Larsen and Yakov Varshavsky

Let H be a connected reductive group over an algebraically closed field of
characteristic zero, and let 0 be an abstract group. In this note, we show that every
homomorphism of Grothendieck semirings φ : K+0 [H ] → K+0 [0], which maps
irreducible representations to irreducible, comes from a group homomorphism
ρ : 0→ H(K ). We also connect this result with the Langlands conjectures.

Introduction

Let F be a global function field, 0F the absolute Galois group of F , G a split
connected reductive group over F , ` a prime number different from the characteristic
of F , and Ĝ = L G0 the connected Langlands dual group over Q`.

Recall that a weak Langlands conjecture asserts that for every pair (π, ω), where
π is an automorphic representation of G, whose central character is of finite order,
andω is a representation of Ĝ, there exists a unique semisimple `-adic representation
ρπ,ω of 0F , whose L S-function is equal to the L S-function of (π, ω).

Moreover, a strong Langlands conjecture asserts that there exists a Ĝ-valued
`-adic representation ρπ : 0F → Ĝ(Q`) (not unique in general) such that the
composition ω ◦ ρπ is isomorphic to ρπ,ω for each representation ω.

The main result of this note implies that in some cases the strong Langlands
conjecture follows from the weak one. More specifically, we show the existence
of ρπ in the case when ρπ,ω is irreducible for each irreducible representation ω.
In this case, ρπ is unique up to conjugation, and the Zariski closure of its image
contains the derived group of G.

Our result is a corollary of the following variant of the Tannakian formalism.
Let H be a connected reductive group over an algebraically closed field K of
characteristic zero, and let 0 be an abstract group. Then every homomorphism
of groups ρ : 0→ H(K ) induces a homomorphism of Grothendieck semirings
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ρ∗ : K+0 [H ] → K+0 [0]. In this note, we show a partial converse of this asser-
tion. Namely, we show that every homomorphism of Grothendieck semirings
φ : K+0 [H ] → K+0 [0], which maps irreducible representations to irreducibles,
comes from a group homomorphism ρ : 0→ H(K ). In particular, we show that a
connected reductive group is determined by its Grothendieck semiring.

This note was inspired by a combination of a work in progress [Kazhdan and
Varshavsky ≥ 2014], where it is shown that the weak Langlands conjecture holds in
some cases, and a work [Larsen and Pink 1990], which indicates that one does not
need the full Tannakian structure in order to reconstruct a connected reductive group.

1. Main results

Let K be an algebraically closed field of characteristic zero.

1.1. (a) For every algebraic group G over K , we denote by K+0 [G] the Grothendieck
semiring of the category of rational representations of G.

In other words, K+0 [G] is the set of equivalence classes of finite dimensional
semisimple representations of G. For every representation ω of G, we denote by [ω]
its class (or more precisely, the class of its semisimplification) in K+0 [G]. For every
pair of semisimple representations ω1 and ω2 of G, we have [ω1]+[ω2]= [ω1⊕ω2]

and [ω1] · [ω2] = [ω1⊗ω2].

(b) Note that a representation ω of G is irreducible if and only if its class [ω] ∈
K+0 [G] is irreducible, that is, it cannot be realized as a nontrivial sum [ω1] + [ω2]

of elements of K+0 [G].

(c) Every homomorphism ρ : G→ H of algebraic groups over K gives rise to the
homomorphism ρ∗ : K+0 [H ] → K+0 [G] of semirings, where ρ∗([ω]) := [ω ◦ ρ].

The following result asserts that each connected reductive group is determined
by its Grothendieck semiring:

Theorem 1.2. Let G and H be two connected reductive groups over K , and let
φ : K+0 [G] −→

∼ K+0 [H ] be an isomorphism of semirings.
Then there exists an isomorphism ρ : H −→∼ G such that ρ∗ = φ. Moreover, ρ is

unique up to conjugation.

Remark 1.3. Note, by comparison, that, if G is connected, semisimple, and simply
connected, then the Grothendieck ring K0[G] is isomorphic to Z[x1, . . . , xr ], where
r is the rank of G. Thus, for such groups, K0[G] encodes only the rank.

1.4. Now let 0 be an abstract group, and let K+0 [0] be the Grothendieck semiring
of the category of finite-dimensional representations of 0 over K . Every group
homomorphism ρ : 0→ G(K ) gives rise to the homomorphism ρ∗ : K+0 [G] →
K+0 [0] of Grothendieck semirings.
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We have the following version of the Tannakian formalism:

Theorem 1.5. Let φ : K+0 [G] → K+0 [0] be a homomorphism of semirings that
maps irreducible elements to irreducibles.

Then there exists a homomorphism ρ : 0→ G(K ) such that ρ∗ = φ. Moreover,
the Zariski closure of the image of each such ρ contains Gder, and ρ is unique up to
conjugation.

Remarks 1.6. (a) Conversely, let ρ : 0→G(K ) be a homomorphism such that the
Zariski closure of ρ(0) contains Gder. Then the homomorphism ρ∗ : K+0 [G] →
K+0 [0] maps irreducible elements to irreducibles.

(b) The result fails completely if one does not assume that φ maps irreducible
elements to irreducible.

Indeed, let G be SL2, and let 0 be the group with one element. In this case, for
each integer k ≥ 2, there exists a (unique) homomorphism of semirings

φk : K+0 [SL2] → K+0 [0] = Z≥0,

which maps the standard representation of SL2 to k ∈ Z≥0. Only φ2 corresponds to
a (unique) homomorphism 0→ SL2(K ).

1.7 (Chevalley space). (a) Let cG := Spec K [G]G be the Chevalley space of G,
where the action of G on K [G] is induced by the adjoint action of G on itself. For
every representation ω of G, its trace Trω ∈ K [G]G ⊂ K [G] is a regular function
on cG .

(b) Let χG : G → cG be the canonical projection, induced by the embedding
K [cG] = K [G]G ↪→ K [G]. Then for each g ∈ G and each representation ω of G,
we have an equality Trω(χG(g))= Trω(g).

The following result is a more explicit formulation of Theorem 1.5:

Corollary 1.8. Let f : 0→ cG(K ) be a map of sets.
Suppose that, for every irreducible algebraic representation ω of G, there exists

an irreducible finite-dimensional representation ρω of 0 over K such that

Trρω(γ )= Trω( f (γ )) for all γ ∈ 0. (1-1)

Then there exists a homomorphism ρ : 0→ G(K ) such that

χG(ρ(γ ))= f (γ ) for all γ ∈ 0. (1-2)

The Zariski closure of ρ(0) contains Gder, and ρ is unique up to conjugation.

Remark 1.9. Conversely, assume that there exists a homomorphism ρ :0→G(K )
satisfying (1-2) and such that the Zariski closure of ρ(0) contains Gder. Then for
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every irreducible representation ω : G→ GLn the representation

ρω := ω ◦ ρ : 0→ GLn(K )

is irreducible and satisfies (1-1) (use 1.7(b)).

1.10 (Application to the Langlands conjectures). Let F be a global field, F sep a
separable closure, 0F = Gal(F sep/F) the absolute Galois group, and ` a prime
number different from the characteristic of F . Let Ĝ be a connected reductive
group over Q`.

By `-adic and Ĝ-valued `-adic representations of 0F , we mean continuous
homomorphisms ρ : 0F → GLn(Q`) and ρ : 0F → Ĝ(Q`), respectively, which are
unramified for almost all places of F .

There are well-defined traces Trρ(Frobv) and Trω◦ρ(Frobv) for almost all places v
of F and all representations ω of Ĝ, respectively.

The following analogue of Corollary 1.8 has applications to Langlands conjec-
tures:

Corollary 1.11. Let Ĝ be a reductive group over Q`, 6 a cofinite subset of the set
of places of F , and f :6→ cĜ(Q`) any map of sets.

Assume that, for every irreducible algebraic representation ω of G, there exists
an irreducible `-adic representation ρω of 0F such that

Trρω(Frobv)= Trω( f (v)) for almost all v ∈6. (1-3)

Then there exists a Ĝ-valued `-adic representation ρ : 0K → Ĝ(Q`) such that

χĜ(ρ(Frobv))= f (v) for almost all v ∈6. (1-4)

The Zariski closure of ρ(0F ) contains Ĝder, and ρ is unique up to conjugation.

2. Determining a connected reductive group from its Grothendieck semiring

In this section, we are going to prove Theorem 1.2. Michael Mueger called our
attention to the fact that at least two proofs of this theorem already exist in the
literature: [McMullen 1984] and [Handelman 1993]. Nevertheless, we feel that this
new proof has merits (including brevity) that justify presenting it.

Let G be a connected reductive group. We will fix a Borel subgroup B ⊂ G
and a maximal torus T ⊂ B. Let α1, . . . , αr be the simple roots of G with respect
to (B, T ), and let W be the Weyl group of (G, T ).

2.1. (a) We set U := X∗(T )⊗R. For each subset X⊂U , we denote by Conv(X)⊂U
the convex hull of X .

(b) For each dominant weight ν of G, we denote by Vν the irreducible representation
of G with highest weight ν.
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(c) We define a partial order on X∗(T ) by the rule

µ≤ λ if and only if λ= µ+

r∑
i=1

xiαi and xi ≥ 0 for all i .

Proposition 2.2. Let µ and λ be two dominant weights of G. The following condi-
tions are equivalent:

(a) µ≤ λ.

(b) Conv(Wµ)⊂ Conv(Wλ).

(c) There exists a finite-dimensional representation V ′ of G such that, for every n,
every irreducible factor of V⊗n

µ is a factor of V⊗n
λ ⊗ V ′.

Proof. (a) =⇒ (b). Notice that, since µ is dominant, we have wµ≤µ for all w ∈W .
Therefore, our assumption µ ≤ λ implies that wµ ≤ λ for all w ∈ W . Thus, our
assertion follows from the following lemma:

Lemma 2.3. Let µ and λ be two weights of G such that wµ ≤ λ for all w ∈ W .
Then Conv(Wµ)⊂ Conv(Wλ).

Proof. Suppose Conv(Wµ) is not contained in Conv(Wλ). Then there exists
w ∈ W such that wµ 6∈ Conv(Wλ). As Conv(Wλ) is W -stable, it follows that
µ 6∈ Conv(Wλ) and hence also wµ /∈ Conv(Wλ) for all w ∈W .

By the separation lemma, there exists θ ∈ U∗ such that θ(µ) > θ(wλ) for all
w ∈W . This is an open condition, so we may choose θ such that θ(αi ) 6= 0 for each
i = 1, . . . , r . Replacing θ by wθ and µ by wµ for some w ∈W , we may assume
in addition that θ(αi ) > 0 for each i = 1, . . . , r .

By our assumption, µ= λ−
∑r

i=1 xiαi with each xi ≥ 0. Therefore,

θ(µ)= θ(λ)−

r∑
i=1

xiθ(αi )≤ θ(λ),

contradicting our assumption θ(µ) > θ(λ). �

(b) =⇒ (c). We start with the following lemma:

Lemma 2.4. Let X be a finite subset of a finite-dimensional Euclidean space E.
Then there exists a compact subset Y of E such that

Conv(nX)⊂ Y + X + X + · · ·+ X︸ ︷︷ ︸
n

(2-1)

for all positive integers n.
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Proof. Let m := |X |, and let Y denote the ball of vectors of norm at most R :=
2m maxx∈X‖x‖. We claim that inclusion (2-1) holds for this Y .

Let X be the set {x1, . . . , xm}. Then every vector in Conv(nX) is of the form

v := a1nx1+ · · ·+ amnxm,

where the ai are nonnegative and sum to 1. Let bi := bnaic for i ≥ 2 and b1 =

n− (b2+ · · ·+ bm). As |bi − ai n|< 1 for i > 1, we have

|b1− a1n| = |n− (b2+ · · ·+ bm)+ (a2n+ · · ·+ amn− n)|< m− 1.

Thus,

‖(b1x1+ · · ·+ bm xm)− v‖ ≤

m∑
i=1

|bi − ai n|‖xi‖< R,

and of course, b1x1+ · · ·+ bm xm belongs to the n-fold iterated sum of X . �

Now we return to the proof of the proposition. We assume that Conv(Wµ) ⊂

Conv(Wλ), let X = Wλ, and fix a compact set Y satisfying (2-1). Denote by V ′

the direct sum of all representations Vν where ν ranges over the dominant weights
in W Y .

If n is a positive integer, the highest weight χ of any irreducible factor of V⊗n
µ is

a weight of V⊗n
µ . Therefore, χ ≤ nµ; hence, by the implication (a) =⇒ (b) shown

above, χ is an element of

Conv(W nµ)= n Conv(Wµ)⊂ n Conv(Wλ).

By (2-1), χ can be written as a sum of n elements of Wλ and an element of W Y ,
which is necessarily in the weight group. Thus, χ has the form

∑n
i=1wiλ+w

′ν

for some w1, . . . , wn, w
′
∈W and some highest weight ν of V ′.

Using the conjecture of Parthasarathy, Ranga Rao, and Varadarajan, proven in
[Kumar 1988], we conclude that Vχ is an irreducible factor of V⊗n

λ ⊗Vν and hence
also an irreducible factor of V⊗n

λ ⊗ V ′.

(c)=⇒ (a). Now suppose that there exists a finite-dimensional representation V ′ of G
such that, for every n, every irreducible factor of V⊗n

µ must be a factor of V⊗n
λ ⊗V ′

as well. Then every weight of V⊗n
µ must be a weight of V⊗n

λ ⊗V ′, and in particular,
this is true for the weight nµ. Thus, nµ = λn + νn for some weights λn of V⊗n

λ

and νn ∈ V ′.
Note that λn = nλ−

∑r
i=1 niαi for some ni ∈ Z≥0. Therefore, nµ is equal to

nλ−
∑r

i=1 niαi + νn; hence, for each n ∈ N, we have an equality

λ−µ=

r∑
i=1

ni

n
αi −

1
n
νn.
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Next we recall that the set of weights of V ′ is finite, so the expression (1/n)νn ∈U
tends to zero when n tends to infinity. Hence, the difference λ−µ equals

∑r
i=1 xiαi ,

where each xi = limn→∞ ni/n is nonnegative. This shows that µ≤ λ. �

Corollary 2.5. The root datum of G can be reconstructed from the semiring K+0 [G].

Proof. We divide our construction into steps as follows.

Step 1. First we claim that the partially ordered set of dominant weights of G can
be reconstructed from the semiring K+0 [G].

For this, we note that the map µ 7→ [Vµ] gives a bijection between the set of
dominant weights of G and the set of irreducible objects of K+0 [G].

Proposition 2.2 implies that for two dominant weights µ and λ of G we have
µ≤λ if and only if there exists θ ∈ K+0 [G] such that, for all n ∈N and all irreducible
elements [Vν] ∈ K+0 [G], we have

[Vµ]n − [Vν] ∈ K+0 [G] =⇒ [Vλ]
nθ − [Vν] ∈ K+0 [G].

Step 2. For every triple λ,µ, ν of dominant weights of G, we have λ= µ+ ν if
and only if λ is the largest dominant weight such that Vλ is an irreducible factor
of Vµ⊗ Vν . Therefore, Proposition 2.2 implies that the semigroup structure on the
set of dominant weights of G can be reconstructed from the semiring K+0 [G].

Step 3. The group of weights X∗(T ) of G is the group completion of the semigroup
of dominant weights. The group of coweights of G, X∗(T ), is given as the group
of homomorphisms

X∗(T )= Hom(X∗(T ),Z).

Note that there is a canonical isomorphism between Aut(X∗(T )) and Aut(X∗(T )).

Step 4. We claim that α ∈ X∗(T ) is a simple root if and only if it is a minimal
nonzero weight of T for which there exists a dominant weight λ ∈ X∗(T ) such that
V2λ−α is an irreducible factor of V⊗2

λ .
More precisely, we claim that, for every dominant weight λ, the maximal weights

µ 6= 2λ such that Vµ is an irreducible factor of V⊗2
λ are precisely weights of the

form 2λ−α, where α is a simple root satisfying 〈α̌, λ〉> 0.
To show this, we observe that every maximal weight µ 6= 2λ in V⊗2

λ is of the
form 2λ− α, where α is a simple root satisfying 〈α̌, λ〉 > 0. Now the assertion
follows from the fact that, for such an α, the weight 2λ− α has multiplicity one
in V2λ and multiplicity two in V⊗2

λ .
By Step 1, the set of simple roots can therefore be reconstructed from the semiring

K+0 [G].

Step 5. For each simple root α of G, the corresponding simple coroot α̌ ∈ X∗ can
be characterized by the following condition: for every dominant weight µ, the



250 David Kazhdan, Michael Larsen and Yakov Varshavsky

pairing 〈α̌, µ〉 is the unique element m ∈ Z≥0 such that 2µ−mα is dominant but
2µ− (m+ 1)α is not dominant. Indeed,

〈α̌, 2µ−mα〉 = 2〈α̌, µ〉−m〈α̌, α〉 = 2〈α̌, µ〉− 2m

is nonnegative if and only if m ≤ 〈α̌, µ〉 while, for every other simple root α′ 6= α
of G with a corresponding simple coroot α̌′, we have

〈α̌′, 2µ−mα〉 = 2〈α̌′, µ〉−m〈α̌′, α〉 ≥ 2〈α̌′, µ〉 ≥ 0

for all m≥ 0. Thus, the set of simple coroots can also be reconstructed from K+0 [G].

Step 6. After having reconstructed all simple coroots α̌, we reconstruct all simple
reflections sα ∈ Aut(X∗(T )), hence the Weyl group W ⊂ Aut(X∗(T )), as the
subgroup generated by simple reflections. Next we reconstruct the set of all roots
of G, as images of the simple roots under W , and likewise for the coroots of G.
This completes the reconstruction of the whole root datum of G. �

2.6. Proof of Theorem 1.2. An isomorphism of semirings φ : K+0 [G] −→
∼ K+0 [H ]

induces a bijection between irreducible objects and hence a bijection between
dominant weights of G and H , which we denote by φ̃.

The proof of Corollary 2.5 shows that φ̃ extends to an isomorphism between the
root data of G and H . It therefore comes from an isomorphism of algebraic groups
ρ : H −→∼ G.

We claim that ρ∗ : K+0 [G] −→
∼ K+0 [H ] is equal to φ. It is enough to show that,

for each dominant weight λ of G, we have φ([Vλ])= ρ∗([Vλ]). Both expressions,
however, are equal to [Vφ̃(λ)].

Conversely, if ρ : H → G is an isomorphism such that ρ∗ = φ, then for each
dominant weight λ of G we have ρ∗([Vλ])= φ([Vλ])= [Vφ̃(λ)], so ρ induces the
isomorphism φ̃ between the root data; hence, ρ is unique up to conjugation. �

3. The Tannakian formalism

In this section, we are going to prove Theorem 1.5. Throughout the section, we will
assume that the hypotheses of Theorem 1.5 hold. For each irreducible representation
ω of G, we choose an irreducible representation ρω of 0 such that [ρω] = φ([ω]).

Lemma 3.1. (a) Let ω′ and ω′′ be two irreducible representations of G, and let
ω′⊗ω′′ ∼=

⊕
ωi be a decomposition of their tensor product into irreducibles.

Then ρω′ ⊗ ρω′′ ∼=
⊕
ρωi .

(b) If ω is a trivial (one-dimensional) representation 1 of G, then ρω is a trivial
representation of 0.

(c) The representation ω is one-dimensional if and only if ρω is one-dimensional.

(d) For each irreducible representation ω of G, we have ρω∗ ∼= (ρω)∗.
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(e) Let ω′ and ω′′ be two irreducible representations of G such that ρω′ ∼= ρω′′ .
Then restrictions ω′|Gder and ω′′|Gder are isomorphic.

Proof. (a) By hypothesis, we have [ω′]·[ω′′]=
∑

i [ωi ]. Since φ is a homomorphism
of semirings, we conclude that

[ρω′ ⊗ ρω′′] = φ([ω
′
]) ·φ([ω′′])=

∑
i

φ([ωi ])=
[⊕

ρωi

]
.

Since ρω′ and ρω′′ are irreducible, their tensor product ρω′ ⊗ρω′′ is semisimple (see
[Chevalley 1955, p. 88]). Therefore, ρω′ ⊗ ρω′′ ∼=

⊕
ρωi .

(b) This follows from the observation that ω = 1 if and only if ω⊗ω ∼= ω.

(c) This follows from the observation that ω is one-dimensional if and only if ω⊗ω
is irreducible.

(d) Note that the representation ω⊗ω∗ has a trivial subrepresentation 1. Therefore,
by (a) and (b), the representation ρω∗ ⊗ ρω has a subrepresentation ρ1 ∼= 1. Since
ρω and ρω∗ are irreducible, this implies that ρω∗ ∼= (ρω)∗.

(e) If ρω′ ∼= ρω′′ , then the tensor product ρω′ ⊗ (ρω′′)∗ ∼= ρω′ ⊗ ρω′′∗ contains a
subrepresentation 1. Using (a) and (c), we conclude that the tensor product ω′⊗ω ′′ ∗

has a one-dimensional subrepresentation ξ . Since ω′ and ω′′ are irreducible, we
conclude thatω′∼=ω′′⊗ξ ; thus, the restrictionsω′|Gder andω′′|Gder are isomorphic. �

3.2. For every irreducible representation ω of G, we denote by zω its central
character. Let Z be the center of G, and denote by ι the embedding 0−→∼ 0×{1} ↪→
0× Z(K ).

Lemma 3.3. (a) There exists a unique homomorphism of semirings φ̃ : K+0 [G]→
K+0 [0× Z(K )] such that

φ̃([ω])= [ρω� zω] for each irreducible ω. (3-1)

(b) The map φ̃ is injective, maps irreducibles to irreducibles, and satisfies ι∗◦φ̃=φ.

(c) Assume that there exists a homomorphism ρ :0→G(K ) such that ρ∗=φ, and
let ρ̃ : 0× Z(K )→ G(K ) be a homomorphism defined by ρ̃(γ, z) := ρ(γ ) · z.
Then ρ̃∗ = φ̃.

Proof. (a) Since the additive Grothendieck semigroup K+0 [G] is freely generated
by irreducible elements [ω], there exists a unique homomorphism of semigroups
φ̃ : K+0 [G] → K+0 [0× Z(K )] that satisfies (3-1). It remains to show that for every
two representations ω′ and ω′′ of G we have an equality

φ̃([ω′] · [ω′′])= φ̃([ω′]) · φ̃([ω′′]). (3-2)

By the additivity of φ̃, we may assume that ω′ and ω′′ are irreducible. Let
ω′⊗ω′′ ∼=

⊕
ωi be a decomposition of their tensor product into irreducibles. Then
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[ω′] · [ω′′] =
∑

i [ωi ]; hence, the left-hand side of (3-2) is equal to

φ̃

(∑
i

[ωi ]

)
=

∑
i

φ̃([ωi ])=
∑

i

[ρωi � zωi ]

while the right-hand side of (3-2) is equal to

[ρω′ � zω′] · [ρω′′ � zω′′] = [(ρω⊗ ρω′′)� zω′zω′′].

Since the central character of each ωi is equal to zω′zω′′ , equality (3-2) follows from
Lemma 3.1(a).

(b) By construction, for each irreducible element [ω], the element φ̃([ω])=[ρω�zω]
is irreducible, and

ι∗φ̃([ω])= ι∗([ρω� zω])= [ρω] = φ([ω]).

This implies that φ̃ maps irreducibles to irreducibles and satisfies ι∗ ◦ φ̃ = φ.
Finally, since as additive semigroups K+0 [G] and K+0 [0] are freely generated

by irreducibles, in order to show that φ̃ is injective, it is enough to show that it is
injective on irreducibles.

Letω′ andω′′ be two irreducible representations of G such that φ̃([ω′])= φ̃([ω′′]).
Then ρω′ ∼= ρω′′ and zω′ = zω′′ . Using Lemma 3.1(e), we conclude that ω′|Gder ∼=

ω′′|Gder and ω′|Z = ω′′|Z . Hence, ω′ ∼= ω′′, implying the injectivity.

(c) It is enough to show that ρ̃∗([ω]) = φ̃([ω]) when [ω] is irreducible. Both
expressions, however, are equal to [ρω� zω]. �

3.4. Proof of Theorem 1.5. First we will show the existence of ρ under the assump-
tion that φ : K+0 [G] → K+0 [0] is injective.

Let C be the full subcategory of Rep0 consisting of semisimple representations
τ ∈ Rep0 such that [τ ] = φ([ω]) for some [ω] ∈ K+0 [G]. Since φ([ω]) is irre-
ducible for each irreducible [ω], C is a semisimple abelian subcategory. Since φ
is a homomorphism of semirings, C is a rigid tensor subcategory of Rep0 (use
Lemma 3.1(a)–(d)) and hence a Tannakian category. Let f : C→ VecK be the
forgetful functor, and let H :=Aut⊗( f ) be the group of tensor automorphisms of f .

By the Tannakian formalism (see, for example, [Deligne and Milne 1982, Theo-
rem 2.11]), H is an affine group scheme, and f induces an equivalence of tensor cat-
egories C−→∼ Rep H . Since G is an algebraic group, the category Rep G has a tensor
generator ω. Then an element ρω ∈Rep0 such that [ρω] = φ([ω]) must be a tensor
generator of C∼= Rep H . This implies that H is an algebraic group (see [Deligne
and Milne 1982, Proposition 2.20]). Moreover, since C ∼= Rep H is semisimple,
the group H is reductive (see [Deligne and Milne 1982, Proposition 2.23]).

Every element of γ ∈ 0 defines a tensor automorphism of f over K . Hence we
get a group homomorphism π : 0→ H(K ) such that π∗ : Rep H → Rep0 is the
inverse of the equivalence f : C−→∼ Rep H .
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By construction, the homomorphism φ : K+0 [G] → K+0 [0] decomposes as
K+0 [G]

φ′

−→ K+0 [H ]
π∗

−→ K+0 [0], and the homomorphism φ′ is surjective. By our
assumption, φ′ is also injective; hence, it is an isomorphism. Since G is connected,
we conclude that H is connected as well (use, for example, [Deligne and Milne
1982, Corollary 2.22]). Therefore, by Theorem 1.2, there exists an isomorphism
ρ ′ : H −→∼ G such that φ′ = ρ ′ ∗. Then the composition ρ := ρ ′ ◦π : 0→ G(K )
satisfies ρ∗ = π∗ ◦φ′ = φ.

To show the existence of ρ in general, we consider the homomorphism of
Grothendieck semirings φ̃ : K+0 [G]→ K+0 [0×Z(K )], considered in Lemma 3.3(a).

Then φ̃ is injective, so by the particular case shown above, there exists a ho-
momorphism ρ̃ : 0 × Z(K )→ G(K ) such that ρ̃∗ = φ̃. Then the composition
ρ := ρ̃ ◦ ι : 0→ G(K ) satisfies ρ∗ = ι∗ ◦ φ̃ = φ.

Conversely, let ρ :0→G(K ) be a homomorphism such that ρ∗=φ. To show that
the Zariski closure of ρ(0) contains Gder, it suffices to show that the homomorphism
ρ̃ : 0× Z(K )→ G(K ) from Lemma 3.3(c) has a Zariski closed image.

Let H ⊂ G be the Zariski closure of the image of ρ̃, and denote by i the
inclusion H ↪→ G. Then ρ̃∗ = φ̃ : K+0 [G] → K+0 [0 × Z(K )] factors through
i∗ : K+0 [G] → K+0 [H ]. In particular, i∗ is injective and maps irreducibles to
irreducibles. Then using Chevalley’s theorem ([Borel 1991, Theorem 5.1] or
[Deligne and Milne 1982, Proposition 2.21]), i has to be an isomorphism.

Finally, to show that ρ is unique up to conjugation, it suffice to show that
ρ̃ : 0× Z(K )→ G(K ) is unique up to conjugation. Thus, we can replace ρ by ρ̃
and φ by φ̃, thereby assuming that φ is injective.

Then, using the notation of the existence part, the tensor functor ρ∗ : Rep G→
Rep0 decomposes as a composition Rep G

ψ
−→Rep H

π∗

−→Rep0 of tensor functors.
By the Tannakian formalism, there exists a homomorphism ρ ′ : H → G such that
ρ ′ ∗ = ψ . Then ρ is conjugate to the composition ρ ′ ◦π , so it remains to show that
the conjugacy class of ρ ′ is uniquely defined.

We have seen that φ decomposes as K+0 [G]
φ′

−→ K+0 [H ]
π∗

−→ K+0 [0]; therefore,
ρ ′ ∗ : K+0 [G] −→

∼ K+0 [H ] coincides with φ′. Hence, the uniqueness assertion for
ρ ′ follows from Theorem 1.2. �

4. Two corollaries

In this section, we are going to prove Corollaries 1.8 and 1.11.

Lemma 4.1. Assume that the hypotheses of Corollary 1.8 hold.

(a) There exists a unique homomorphism of semirings φ : K+0 [G] → K+0 [0] such
that φ([ω])= [ρω] for each irreducible ω.

(b) Let ρ : 0→ G(K ) be a group homomorphism. Then equality (1-2) holds for ρ
if and only if ω ◦ ρ ∼= ρω for all irreducible ω.
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Proof. (a) Since the semigroup K+0 [G] is freely generated by irreducible elements,
there exists a unique homomorphism of semigroups φ : K+0 [G]→ K+0 [0] such that
φ([ω])= [ρω] for each irreducible ω.

It remains to show that for every two representations ω′ and ω′′ of G we have an
equality

φ([ω′] · [ω′′])= φ([ω′]) ·φ([ω′′]).

Since a semisimple representation is determined by its trace, it is enough to show
that

Trφ([ω′]·[ω′′])(γ )= Trφ([ω′])(γ ) ·Trφ([ω′′])(γ ) (4-1)

for all γ ∈ 0. First we observe that for all γ ∈ 0 and all [ω] ∈ K+0 [G] we have an
equality

Trφ([ω])(γ )= Tr[ω]( f (γ )). (4-2)

Indeed, by additivity, it is enough to show (4-2) for ω irreducible. In this case, the
assertion follows from equalities φ([ω])= [ρω] and (1-1).

Using (4-2), our desired equality (4-1) can be written in the form

Tr[ω′]·[ω′′]( f (γ ))= Tr[ω′]( f (γ )) ·Tr[ω′′]( f (γ )).

Therefore, it follows from the multiplicativity of the trace map Tr : K+0 [G]→ K [G].

(b) Since functions Trω with ω irreducible generate K [cG] as a K -vector space (see
[Steinberg 1965, Theorem 6.1(a)]), the equality (1-2) is equivalent to the equality

Trω(χG(ρ(γ )))= Trω( f (γ )) (4-3)

for all γ ∈ 0 and all irreducible ω. Since the left side of (4-3) equals Trω◦ρ(γ )
(see 1.7(b)) while the right-hand side of (4-3) equals Trρω(γ ) by (1-1), equality (4-3)
is equivalent to the equality Trω◦ρ =Trρω for all irreducible ω. But this is equivalent
to the desired isomorphism ω ◦ ρ ∼= ρω. �

4.2. Proof of Corollary 1.8. By Lemma 4.1(a), there exists a unique homomorphism
of semirings φ : K+0 [G] → K+0 [0] such that φ([ω])= [ρω] for each irreducible ω.
Then by Theorem 1.5, there exists a homomorphism ρ : 0 → G(K ) such that
ρ∗ = φ. In particular, we have that [ω ◦ ρ] is equal to φ([ω]) = [ρω] for each
irreducible ω. Then by Lemma 4.1(b), the equality (1-2) holds for ρ.

Conversely, let ρ : 0→ G(K ) be a homomorphism, satisfying (1-2). Then by
Lemma 4.1(b), ρ∗([ω])= [ω ◦ ρ] is equal to φ([ω])= [ρω] for each irreducible ω.
Thus ρ∗ : K+0 [G] → K+0 [0] is equal to φ. It then follows from Theorem 1.5 that ρ
is unique up to conjugation, and that the Zariski closure of ρ(0) contains Gder. �

4.3. Proof of Corollary 1.11. The argument is very similar to that of Corollary 1.8.
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As in Lemma 4.1(a), there exists a unique homomorphism of semirings

φ : K+0 [Ĝ] → K+0 [0F ]

such that φ([ω])= [ρω] for each irreducible ω. Indeed, arguing as in Lemma 4.1(a)
word for word, we reduce ourselves to the equality (4-1). Moreover, by the Cheb-
otarev density theorem, it is enough to show equality (4-1) when γ = Frobv for
almost all v ∈6.

Then we reduce the problem to showing that

Trφ([ω])(Frobv)= Tr[ω]( f (v))

for all irreducible [ω] and almost all v ∈ 6. But the latter equality follows from
equalities φ([ω])= [ρω] and (1-3).

By Theorem 1.5, there now exists a homomorphism ρ : 0F → Ĝ(Q`) such that
ρ∗ = φ.

We claim that, for every representation ω of Ĝ, the composition ω ◦ ρ is a
semisimple `-adic representation. By additivity, it is enough to show in the case
when ω is irreducible. However, in this case,

[ω ◦ ρ] = ρ∗([ω])= [ρω]

is irreducible; hence, ω ◦ ρ ∼= ρω is an irreducible `-adic representation.
Choosing ω to be a faithful representation of Ĝ, we conclude that ρ is continuous

and unramified almost everywhere.
Finally, arguing exactly as in Lemma 4.1(b) (and using the isomorphisms

ω ◦ ρ ∼= ρω), we conclude that ρ satisfies the equality (1-4).
Conversely, let ρ : 0F → Ĝ(Q`) be a Ĝ-valued `-adic representation satisfying

(1-4). Again arguing exactly as in Lemma 4.1(b) and using the Chebotarev density
theorem, we conclude that ρ∗([ω]) = [ω ◦ ρ] is equal to φ([ω]) = [ρω] for each
irreducible ω. Thus, ρ∗ : K+0 [Ĝ] → K+0 [0F ] is equal to φ.

Therefore, it follows from Theorem 1.5 that ρ is unique up to conjugation and
that the Zariski closure of ρ(0F ) contains Ĝder. �
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