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Finiteness of unramified deformation rings
Patrick B. Allen and Frank Calegari

We prove that the universal unramified deformation ring Runr of a continuous
Galois representation ρ̄ : G F+ → GLn(k) (for a totally real field F+ and finite
field k) is finite over O = W (k) in many cases. We also prove (under similar
hypotheses) that the universal deformation ring Runiv is finite over the local
deformation ring Rloc.

Introduction

Let k be a finite field of characteristic p, and let O = W (k). Let F be a number
field, and consider a continuous absolutely irreducible Galois representation

ρ : G F → GLn(k),

where G F =Gal(F/F) for some fixed algebraic closure F of F . If (A,m) is a com-
plete local O-algebra with residue field k, then a deformation ρ of ρ to A unramified
outside a finite set of primes S consists an equivalence class of homomorphisms

ρ : G F → GLn(A)

such that the composite of ρ with the projection GLn(A)→ GLn(A/m)= GLn(k)
is ρ, and such that the extension of fields F(ker(ρ)) over F(ker(ρ)) is unramified
away from places above primes in S (see [Mazur 1997]). The nature of such
deformations is quite different depending on whether S contains the primes above p
or not. If S contains all the primes above p, we denote the universal deformation
ring by Runiv; if S contains no primes above p, we denote the corresponding
universal deformation ring by Runr. According to the Fontaine–Mazur conjecture
(see [Fontaine and Mazur 1995, Conjecture 5a]), any map Runr

→Qp gives rise to
a deformation ρ of ρ with finite image. (This form of the conjecture is known as the
unramified Fontaine–Mazur conjecture.) Boston’s strengthening of this conjecture
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[Boston 1999, Conjecture 2 and the subsequent corollary] is the claim that the
universal unramified deformation

ρunr
: G F → GLn(Runr)

has finite image. In contrast, the ring Runiv is typically of large dimension (see
§1.10 of [Mazur 1989]). A conjecture of Mazur predicts that the relative dimension
of Runiv over O is (in odd characteristic)

(1+ r2)+ (n2
− 1)[F :Q] −

∑
v|∞

dim H 0(Dv, ad0(ρ)),

where ad0(ρ) denotes (in any choice of basis) the trace zero matrices in Hom(ρ, ρ).
A choice of basis for the universal deformation makes Runiv an algebra over a local
deformation ring

Rloc
=

⊗̂
v|p

Rloc
v ,

where Rloc
v is the universal framed local deformation ring of ρ|Dv for v|p. The

Rloc-algebra structure may depend on the choice of basis, but it is canonical up
to automorphisms of Rloc. It is not true in general that Spec(Runiv)→ Spec(Rloc)

is a closed immersion, even in the minimal case where S is only divisible by
the primes dividing p. A simple example to consider is the deformation ring
of any one-dimensional representation ρ : G F → k×; the corresponding map
Spec(Runiv) → Spec(Rloc) is a closed immersion if and only if the maximal
everywhere-unramified abelian p-extension of F in which p splits completely
is trivial. It is, however, reasonable to conjecture that this map is always a finite
morphism. Indeed, one heuristic justification for the Fontaine–Mazur conjecture is
to imagine that the generic fibers of the image of Spec(Runiv) and the locus of local
crystalline representations of a fixed weight are transverse, and to infer (from a
conjectural computation of dimensions) that the intersection is finite, and hence that
there are only finitely many global crystalline representations of a fixed weight (see
pp. 191–192 of [Fontaine and Mazur 1995]); this line of thinking at least presumes
that the global-to-local map is quasifinite.

We prove the following:

Theorem 1. Let F+ be a totally real field, and let ρ : G F+→ GLn(k) be a contin-
uous absolutely irreducible representation. Suppose that:

(1) p > 2.

(2) ad0(ρ|G F+(ζp)) is absolutely irreducible and p> 2n2
−1, or, if n = 2 and ρ is

totally odd, ρ|G F+(ζp) has adequate image.

Then Runr is a finite O-algebra, and Runiv is a finite Rloc-algebra.
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The second condition holds, for example, when ρ has image containing SLn(k)
and p is greater than 2n2

− 1. The finiteness of Runiv over Rloc can be deduced
from an appropriate “R = T” theorem, since one proves that the maximal reduced
quotient of Runiv modulo an ideal of Rloc is isomorphic to a finite O-algebra T .
However, in dimension greater than 2, without a conjugate self-dual assumption, the
current R= T theorems are contingent on conjectural properties of the cohomology
of arithmetic quotients (see Part 2 of [Calegari and Geraghty 2012]).

We shall deduce from Theorem 1 the following corollaries:

Corollary 2. For any ρ satisfying the conditions of Theorem 1, Boston’s strength-
ening of the unramified Fontaine–Mazur conjecture is equivalent to the unramified
Fontaine–Mazur conjecture.

Corollary 3. Suppose that ρ :G F+→GL2(k) satisfies the conditions of Theorem 1.
Assume further that:

(1) ρ is totally odd.

(2) If p = 5 and ρ has projective image PGL2(F5), then [F+(ζ5) : F+] = 4.

Then Boston’s conjecture holds: the representation ρunr
: G F+ → GL2(Runr) has

finite image.

When n= 2, p> 2, F =Q, and ρ is totally odd and unramified at p, Runr can be
identified with the ring of Hecke operators acting on a (not necessarily torsion-free)
coherent cohomology group (see [Calegari and Geraghty 2012]).

Let Gn be the group scheme over Z that is the semidirect product

(GLn ×GL1)o {1, } = G0
n o {1, },

where  acts on GLn×GL1 by  (g, µ)−1
= (µt g−1, µ). Let ν : Gn→GL1 be the

character that sends (g, µ) to µ and  to −1. Let F be a CM field with maximal
totally real subfield F+, and let

r : G F+→ Gn(k)

be a continuous homomorphism with r−1(G0
n(k)) = G F . If (A,m) is a complete

local O-algebra with residue field k, then a deformation r of r to A unramified
outside a finite set of primes S consists of an equivalence class of homomorphisms

r : G F+→ Gn(A)

such that the composite of r with the projection Gn(A)→ Gn(A/m)= Gn(k) is r ,
and such that the extension of fields F(ker(r)) over F(ker(r)) is unramified away
from places above primes in S. We say two lifts are equivalent if they are conjugate
by an element of GLn(A) that reduces to the identity modulo m. If r is Schur
(see Definition 2.1.6 of [Clozel et al. 2008]), then this deformation problem is
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representable. By abuse of notation, we will again denote the universal deformation
ring of r by Runiv if S contains all the primes above p, and by Runr if S contains
no primes above p. This shouldn’t cause any confusion, as we shall be very
explicit regarding which deformation problem we refer to. As with the GLn-valued
theory, for each v|p in F+, there is a universal framed deformation ring R�

v which
represents the lifts of r |Dv, and a choice of lift in the equivalence class of the
universal deformation of r makes Runiv an algebra over

Rloc
=

⊗̂
v|p

Rloc
v .

We shall deduce Theorem 1 from the following result.

Theorem 4. Let F be a CM field with maximal totally real subfield F+. Let S
denote a finite set of places of F+ not containing any v|p, and let r : G F+→ Gn(k)
be a continuous homomorphism with r−1(G0

n(k))=G F and such that ν◦r(cv)=−1
for each choice of complex conjugation cv . Assume that p≥ 2(n+1), that the image
of r |G F(ζp) is adequate, and that ζp /∈ F. Let Runr be the universal deformation
ring of r unramified outside S, and let Runiv be the universal deformation ring of r
unramified outside S and all primes v|p. Then Runr is a finite O-algebra, and Runiv

is a finite Rloc-algebra.

It turns out that the proof of this theorem is almost an immediate consequence
of the finiteness results of [Thorne 2012] for ordinary deformation rings. The
only required subtlety is to understand the relationship between the local ordinary
deformation ring R4,ar

3K
constructed in [Geraghty 2010] and the unramified local

deformation ring Run.

1. Some local deformation rings

Recall k is a finite field of characteristic p, and O=W (k). Let K be a finite extension
of Qp and let G K = Gal(K/K ). Fix a continuous unramified representation

ρ : G K → GLn(k)

and let R� be its universal framed deformation ring. Let Run be the quotient of R�

corresponding to unramified lifts.

Lemma 5. The ring Run is isomorphic to a power series ring over O in n2 variables.
In particular, it is reduced and its Qp-points are Zariski dense in Spec(Run).

Proof. Fixing a choice of lift g ∈GLn(O) of ρ(Frob), it is easy to see that the lift to
O[[{xi j }1≤i, j≤n]] given by Frob 7→ g(I + (xi j )) is the universal framed deformation.

�
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Let I ab
K be the inertia subgroup of the abelianization of G K , and let I ab

K (p) be its
maximal pro-p quotient. Let 3K = O[[(I ab

K (p))
n
]] and let ψ = (ψ1, . . . , ψn) be the

universal n-tuple of characters ψi : IK →3×K . Set R�
3K
= R�

⊗̂O3K .
We briefly recall the construction of the universal ordinary deformation ring R43K

by Geraghty (see §3 of [ibid.]). Let F be the flag variety over O whose S-points, for
any O-scheme S, is the set of increasing filtrations 0= F0⊂ F1⊂· · ·⊂ Fn=On

S of On
S

by locally free submodules with rank(Fi )= i for each i = 1, . . . , n. Lemma 3.1.2
of [ibid.] shows that the subfunctor of

R�
3K
⊗O F

corresponding to pairs (ρ, {Fi }) such that

• {Fi } is stabilized by ρ, and

• the action of IK on Fi/Fi−1 is given by the pushforward of ψi ,

is represented by a closed subscheme G. He then defines R43K
as the image of

R�
3K
→ OG(G[1/p]).

Since scheme-theoretic image commutes with flat base change, R43K
[1/p] is the

scheme-theoretic image of

G[1/p] → Spec(R�
3K
[1/p]).

Since this map is proper, G[1/p] surjects onto Spec(R43K
[1/p]). Because G is of

finite type over R43K
, we deduce that any Qp-point of Spec(R43K

[1/p]) lifts to a
Qp-point of G[1/p]. This proves the following.

Lemma 6. Let x ∈ Spec(R�
3K
)(Qp), and let (ρx , ψx) denote the pushforward via x

of the universal framed deformation and n-tuple of characters of IK . Then x factors
through R43K

[1/p] if and only if there is a full flag 0= F0 ⊂ F1 ⊂ · · · ⊂ Fn =Qn
p

stabilized by ρx such that the action of IK on Fi/Fi−1 is given by ψi,x for each
i = 1, . . . , n.

If ρ is the trivial representation, then Geraghty defines a further quotient R4,ar
3K

of R43K
as follows. Let Q1, . . . , Qm be the minimal primes of 3K . For each

j = 1, . . . ,m, let G j = G⊗3K 3K /Q j . Let W j ⊂ Spec(3K /Q j ) be the closed
subscheme defined by ψr = εpψs for some 1 ≤ r < s ≤ n, and let U j be the
complement of W j . Geraghty shows (see §3.4 of [ibid.]) that there is a unique
irreducible component Gar

j of G j lying above U j . We then set Gar
=

⋃
1≤ j≤m Gar

j
and define R4,ar

3K
to be the image of

R43K
→ OGar (Gar

[1/p]).

The construction of R4,ar
3K

together with Lemma 6 yields the following.
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Lemma 7. Assume that ρ is trivial. Let x ∈ Spec(R�
3K
)(Qp), and let (ρx , ψx)

denote the pushforward via x of the universal framed deformation and n-tuple of
characters of IK . Assume that there is a full flag 0 = F0 ⊂ F1 ⊂ · · · ⊂ Fn = Qn

p
stabilized by ρx such that the action of IK on Fi/Fi−1 is given by ψi,x for each
i = 1, . . . , n. If ψi,x 6= εpψ j,x for any i < j , then x factors through R4,ar

3K
.

Remark 8. If [K :Qp]>
1
2 n(n−1)+1 and ρ is trivial (which, for our applications,

we could assume), then Thorne proves that R4,ar
3K
= R43K

(see Corollary 3.12 of
[Thorne 2014]).

There is a natural map 3K → Run given by modding out by the augmentation
ideal a of 3K . We thus have a natural surjection

R�
3K
→ Run.

Proposition 9. The surjection R�
3K
→ Run factors through R43K

. If ρ is trivial,
then it further factors through R4,ar

3K
.

Proof. The image of an unramified representation is the topological closure of
the image of Frobenius. Since any element of GLn(Qp) is conjugate to an upper
triangular matrix, that the image of any unramified representation into GLn(Qp)

fixes a full flag for which the action of inertia on the corresponding quotients is
trivial. It follows that the projection from R�

3K
to any Qp-point of Run factors

through R43K
by Lemma 6 and, if ρ is trivial, through R4,ar

3K
, by Lemma 7. The

result then follows from the fact that Run is reduced and its Qp-points are Zariski
dense, by Lemma 5. �

2. Proof of Theorem 4

We first prove the statement concerning Runr over O. Take a representation r as
in Theorem 4. For each v|p in F+, let F+v be the completion of F+ at v and let
3v =3F+v with 3F+v as in Section 1. Let 3=

⊗̂
v|p,O3v.

We note that, using Lemma 1.2.2 of [Barnet-Lamb et al. 2014], we are free to
make any base change disjoint from the fixed field of ker(r). After a base change,
we may assume that r is everywhere unramified, and that r |Dv is trivial for all
v|p as well as any finite set of auxiliary primes. In particular, after a suitable
base change, we may restrict ourselves to considering deformation rings which
are unipotent at some finite set of auxiliary primes v ∈ S (which corresponds to
the local deformation condition R1

ṽ
of [Thorne 2012, §8]). By Proposition 3.3.1 of

[Barnet-Lamb et al. 2014], we may assume, after a further base change, that r lifts
to a minimal crystalline ordinary modular representation (this is where we use the
assumption that p ≥ 2(n+ 1)). From Corollary 8.7 of [Thorne 2012], we deduce
that the corresponding ordinary deformation ring RS is finite over 3. If we can
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show that Runr is a quotient of RS⊗3/a, where a is the augmentation ideal of 3,
then the result follows immediately by Nakayama, since 3/a= O. By definition,
the local condition at v|p for RS is determined by the ordinary deformation ring
R4,ar
3v

. By Proposition 9, the ring Run is a quotient of R4,ar
3v

/a. Hence Runr is a
quotient of RS⊗3/a and we are done.

The finiteness of Runiv over Rloc then follows from the finiteness of Run over O

and Nakayama. Indeed, let Rsplit
= Runiv

⊗Rloc k and let r split be the specialization
of the universal deformation to Rsplit. Then r split

|Dv
∼= r |Dv for any v|p in F+, so

the quotient Runiv
→ Rsplit factors through Run

⊗O k.

3. Some corollaries

3.1. Proof of Theorem 1. Let ρ satisfy the statement of Theorem 1. Consider
ad0(ρ) restricted to a suitable quadratic CM extension F/F+. Since p - n, the
representation ad0(ρ) is a direct summand of ρc

⊗ ρ∗ = ρ⊗ ρ∗ and is conjugate
self-dual. The assumption of irreducibility together with the inequality p > 2n2

−1
imply that ad0(ρ) is adequate by Theorem A.9 of [Thorne 2012]. If n is even, then
ad0(ρ) has odd dimension and so is automatically totally odd. If n is odd, then
ad0(ρ) is orthogonal (the conjugate self-duality is realized by the trace pairing,
which is symmetric) and exactly self-dual (up to trivial twist) and so has trivial
multiplier, which means that it is also totally odd. Both uses of totally odd refer to
the properties of the multiplier character rather than the determinant of complex
conjugation, and are the exact sign conditions required for automorphy lifting
theorems for unitary groups (that is, totally odd means U -odd rather than GL-odd in
the notation of [Calegari 2010]; see also §2.1 of [Barnet-Lamb et al. 2014]). Hence
ad0(ρ)|G F extends to a homomorphism (see Lemma 2.1.1 of [Clozel et al. 2008])

r : G F+→ Gn2−1(k),

which we fix, satisfying the conditions of Theorem 4. On the other hand, any
deformation of ρ gives rise to a deformation of r in the natural way. By Yoneda’s
lemma, there is a corresponding morphism Runr(r) → Runr(ρ). It suffices to
prove this is finite. By Nakayama’s lemma, this reduces to showing that the only
deformations ρ of ρ to k-algebras such that ad0(ρ)|G F ∼= ad0(ρ)|G F are finite.
The kernel of such a deformation must be contained in the maximal abelian pro-p
extension of F(ker(ρ)) unramified outside S, which is finite by class field theory.
As in the final paragraph of the proof of Theorem 4, the finiteness of Runr implies
the finiteness of Rsplit and hence that Runiv is a finite Rloc-algebra.

If n = 2 and ρ is totally odd, we may work directly with ρ. We first use Corol-
lary 1.7 of [Taylor 2002] to conclude that ρ is potentially modular and Theorem A
of [Barnet-Lamb et al. 2013] to assume it is potentially ordinarily modular. Then,
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restricting ρ to a suitable CM field F , the proof is exactly as in the proof of
Theorem 4 (without the appeal to Proposition 3.3.1 of [Barnet-Lamb et al. 2014]).

3.2. Proof of Corollary 2. This follows immediately from Theorem 1 and the
following proposition.

Proposition 10. Let F be a number field and let ρ : G F → GLn(k) be continuous
and absolutely irreducible. Then

ρunr
: G F → GLn(Runr)

has finite image if and only if the following two properties hold:

(1) Runr is finite over O;

(2) for any minimal prime p of Runr
[1/p], the induced representation

G F → GLn(Runr
[1/p]/p)

has finite image.

Proof. If ρunr has finite image, then (2) is clearly satisfied, and (1) follows from
Théorème 2 of [Carayol 1994], which shows that Runr is generated over O by traces.

Now assume (1) and (2), and let E be the fraction field of O. Since Runr is a
finite O-algebra, the map Runr

→ Runr
[1/p] has finite kernel. Hence it suffices to

prove that the map
ρ : G F → GLn(Runr

[1/p])

has finite image, assuming (2). Since Runr is finite over O, the ring Runr
[1/p]

is a semilocal ring which is a direct sum of Artinian E-algebras A with residue
field H for some finite [H : E] <∞. In particular, the representation ρ breaks
up into a finite direct sum of representations to such groups GLn(A). If A = H ,
then assumption (2) implies that the image of such a representation is finite. If
A 6= H , then A admits a surjective map to H [ε]/ε2. In particular, there exists an
unramified deformation

ρ : G F → GLn(H [ε]/ε2).

By assumption (2) again, the corresponding residual representation with image in
GLn(H) is finite, and is given by some representation V on which G F acts through
a finite group. Moreover, ρ is then given by some nontrivial extension

0→ V →W → V → 0.

Consider the restriction of this representation to a finite extension L/F such that GL

acts trivially on V . Then the action of GL on W factors through an unramified
Zp-extension, which must be trivial by class field theory. It follows that the action
of GL on W is trivial, and hence that the extension W is trivial, a contradiction. �
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3.3. Proof of Corollary 3. By Theorem 0.2 of [Pilloni and Stroh 2013] (see also
[Kassaei 2013]), one knows the unramified Fontaine–Mazur conjecture for ρ under
the given hypothesis, hence the result follows from Corollary 2.
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