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F -blowups of normal surface singularities
Nobuo Hara, Tadakazu Sawada and Takehiko Yasuda

We study F-blowups of non-F-regular normal surface singularities. Especially
the cases of rational double points and simple elliptic singularities are treated in
detail.

1. Introduction

The F-blowup introduced in [Yasuda 2012] is a canonical birational modification
of a variety in positive characteristic. For a nonnegative integer e, the e-th F-
blowup of a variety X is defined as the blowup at Fe

∗
OX , that is, the universal

birational flattening of Fe
∗

OX . Here Fe
∗

OX is the pushforward of the structure sheaf
by the e-iterated Frobenius morphism. It turns out that the F-blowup of a quotient
singularity has a connection with the G-Hilbert scheme [Toda and Yasuda 2009;
Yasuda 2012]. However, the F-blowup has the advantage that it is canonically
defined for arbitrary singularity in positive characteristic, whereas the G-Hilbert
scheme is defined only for a quotient singularity. Actually, it is proved in [Yasuda
2012] that the e-th F-blowup of any curve singularity with e� 0 is normal, and
hence resolves singularities in dimension one.

As is naturally expected, the F-blowup is also connected to F-singularities in
positive characteristic such as F-pure and F-regular singularities. It is proved that
the sequence of F-blowups for an F-pure singularity is monotone [Yasuda 2009]
and that the e-th F-blowup of an F-regular surface singularity coincides with the
minimal resolution for e � 0 [Hara 2012]. However, it is too much to ask for
F-blowups of normal surface singularities to be the minimal resolution or even
smooth in general. Actually, there exist (non-F-regular) rational double points
whose F-blowups are singular [Hara and Sawada 2011].

Although some good aspects as well as pathologies of F-blowups have recently
been discovered as above, their behavior is a mystery yet, even in dimension two.
In this paper, we explore the behavior of F-blowups of certain normal surface
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singularities more in detail. We are mainly concerned with two classes of surface
singularities, that is, non-F-regular rational double points (which exist only in char-
acteristics up to five) and simple elliptic singularities. We will discuss F-blowups
of these singularities, focusing on the normality, smoothness and stabilization of
F-blowup sequences.

For this purpose, we do utilize not only the classical theory of surface singularities,
but also computations with Macaulay2 [Grayson and Stillman 2012], which are
complementary to each other. The key to our computations is two Macaulay2
functions that we will write down. Given a module, the first function computes an
ideal such that the blowups at the ideal and module coincide, following Villamayor’s
description of such an ideal [2006]. Using this together with a built-in function to
compute Rees algebras, one can explicitly compute a graded ring describing the
blowup at a module. The second function we will write computes the Frobenius
pushforward F∗M of a given module M . These functions enable us to investigate F-
blowups in detail, especially for hypersurface surface singularities in characteristic
two or three.

In the case of rational double points, one can apply general theory of rational
surface singularities to show that F-blowups are normal and dominated by the
minimal resolution. Then a version of McKay’s correspondence [Artin and Verdier
1985] enables us to determine the e-th F-blowup by the direct sum decomposition of
Fe
∗

M into indecomposable modules. For F-regular surface singularities R = OX,x ,
all indecomposable reflexive R-modules appear as a direct summand of Fe

∗
R with

e � 0, so that the e-th F-blowup coincides with the minimal resolution [Hara
and Sawada 2011; Hara 2012]. Contrary to this we have the following result for
non-F-regular Frobenius sandwiches in characteristic p ≤ 5.

Theorem 1.1 (see [Hara and Sawada 2011, Example 4.8]). Let (X, x) be a rational
double point of type D0

2n for n≥ 2, E0
7 , E0

8 in p= 2, E0
6 , E0

8 in p= 3 or E0
8 in p= 5;

see [Artin 1977] for the notation. Then for any e ≥ 1, the e-th F-blowup FBe(X)
coincides with the normal surface obtained by contracting all but one exceptional
curve on the minimal resolution X̃ . The unique exceptional curve on FBe(X) is
indicated by the solid circle in Theorem 3.5.

We can analyze other types of non-F-regular rational double points by computer-
aided calculation. In these cases, computations of the blowups at modules are again
useful. For instance, one can see with such computation whether two obtained
indecomposable modules are isomorphic. A particularly interesting result is that
for e ≥ 2, the e-th F-blowup of D1

4- and D1
5-singularities in characteristic two is

the minimal resolution, though D1
4- and D1

5-singularities are not F-regular. In our
computations so far, there is no other non-F-regular rational double point such that
any of its F-blowups is the minimal resolution.
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We will investigate F-blowups of simple elliptic singularities in detail as well.
Since a simple elliptic singularity (X, x) is quasihomogeneous in general, its mini-
mal resolution X̃ has the same structure as the conormal bundle over the elliptic
exceptional curve E , which is identified with the negative section. We can use this
fact to determine the structure of the F-blowups up to normalization, which turns
out to be different according to the self-intersection number E2 and whether the
singularity (X, x) is F-pure or not. We summarize the results obtained in Theorems
4.5, 4.7, 4.13 and Proposition 4.18 in the following.

Theorem 1.2. Let (X, x) be a simple elliptic singularity in characteristic p > 0
with the elliptic exceptional curve E on the minimal resolution X̃ . Let F̃Be(X) be
the normalization of the e-th F-blowup FBe(X) of (X, x) for any e ≥ 1.

(1) If (X, x) is F-pure with E2
=−1, then F̃Be(X) coincides with the blowup of

X̃ at pe
− 1 nontrivial pe-torsion points on E.

(2) If (X, x) is not F-pure with E2
=−1, then F̃Be(X) coincides with the blowup

of X̃ at an ideal supported at a point P0 ∈ E with local expression (t, u pe
−1),

where t and u are local coordinates at P0 ∈ X̃ .

(3) If E2
≤ −2 and −E2 is not a power of p, then F̃Be(X) ∼= X̃ for all e ≥ 1.

Moreover, if (X, x) is F-pure and E2
≤−3, then FBe(X)∼= X̃ .

We cannot determine whether or not an F-blowup is normal in general, but we
see that an F-blowup is nonnormal in some cases with Macaulay2 computation.
The theorem above tells us that an F-blowup coincides with the minimal resolution
in some cases, but in general, F-blowups of simple elliptic singularities behave
badly: They are nonnormal, not dominated by the minimal resolution and the
sequence of F-blowups does not stabilize. The study of F-blowups for simple
elliptic singularities will be pushed further and completed in [Hara 2013].

2. Preliminaries

2a. Blowups at modules. Let X be a Noetherian integral scheme and M a coherent
sheaf on X . For a modification f : Y → X , we denote the torsion-free pullback
( f ∗M)/tors by f ?M, where tors denotes the subsheaf of torsions.

Definition 2.1. A modification f : Y → X is called a flattening of M if f ?M is flat,
or equivalently locally free. A flattening f is said to be universal if every flattening
g : Z→ X of M factors as

g : Z→ Y
f
−→ X.

(The universal flattening exists and is unique. It can be constructed as a subscheme
of a Quot scheme. See for instance [Oneto and Zatini 1991; Villamayor U. 2006].)
The universal flattening is also called the blowup of X at M and denoted by BlM(X).
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The following are basic properties of the blowup at a module, which directly
follow from the definition:

(1) The modification BlM(X)→ X is an isomorphism exactly over the locus where
M is flat.

(2) If N⊂M is a torsion subsheaf, then BlM(X)= BlM/N(X).

(3) If M is an ideal sheaf, then the blowup at M defined above coincides with the
usual blowup with the center M.

The following are examples of blowups at modules. Therefore one can compute
them in the method explained below.

Example 2.2. If X is an algebraic variety over a field k, then its Nash blowup is the
blowup at �X/k , the sheaf of differentials. The higher version of the Nash blowup
is also an example of the blowup at a module; see [Yasuda 2007].

Example 2.3. Let Y be a quasiprojective algebraic variety, G a finite group of
automorphisms of Y and X := Y/G the quotient variety. Then the G-Hilbert
scheme HilbG(Y ) is defined to be the closure of the set of free G-orbits in the
Hilbert scheme of Y ; see [Ito and Nakamura 1996]. One can show that HilbG(Y )
is isomorphic to the blowup at π∗OY , where π : Y → X is the quotient map.

Let r be the rank of M, K the function field of X and fix an isomorphism∧r M⊗ K ∼= K . Then define a fractional ideal sheaf

IM := Im
(∧r M→

∧r M⊗ K ∼= K
)
.

Proposition 2.4 (see [Oneto and Zatini 1991; Villamayor U. 2006]). The blowup
at M is isomorphic to the blowup at IM,

BlIM(X)= ProjX

(⊕
n≥0

In
M

)
.

Note that although IM depends on the choice of the isomorphism
∧r M⊗K ∼= K ,

the isomorphism class of IM and so BlI(X) are independent of it.
We will now recall Villamayor’s method [2006] for computing IM in the affine

case. Suppose that X = Spec R. Abusing the notation, we identify the sheaf M with
the corresponding R-module M , the fractional ideal sheaf IM with the fractional
ideal IM ⊂ K , and so forth. Let

Rm A
−→ Rn

→ M→ 0

be a presentation of M given by an n×m matrix A. Here and hereafter we think
of elements of free modules as column vectors and the map A : Rm

→ Rn is given
by left multiplication with A, that is, v 7→ Av. We call A a presentation matrix



F -blowups of normal surface singularities 737

of M . Then there exist n− r columns of A such that if A′ denotes the submatrix of
A formed by these columns, then

M ′ := Coker(Rn−r A′
−→ Rn)

has rank r . Then M is a quotient of M ′ by some torsion submodule of M ′. Therefore
the blowups at M and M ′ are equal.

Proposition 2.5 [Villamayor U. 2006]. The ideal generated by (n−r)-minors of A′,
which is by definition the r-th Fitting ideal of M ′, is equal to IM for a suitable
choice of isomorphism

∧r M ⊗ K ∼= K .

The computation of this ideal is implemented in Macaulay2 as

villamayorIdeal = M -> (
r := rank M;
P := presentation M;
s := rank source P;
t := rank target P;
I := {};
for j to s-1 when #I < t-r do (

J := append(I,j);
if rank coker P_J == t - #J then I = J;

);
fittingIdeal(r,coker P_I);

);

Once the ideal IM was computed, then the blowup at M is computed as the projective
spectrum of the Rees algebra of the ideal:

BlM(X)= Proj R[IM t], R[IM t] :=
⊕
i≥0

I i
M t i
⊂ R[t].

The computation of Rees algebras has been already implemented in Macaulay2 as
reesAlgebra.

The computation of blowups at modules is useful for studying modules them-
selves. For instance, one can see that two given modules are not isomorphic if the
associated blowups are not isomorphic.

2b. F-blowups. Suppose now that X is a Noetherian integral scheme of character-
istic p > 0 and that its (absolute) Frobenius morphism F : X→ X is finite.

Definition 2.6 [Yasuda 2012]. For a nonnegative integer e, we define the e-th
F-blowup of X to be the blowup of X at Fe

∗
OX and denote it by FBe(X).
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From [Kunz 1969], if e > 0, then the flat locus of Fe
∗

OX coincides with the
regular locus of X . Therefore the e-th F-blowup is an isomorphism exactly over
the regular locus.

If X is an algebraic variety over an algebraically closed field k, then there is a
more moduli-theoretic construction of F-blowups, which was actually the original
definition of F-blowups in [Yasuda 2012]: The e-th F-blowup is isomorphic
(over Z ) to the closure of the set

{[(Fe)−1(x)] | nonsingular point x ∈ X (k)}

in the Hilbert scheme of zero-dimensional subschemes. Here (Fe)−1(x) is the
scheme-theoretic inverse image and a closed subscheme of X with length pe dim X ,
and [(Fe)−1(x)] is the corresponding point in the Hilbert scheme.

2c. Computing the Frobenius pushforward. Let us now suppose that X is affine,
say X = Spec R. In order to compute F-blowups of X along the lines explained
above, we need to first compute a presentation of Fe

∗
R. For later use, we will

explain more generally how to compute Fe
∗

M for any finitely generated R-module
M in the case where R is finitely generated over the prime field Fp.

2c1. The case of a polynomial ring. Set S = Fp[x1, . . . , xn] and q = pe. A mono-
mial xa

= xa1
1 · · · x

an
n defines an S-linear map

µxa : S→ S, f 7→ xa f.

Then we reinterpret this map according to another S-module structure on S by
g · f := gq f . We denote this new S-module by S′, which is a free S-module of rank
qn and nothing but Fe

∗
S. We also denote the map µxa regarded as an endomorphism

of S′ by µ′xa , which is nothing but Fe
∗
µxa .

Let 3 := {0, 1, . . . , q − 1}n . Then qn monomials xb for b ∈3 form a standard
basis of S′. For such a monomial xb, we have

µxa (xb)= xa+b
= xq((a+b)÷q)x (a+b)%q .

Here ÷q and %q respectively denote the quotient and the remainder by the
component-wise division by q . We rewrite it as

µ′xa (xb)= x (a+b)÷q
· x (a+b)%q .

Thus we obtain:

Lemma 2.7. The defining matrix, U (a, e)= (ui j )i, j∈3, of µ′xa with respect to the
standard basis is given by

ui j =

{
x (a+ j)÷q i = (a+ j)%q,
0 otherwise.
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Then for a polynomial f =
∑

a caxa
∈ S, if µ f : S→ S denotes the multiplication

with f , then µ′f = Fe
∗
µ f is defined by the matrix

U ( f, e) :=
∑

a

ca ·U (a, e).

Note that since the coefficient field is Fp and the Frobenius map of Fp is the identity
map, we do not have to change the coefficients ca .

Let

A =

a11 · · · a1m
...

. . .
...

al1 · · · alm


be an l × m matrix with entries in S, which defines an S-linear map Sm

→ Sl

denoted again by A. Then the Fe
∗

A : (S′)⊕m
→ (S′)⊕l is given by qnl×qnm matrix

U (A, e)=

U (a11, e) · · · U (a1m, e)
...

. . .
...

U (al1, e) · · · U (alm, e)

 .
Therefore:

Proposition 2.8. If A is a presentation matrix of an S-module M , then U (A, e) is
a presentation matrix of Fe

∗
M.

2c2. The general case. Suppose that R is the quotient ring S/I , I = ( f1, . . . , fl),
and M is a finitely generated R-module. Then we first have to compute a presentation
of M as an S-module. Let A be a matrix with entries in S and let Ā be the matrix
with entries in R induced from A. Suppose that Ā is a presentation matrix of M :

Rm Ā
−→ Rn

→ M→ 0.

Let M̃ be the S-module with the presentation matrix A:

Sm A
−→ Sn

→ M̃→ 0.

Then M = R⊗S M̃ . The S-module R has a standard presentation

Sl ( f1,..., fl )
−−−−−→ S→ R→ 0.

Now a presentation of M as an S-module can be computed from those of R and M̃ .
If B is a presentation matrix of M as an S-module, then U (B, e) is one of Fe

∗
M

as an S-module. If U (B, e) denotes the matrix with entries in R induced from
U (B, e), then U (B, e) is a presentation matrix of Fe

∗
M as an R-module.
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2c3. Implementation in Macaulay2. The following Macaulay2 function returns
the pushforward Fe

∗
M of the given module M , following the recipe explained above:

frobeniusPushForward = (M, e) -> (
R := ring M;
p := char R;
assert(p > 0); q := p^e;
I := ideal R;
l := numgens I;
B := gens ideal R;
S := ambient R;
n := numgens S;
qSequence := i ->

apply(0..n-1, j -> (i % q^(n-j)) // q^(n-j-1));
toNumber := i -> sum(n, j -> i_j * q^(n-j-1) );
qQuotient := i -> apply(i, j -> j // q);
qRemainder := i -> apply(i, j -> j % q);
monoToMatrix := m ->

(coefficients m)_1_(0,0)
* map(S^(q^n),S^(q^n),

(i,j) -> (e = (toList qSequence i) + (exponents m)_0;
if(toNumber qRemainder e) == j

then S_(toList qQuotient e)
else 0));

polyToMatrix := f ->
if f == 0_S

then map(S^(q^n),S^(q^n),0_S)
else sum(terms f, i -> monoToMatrix i);

basisToMatrix := b ->
fold((i, j)->(i | j),

apply((flatten entries b), polyToMatrix));
matrixToMatrix := m ->

fold((i, j)->(i || j),
apply(apply(entries m, i -> matrix{i}), basisToMatrix));

ROverS := coker map(S^1,S^l, entries B);
PresenOverR := presentation minimalPresentation M;
PresenOverS := presentation minimalPresentation(

coker(sub(PresenOverR,S))**ROverS);
L := matrixToMatrix PresenOverS;
minimalPresentation coker sub(L,R)

);
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Note that in the computations with Macaulay2, columns and rows of matrices
should be indexed by single indices rather than multiindices. For this aim, the
inner functions qSequence and toNumber above define bijections between the sets
{0, 1, . . . , qn

− 1} and 3 that are inverses to each other.
Note that one can compute Fe

∗
M also with the built-in function PushForward

in the case where the ring and the module are (weighted) homogeneous.

2d. Computing the singular and nonnormal loci of a blowup. We often would
like to know if a given blowup is smooth or normal, or to know where the singular
locus or the nonnormal locus is. One way to compute the singular locus of BlI (X)
is to compute the singular locus of Spec R[I t]. For instance, suppose that we have
an expression of R[I t] as a quotient of a polynomial ring over R,

R[I t] = R[t1, . . . , tn]/J.

Then BlI (X) is smooth if and only if the singular locus of Spec R[I t] is contained
in the closed subset V (t1, . . . , tn) ⊂ Spec R[I t]. This method is useful when the
Rees algebra is relatively simple. Otherwise, the computation may not finish in a
reasonable time.

In that case, an alternative way is to compute the singular loci of affine charts.
With the notation above, the blowup BlI (X) is covered by n affine charts corre-
sponding to the variables t1, . . . , tn . Their coordinate rings are

R[t1, . . . , tn]/(J + (ti − 1)) for i = 1, . . . , n.

These rings are likely to become simpler than R[I t] and easier to compute the
singular loci. Computation of these rings is implemented as follows:

affineCharts = S -> (
T := (flattenRing S)_0;
varsOfS := apply(flatten entries vars S, i->sub(i, T));
apply(varsOfS, i -> minimalPresentation(T / ideal(i - 1)))

);

The same method can apply to find the nonnormal locus.

2e. Embedding F-blowups into the Grassmannian and the projective space. As
already mentioned above, F-blowups are constructed as a subscheme of the Grass-
mannian. Then further composing with the Plücker embedding, we obtain an
embedding into a projective space over X .

To describe this embedding, let X = Spec R be of dimension n, let K be the
function field of X , and let the fractional ideal I = Im(

∧pn
R1/pe

→ K ) be generated
by m+1 elements s0, . . . , sm . Then, being the blowup of X at I , the e-th F-blowup
FBe(X) of X is embedded into the projective space Pm

X over X .
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Suppose now that f : Y→ X is any flattening of R1/pe ∼= Fe
∗

OX . Then we have a
surjection O⊕m+1

Y → f ? I = det f ?R1/pe
induced by s0, . . . , sm , which gives rise to

a morphism 8e : Y → Pm
X such that 8∗eOP(1)∼= det f ?R1/pe

, and the image 8e(Y )
of this morphism is nothing but FBe(X)= BlI (X).

In dimension two where the existence of resolution of singularities is established
in arbitrary characteristic, we can study F-blowups downwards from a resolution that
flattens the OX -module Fe

∗
OX ∼= O

1/pe

X . The following is an immediate consequence
of the observation above.

Proposition 2.9. Let X be a surface over k and let f : X̃→ X be a resolution with
irreducible exceptional curves E1, . . . , Es . Suppose that f ?O1/pe

X is flat, so that we
have a birational morphism 8e : X̃→ FBe(X). Then 8e(Ei ) is a curve on FBe(X)
if c1( f ?O1/pe

X )Ei > 0, and Ei contracts to a point on FBe(X) if c1( f ?O1/pe

X )Ei = 0.

3. F-blowups of rational surface singularities

Throughout this section we work under the following notation:

k an algebraically closed field of characteristic p > 0,

(X, x) a rational surface singularity defined over k with local ring R=OX,x ,

f : X̃→ X the minimal resolution of (X, x) with Exc( f )=
⋃s

i=1 Ei .

The situation is quite simple in this case because of the following fact [Artin
and Verdier 1985]: If M is a reflexive OX -module,1 then its torsion-free pullback
M̃ = f ?M = f ∗M/ torsion is an f -generated locally free OX̃ -module such that
f∗M̃ =M and R1 f∗M̃ = 0. Note that this vanishing of the higher direct image is an
easy consequence of the rationality of the singularity (X, x) and the f -generation
of M̃ , which gives rise to a surjection O⊕n

X̃
→→ M̃ .

Lemma 3.1 [Hara 2012, Lemma 1.8]. If M is a reflexive OX -module of rank r , then
the natural map

∧r M→ f∗(det M̃) is surjective.

Proposition 3.2. The e-th F-blowup FBe(X) of a rational surface singularity
(X, x) is dominated by the minimal resolution X̃ and has only rational singularities
for all e ≥ 0.

Proof. Because M := R1/pe
is a reflexive R-module, its torsion-free pullback

M̃ = f ?R1/pe
to X̃ is flat, so that the minimal resolution f : X̃ → X factors

through the universal flattening FBe(X) of R1/pe
. On the other hand, the ideal

I = IM for M = R1/pe
is I = H 0(X̃ , det M̃) by Lemma 3.1, so that we can take

I to be an integrally closed ideal in R, or complete ideal in the sense of Lipman
[1969]. Then the Rees algebra R[I t] is normal by [ibid., Proposition 8.1], so

1 We always assume that M is a finitely generated OX -module.
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FBe(X)= Proj R[I t] is normal. It then follows from [Artin 1962] that FBe(X) has
only rational singularities. �

Corollary 3.3. Let (X, x) be a rational surface singularity over k.

(1) For any e ≥ 0, the e-th F-blowup FBe(X) is obtained by contracting some
of the exceptional curves E1, . . . , Es on the minimal resolution X̃ to normal
points with at most rational singularities.

(2) The minimal resolution X̃ of (X, x) is obtained by finitely many iteration of
F-blowups. More explicitly, for any sequence of positive integers e1, . . . , es ,
we have X̃ = FBes (FBes−1( · · · FBe2(FBe1(X)) · · · )).

The behavior of F-blowups is especially nice for F-regular surface singularities.
Namely, the e-th F-blowup of any F-regular surface singularity is the minimal
resolution for e� 0 [Hara 2012]. We next consider F-blowups of non-F-regular
rational double points more in detail. In this case we can use the classification of
rational double points in characteristic p > 0 [Artin 1977], as well as the following:

Lemma 3.4 [Artin and Verdier 1985]. Let (X, x) be a rational double point and
let Z0 =

∑s
i=1 ri Ei be the fundamental cycle on the minimal resolution X̃ . Then

there is a one-to-one correspondence between the exceptional curves Ei of f and
the isomorphism classes of nontrivial indecomposable reflexive OX -modules Mi ,
satisfying the following properties.

(1) rank Mi = ri for 1≤ i ≤ s.

(2) c1(M̃i )E j = δi j for 1≤ i, j ≤ s.

In what follows, we use the notation of [Artin 1977] for rational double points
in positive characteristic.

Among non-F-regular rational double points, Frobenius sandwiches have par-
ticularly easy to analyze F-blowups. Let X be a Frobenius sandwich of a smooth
surface S, that is, the Frobenius morphism of S factors as F : S

π
−→X → S. Then

F-blowups of X are also the universal flattening of the reflexive OX -module π∗OS

[Hara and Sawada 2011, Proposition 4.3]. Thanks to this observation, we can study
F-blowups of the Frobenius sandwich X via π∗OS instead of Fe

∗
OX . For example,

we find whether the irreducible exceptional curve Ei appears on FBe(X) or not by
evaluating the intersection number c1( f ?(π∗OS))Ei in Proposition 2.9.

3a. D0
2n-singularities. Here we consider a D0

2n-singularity for n ≥ 2 in p = 2 as a
Frobenius sandwich. Let A2

= Spec k[x, y] and π : A2
→ X = A2/δ the quotient

map by a vector field δ = (x2
+ nxyn−1)∂/∂x + yn∂/∂y ∈ Derk OA2 . Here

OX = k[x, y]δ = k[x2, y2, x2 y+ xyn
] ∼= k[X, Y, Z ]/(Z2

+ X2Y + XY n)
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and X has a D0
2n-singularity. Then R = OX = k[X, Y, Z ]/(Z2

+ X2Y + XY n) is a
graded ring with deg X = 2(n−1), deg Y = 2 and deg Z = 2n−1. The 4(n−1)-st
Veronese ring of R is

R(4(n−1))
= k[X2, Y 2(n−1), XY n−1

] ∼= k[u, v, w]/(w2
− uv).

Set x0 = u1/2
= X = x2 and x1 = v

1/2
= Y n−1

= y2(n−1). Then

R(4(n−1)) ∼= k[x2
0 , x2

1 , x0x1] = k[x0, x1]
(2),

so that Proj R ∼= P1 with homogeneous coordinates (x0 : x1)= (x2
: y2(n−1)). Let

s = x1/x0 = y2(n−1)/x2 be the affine coordinate of U0 = D+(x0) ⊂ Proj R ∼= P1

and pick a homogeneous element t = Z/X = y(x+ yn−1)/x ∈ R of degree 1. Since

t2(n−1)
=

x1(x1− x0)
n−1

xn−1
0

,

the Q-divisor
D = 1

2(n−1)
(0)+ 1

2(1)−
1
2(∞)

on P1 gives R =
⊕

n≥0 H 0(P1, nD)tn (the Pinkham–Demazure construction).
Let g : X ′→ X = Spec R be the weighted blowup with respect to the weight

(2(n− 1), 2, 2n− 1). Then X ′ ∼= SpecP1(
⊕

n≥0 OP1(nD)tn) admits an affine mor-
phism ρ : X ′→ P1 that is an A1-bundle over P1

\{0, 1,∞}, and the exceptional
curve of g is the negative section E ∼= P1 of ρ. Let X ′0 = ρ

−1U0. Then

OX ′0 = k
[
s, t, t2

s−1
,

t3

s−1
, . . . ,

t2(n−1)−2

(s−1)n−2 ,
t2(n−1)−1

(s−1)n−2 ,
t2(n−1)

s(s−1)n−1

]
and X ′ has an A2n−3-singularity on E |X ′0

∼= Spec k[s] at s = 0.
To resolve the A2n−3-singularity, we may replace

X ′0 = ρ
−1U0 by V = ρ−1(U0\{1}).

The affine coordinate ring of V is

OV = OX ′0

[ 1
s−1

]
= k[s, t, t2(n−1)/s]s−1.

The minimal resolution h : Ṽ → V of V is given by

Ṽ =
2(n−1)⋃

i=1

Ṽi , where Ṽi = Spec k[s/t i−1, t i/s]s−1.

Let Ẽ ∼= P1 be the h-exceptional curve lying on Ṽn−2 ∪ Ṽn−1:

Ẽ = Spec k[tn−2/s] ∪Spec k[s/tn−2
] ⊂ Ṽn−2 ∪ Ṽn−1.
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Now suppose that n is even; n = 2k with k ≥ 1. Let ϕ = tn−2/s(s− 1)k−1 and
ψ = tn−1/s(s− 1)k−1. Then ϕ,ψ ∈ OṼn−2

and x = ψ + yϕ. Thus

(h ◦ g)?(π∗OA2)|Ṽn−2
= Im(OṼn−2

⊗OX OA2 → k(A2))= k[s/tn−3, tn−2/s, x, y]s−1

is a free OṼn−2
-module with basis 1, y. Similarly it follows that (h ◦g)?(π∗OA2)|Ṽn−1

is a free OṼn−1
-module with basis 1, x . The transition matrix of the two bases on

Ṽn−2 ∩ Ṽn−1 is given by

(1 x)= (1 y)
(

1 tn−1/s(s− 1)k−1

0 tn−2/s(s− 1)k−1

)
.

Since s − 1 is a unit on V , the intersection number of L = c1((h ◦ g)?(π∗OA2))

with Ẽ is L Ẽ = 1. In light of Lemma 3.4, this means that the reflexive OX -module
π∗OA2 of rank 2 is the indecomposable one corresponding to Ẽ , which is identified
with the exceptional curve En+1 on the minimal resolution X̃ indicated in the figure
below:

E1

|

E2 —E3— E4− · · ·− En+1− · · ·− E2n

In the case where n = 2k + 1 with k ≥ 1, we obtain the same conclusion that
c1((h ◦ g)?(π∗OA2)) · Ei = δi,n+1.

Thus we conclude that for all e ≥ 1, the e-th F-blowup FBe(X) coincides with
the normal surface obtained by contracting all exceptional curves on X̃ except
En+1.

Putting the result above together with [Hara and Sawada 2011, Example 4.8],
we obtain the following.

Theorem 3.5. Let (X, x) be a rational double point of type D0
2n for n ≥ 2, E0

7 , E0
8

in p = 2, E0
6 , E0

8 in p = 3 or E0
8 in p = 5. Then for any e ≥ 1, the e-th F-blowup

FBe(X) coincides with the normal surface obtained by contracting the exceptional
curves on the minimal resolution X̃ corresponding to the blank circles in the figure
below:

(1) D0
2n-singularity for n ≥ 2 in p = 2:

◦ ◦

◦

· · · ◦ • ◦ · · · ◦︸ ︷︷ ︸
n−1

︸ ︷︷ ︸
n−1
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(2) E0
7-singularity in p = 2:

◦ ◦ ◦

•

◦ ◦ ◦

(3) E0
8-singularity in p = 2:

• ◦ ◦

◦

◦ ◦ ◦ ◦

(4) E0
6-singularity in p = 3:

◦ ◦ •

◦

◦ ◦

(5) E0
8-singularity in p = 3:

◦ ◦ ◦

•

◦ ◦ ◦ ◦

(6) E0
8-singularity in p = 5:

◦ ◦ ◦

◦

• ◦ ◦ ◦

We want to emphasize that all rational double points listed in Theorem 3.5 are
non-F-regular Frobenius sandwiches2 and their F-blowups FBe(X) with e ≥ 1
have only a single exceptional curve corresponding to the solid circle. In particular,
their F-blowups do not coincide with the minimal resolution.

We are also able to apply Macaulay2 to study F-blowups of a few non-F-regular
rational double points that are not supposed to be Frobenius sandwiches.

3b. D1
4- and D1

5-singularities in p = 2. First we consider the case of a D1
4-

singularity in p = 2: Let X = Spec R with R = k[x, y, z]/(z2
+ x2 y+ xy2

+ xyz).
Using the Macaulay2 function frobeniusPushForward in Section 2c3, we see
that the presentation matrix of F∗R is equivalent to(

z x + y+ z
xy z

)
⊕

(
z y

x(x + y+ z) z

)
⊕

(
z y(x + y+ z)
x z

)
⊕ 0,

where 0 is the zero matrix of size 1. Then the cokernel of each matrix of size 2
defines a nontrivial reflexive R-module of rank 1 and those reflexive R-modules are
different from each other. Thus FB1(X) coincides with the normal surface obtained

2 We expect that all non-F-regular Frobenius sandwich rational double points are exhausted
in Theorem 3.5, although we have not proved it yet. On the other hand, any F-regular Frobenius
sandwich double point is an A pe−1-singularity and its e-th F-blowup is the minimal resolution for
e� 0; see [Hara and Sawada 2011; Yasuda 2012].
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by contracting the exceptional curve E1 on the minimal resolution X̃ indicated in
the figure below:

E3

|

E2 — E1 — E4

Furthermore, we see that the reflexive R-module corresponding to the central curve
E1 appears as a direct summand of the Frobenius pushforward of each nontrivial
rank 1 reflexive module corresponding to Ei with i = 2, 3, 4. Thus FBe(X) is the
minimal resolution for e ≥ 2, since the D1

4-singularity is F-pure. A similar result
holds for the case of a D1

5-singularity. Note that D1
4- and D1

5-singularities are not
F-regular.

Remark 3.6. The D1
4-singularity in p = 2 is a wild quotient singularity, that is,

there exists a group G of order 2 acting on Y = Spec k[[x, y]] such that the quotient
X=Y/G has the D1

4-singularity. Although F-blowups of a tame quotient singularity
are always dominated by the G-Hilbert scheme [Yasuda 2012], this example shows
that the same does not hold for wild quotients. Let R = k[[x, y]]G ⊂ S = k[[x, y]]
be the invariant subring. Then S is an R-module of rank 2. Thus the blowup of X
at the R-module S, which coincides with the G-Hilbert scheme HilbG(Y ), has at
most two irreducible exceptional curves. On the other hand, the F-blowups FBe(X)
of the D1

4-singularity have more than three irreducible exceptional curves. Hence
the e-th F-blowup FBe(X) of the D1

4-singularity is not dominated by the G-Hilbert
scheme HilbG(Y ) for all e ≥ 1.

3c. E0
6-singularity in p = 2. Let R = k[x, y, z]/(z2

+ x3
+ y2z) and X = Spec R.

Then X has an E0
6-singularity in characteristic p = 2. Write

A1 =


z y x 0
yz z 0 x
x2 0 z y
0 x2 yz z

 , A2 =


x y2
+ z y 0

z x2 0 xy
0 0 x y2

+ z
0 0 z x2

 and A3 =
tA2.

Then their cokernels define nontrivial reflexive R-modules of rank 2 and those
R-modules are different from each other. Now we see that presentation matri-
ces of F∗R and F2

∗
R are equivalent to A⊕2

1 and A⊕4
1 ⊕ A⊕2

2 ⊕ A⊕2
3 , respectively.

Furthermore, a direct summand other than A1, A2 and A3 does not appear in the
presentation matrices of Fe

∗
R for e≥ 2. Since the blowup of X at Coker A1 has only

one singular point, we can specify the exceptional curve on the minimal resolution
corresponding to Coker A1. The resulting descriptions of FBe(X) are summarized
in the following.

Proposition 3.7. Let (X, x) be a rational double point of type D1
4 , D1

5 or E0
6 in

characteristic p = 2. Then the e-th F-blowup FBe(X) of (X, x) coincides with
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the normal surface obtained by contracting the exceptional curves on the minimal
resolution X̃ corresponding to the blank circles in the figure below:

(1) D1
4 and D1

5-singularity in p = 2:

e = 1:

• ◦

•

•

and

◦ •

◦

◦ •

For e ≥ 2, the F-blowups FBe(X) of both singularities coincide with the
minimal resolution.

(2) E0
6-singularity in p = 2:

e = 1:

◦ ◦ ◦

•

◦ ◦

e ≥ 2:

◦ • ◦

•

• ◦

We can also compute the first F-blowup FB1(X) of a few other rational double
points with Macaulay2.

Example 3.8. (1) E1
6-singularity in p=2: Let R=k[x, y, z]/(z2

+x2 y+xy2
+xyz)

and X = Spec R. Then X has an E1
6-singularity. Write

A =



z 0 0 0 x z
0 z y 0 y x

xy yz z x2
+ yz 0 0

0 0 x x y 0
x2 xz 0 yz z 0

xy+ y2 x2 0 xy 0 z


.

Then the cokernel of A defines an indecomposable reflexive R-module of rank 3.
The presentation matrix of F∗R is equivalent to A⊕0, where 0 is the zero matrix of
size 1. Thus FB1(X) has a unique exceptional curve corresponding to the solid circle
in the figure below and has three singular points (an A1- and two A2-singularities) on
it:

◦ ◦ •

◦

◦ ◦

(2) E3
8-singularity in p= 2: Let R= k[x, y, z]/(z2

+x3
+y5
+y3z) and X =Spec R.

Then X has an E3
8-singularity. In this case, F∗R has two kinds of indecomposable

reflexive R-modules. Since rank F∗R = 4, we see that F∗R is a direct sum of
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indecomposable reflexive R-modules of rank 2 corresponding to the solid circles in
the figure below:

• ◦ ◦

◦

◦ ◦ ◦ •

Thus FB1(X) has two exceptional curves corresponding to the solid circles meeting
at the unique singular point of type D6.

4. F-blowups of simple elliptic singularities

In this section (X, x) will denote a simple elliptic singularity defined over an
algebraically closed field k of characteristic p > 0 unless otherwise noted. Then by
a result of Hirokado [2004], (X, x) is quasihomogeneous. So we may assume that
X = Spec R for a graded k-algebra

R = R(E, L)=
⊕
n≥0

H 0(E, Ln)tn,

where E is an elliptic curve over k, L is an ample line bundle on E and deg t = 1.
The minimal resolution f : X̃→ X of X is described as follows: X̃ has an A1-bundle
structure π : X̃ = SpecE(L

ntn)→ E over E , and its zero-section, which we also
denote by E , is the exceptional curve of f . Its self-intersection number is E2

=

− deg L . Our situation is summarized in the following diagram:

E � � //

id   

X̃
f //

π

��

X

E

To compute the F-blowup FBe(X) of X , we will look at the structure of the
torsion-free pullback f ?R1/q of R1/q ∼= Fe

∗
OX , where q = pe. For this purpose we

decompose

R1/q
=

⊕
n≥0

H 0(E, Fe
∗

Ln)tn/q as R1/q
=

q−1⊕
i=0

[R1/q
]i/q mod Z,

where

[R1/q
]i/q mod Z =

⊕
0≤n≡i mod q

H 0(E, Fe
∗

Ln)tn/q ∼=
⊕
m≥0

H 0(E, Lm
⊗ Fe
∗

L i )

is an R-summand of R1/q for i = 0, 1, . . . , q − 1; see [Smith and Van den Bergh
1997].



750 Nobuo Hara, Tadakazu Sawada and Takehiko Yasuda

In what follows we put q = pe and d = deg L =−E2.

Lemma 4.1. If 1≤ i ≤ q − 1 and q 6= di , then X̃ is a flattening of [R1/q
]i/q mod Z.

Proof. First of all, the locally free sheaf Lm
⊗ Fe
∗

L i on E is generated by its global
sections if m ≥ 1, or m = 0 and q < di . To see this, let P ∈ E and consider the
exact sequence

0→ Lm(−P)⊗ Fe
∗

L i
→ Lm

⊗ Fe
∗

L i
→ κ(P)⊗ Lm

⊗ Fe
∗

L i
→ 0. (1)

Since h1(Lm(−P)⊗ Fe
∗

L i ) = h1(Lqm+i (−q P)) = h0(L−qm−i (q P)) = 0 by the
assumption, the induced map H 0(E, Lm

⊗ Fe
∗

L i )→ H 0(E, κ(P)⊗ Lm
⊗ Fe
∗

L i )

is surjective, that is, Lm
⊗ Fe
∗

L is generated by its global sections at P ∈ E . Hence

f ?[R1/q
]i/q mod Z = Im([R1/q

]i/q mod Z⊗R OX̃ → Fe
∗

OX̃ )

= Im
(⊕

m≥0

H 0(E, Lm
⊗ Fe
∗

L i )⊗k OE
α
−→

⊕
m≥0

Lm
⊗ Fe
∗

L i
)

= Im(H 0(E, Fe
∗

L i )⊗OE
α0
−→ Fe

∗
L i ) ⊕

⊕
m≥1

Lm
⊗ Fe
∗

L i

⊂

⊕
m≥0

Lm
⊗ Fe
∗

L i ∼= π
∗Fe
∗

L i ,

where αm (m ≥ 0) is the graded part of the map α of degree m, and in particular,
f ?[R1/q

]i/q mod Z
∼= π∗Fe

∗
L i if q < di . Since π∗Fe

∗
L i is a locally free OX̃ -module,

we consider the case q > di . Since αm is surjective for m ≥ 1, the OX̃ -module
Coker(α) = Coker(α0) is regarded as a coherent sheaf on the exceptional curve
E ⊂ X̃ of f .

Claim. Coker(α) = Coker(α0) is a locally free sheaf on E , so that it has depth 1
as an OX̃ -module at each point on E ⊂ X̃ .

To prove the claim, note that h0(Fe
∗

L i )= h0(L i )=di by Riemann–Roch and that
Fe
∗

L i is a locally free sheaf on E of rank q , so that the rank of Coker(α)=Coker(α0)

as an OE -module is at least q − di . On the other hand, since

H 0(E,OE(−P)⊗ Fe
∗

L i )= H 0(E, L i (−q P))= 0

by our assumption, the cohomology long exact sequence of (3) for m = 0 turns out
to be

0→ H 0(E, Fe
∗

L i )→ κ(P)⊗ Fe
∗

L i
→ H 1(E,OE(−P)⊗ Fe

∗
L i )→ 0,

from which we see that the minimal number of local generators of Coker(α) is
dim Coker(α0)⊗ κ(P)= q − di . Comparing the rank and the minimal number of
local generators, we conclude that Coker(α)= Coker(α0) is a locally free sheaf on
E of rank q − di .
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Now we have an exact sequence of OX̃ -modules

0→ f ?[R1/q
]i/q mod Z→ π∗Fe

∗
L i
→ Coker(α)→ 0,

in which π∗Fe
∗

L i and Coker(α) have depth 2 and 1, respectively. Thus the depth
of f ?[R1/q

]i/q mod Z is 2, so that it is locally free on X̃ . �

Remark 4.2. In the case where 1≤ i ≤ q − 1 and q = di , an argument similar to
that in the proof of Lemma 4.1 shows that f ?[R1/q

]i/q mod Z is not flat at P ∈ E ⊂ X̃
if and only if L i ∼= OE(q P).

Corollary 4.3. If q = pe > 1 and d =−E2 is not a power of the characteristic p,
then X̃ is the normalization of the blowup BlNq (X) of X = Spec R at the R-module

Nq =

q−1⊕
i=1

[R1/q
]i/q mod Z.

Proof. First we will see that Nq is not flat if q = pe > 1. For, if Nq is flat, then
the OX,x -module O

1/q
X,x has a free summand of rank at least q(q − 1). However, the

rank of the free summand of O
1/q
X,x is exactly equal to 1, since OX,x is a Gorenstein

F-pure local ring with isolated non-F-regular locus; see [Aberbach and Enescu
2005; Sannai and Watanabe 2011, Theorem 5.1].

Now by Lemma 4.1, the minimal resolution f : X̃→ X is a flattening of Nq , so
it factors as

f : X̃
g
−→ BlNq (X)

h
−→ X.

Since Nq is not flat and X is normal, h is not an isomorphism and has an exceptional
curve, which is equal to g(E). Hence g is finite (and birational), so that X̃ is the
normalization of BlNq (X). �

Next we consider the structure of f ?[R1/q
]0 mod Z, which depends on whether

R is F-pure or not. This is equivalent to saying whether the elliptic curve E is
ordinary or supersingular, since the section ring R = R(E, L) is F-pure if and only
if E = Proj R is F-split.

4a. The F-pure case. We first consider the case where R is F-pure, or equivalently,
E is an ordinary elliptic curve. In this case, given a fixed point P0 ∈ E as the identity
element of the group law of E , there are exactly q = pe distinct q-torsion points
P0, . . . , Pq−1. In other words, there are exactly q nonisomorphic q-torsion line
bundles L0, . . . , Lq−1 ∈ Pic◦(E) given by L i = OE(Pi − P0). Then Fe

∗
OE splits

into line bundles as

Fe
∗

OE ∼=

q−1⊕
i=0

L i . (2)
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Indeed, since OE is a direct summand of Fe
∗

OE by F-splitting, each L i is a direct
summand of L i ⊗ Fe

∗
OE ∼= Fe

∗
Fe∗L i ∼= Fe

∗
(Lq

i )
∼= Fe

∗
OE ; see [Atiyah 1957].

Lemma 4.4. Let E be an ordinary elliptic curve.

(1) Suppose d = 1 and choose the identity element P0 ∈ E so that L ∼= OE(P0).
Then f ?[R1/q

]0 mod Z is not flat exactly at the q − 1 distinct q-torsion points
P1, . . . , Pq−1 ∈ E ⊂ X̃ other than P0. Moreover, [R1/q

]0 mod Z is flattened by
blowing up the points P1, . . . , Pq−1.

(2) If d ≥ 2, then X̃ is a flattening of [R1/q
]0 mod Z.

Proof. Corresponding to the splitting of Fe
∗

OE as in the formula (2) above, the R-
module [R1/q

]0 mod Z has a splitting [R1/q
]0 mod Z

∼=
⊕q−1

i=0 Ji into q nonisomorphic
reflexive R-modules R = J0, J1, . . . , Jq−1 of rank 1, where

Ji = 0∗(L i ) :=
⊕
m∈Z

H 0(E, L i ⊗ Lm)=
⊕
m≥0

H 0(E, L i ⊗ Lm).

In case (1) where d = 1, it is sufficient to show the following:

Claim. For i = 1, . . . , q−1, f ? Ji is not flat exactly at the single point Pi ∈ E ⊂ X̃ .
If σi : X̃ i → X̃ is the blowup at Pi , then ( f ◦ σi )

? Ji is invertible.

To prove the claim, note that deg L = 1 and deg L i = 0. Then the following holds
for the linear system |L i ⊗ Lm

| on E : |L i | = ∅, |L i ⊗ L| = Bs |L i ⊗ L| = {Pi }

and |L i ⊗ Lm
| is base point free for m ≥ 2. Hence, as in the proof of the previous

lemma,

f ? Ji = Im(Ji ⊗R OX̃ → Fe
∗

OX̃ )

= Im
(⊕

m≥0

H 0(E, L i ⊗ Lm)⊗k OE →
⊕
m≥0

L i ⊗ Lm
)

= L i ⊗ L(−Pi )⊕
⊕
m≥2

L i ⊗ Lm
⊂

⊕
m≥1

L i ⊗ Lm ∼= OX̃ (−E)⊗π∗L i ,

where L i⊗L(−Pi )∼=OE ⊂ L i⊗L is the graded part of degree m= 1. We therefore
have the following exact sequence of OX̃ -modules:

0→ f ? Ji → OX̃ (−E)⊗π∗L i → κ(Pi )→ 0,

which tells us that f ? Ji = IPi · OX̃ (−E)⊗ π∗L i , where IPi is the ideal sheaf
defining the closed point Pi ∈ X̃ . Now the claim follows immediately.

(2) If deg L ≥ 2, then the same argument as in (1) shows that f ? Ji is isomorphic to
OX̃ (−E)⊗π∗L i , which is invertible. �

We now state a structure theorem for F-blowups of F-pure Ẽ8-singularities, that
is, F-pure simple elliptic singularities with E2

=−1.



F -blowups of normal surface singularities 753

Theorem 4.5. Let (X, x) be an F-pure simple elliptic singularity with the ellip-
tic exceptional curve E on the minimal resolution X̃ such that E2

= −1. Let
P0, . . . , Pq−1 ∈ E be the q = pe distinct q-torsion points on E ⊂ X̃ , where the
identity element P0 is chosen so that

OX̃ (−E)⊗OE ∼= OE(P0),

and let Z = {P1, . . . , Pq−1} ⊂ X̃ . Then for any e ≥ 1, the normalization of the
e-th F-blowup FBe(X) coincides with the blowup BlZ (X̃) of X̃ at the nontrivial
q-torsion points.

In particular, the e-th F-blowup of X is not dominated by the minimal resolution
of the singularity (X, x), and the monotonic sequence of F-blowups (see [Yasuda
2009]),

· · · → FBe(X)→ · · · → FB2(X)→ FB1(X)→ X,

does not stabilize.

Proof. Since Nq =
⊕q−1

i=1 [R
1/q
]i/q mod Z is a direct summand of R1/q as an R-

module, we have a morphism FBe(X) → BlNq (X) over X . If we denote the
normalization of FBe(X) by F̃Be(X), then we have a morphism ϕ : F̃Be(X)→ X̃
by Corollary 4.3. On the other hand, since BlZ (X̃) is a flattening of R1/q by
Lemmas 4.1 and 4.4, we have a morphism BlZ (X̃) → FBe(X) over X , which
induces ψ : BlZ (X̃)→ F̃Be(X). Thus the blowup π : BlZ (X̃)→ X̃ at Z ⊂ X̃
factors as

π = ϕ ◦ψ : BlZ (X̃)
ψ
−→ F̃Be(X)

ϕ
−→ X̃ .

Since f ?R1/q is not flat exactly at Z = {P1, . . . , Pq−1} by Lemma 4.4, ϕ has
an exceptional curve over every Pi and ψ is finite (and birational), by the same
argument as in the proof of Corollary 4.3. Since F̃Be(X) is normal, ψ is an
isomorphism, that is, BlZ (X̃)∼= F̃Be(X) as required. �

The theorem above has nothing to say about the normality of the F-blowups.
Let us take a look at a Macaulay2 computation.

Example 4.6. From [Hirokado 2004, Corollary 4.3], the variety

X = Spec F2[x, y, z]/(y2
+ x3
+ xyz+ z6)

has a simple elliptic singularity of type Ẽ8. Moreover from Fedder’s criterion
[1983], this is F-pure. Note that since F-blowups are compatible with extensions
of perfect fields [Yasuda 2012], the fact that the base field is not algebraically
closed does not pose a problem. By Macaulay2 computation, one can check the
following: The first F-blowup FB1(X) is nonnormal and its exceptional set consists
of two projective lines E1 and E2, which intersect transversally at one point. The
normalization F̃B1(X) of FB1(X) is smooth. The inverse image of E1 in F̃B1(X)
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is a smooth elliptic curve, which agrees with Theorem 4.5. In particular, this
experimental result shows that the normalization in the theorem is really necessary.

Next we consider the case where E2
≤−2.

Theorem 4.7. Let (X, x) be an F-pure simple elliptic singularity with the elliptic
exceptional curve E on the minimal resolution X̃ such that E2

≤−2. Assume further
that d =−E2 is not a power of the characteristic p. Then X̃ is the normalization of
the e-th F-blowup FBe(X) for all e ≥ 1. Moreover, if E2

≤−3, then X̃ ∼= FBe(X)
for all e ≥ 1.

Proof. Since X̃ is a flattening of R1/q by Lemmas 4.1 and 4.4, we see that X̃ is the
normalization of FBe(X) as in the proof of Corollary 4.3.

To deduce a stronger conclusion in the special case E2
≤ −3, we need the

following:

Lemma 4.8 [Mumford 1970]. Let V be a projective variety, F a coherent sheaf
on V and let L be a line bundle on V generated by its global sections. Suppose that
H i (V,F⊗ L−i )= 0 for all i > 0. Then the natural map

H 0(V,F)⊗ H 0(V, L)⊗n
→ H 0(V,F⊗ Ln)

is surjective for all n ≥ 1.

Lemma 4.9. Let H1, . . . , Hn be line bundles on an elliptic curve E of deg Hi ≥ 3
for i = 1, . . . , n. Then the natural map

H 0(E, H1)⊗ · · ·⊗ H 0(E, Hn)→ H 0(E, H1⊗ · · ·⊗ Hn)

is surjective.

Proof. The case n ≥ 3 is easily reduced to the case n = 2 by induction on n, so
let n = 2. If deg H1 > deg H2, then H 1(E, H1⊗ H−1

2 )= 0, so that the surjectivity
of the map H 0(E, H1)⊗ H 0(E, H2) → H 0(E, H1 ⊗ H2) immediately follows
from Mumford’s lemma. Suppose that deg H1 = deg H2 and let L = H2 − P
for any fixed point P ∈ E . Then L is globally generated since deg L ≥ 2, and
H 1(E, H1⊗ L−1)= 0 since deg(H1⊗ L−1)= 1> 0. Hence the map

H 0(E, H1)⊗ H 0(E, L)→ H 0(E, H1⊗ L)

is surjective by Mumford’s lemma. We now consider the following commutative
diagram with exact rows:

0 // H 0(H1)⊗ H 0(L)

��

// H 0(H1)⊗ H 0(H2)

��

// H 0(H1)⊗ H 0(H2⊗ κ(P)) //

��

0

0 // H 0(H1⊗ L) // H 0(H1⊗ H2) // H 0(H1⊗ H2⊗ κ(P)),
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where we have just verified the surjectivity of the vertical map on the left, and the
vanishing of the right upper corner comes from H 1(E, L) = 0. So, to prove the
required surjectivity of the vertical map in the middle, it suffices to show that the
vertical map on the right is surjective, by the five-lemma. This map is factorized as

H 0(H1)⊗ H 0(H2⊗ κ(P))
α
−→ H 0(H1⊗ κ(P))⊗ H 0(H2⊗ κ(P))

β
−→ H 0(H1⊗ H2⊗ κ(P)).

Here α is surjective because of the vanishing H 1(E, H1(−P)) = 0, and β is
identified with the multiplication map k⊗2

−→∼ k, which is clearly surjective. Thus
β ◦α is surjective, and the lemma is proved. �

We continue the proof of Theorem 4.7 in the case E2
≤ −3. Consider the

decomposition (2) of Fe
∗

OE into q= pe-torsion line bundles OE = L0, L1, . . . , Lq−1

on E . We fix any i with 0< i ≤ q − 1 and let I ⊂ R be an ideal isomorphic to the
reflexive R-module

Ji = 0∗(L i )=
⊕
n≥1

H 0(E, L i ⊗ Ln)tn

of rank 1, which is a nontrivial R-summand of R1/q . Then the minimal resolution
f : X̃→ X = Spec R is factorized as

f : X̃→ FBe(X)→ BlI (X)→ X,

where the blowup BlI (X) = Proj R[I t] of X with respect to the ideal I has an
exceptional curve that is the image of E ⊂ X̃ , since I ∼= Ji is not a flat R-module.
It follows that X̃ is the normalization of BlI (X). So, to prove the theorem, it is
sufficient to show that the Rees algebra R[I t] is normal.

To prove the normality of R[I t] =
⊕

m≥0 I m tm , note that its normalization is

R̃[I t] =
⊕
m≥0

I m tm,

where I m ⊆ R is the integral closure of the ideal I m ; see [Lipman 1969]. Note also
that

I OX̃
∼= f ? Ji ∼=

⊕
n≥1

(L i ⊗ Ln)tn ∼= OX̃ (−E)⊗π∗L i

is an invertible sheaf on X̃ by Lemma 4.4, so that

I m ∼= H 0(X̃ ,OX̃ (−m E)⊗π∗Lm
i )
∼=

⊕
n≥m

H 0(E, Lm
i ⊗ Ln)tn for all m ≥ 1.
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Now, since deg L ≥ 3, we can apply Lemma 4.9 to H1 = · · · = Hm := L i ⊗ L and
Hm+1 = · · · = Hn := L to obtain the surjectivity of the map

H 0(E, L i ⊗ L)⊗m
⊗ H 0(E, L)⊗n−m

→ H 0(E, Lm
i ⊗ Ln)

for all n ≥m ≥ 1. This implies that the multiplication map I⊗m
→ I m is surjective

in all degree n. Since I = I is integrally closed, we conclude that I m
= I m , from

which the normality of the Rees algebra R[I t] follows. �

Example 4.10. Let

X = Spec F2[x, y, z]/(y2
+ xyz+ x3z+ xz3).

Again from [Hirokado 2004, Corollary 4.3] and Fedder’s criterion, X has an F-
pure simple elliptic singularity of type Ẽ7 at the origin. The exceptional set of
FB1(X) consists of three projective lines. It shows that it is necessary to suppose
in Theorem 4.7 that d =−E2 is not a power of p. The normalization of FB1(X) is
smooth.

Example 4.11. The variety

X = Spec F2[x, y, z]/(y2z+ xyz+ x3
+ z3)

has an F-pure simple elliptic singularity of type Ẽ6. By Macaulay2 computations,
we can see that FB1(X) is smooth and the exceptional set is a smooth elliptic curve,
as expected from Theorem 4.7.

4b. The non-F-pure case. Now we consider the structure of f ?[R1/q
]0 mod Z as-

suming that R is not F-pure, or equivalently, E is a supersingular elliptic curve. In
this case E has no nontrivial q-torsion point under the group law. Then, contrary to
the F-pure case, Fe

∗
OE turns out to be indecomposable as we will see below.

For any elliptic curve E and an integer r > 0, there exists an indecomposable
vector bundle Fr on E of rank r and degree zero with h0(Fr ) = 1, determined
inductively by F1 = OE and the unique nontrivial extension

0→ Fr−1→ Fr → OE → 0. (3)

Note that Fr is self-dual and (3) is the dual sequence of that in [Atiyah 1957,
Theorem 5].

Lemma 4.12 (see [Atiyah 1957; Tango 1972]). If E is a supersingular elliptic
curve, then Fe

∗
OE ∼= Fq for all q = pe.
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Proof. Let Fe
∗

OE =E1⊕· · ·⊕En be the decomposition of Fe
∗

OE into indecomposable
bundles Ei of rank ri and degree di . Then d1+· · ·+dn=χ(Fe

∗
OE)= 0 by Riemann–

Roch. Pick a nontrivial line bundle L of degree zero. Then
n∑

i=1

h0(Ei ⊗ L)= h0(L ⊗ Fe
∗

OE)= h0(Lq)= 0,

since there is no nontrivial q-torsion line bundle on a supersingular elliptic curve.
Hence di = deg(Ei ⊗ L) ≤ 0 for all i = 1, . . . , n. Thus the indecomposable
summands Ei of Fe

∗
OE have degree di = 0, and exactly one of them, say E1, has a

nonzero global section since h0(Fe
∗

OE)= 1. Then by [Atiyah 1957, Theorem 5], we
have E1 ∼=Fr1 and Ei ∼=Fri ⊗ L i for i = 2, . . . , n, where L2, . . . , Ln are nontrivial
line bundles of degree zero. Suppose that n ≥ 2. Then L−1

2 ⊗ Fe
∗

OE has a nonzero
global section since its direct summand Fr2 does. On the other hand, however,
H 0(E, L−1

2 ⊗ Fe
∗

OE)= H 0(E, L−q
2 )= 0 since L2 is not a q-torsion line bundle by

our assumption. We thus conclude that n = 1, that is, Fe
∗

OE ∼= Fq . �

Now for each r , we consider the graded R-module

Mr =
⊕
n≥0

H 0(E,Fr ⊗ Ln)tn

and regard its torsion-free pullback M̃r = f ?Mr to the minimal resolution X̃ of
X = Spec R as a subsheaf of

Mr =
⊕
n≥0

(Fr ⊗ Ln)tn.

To obtain information on the flattening of R1/q , we consider the torsion-free
pullback f ?Mr of Mr to the minimal resolution, because [R1/q

]0 mod Z
∼= Mq by

Lemma 4.12.

4b1. Non-F-pure Ẽ8-singularities. We first consider the case of Ẽ8-singularities,
that is, the case deg L =−E2

= 1. In this case, L ∼= OE(P0) for a point P0 ∈ E .
We fix any point P ∈ E and let V ⊂ E be a sufficiently small open neighborhood

V of P on which L and Fr trivialize. We choose a local basis e1, . . . , er of Fr on V
inductively as follows. For r = 1, let e1 be a (local) basis of F1= OE corresponding
to its global section 1 ∈ H 0(E,OE). For r ≥ 2, we think of Fr−1 as a subbundle of
Fr via the exact sequence (3), and extend the local basis e1, . . . , er−1 of Fr−1 on
V to a local basis e1, . . . , er of Fr .

Let U = π−1V ⊂ X̃ . Then, with the local trivialization L|V ∼= OV and

Fr |V ∼=

r⊕
i=1

OV ei ∼= O⊕r
V
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as above, we have

Mr |U ∼=

r⊕
i=1

OU ei ∼= O⊕r
U ,

where OU =
⊕

n≥0(L|V )
ntn ∼=

⊕
n≥0 OV tn

= OV [t]. Note that the fiber coordinate
t and a regular parameter u at P ∈ E form a system of coordinates of U . With this
notation we shall express generators of the OU -module M̃r |U ⊆Mr |U , which come
from homogeneous elements of the graded R-module Mr .

First note that the degree zero piece [Mr ]0 = H 0(E,Fr )= H 0(E,F1) of Mr is
a one-dimensional k-vector space, so that its contribution to the generation of M̃r |U

is just e1. It is also easy to see that the graded parts of M̃r |U and Mr |U coincide
in degree ≥ 2 and are generated by t2e1, . . . , t2er , since Fr ⊗ Ln is generated by
global sections for n ≥ 2. It remains to consider the contribution of the degree one
piece [Mr ]1 = H 0(E,Fr ⊗ L)t to the generation of M̃r |U . To this end, note that
we have an exact sequence

0→ H 0(E,Fi ⊗ L)→ H 0(E,Fi+1⊗ L)→ H 0(E, L)→ 0

for 1≤ i≤r−1, via which we regard H 0(E,Fi⊗L) as a subspace of H 0(E,Fr⊗L).
Then, since h0(Fi ⊗ L)= i by Riemann–Roch, we can choose a basis s1, . . . , sr of
H 0(E,Fr ⊗ L) so that s1, . . . , si form a basis of H 0(E,Fi ⊗ L) for 1≤ i ≤ r . It
also follows from exact sequence (3)⊗L that the global sections s1, . . . , si generate
Fi⊗L on E \{P0}, so that they give a basis of Fi⊗L⊗K as a vector space over the
function field K of E . On the other hand, e1, . . . , ei can also be viewed as a basis
of Fi ⊗ L⊗ K ∼= K⊕i under the local trivialization Fi ⊗ L|V ∼=

⊕i
j=1 OV ei ∼= O⊕i

V
induced from Fi |V ∼= O⊕i

V and L|V ∼= OV . We will compare the basis consisting of
si ⊗ 1 and the standard basis e1, . . . , er of Fr ⊗ L ⊗ K ∼= K⊕r using the following
commutative diagram with exact rows:

0 // H 0(Fi−1⊗ L)⊗OV //

��

H 0(Fi ⊗ L)⊗OV //

��

H 0(L)⊗OV //

��

0

0 // Fi−1⊗ L|V //

∼=

��

Fi ⊗ L|V //

∼=

��

L|V //

∼=

��

0

0 // O⊕i−1
V

// O⊕i
V

// OV // 0

Suppose now that P = P0. Since Bs |L| = {P0}, we may choose a regular
parameter u at P0 ∈ E so that s1⊗ 1= u. It then follows from the diagram above
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that

si ⊗ 1= uei +

i−1∑
j=1

ai, j e j ,

where the ai j are local regular functions on V . We claim that we can replace
s1, . . . , sr so that they satisfy the following condition:

u|ai, j for 1≤ j ≤ i − 2 but ai,i−1 is not divisible by u. (4)

To prove the claim, there is nothing to do for i = 1. So let i = 2 and suppose
u|a2,1. We consider a k-linear map H 0(E, L)→ H 0(E,F2⊗ L) given by s1 7→ s2,
which gives rise to a K -linear map K ∼= L ⊗ K → F2 ⊗ L ⊗ K ∼= K 2 sending
1 = u−1(s1⊗ 1) 7→ u−1(s2⊗ 1) = e2+ (a21/u)e1. Since a21/u ∈ OV , this gives a
splitting of the surjective map O⊕2

V
∼=F2⊗L|V → L|V ∼=OV at P0 ∈ V , as well as at

any other point. Then we have a global splitting of the surjective map F2⊗ L→ L ,
contradicting the nontriviality of the extension (3). Thus a2,1(P0) 6= 0. Next let i ≥ 3.
Then by induction, we may replace si by si −

∑i−2
j=1(ai, j (P0)/a j+1, j (P0))s j+1 to

assume that u|ai, j for 1≤ j ≤ i − 2. It then follows that ai,i−1 is not divisible by u
because otherwise, s1 7→ si would give a global splitting of Fi ⊗ L→ L as above.

Consequently, local generators of M̃r on a neighborhood U0 of P0 are described
as

M̃r |U0 = OU0〈e1, tuei + ai,i−1tei−1, t2ei | 2≤ i ≤ r〉

= OU0〈e1, tuei + ai,i−1tei−1, t2er | 2≤ i ≤ r〉,

where ai,i−1(P0) 6= 0. Accordingly the ideal IM̃r
⊂ OX̃ defined in Section 2 has the

following local expression:

IM̃r
|U0
∼= (tr , tr−1ur−1)∼= (t, ur−1).

If P0 6= P ∈U then M̃r |U = OU 〈e1, tei | 2≤ i ≤ r〉 ∼= O⊕r
U by a similar argument.

Summarizing the argument so far, we have

Theorem 4.13. Let (X, x) be a non-F-pure simple elliptic singularity with the
elliptic exceptional curve E on the minimal resolution X̃ such that E2

=−1. Let P0

be the point on E ⊂ X̃ such that OX̃ (−E)⊗OE ∼= OE(P0) and let Ie ⊂ OX̃ be the
ideal sheaf defining a fat point supported at P0 ∈ X̃ whose local expression at P0 is

(Ie)P0 = (t, u pe
−1)

as above. Then for any e ≥ 1, the blowup BlIe(X̃) of X̃ at Ie coincides with the
normalization of the e-th F-blowup FBe(X).

Proof. We know that Y = BlIe(X̃) is a flattening of R1/pe
from the argument above

and Corollary 4.3. It is also easy to see that the exceptional curve of the blowup
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π : Y → X̃ is a single P1. Then the same argument as in the proof of Theorem 4.5
shows that π factors through the normalized F-blowup F̃Be(X) as

π = ϕ ◦ψ : Y = BlIe(X̃)
ψ
−→ F̃Be(X)

ϕ
−→ X̃

and that ψ gives an isomorphism Y ∼= F̃Be(X). �

Remark 4.14. Theorem 4.13 says that the e-th normalized F-blowup F̃Be(X) has
the exceptional set consisting of an elliptic curve E1 ∼= E and a smooth rational
curve E2 ∼= P1, and has an Ape−2-singularity on E2 \ E1. The theorem also says
that FBe(X) does not dominate FBe′(X) whenever e and e′ are distinct positive
integers. In other words, the monotonicity of F-blowup sequences breaks down for
non-F-pure Ẽ8-singularities; compare to the F-pure case [Yasuda 2009]. On the
other hand, it again has nothing to say about the normality of FBe(X).

Let us examine our observation with Macaulay2 computation.

Example 4.15. The variety

X = Spec F3[x, y, z]/(x(x − z2)(x − 2z2)− y2)

has a non-F-pure simple elliptic singularity of type Ẽ8. The exceptional set of
FB1(X) is the union of a smooth elliptic curve E1 and a projective line E2. We
could not check the normality of FB1(X) by Macaulay2 computation only, but we
could check the following using Macaulay2:

FB1(X) is normal at the generic points of E1 and E2, and there is a point
on E2 \ E1 where FB1(X) is normal but singular. The blowup of FB1(X)
at this point has the projective line as its exceptional locus.

(∗)

It agrees with the fact that FB1(X) has an A1-singularity on E2 \ E1 as stated in
the remark above.

Proposition 4.16. For X as in Example 4.15, if (∗) is correct, then FB1(X) is
normal.

Proof. We may replace the base field F3 with an algebraically closed field k. Being
quasihomogeneous, X has a k∗-action. From the construction or the universality,
the action lifts to F-blowups of X . Every point of the divisor E1 ⊂ FB1(X),
which is a smooth elliptic curve, is fixed by the k∗-action. On the other hand, the
divisor E2 ∼= P1 has exactly two fixed points. One is the singular but normal point
mentioned above and the other is the intersection E1 ∩ E2. Since the normal locus
is open and there is the k∗-action, FB1(X) is normal along E2 possibly except at
E1 ∩ E2. Therefore it is now enough to show that FB1(X) is normal along E1. Let
Ẽ1 and Ẽ2 be the preimages of E1 and E2 on the normalization F̃B1(X) of FB1(X).
Then for each i = 1, 2, since Ei is normal and FB1(X) is normal at the generic
point of Ei , the map Ẽi → Ei is an isomorphism.
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Let A be the complete local ring of FB1(X) at a point z on E1. Its normalization
is k[[s, t]]. We choose local coordinates s, t so that the k∗-action on k[[s, t]] is linear
and locally s = 0 defines Ẽ1 and t = 0 defines the only one-dimensional orbit
closure passing through the point over z. Then the k∗-action on t is trivial and the
one on s is nontrivial. Since Ẽi → Ei for i = 1, 2 are isomorphisms, the composite
maps A ↪→ k[[s, t]] → k[[s]] and A ↪→ k[[s, t]] → k[[t]] are surjective. Therefore A
contains formal power series of the forms

f = f1s+ f2t + (higher terms), (for fi ∈ k, f1 6= 0),

g = g1s+ g2t + (higher terms), (for gi ∈ k, g2 6= 0).

Then by a suitable linear combination of them, we obtain a formal power series

h = h1s+ h2t + (higher terms), (for hi ∈ k, h1 6= 0, h2 6= 0)

contained in A. Then for 1 6= λ ∈ k∗, λh ∈ A has a linear part linearly independent
of that of h. It follows that A = k[[s, t]] and hence FB1(X) is normal. �

Example 4.17. The variety

X = Spec F2[x, y, z]/(y2
+ yz3

+ x3)

has a non-F-pure simple elliptic singularity of type Ẽ8. The Frobenius pushforward
F∗OX of the coordinate ring decomposes into the direct sum of two modules, say
N1 and N2. Then F∗Ni for i = 1, 2 further decomposes as F∗Ni = Ni1⊕ Ni2. By
Macaulay2 computation, we saw that the torsion-free pullbacks Ñ1 and Ñ11 of N1

and N11 are nonflat at a point and those of the others are flat. Moreover the ideals
associated to Ñ1 and Ñ11 as in Proposition 2.5 are respectively of the forms (u, v)
and (u, v3) around the point with respect to some local coordinates u, v. The last
result coincides with Theorem 4.13.

4b2. Non-F-pure simple elliptic singularities with E2
≤−2. In this case, we have

deg L =−E2
≥ 2. Then the argument in Section 4b1 shows that M̃r is flat.

Proposition 4.18. Let (X, x) be a non-F-pure simple elliptic singularity with el-
liptic exceptional curve E on the minimal resolution X̃ . Suppose E2

≤ −2 and
d =−E2 is not a power of the characteristic p. Then X̃ is the normalization of the
e-th F-blowup FBe(X) for all e ≥ 1.

Proof. Since X̃ is a flattening of R1/q
= Mq ⊕ Nq by Lemmas 4.1 and 4.12 and

Section 4b1, the proof goes similarly to that of Theorem 4.7. Note that O
1/q
X,x has no

free summand in this case, since OX,x is not F-pure. �

Example 4.19. The variety

X = Spec F2[x, y, z]/(y2z+ yz2
+ x3)
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has a non-F-pure simple elliptic singularity of type Ẽ6. We could check that
FB1(X) is the minimal resolution.

Remark 4.20. The behavior of F-blowups remains unsettled in some cases, that is,
(i) the case E2

≤−2 and −E2 is a power of p; and (ii) the normality of F-blowups
of non-F-pure simple elliptic singularities with E2

≤ −3. These cases will be
treated in [Hara 2013].
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