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The p-adic monodromy theorem
in the imperfect residue field case

Shun Ohkubo

Let K be a complete discrete valuation field of mixed characteristic (0, p) and G
the absolute Galois group of K. In this paper, we will prove the p-adic mon-
odromy theorem for p-adic representations of Gx without any assumption on
the residue field of K, for example the finiteness of a p-basis of the residue field
of K. The main point of the proof is a construction of (¢, G )-module NX;(V)
for a de Rham representation V', which is a generalization of Pierre Colmez’s
N:i'g(V). In particular, our proof is essentially different from Kazuma Morita’s
proof in the case when the residue field admits a finite p-basis.

We also give a few applications of the p-adic monodromy theorem, which are
not mentioned in the literature. First, we prove a horizontal analogue of the p-adic
monodromy theorem. Secondly, we prove an equivalence of categories between
the category of horizontal de Rham representations of Gx and the category of
de Rham representations of an absolute Galois group of the canonical subfield
of K. Finally, we compute H'! of some p-adic representations of Gk, which is a
generalization of Osamu Hyodo’s results.
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Introduction

Let p be a prime and K a complete discrete valuation field of mixed characteris-
tic (0, p) with residue field kg. Let Gg be the absolute Galois group of K. When
kg is perfect, Jean-Marc Fontaine defined the notions of crystalline, semistable,
de Rham, Hodge-Tate representations for p-adic representations of Gg (see [Fon-
taine 1994a; 1994b] for example). The p-adic monodromy conjecture, which
asserts that de Rham representations are potentially semistable, was first proved
by Laurent Berger [2002, Théoréme 0.7] by using the theory of p-adic differential
equations. Precisely speaking, Berger used the p-adic local monodromy theorem
for p-adic differential equations with Frobenius structure due to Yves André,
Zoghman Mebkhout, and Kiran Kedlaya.

The notions of the above categories of representations were defined by Olivier
Brinon [2006] when kg admits a finite p-basis. In this case, the p-adic monodromy
theorem was proved by Kazuma Morita [2011, Corollary 1.2]. Roughly speaking,
he proved the p-adic monodromy theorem by studying some differential equations,
which are defined by Sen’s theory of Bgr due to Fabrizio Andreatta and Olivier
Brinon [2010]. In that reference, Tate—Sen formalism for a quotient I'y of Gk
is applied to establish Sen’s theory of Byr, where I'x is isomorphic to an open
subgroup of Z}j X ZP(I)JK with Jg 1= dimy,. Qlch/z < 00. To prove Tate—Sen
formalism, we iteratively use analogues of the normalized trace map due to John
Tate. Hence, we can not use Morita’s approach in the case Jx = oo.

Our main theorem in this paper is the p-adic monodromy theorem without any
assumption on the residue field kg. We also give the following applications of
the p-adic monodromy theorem, which are not mentioned in the literature: First, we
will prove a horizontal analogue of the p-adic monodromy theorem (Theorem 7.4).
Secondly, we will prove that the category of horizontal de Rham representations
of G is canonically equivalent to the category of de Rham representations of Gk,
(Theorem 7.6), where K., is the canonical subfield of K. Finally, we will calcu-
late H' of horizontal de Rham representations under a certain condition on Hodge—
Tate weights (Theorem 7.8). This calculation is a generalization of calculations
done by Hyodo for Z ,(n) with n € Z (Theorem 1.16).

Statement of Main Theorem. Let K and Gg be as above. We do not put any
assumption on the residue field kg of K, in particular, we may consider the case
that kg is imperfect with [kg : k};] = oo. In this setup, the notions of crystalline,
semistable, de Rham, Hodge—Tate representations are also defined (see Section 3).
Then, our main theorem is the following:

Main Theorem (p-adic monodromy theorem). Let V' be a de Rham representation
of Gg. Then, there exists a finite extension L /K such that the restriction V|1, is
semistable.
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Note that the converse can be easily proved by using Hilbert 90.

Strategy of proof. As is mentioned above, Kazuma Morita’s proof can not be
generalized directly. When the residue field kg is perfect, an alternative proof of
the p-adic monodromy theorem due to Pierre Colmez is available, which does not
need the theory of p-adic differential equations. We will prove the Main Theorem
by generalizing Colmez’s method. In the following, we will explain our strategy
after recalling Colmez’s proof in the case that V' is a 2-dimensional de Rham
representation. (We can prove the higher-dimensional case in a similar way.) After
replacing K by the maximal unramified extension of K and taking a Tate twist
of V, we may also assume that we have Dgr(V) = (B Ra, V)X and kg is
separably closed.

In this paragraph, assume that the residue field of K is perfect, that is, kg is
algebraically closed. We first fix notatlon Let Bng =), eN @ ([Ech) For h e N~ ¢
and a € N, denote Uy, , := (Bcns)w =P’ and U = (By )9" =P" . Note that we
have Uy o = [U;z,o = Qpn, where Q,n denotes the unramlﬁed extension of Q,
with [Q,r : Qp] = 1. We will recall Colmez’s proof: His proof has the following
two key ingredients. One is Dieudonné—Manin classification theorem over B,

rig*

Then, he applies this theorem to construct a rank 2 free [Br‘fg—submodule N+ (V)

of Brfg ®q, V with basis ¢, e,. Moreover, N+ (V) is stable by ¢ and Gk - actlons

and the following properties are satisfied:

(i) We have an isomorphism of B [Gx ]-modules

B D5z, NE(D) = BR).

(ii) There exist & € N5 and a 1-cocycle

Q% Una xi(g) ¢
C:Gg — /4 < | = Cy 1= g )
K ( 0 @ph) e ( 0 xa2(2)

such that we have g(e,,e,) = (¢,,e,)Cg for all g € Gg.

The second key ingredient is the H, ! = Hl-theorem for [U’ , With 1,a € N> o:
Let L/K be a finite extension. If a 1- cocycle GL — U glsa 1 coboundary in B,
then it is a 1-coboundary in [U’ . By using these facts Colmez proved the Main
Theorem as follows. When /1 = (), we may regard C as a p-adic representation of G,
which is Hodge-Tate of weights 0 by (i). By Sen’s theorem on C ,-representations,
C has a finite image, which implies the assertion. Therefore, we may assume 4 > 0.
By the cocycle condition of C, x; fori = 1, 2 is a character. By (i), x; fori = 1,2
is Hodge—Tate with weights 0 as a p-adic representation. By Sen’s theorem again,
there exists a finite extension L/ K such that y; (Gr) =1 fori =1, 2. By the cocycle
condition of C again, ¢ : Gy, — Uy, 4 is a 1-cocycle, which is a 1-coboundary in B
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by (i). By the H; = H_-theorem, there exists x € [U;l,a such that cg = (g —1)(x)
for all g € G. Therefore,

e, —xe; +e, € BY ®@+ T (V)CBf ®qg, V

rig

form a basis of Dg (V|1 ), which implies that V|7 is semistable.

We will outline our proof of the Main Theorem in the following: For simplicity,
we omit some details. We first fix notation: In the imperfect residue field case, we
can construct rings of p-adic periods B}, , B} and BJ;, on which connections V

Cris?

act. Let Bcvr:' and BV+ be the rings of the horizontal sections of B}, and By
respectlvely Let BX; = (Nyen @ (BCVHJ{) For h € Nsg and a € N, let Uy 4 :=
(Bcrls )‘p =P and U, .- (BZJF)“’ =P Even when kg may not be perfect, we
can easily prove a generalization of Sen’s theorem (Theorem 2.1) and an analogue
of Colmez’s Dieudonné—Manin classification theorem in an appropriate setting (see
Section 5). By using Dieudonné—Manin theorem, we can also give a functorial
construction NV+(V) for a de Rham representation V. Our object N (V) isa
rank 2 free BV+-subm0dule of BY," ®q, V with basis ¢, ¢,. Moreover NYF(V)
is stable by ¢ and Gg -actions and the following properties are satisfied:

(i) We have an isomorphism of Bj[Gx ]-modules

Bk ®ay+ Nig (V) = B

(ii) There exist 7 € N5 and a 1-cocycle

. @, Una) _(x1®)
core(3 ) en( 21
such that we have g(e,,e,) = (¢,,e,)Cg for all g € Gg.

By using NZ;'(V), we prove the Main Theorem as follows. In the case & = 0, the
same proof as above is valid, hence we assume /2 > 0. By the cocycle condition
of C, x; fori =1, 2 is a character, which is Hodge-Tate with weights 0 by (i). By
a generalization of Sen’s theorem, we may assume that x;(Gg) =1 fori = 1,2
after replacing K by some finite extension. Then, by the cocycle condition of C,
¢:Gg — Uy 4 is a 1-cocycle, which is a 1-coboundary in Bz . Unfortunately, an
analogue of the above H =H, !_theorem does not hold in the 1mperfect res1due field
case. Instead, we will prove that there exists x € (ch) k? and y € [B . such that
cg =(g—1)(x+y) for g € Gk (a special case of Lemma 6.6). Here Kpf denotes a
“perfection” of K, which is a complete discrete valuation field of mixed characteris-
tic (0, p) with residue field k})(f and we can regard an absolute Galois group G
of KP! as a closed subgroup of Gk. Since we have a canonical isomorphism
NX;‘(VNG ~ NT (V|GKpf) by functoriality, we can apply Colmez’s Hg} = H}-

KPf = rig
theorem to the 1-cocycle C|GKpf' As a consequence, there exists z € [U;l , such that
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cg = (g —1)(z) for all g € Ggpr. Since we have ¢g = (g —1)(p) for all g € Gk,
we have z — y € ([EBV‘F)GKPf which is included in BY;" by a calculation. Hence,
e ,—{x+(y—2)+tzle, +e, € B ®BV+ Nng (V) C Bf ® V forms a basis
of Dy (V |k ), which implies that V| is semistable.

Structure of paper. In Section 1, we will recall the preliminary facts used in the
paper. In Section 2, we will generalize Sen’s theorem on C ,-admissible representa-
tions, which is a special case of the Main Theorem and will be used in the following.
The next two sections are devoted to review rings of p-adic periods in the imperfect
residue field case. Although most of the results seem to be well-known, we will
give proofs for the convenience of the reader. In Section 3, we will recall basic
constructions and algebraic properties of rings of p-adic periods used in p-adic
Hodge theory in the imperfect residue field case. In Section 4, we will recall
Galois-theoretic properties of rings of p-adic periods constructed in the previous
section. In Section 5, we will construct the (¢, Gg )-modules Nng (V') for de Rham
representations V' after Tate twist. In Section 6, we will prove the Main Theorem
combining the results proved in the previous sections. In Section 7, we will give
applications of the Main Theorem.

Conventions

Throughout this paper, let p be a prime and K a complete discrete valuation field of
mixed characteristic (0, p). Denote the integer ring of K by O and a uniformizer
of Og by k. Put UI((") =1+ 70k for n € N»q. Denote by kg the residue field
of K. We denote by K" the p-adic completion of the maximal unramified extension
of K. Denote by e the absolute ramification index of K. For an extension L/K
of complete discrete valuation fields, we define the relative ramification index e, /K
of L/K by ep k= er/eg-

For a field F, fix an algebraic closure (resp. a separable closure) of F', denote
it by F¥ or F (resp. F**P) and let G be the absolute Galois group of F. For
a field k of characteristic p, let kpf = kpioo be the perfect closure in a fixed
algebraic closure of k. Let k7~ := =(N,en k7 " be the maximal perfect subfield of
k. Denote by C, and O¢,, the p- adlc completion of K and its integer ring. Let Vp
be the p-adic valuation of C, normalized by v,(p) = 1.

We fix a system of p-power roots of unity {{pn fnen., in K, that is, {pisa
primitive p-th root of unity and ¢? nt1 = Cpn forall n € N> . Let x: Gx — ZX be
the cyclotomic character defined by g({pn) = ¢ Xng forn e N

For a set S, denote by |S | the cardmahty of S Let Jg be an mdex set such that
we have an isomorphism 2} k)7 = kg K as kg -vector spaces. In this paper, we
do not assume |Jg | < co. Unless a partlcular mention is stated, we always fix a
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lift _{lj }jeJi of a p-basis g’g_IEK and sequences of p-power roots {tjp - YneN,jedx
in K, that is, we have (tjp )P = tjp for n € N5 .

For a ring R, denote the Witt ring with coefficients in R by W(R). If R has
characteristic p, then we denote the absolute Frobenius on R by ¢ : R — R
and also denote the ring homomorphism W(gp) : W(R) — W(R) by ¢. Denote
by [x] € W(R) the Teichmiiller lift of x € R.

For a p-adically Hausdorff abelian group M in which p is not a nonzero divisor,
we define the p-adic semivaluation of M as the map v : M — Z U {oco} such
that v(0) = oo and v(x) = n if x € p" M \ p"t! M. We have the properties

v(px)=14+v(x), v(x+yp)=inf(v(x),v(y)), v(x)=00 <= x =0,

for x, y € M. We can extend v to v: M [p~'] — ZU{oo}, which we call the p-adic
semivaluation defined by the lattice M. We also call the topology induced by v
the p-adic topology defined by the lattice M .

Let F be a nontrivial nonarchimedean complete valuation field with valuation v .
Assume that an F'-vector space V is endowed with a countable decreasing sequence
of valuations {v™ : V — R U {oo}}nen over F, that is, we have

vOx) > vWx) >, v®0x) = vp () + 0™ (x),
o™ (x + ) Z inf 0" (x), 0™ ()

forAe Fandx, ye V. Weregard V as a topological F-vector space whose topology
is generated by Vr(") ={x eV |v™(x)>r}fornreN. Then, we call V a
Fréchet space (over F) if V' is complete with respect to this topology (see [Schneider
2002, Section 8]). For Fréchet spaces V and W, we define the completed tensor
product V& g W as the inverse limit 1<i_111nJGN v/ V,(") QFW/ W,(n) (see [Schneider
2002, Section 17]).

For a multiset {a;};c; of elements in R U {o0}, we denote {a;}ic; — o0 if
the set {i € I,a; < n} is finite for all n € N, 4. Note that if |/| < oo, then the
condition {a;};e; — oo is always satisfied.

In this paper, we refer to the continuous cohomology group as the group
cohomology. For a profinite group G and a topological G-module M, denote
by H"(G, M) the n-th continuous group cohomology with coefficients in M. We
also denote H%(G, M) by M 9. We also consider H9(G, M) for ¢ = 0,1 if M is
a (noncommutative) topological G-group M .

We denote by e; € N®! the element whose i-th component is equal to 1 and
zero otherwise. We will use the following multi-index notation: Let M be a monoid.
For a subset {x;};c; of M and n = (n;);je; € NI, we define x" := [Licr xl'.“

and x":=TJ u?[/n,'! when it has a meaning. We denote by |nr| the sum ) _ n; for
iel iel
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(ni)ier € NI, If no particular mention is stated, for an index set I, we denote by
u; or v, the formal variables {u; };ey or {v;};es respectively.

For group homomorphisms f,g : M — N of abelian groups, we denote
by M /=% the kernel of themap / —g: M — N.

1. Preliminaries

This preliminary section is a miscellany of basic definitions, facts, conventions, and
remarks used in the paper. Although we will give some proofs for convenience, the
reader may skip the proofs by admitting the facts.

1A. Cohen ring. Let k be a field of characteristic p. Let C(k) be a Cohen ring
of k, that is, a complete discrete valuation ring with maximal ideal generated
by p and residue field k. This is unique up to a canonical isomorphism if & is
perfect (in fact, C(k) = W(k)) and unique up to noncanonical isomorphisms in
general. Denote J¢(xyp—1] by J for a while. For a lift {#}jes C C(k) of a p-
basis of k, we regard C(k) as a Z[Tj]je -algebra by T + ;. This morphism
is formally étale for the p-adic topologies. In fact, we may replace Z[Tj]jcs
by R:=(Z[T}ljes)(p)- Since C(k)/Ris flatand k /F,(T});e s is formally étale for
the discrete topologies, C(k)/R is formally étale by [Grothendieck 1964, 0.19.7.1
and 0.20.7.5].

By the lifting property, we have C(kg) — Ok, an injective algebra homomor-
phism which is totally ramified of degree e, . We will denote by K the fraction
field of the image of C (k) in K. We also note that Ok, is unique if kg is perfect and
nonunique otherwise. By the lifting property again, we have a lift ¢ : Og, — Ok, of
the absolute Frobenius of kg : It is unique if kg is perfect and nonunique otherwise.
An example of such a ¢ is ¢(fj) = t;’ for all j € Jg,. Moreover, when kg is
imperfect, the construction of Ky cannot be functorial in the following sense: For
a finite extension L /K, we cannot always choose Ko C K and Ly C L such
that Ko C Ly.

Finally, note that for a given lift {#;};cs, C Ok of a p-basis of kg, we can
choose Ok, such that {#;};cs, C Og,. In fact, we regard Ok as a Z[T}]je .-
algebra by sending 7 to t;. We choose a lift {t;}jeJK C C(kg) of the p-
basis {7;}jes, C kx and we regard C(kg) as a Z[Tj]je,-algebra by T; — t]f.
Then, we lift the projection C(kg ) — kg to a Z[Tj]jc s, -algebra homomorphism
C(kg) — Ok by the lifting property, whose image satisfies the condition. Thus, if
we choose a lift {#j};c s, of a p-basis of kg, we may always assume that we have

{tj}jEJK C KO-

1B. Canonical subfield. We first recall the following two lemmas, which are
proved in [Epp 1973, 0.4]. We give proofs for the reader.
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Lemma 1.1. Let k be a field of characteristic p.

(i) The field kP is algebraically closed in k. In particular, the fields (kP )P
and k are linearly disjoint over kP .

(ii) For a finite extension k' | kP™, we have k' = (kk')P™".
Proof.

(1) The assertion follows from the fact that any algebraic extension over a perfect
field is perfect.

(ii) As is mentioned in the above proof, k’ is perfect. We have kk’ = k ®j poo k'
by (i). Hence, we have (kk’)?" = k?" ® yoo k' and

(kk/)poo — ﬂ (kpn ®kp00 k/) — kpoo ®kp00 k/ — k,. 0
n

Lemma 1.2. Let [/ k be an algebraic extension of fields of characteristic p.

() Ifl/k is a (possibly infinite) Galois extension, then 17~ | kP is also a (possi-
ble infinite) Galois extension. Moreover, the canonical map

Gl/k — Glpoo/kpoo

is surjective.

(i) If 1/ k is finite, then [P~ | kP is also a finite extension. Moreover, we have
[P kP <[ : k).

Proof. (i) We may easily reduce to the case that //k is finite Galois. Obviously
any k-algebra endomorphism on / induces a k?" -algebra endomorphism on /?".
In particular, /?" and /P are G, /k-stable. Since the Frobenius commutes with the
action of Gy, we have (1P")G1/k = (]G1/k)P" = |cP" | By taking the intersection,
we have (177°)C1/k = [ P”  For x €177, let f(X) € k[X] be the monic irreducible
separable polynomial such that f(x) = 0. Then all the solutions of f belong to /7~
and we have f(X) e (177)9/k[X] = kP”[X]. This implies that /7" /kP™ is a
Galois extension. The latter assertion follows from the equality (/7”)C1/k = kP™ .

(i) We may assume that // k is purely inseparable or separable. If //k is purely
inseparable, then / is generated by finitely many elements of the form xP™"
with n € N and x € k as a k-algebra. Hence we have [P" C k for some n, that is,
kP™ =[P Assume that [/ k is separable. The first assertion is reduced to the
case that [/ k is a Galois extension, which follows from (i). Since the canonical
k-algebra homomorphism /7~ ® xpoe k — [ is injective by Lemma 1.1(i), we have
177 kP <[I : k]. O

Defintion 1.3. (i) (Compare [Hyodo 1986, Theorem 2].) We define the canonical
subfield K q, of K as the algebraic closure of W(k,’; )p~!]in K.
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(i1) (Compare [Hyodo 1986, (0-5)].) We define condition (H) as follows:

K contains a primitive p2-th root of unity and we have e K/ Koy = 1.

Note that K,y is a complete discrete valuation field of mixed characteristic (0, p)
with perfect residue field k;;oo. If kg is perfect, then we have K ., = K. We also
note that the restriction Gxg — Gk, is surjective since Kcq, is algebraically closed
in K. We will regard Gg__ as a quotient of Gk in the rest of the paper.

Remark 1.4. (i) In [Brinon 2006, Notation 2.29], K4, is denoted by K V since
K.an coincides with the kernel of the canonical derivation d : K — Q}(
(Proposition 1.13 below).

(i) The canonical morphism

Kean ®KC KO — K

an,0

is injective since we have Ko/ Kumo = 1 and Kcan/ Kcan,o is totally ramified.

Note that we have e = 1 if and only if the above morphism is surjective.

K/Kcan
The following are the basic properties of the canonical subfields used in this paper.

Lemma 1.5. Ler L/ K be a finite extension.

(i) The fields (Kcan)™® and K are linearly disjoint over K an.
(i) If L/ K is Galois, then Lean/ Kcan is also a finite Galois extension. Moreover,
the canonical map G g — G /K., IS surjective.

(iii) The field extension Lcan/ Kcan is finite with [Lean © Kean] < [L : K].
(iv) If K'/ K an is a finite extension, then we have (KK')can = K'.
Proof. (i) Since K.y, is algebraically closed in K, we have (Kcan)alg NK = K.,
which implies the assertion.
(ii) Since klljoo/klp(Oo is finite by Lemma 1.2(ii), we have L¢yy = L N (Kcan)alg.
Hence we have Lcyn N K = Kcan. Since Lean/ Kean is algebraic, Lea, and K are
linearly disjoint over K., by (i). Let x € L¢a, and f(X) € K an[X] be the monic
irreducible polynomial such that f(x) = 0. By the linearly disjointness, f(X) is
irreducible in K[X]. Since L/K is Galois, all the solutions of f(X) = 0 belong
to L N (Kcan)™® = Lean. This implies that Lcan/ Kcan is Galois. Since we have
(Lcan)GL/ K = Lean N K = Kcan, we have the rest of the assertion.
(iii) The finiteness of Lcan/ Kcan is reduced to the case that L/ K is Galois, which

follows from (ii). Since the canonical K-algebra homomorphism L¢,z ® k., K — L
is injective by (i), we have [Lcan : Kean] < [L : K].

(iv) The assertion follows from the inequalities

[K": Kean] < [(KK)ean : Kean] <[KK': K] =[K": Kean].
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where the second inequality follows from (iii) and the last equality follows from
the linear disjointness of K and K’ over K., by (i). O

Theorem 1.6 (the complete case of Epp’s theorem [1973]). There exists a finite
Galois extension of K’ | Kan such that KK’ satisfies condition (H).

Proof. By the original Epp’s theorem, we have a finite extension K’/ Ky, such that
we have CRKIIK = 1. We have only to prove that we have CxKr /K = 1 for any
finite extension K”/K’. In fact, if we choose K" as the Galois closure of K'(x,2)
over K., then K” satisfies the condition by Lemma 1.5(iv). Since we have
KK" = (KK') ® g, K" by Lemma 1.5(i) and (iv), we have exkn KK = CKn /K-
By multiplying with e KK’ = €gr We have e KK =€gns implying the assertion. [

Example 1.7 (the higher-dimensional local fields case). We say that K has a
structure of a higher-dimensional local field if K is isomorphic to a finite extension
over the fractional field of a Cohen ring of the field

Fq(X1))(X2)) ... (Xa))

with ¢ = pf (see [Zhukov 2000] about higher-dimensional local fields). In this
case, K., coincides Wlth the algebraic closure of @, in K. In fact, we have
only to prove that kp is a finite field. By Lemma 1.2(ii), we may reduce to the
case kx = Fg (X, )) .((X2)). Then, the assertion follows from an iterative use of
the following fact: If k is a field of characteristic p, then we have k(X))?" = kP~
Obviously, the RHS is contained in the LHS. Let f =", _  a, X" € k((X))? =
with a, € k. Since [ € k((X))?, we have a, =0 if p } n and a, € kP otherwise.
By repeating this argument, we have a, = 0 for n # 0 and f = ag € kP

1C. Canonical derivation.

Defintion 1.8 (Compare [Hyodo 1986, Section 4].). Let ¢ € N. For a complete
discrete valuation ring R with mixed characteristic (0, p), let

o9 ._1; q q
SZR.—hm QR/Z/anR/Z

andletd : R — Q' be the canonical derivation. Let Q% RIp—11= =Q%[p 1] forgez
and let d : R[p_l] — Q Ry be the canonical derivation and dj Q RIp-11
Qq+ -1 the morphism induced by the exterior derivation, which satisfies the usual
formula dg(Aw) = Adgw + (=1)9w AdA for A € K and o € Qq We endow
Q%[p_l] with the p-adic topology defined by the lattice Im(Qq G, 32[1;—1])'
Obviously, the derivation dq is continuous.

For g € Z ¢, we put Q4 Rlp—'1°= = 0 as a matter of convention.

The following are the basic properties of the canonical derivations used in the
sequel.
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Lemma 1.9. Let R be a discrete valuation ring with uniformizer 7g and « :
M — M’ a morphism of R-modules whose kernel and cokernel are killed by TR
for ¢ € N. Then, for any R-module M", the kernel and cokernel of the morphism
doa: M"@r M — M" Qg M’ are killed by w3¢. In particular, the kernel
and cokernel of a®7 : M®* — M'® gre killed by 73’

Proof. We prove the first assertion. If « is injective or surjective, then the cokernel
and kernel are killed by 7 by the calculation of Tor%. The general case follows
easily from these cases by writing o as a composition of an injection and a surjection.

The last assertion follows from the following decomposition and induction on g:

ida® a®id

M®(q+1) M® M®q M®RM/®” M QRr M/®q M/®(c1+l)

O
Lemma 1.10 [Hyodo 1986]. Ler g € N.
(1) We have the Ok, -linear isomorphism
Qf, =lim ((Oxy/p"Oky) ®2 NFZE7X): dj A Adj, > 1@ ej Ao e,
In particular, SAZgKO/(p”) is a free Ok, /(p")-module.
(i) We have a canonical isomorphism
961\, 04
(AkS2k) — Q%-
(iii) Let L be a finite extension over the completion of an unramified extension of K.
Then, we have a canonical isomorphism
L®g ﬁ% — ﬁqL

Proof. The assertions (i) and (ii) follow from [Hyodo 1986, Lemma (4.4), Remark 3]
respectively. The canonical exact sequence

0— 0r ®ox QéK/Z_)QéL/Z_)QéL/@K -0

(from [Scholl 1998, Section 3.4, footnote]) induces the exact sequence

@L/@K[p ] — 0L ®og @K/z/(p )_>Q L/z/(pn)ﬁgquL/@K/(pn)_)Ov

where Q@ 0k [p"] denotes the kernel of the multiplication by p” on Q@ ok
Fix ¢ € N such that chI 0, /0x = = 0. Then, the kernel and cokernel of «;, are killed
by p€. Denote by 2, and Qn the kernel of the canonical maps

®gL (@L Qok S-211(/2/(1)”)) - %L (@L Qo Q(lﬂ)K/z/(Pn)),
®6L @L/z/(Pn) — 2 L/Z/(pn)
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We consider the commutative diagram

q 1 1 1
o Rk Q6,7 . q OL ®ok 2, 7 o q R, /2
L® —m = Oa T o oL (pm)
i can. i can. i can.
0; ® QgK/Z can. q ©L ®©K Q(I@K/Z /\thn QgL/Z
L Yo
K (pm) =~ oL (p") (pm)

We have only to prove that the kernel and cokernel of /\?q;, are killed by p34¢
Indeed, if this is true, then we decompose the canonical map

aq @L ®©K @K/Z/(Pn) g Q /Z/(pn)
into the following exact sequences:

q inc. q n o q
0 — keray; —— O Qq Q@K/Z/(p ) —— Ima,; —— 0,

q inc. q n pr. q
0 —— Imay —— Q@L/Z/(p ) —— cokay; —— 0.

By passing to limits, we obtain the following exact sequences:
0 li k a fne. @[ ® Qq o li I a ’ li ! ki q
[ - ~ - -
ll'l'ln Croy, Ok g 1mn moy, 1mn Croy,,

. g inc. ~g pr. . q
0 — lim Ima; —— Qg —— lim cokay.
<—n L <~—n

Since ker o and cok «f are killed by pae, l(lr_n kero! and hm kerol, l(lr_ncok ol
are also killed by p39¢ [Neukirch et al. 2008, Proposmon 2.7. 4] Hence, the kernel
and cokernel of the canonical map 07 ®g QgK — Q%L are killed by p39¢ and p%9¢
respectively. By inverting p, we obtain the assertion.

Note that the kernel and cokernel of o ? are killed by p2?¢ by Lemma 1.9. By
the snake lemma, it suffices to prove that the cokernel of the map «$ : 9,, — O,
is killed by p42¢. The Op-module Q, is generated by the elements of the form
X:=Xx1® - ®x4 With x; € Ql /Z/(p”) such that x; = x; for somel # j. Since the
cokernel of w, is killed by p" there exist y1,..., Vg € OL ®¢j 2 @ /Z/(p”) such
that p°x; = a,(y;) and y; = yj. Hence we have p?9°x = (p°x1) ® - ® (pxq) =
2y ®-® Vg) and y1 ® --- ® y4 € 95, which implies the assertion. d

Remark L.11. If [kg : k%] = p? < oo, then dimg SAZ’}( = (Z) < oo for g € N
by Lemma 1.10. In particular, the canonical derivation d is K a,-linear since the

restriction d |k, factors through Q}(wn = 0 by functoriality.
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Defintion 1.12. Fix a lift {#j};c s, C Ok, of a p-basis of kx. By Lemma 1.10(i),
dx for x € Ok, can be uniquely written in the form } ;¢ ; dt; ® d;(x), where
{0j(x)}jese C Ok, is such that {v,(0;(x))}jes, — oo. Note that {3;};e s, are
mutually commutative derivations of Ok, by the formula d; o d = 0. We also note
that d; is continuous since we have the inequality v,(9;(x)) = vp(x) for x € Ok,
which we can check by taking modulo p.

The following is another characterization of the canonical subfields.

Proposition 1.13 [Brinon 2006, Proposition 2.28]. We have the exact sequence

inc.
0 —> Koy —> K ——= Ql

can K-

Proof. We first reduce to the case K = K. In the case that K satisfies condi-
tion (H), we obtain the exact sequence by applying K., ® k., , to the exact sequence
for K = Ky by Remark 1.4(ii) and Lemma 1.10(iii). In the general case, we choose
a finite Galois extension K’/ Ka, such that KK’ satisfies condition (H) by Epp’s
Theorem 1.6. Since we have (KK')can = K’ ' by Lemma 1.5(iv), K'®k., K=KK'
by Lemma 1.5(i) and (Q1 )GK’/ Kean Ql by Lemma 1.10(iii), the assertion
follows from Galois descent

We will prove the assertion in the case K = Ky. We may replace Kcan, K
and Ql by Og.,..Ok and Ql respectively. Notation is as above. Let ¢ be the
Frobemus on Ok given by <p(z]) = tp for j € Jx. Let g : Q& — QL be the
Frobenius induced by ¢. Since we have dop=¢@xod,bya 31mp1e calculatlon
we have dj op = ptjp_lgooa-, that is, (¢j0j) op = pgo(t;0;) for j € Jg.

The ring ¢(Og) is a complete discrete valuation ring of mixed characteris-
tic (0, p) and we may regard its residue field as kllé. Let A :={0,...,p—1}®/k.
Since the image of {t"},ca in kg forms a kﬁ—basis of kg, by approximation,
every element x € Og can be uniquely written in the form x = ), ¢(aa)t",
where a, € Ok is such that {v,(as)}nea — 00. We claim that if 9" (x) € kerd
with n € N and x € Ok, we have x € ¢(Og). Since the Frobenius ¢4 on Ql is
injective by Lemma 1.10(i) and the commutativity d o ¢ = @« o d, we may assume
n = 0. By definition, we have d;(x) = 0 for all j € Jx. We have

107 (x)= Y (t7900)@n)t" + Y ¢(an)tjd;j(t") =D ¢(ptjdj(an)+njan)t".
neA neA neA

Hence, we have a, = —nj_1 ptjdj(an)if nj # 0. Therefore, for n € A\ {0}, we have

Vp(an) > vp(an) + 1, that is, a, = 0, which implies the claim. By using the claim,

if we have x € kerd, then we have x € (),,cp ¢ (Ok). Since the complete d1screte

valuation ring (),cn ¢" (O k) is absolutely unramified with residue field kP , the

inclusion Og, C (),en ¢"(Ok) is an equality by approximation, which implies

can

the assertion. O
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1D. A spectral sequence of continuous group cohomology. The following lemma
is a basic fact when we calculate continuous Galois cohomology whose coefficient
is an inverse limit of p-adic Banach spaces with surjective transition maps. For
example, we need it later when we calculate cohomology of Bjy-modules.

Lemma 1.14 (Compare [Neukirch et al. 2008, Theorem 2.7.5].). Let G be a profi-
nite group and { My }nen be an inverse system of continuous G-modules (each My
may not be discrete) such that the transition map M, — My admits a continuous
section (as topological spaces) for all n € N. Let M be the continuous G-module
1(i£1 M, with the inverse limit topology. Then, we have a canonical exact sequence

— 11 1 q—1 —_— q — 11 q —_—
0 lim! H971(G, M,) HY(G, M) lim HY(G, My) 0

for all g € N, where lim® is the derived functor of l(ln in the category of inverse
systems of abelian groups indexed by N.

Proof. Let €% := €2, (G, M) (resp. €;, := €2, (G, My)) be the continuous
cochain complex of G with coefficients in M, (resp. My). Then, {€;,},en forms
an inverse system of cochain complexes and we have €3, = lim ;. Moreover,
the transition maps of the inverse system {6, },en are surjective by the existence of
continuous sections, in particular, {€}},en satisfies the Mittag—Leffler condition.
Then, the assertion follows from [Weibel 1994, Variant in pp.84]. O

1E. Hyodo’s calculations of Galois cohomology. We will recall Hyodo’s calcula-
tions of Galois cohomology. For n € Z, denote by Z,(n) the n-th Tate twist of Z .
For a Z 5[Gg]-module V, let V(n) :=V ®z, Zp(n).

Theorem 1.15 [Hyodo 1986, Theorem 1]. Forn € N and q € Z, we have canonical

isomorphisms

0 qg#n,n—1,
H"(Gg,C ~ ).
Gk Cr(@) {Q‘;( otherwise.

We will generalize the following theorem as an application of the Main Theorem
in Section 7.

Theorem 1.16. (i) [Hyodo 1986, Theorem 2] We have the exact sequence

0 —= H'(Gx,.Zp(1) ——= H'(Gg.Zp(1)) ——= H'(Gg.Cp(1)).

can’

(i1) [Hyodo 1987, Theorem (0-2)] If kg is separably closed, then

Inf: H'(Gk,

can’

Zp(n)) — H'(Gk.Z,(n))

is an isomorphism for n # 1.
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1F. Closed subgroups of Gk. Let L be an algebraic extension of K in C,. Let
L™ be the algebraic closure of LinC p- Let M be a finite extension of L and choose
a polynomial f(X) e Z[X] such that M =~ Z[X]/(f(X)). Let fo(X) € L[X] be
a polynomial such that the p-adic valuations of the coefficients of /" — f, are large
enough. Then, we have M =~ z[X 1/(fo(X)) by Krasner’s lemma. In particular,
the algebraic extension (M N L¥¢)/L is dense in M. Hence, we have a canonical
morphism of profinite groups G, — G, which is an isomorphism whose inverse
G; — G maps g to g|pae. In the sequel, we will identify Gz, with G; and we
also regard G'; as a closed subgroup of Gg.

1G. Perfection. For a subset J of Jg, we denote the p-adic completion of the
field U, en K({tp_n }jes) by Kj. Then, K is a complete discrete valuation field
of mixed characterlstlc (0, p) with e K, /K= = 1 and its residue field is isomorphic
to U, en kK ({t }JEJ) We also denote Ky, by KP', which is referred as a
perfection of K since the residue field k gpr = kp of KPis perfect. Since we may
assume that {7; } ;e s, is contained in Ky (Sectlon 1A), we may assume (Ko)y =
(K s)o, which is denoted by K ¢ for simplicity.

Let ?(Jg ) be the subsets of Jg consisting of subsets J € Jg such that Jg \ J
is finite. Note that we have [k, : klléJ] = pl/k\V| < o for J € P(Jg) since
{tj}jesi\s forms of a p-basis of kg ,. We regard P(Jk) as an inverse system with
respect to the reverse inclusion. Then, we have

K= lim Kj= ﬂ Ky,
Je?(Jk) Je?(Jk)

that is, K is represented by an inverse limit of complete discrete valuation fields,
whose residue fields admit a finite p-basis. In fact, if we endow Jx with a well-
order X by the axiom of choice, then for J € P(Jg), the subset

pavy M amp~"m
€ —{I}U{ "’tjm

172 jmeJ,0<aj < p"i €Nsy
(p.aj;) =1for1<i<meNsg

of K forms a basis of Ky as a K-Banach space. If J; C J, are in P (Jg), then
we have €, C €, and the assertion follows from the fact {1} = (" Jer(g) €J-

1H. G'-regular ring. We will recall basic facts about G-regular rings. For details,
see [Fontaine 1994b, Section 1].

Let E be a topological field and G a topological group. A finite-dimensional
E-vector space V is an E-representation of G if V' has a continuous E-linear action
of G. We denote the category of E-representations of G by RepyG. We call B
an (£, G)-ring if B is a commutative E-algebra and G acts on B by E-algebra auto-
morphisms. Let B be an (E, G)-ring. For V €RepzG, let Dp(V) := (B®fg V)C
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and we will call the following canonical homomorphism the comparison map:
ag(V): B ®pBc Dp(V)—> BQgV.
We say that an (£, G)-ring B is G-regular if the following is satisfied:

(G-R1) The ring B is reduced.
(G-Ry) For all V e Repg G, ap(V) is injective.
(G-R3) Every G-stable E-line in B is generated by an invertible element of B.

Here, a G-stable E-line in B means one-dimensional G-stable E-vector space
in B. The condition (G-R3) implies that BC is a field. We say that V € Rep G is
B-admissible if « (V') is an isomorphism. We denote the category of B-admissible
E-representations of G by Repp,rG, which is a Tannakian full subcategory
of Rep g G [Fontaine 1994b, Proposition 1.5.2].

Notation. We will call an object of Repg, Gk a p-adic representation of Gg . For

adm

a (Qp, Gk)-ring B, we denote Reppg /0, Gk by Repp™ Gk if no confusion arises.
We recall the basic facts about G-regular rings.

Lemma 1.17. Let B be a field and G a group acting on B by ring automorphisms.
Let M be a finite-dimensional B-vector space with semilinear G-action. Then, the
canonical map

BQpe MG - M
is injective. In particular, we have dimgc M G <dimp M.

Proof. Suppose that the assertion does not hold. Let #n € N be the smallest integer
such that there exist # elements vy, ..., v, € M Y which are linearly independent
over BY but not over B. Let > 1<i<n Aivi = 0 be a nontrivial relation with A; € B.
Since B is a field, we may assume that A; = 1. Then, we have

0=(g— 1)( > xivi) = Y () =i
1<i<n 1<i<n
Hence, we have A; € BY by assumption, which is a contradiction. O

Example 1.18 [Fontaine 1994b, Proposition 1.6.1]. All (E, G)-rings which are
fields are G-regular. In fact, we have only to verify (G-R,), which follows by
applying the above lemmato M := BQEg V.

Lemma 1.19 [Fontaine 1994b, Proposition 1.4.2]. Let B be a G-regular (E, G)-
ring and V an E-representation of G. Then, we have dimgec Dp(V) < dimg V.
Moreover, the equality holds if and only if V is B-admissible.
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Lemma 1.20 [Fontaine 1994b, Proposition 1.6.5]. Let B be a G-regular (E, G)-
ring and B’ an E-subalgebra of B stable by G. Assume that B’ satisfies (G-R3)
and that the canonical map B¢ ® B/G B’ — B is injective. Then, B’ is a G-
regular (E, G)-ring. Moreover, if V € RepgG is B'-admissible, then V is B-
admissible and the canonical map

B®® 46 Dp/(V) — Dp(V)
is an isomorphism.

Lemma 1.21 [Fontaine 1994b, Corollaire 1.6.6]. Let B’ be an integral domain
which is an (E, G)-ring, and B the fraction field of B'. If B’ satisfies (G-R3)
and B'® = BY  then B’ is G -regular:

Remark 1.22 (restriction). Let B be a G-regular (E, G)-ring and H a subgroup
of G such that B is H-regular as an (E, H)-ring. If V' € Repg G is B-admissible,
then V|g is also B-admissible in Repy H. Moreover, we have a canonical iso-
morphism B¥ ® ge Dp(V) = Dp(V|g). Indeed, the admissibility of V' implies
that we have the comparison isomorphism B ® gc Dp(V) = BQE V as B[Gk]-
modules. By taking H-invariants, we have BH ® gc Dp(V) = Dp(V|g). In
particular, we have dimgn Dp(V|g) = dimgc Dp(V) = dimg V', which implies
the B-admissibility of V' |g by Lemma 1.19.

2. A generalization of Sen’s theorem

The aim of this section is to prove the following generalization of Sen’s theorem
on Cp-admissible representations [Sen 1980, Corollary in (3.2)].

Theorem 2.1. Let V € Repg Gk The following are equivalent:

(1) There exists a finite extension L over the maximal unramified extension of K

such that G, acts trivially on V.

(ii) V is Cp-admissible.
(iii) V| gt is Cp-admissible as an object of Repg, Gt
Lemma 2.2. Let E be a field of characteristic 0 and p : U ) X [];e I Pz, —
GL;(E) a group homomorphism with n,r € N5 and (n,),el e N/, where the
action of UQ%Z) on[l;ef PMZp is given by scalar multiplication. If kerp contains
an open subgroup of UQS”) then the image of p is finite.
Proof. By shrinking UQF”) we may assume that ker p contains U@g”) Also, we may
assume that E is algebralcally closed. Let xog :=1+4 p" € U(”) xe€[lier "2y

By the fact that ker p is a normal subgroup of U := UQg 1) i ]‘[le] p"iZp and a
simple calculation, we have

(l,x)_l(xo,())(l,x)(xo_l,0) =(,(xo—1x)=(1, p"x) € kerp.
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In particular, ker p contains U (”) X [T;es P" 1" Z, as a normal subgroup. By taking
the quotient of U by this subgroup, p factors through a group homomorphism
p:(Z/p"D)! — GL,(E).

To prove the assertion, it suffices to prove that for any finite subset .S of Im p,
we have |S| < p"”. Any g € Im p is conjugate to a diagonal matrix whose diagonal
entries are in upn (E) since the order of g divides p”. Since the elements of S
commute, S is simultaneously diagonalizable. Hence, up to conjugation, S is
contained in the set {diag(ay,...,a,) | a; € upn(E)}, whose order is p"”. O

Proof of Theorem 2.1. The implication (i) = (ii) follows from Hilbert 90 and
(i1) = (iii) follows from Remark 1.22. We will prove (iii) = (i). Note that if kg is
perfect, then the assertion is a theorem of Sen ([1980, Corollary in (3.2)]).

By replacing K by a finite extension of K", we may assume that kg is separably
closed and K satisfies condition (H). In this case, the assertion to prove is that Gg
acts on V via a finite quotient. Since the residue field kpf of KP is algebraically
closed, Ggp = Ggeeo acts on V' via a finite quotient by Sen’s theorem, where
K=, en K ({t } jeJg)- Hence, there exists a finite extension L / K such that
G [ ko acts tr1V1a11y on V. In particular, if we put Koo := K#°(p1po), then G
acts trivially on V. In the following, we regard V as a p-adic representation of
Grk.,/L- Take abasis of V andlet p’: Gk, /1 — GL,(Q)) be the corresponding
matrix presentation of V' with r := dimg,, V. We have only to prove that the image
of p’ is finite.

Since K satisfies condition (H), we have an isomorphism Gk, x = Uy (”0) KZJK
where ny € N. ;| satisfies GK(u,,oo) /K = Uy (”0) via the cyclotomic character and
U, (ZO) acts on Z, Tx by scalar multlphcatlon (see [Hyodo 1986, Section 1] for
details). We have Gri./Lk= =< kerp’ <Jc Grk. /- By using the restriction
map Res KK and the above isomorphism, we may regard these groups as subgroups
of Ué”(’) X2y TK Since G LK.,/ L 1s an open subgroup of Gk __ /K, there exists n € N
and (n,)]GJK e N’k such that Grk./L contains U := U )|>< ]_[JGJ Pz,
as an open subgroup. Since Gpg_ /Ko 1S an open subgroup of Gk /Keeo =
Gk (upo0)/ K = ch’;‘)) >~ 7 p, ker p’ contains an open subgroup of UC%Z). Therefore,
the group homomorphism p := p'|yy : U — GL, (Q)) satisfies the assumption of
Lemma 2.2, hence, the image of p is finite. Since U is openin G g__ /1., we obtain
the assertion. O

3. Basic construction of rings of p-adic periods

Throughout this section, let 3 be a closed subfield of C, whose value group v, ()
is discrete. We will recall the construction of rings of p-adic periods

Aing,c,p /% Beris,cp/ats Bsuep/a Baryc,/a Bure, /o
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due to Fontaine [1994a], which is functorial with respect to C, and J. We also
recall abstract algebraic properties of these rings as in [Brinon 2006]. Although we
do not assume ¥ = K, standard techniques of proofs in the case 5 = K, which are
developed in [Fontaine 1994a; Brinon 2006], can be applied to our situation.

3A. Universal pro-infinitesimal thickenings.

Defintion 3.1 [Fontaine 1994a, Section 1]. A p-adically formal pro-infinitesimal
Os-thickening of Oc,, is a pair (D, p), where

o D is an Oy-algebra,

« p : D — O¢, is a surjective Oy-algebra homomorphism such that D is
(p, ker Op)-adic Hausdorff complete.

Obviously, p-adically formal Og-thickenings of Oc, form a category.

Theorem 3.2 [Fontaine 1994a, Théoreme 1.2.1]. The category of p-adically formal
pro-infinitesimal Oy -thickenings of Oc,, admits a universal object, that is, an initial
object.

Such an object is unique up to a canonical isomorphism and we denote it by
(Aint,c, 5 O, /20)- Note that Aypp ¢, 9 is functorial with respect to Cp and J. We
r-ecall the construction. Let Rg,, :=. l(i_rgﬁ_)xl, @@p. / pOc, be the perfection of the
ring Oc, / pOc,. We have the canonical isomorphism

l(iLn Oc, > Rc,; (x(n))neN = (x(n) mod pOc,)nen,

xX—>xP

where the addition and the multiplication of the LHS are given by
((x(”)) + (y(n)))n — limm(x("+m) + y(n-l-m))Pm’ (x(n)) . (y(n)) — (x(n)y(n)).

Let 0, /0, : W(Rc,) — Oc, be defined by _, cn P"[Xn] = D peny p”x,(lo). This
is a surjective Z p-algebra homomorphism. Let ¢,y : Oy ®z W(Rc,) — Oc,
be the linear extension of ¢ ,/q,. Then, Ay c, /g is the Hausdorff completion
of Oy ®z W(Rc,) with respect to the (p, ker 0, /5)-adic topology. We will give
an explicit description of Ay, ¢, /9 later: Note that the description, together with
the isomorphism W(Rc,) = Ajyt,c,/a, (Remark 3.5), immediately implies that
Ant,c,, /2 1s an integral d_olmain (at least) when we have 3 = ¥.

We define 7; := (#}, tf ....)E€Rc, anduj :=tj—[t;]€ker Oc,, s, Let vin,c, /5
be the p-adic semivaluation of Ay ¢, /5. We put

Aint,c, /0, Uy, ) 1=

Y. apu" |ap € Aint,c,p /@y 1Vinf,Cp/0p (@n)}nj=n —> o0 foralln € N }
neN®Jx
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If Jy is finite, Ajpr e, /0, {ujx} is a ring of formal power series with coefficients
in Ajyrc,/a,- Weextend Oc /g, to a surjective Ajyr ¢, /0, -algebra homomorphism
Y, /o Aint,c, /0, 10y, } = Oc, by Uc, /5 (u;j) = 0. Then, (Aintc,/a,{uy, . O, /)
is a p-adically formal Z ,-pro-infinitesimal thickening of O¢c,. We have a canoni-
cal Aypt,c,/0,-algebra homomorphism

. . n n
int,C /3 * Ainf,Cp/0p 0y, = Ainte, /o @ Ut

Lemma 3.3. If we assume X = Jo, then ting,c,, /5 is an isomorphism. In particular,
we have

Vint,C, /% (X) = Vin,C /@, (@n)
i

inf

neN®Jx
forx =3, cn@sy anu™ with ap € Aint,C /@,

Proof. Denote A = Ajyr e, /0, {uJ%} and & = ¢, /5. We regard Oy as a Z[Tj]je -
algebra as in Section 1A. We recall that since J = I, the map Z[Tj];cs, — Oy
is formally étale for the p-adic topology. We also regard s as a Z[Tj]jey,-
algebra by Tj > [;] + uj. Then, by the lifting property, we can lift the canonical
Og-algebra structure on s4/(p,kerd) = Oc,/(p) to an Oy-algebra structure on
A = l(iiin A/(p,ker)"™:

can.

Oy — Og,

N
~ 3
str. SO ?
N
N

str.
2Tjljer, —
By this structure map, we may regard & as a pro-infinitesimal Og-thickening
of Oc,. By universality, we have only to prove that tjy,c, /5 is an Oy-algebra
homomorphism. Let o : Oy — Aypc,/9 be the composition of the structure
map Oy — o and e, % Since tpgc, /% commutes with the projections ¢
and 0c, /5, we have the commutative diagram

can.
Oy —— Og,

o
Str. Ocp /e

str.
2Tjljex > Ainf,CDP/S}{v

where the horizontal structure map is given by 7 + ¢;. By this diagram and
the lifting property, o coincides with the structure map Oy — Ayup,c, /5 mod-
ulo (p, kerfc, /)" for all n € N. Since Ajprc, /3 is (p, ker O, /5)-adically Haus-
dorff complete, o coincides with the structure map Oy — Ayyg,c, /5, Which implies
the assertion. O
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For general ¥, we have:

Lemma 3.4. (i) The canonical map

Aint,c, /% = Alint,cp /300
is an isomorphism.

(i) If /X is a finite extension with [Kg : ky]sep = 1, then the canonical map

Oy ®0y Aint,c, /ot = Aint,Cp /¢
is an isomorphism.

(iii) Let & be a finite extension of the p-adic completion of an unramified extension
of K. Then, the canonical map

Aint,c, /P~ "1/ (ker b, j30)" = Ain.c,/2lp "1/ (ker b, /)"
is an isomorphism for all n € N.

Proof. (i) The assertion is equivalent to saying that the category of p-adically formal
Og;-pro-infinitesimal thickening of Oc,, is equivalent to the category of p-adically
formal Oyur-pro-infinitesimal thickening of Oc,,. Let (D, p) be a p-adically formal
Og-pro-infinitesimal thickening of Oc,. Then, we have only to prove that there
exists a unique Og-algebra homomorphism Oy — D such that 0p is an Ogpu-
algebra homomorphism. By dévissage, we may replace D by D/(p, ker 6p)” with
n € N. Since 6p induces an isomorphism D/(p,kerfp) = Oc,/(p) and Oyur /Oy
is p-adically formally étale, the assertion follows from the commutative diagram

can.
Ogpr —— Oc,,/(p)

~N
~_ 3
~
can. ~
~
N

@3( L D/(p,kerGD)”,

T (eD)*

where (6p)+« is the ring homomorphism induced by 0p.

(i) By assumption, the canonical map O¢®g 4 Ogr — Ogur is an isomorphism. By us-
ing this fact and (i), we may assume that 3 = X" and & = ¥"". In particular, we may
consider the case that kg is separably closed, where the condition [k : ky]sep = 1
is always satisfied. By faithfully flat descent, the assertion is reduced to the case
that £/ is Galois. Since £/ is a solvable extension [Fesenko and Vostokov 2002,
Exercise 2, Section 2, Chapter II], we may assume that &/ has prime degree.
By universality, we have only to prove that the LHS is a p-adically formal O¢-pro-
infinitesimal thickening of Oc,,. Hence, it suffices to verify that Oy ®q, Aint,c, /%
is (p, I)-adically Hausdorff complete, where I denotes the kernel of the canon-
ical map 1 ® Oc, /% : O ®oy Aint,c,/% — Oc,- Since we have an isomorphism
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of Ayy,c,,/5-modules Oy ®oy, Aing,c, /o = (Aint,c,y /3{)[5&%], we have only to prove
that the topologies on Og ®q,, Aint,c, /3 defined by the ideals (p, I) and (p, [ 0]
are equivalent, where I’ denotes the ideal of Oy ®g, Ay .C,/ generated by
ker (Oc, /% : Aint,c, /%t — Oc,). By definition, we have (p, I’) C (p, ). We have
only to prove that we have I C (7% ® 1, I’) for some n € N since p divides nj{

In the following, for x € Oc,, we denote by X any element X € Rc¢, such
that ¥(© = x. Since we have 75, ® 1 — 1 ® [77%] € I, we have (m; ® 1, 1 ® [77%]) C
(w3 ® 1, I). Note that if x € O is primitive, that is, 1, x, ... , x[H=1 g an Oy -
basis of O, then we have I C (x® 1—1®[X], I’). Hence, we have only to prove the
existence of a primitive element x € O satisfying (x @ | — 1 Q [¥])" € (73 ® 1, I")
for some n € N. In the case [£ : J] = e, Ja T is a primitive element of O«
and we have (79 @ 1 — 1 ® [7¢])?°%/* € (g ® 1,1 @ [73]). Otherwise, we
have [£ : K] = [kg : kylinsep = p. If we choose x € O¢ whose image in O /750
does not belong to ky;, then x is primitive by Nakayama’s lemma. Moreover, if we
choose a € Oy such that x? =a mod 750, then we have

xR1-1Q[XD)’ =a®l—1®[a] mod (% ®1,1Q [7%])

anda ® 1 — 1 ®[a] € I, which implies the assertion.

(iii) We denote the map by i and we will construct the inverse. By replacing ¥ and &
by J'" and £, we may assume [kg : kylsep = 1. By (ii), we identify Ajprc, /e
with Og ®q;, Ajgr,c,/%- Since £/ is étale, by a similar argument as in the proof
of (i), we have a unique J¥-algebra homomorphism

j - Ainf,@p/?f[p_l]/(ker 9‘]:17/%)”

such that ¢, /5% : Aing,c, sl p~ 1/ (ker O¢c,/%)" — Cp is an £-algebra homomor-
phism. Hence, we have the Ay ¢, /5-algebra homomorphism

J®id: Aee,selp™ "1/ (ker g, j9)" = At e, s/ (ker Oc, j50)".

By construction, we have (j ® id) oi = id. To prove i o (j ® id) = id, we have
only to prove that i o (j ® id) is an ¥-algebra homomorphism, which follows from
the uniqueness of j. O

Remark 3.5. We may identify Ajyrc,/0, With W(Rc,) [Fontaine 1994a, 1.2.4(¢e)]
and the kernel of 6c,/q, is principal by [Fontaine 1994a, 2.3.3]. Moreover,
if 3 = Ko and ky is perfect, then the canonical map Ayic,/a, = Aintc,/x
is an isomorphism [Fontaine 1994a, 1.2.4(e)]. Note that we have no canonical
choice of an embedding W(kalg)[ p~1]— C, when kg is imperfect, since different
perfections of K induce different embeddings. Thus, we can not endow Aiyf.c, /0,
with a canonical W(k g) -algebra structure induced by that of A, . o/ WS [p1]
via the above isomorphism as in the perfect residue field case.
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3B. Bgr and Byt. We define [Bjkcp Jo = 1(£nn Aint,c, sl p~ 1/ (ker ¢, /)" and

t:=log ([¢]) = Z (_1)n—lw € B;i,c:p/@p

neNs

with & := (1,8p,p2,...) € Rc,. We also define Byr,c, /o = BjR,@p/%[t_l].
We denote the projection By ¢ /5 — Cp by 6, /% again. Then, By ¢ 5 is a
Hausdorff complete local ring with maximal ideal ker 0¢ , /5. Moreover, Byg ¢, /%
is an integral domain. In fact, by the following explicit description of By ¢, /%, it
follows from the fact that Byr ¢, /0, 1s a field (Remark 3.6(ii) below).

We define the canonical topology on BcJﬁz,C,, /5 as follows. We regard

Aint,c, s~/ (ker b, j0)"

as a p-adic Banach space whose lattice is given by the image of Ayy¢ ¢, /. Then,
we endow [B(‘fk’@p /% With the inverse limit topology, which is a Fréchet complete
K-algebra. We also endow Bgg /9 With a limit of Fréchet topology by regard-
ing Byr,c, /2 as the direct limit of [B(J{R,@ /% With respect to the multiplication by 1.
Let véﬁ)’@p /3 be the semivaluation of By ¢ /5 induced by the p-adic semivaluation
of B;ﬁ{,@p st/ (ker 6, j5)" defined by the lattice

can.
Im(Ain,c, /e — B(}},@p/sy{/(kef Oc,/30)")-
Obviously, the semivaluations {véﬁ),c,, /3 tnen are decreasing.
We will give an explicit description of B&,Cp /- Let

B&E’Cp/@p {uJac}
> apu" |ay € [E’le}{,@p/@p, {v(({R)’Cp/@p(an)}“”:n — oo foralln,r €N }
neN®/k

+

This is a B&ﬁz,@,, /Q, -algebra. Then, the canonical B dR,Cp/Qp

phism

-algebra homomor-

.ot + R n
LdR,Cp /% - BdR,Cp/@p {ngc} - BdR,Cp/%C’ u —u

is an isomorphism. To prove this, by Remark 3.6(ii) below, we may reduce to
the case K = J. In this case, the assertion follows from the explicit description
of Aint,c,,/%-

For n € N, let Fil” B(‘fk’@p /% be the closed ideal of B(}’k’@p /% generated by the
ideal (ker 6, /)". We endow Bd'R,@p s with the decreasing filtration defined
by Fil"Bar,c, /% = D it j=n t'Fil/ ng,a:p /- Denote the graded Cp-algebra as-
sociated to the filtration by Byr,c, /5. We also denote by v; the image of u; /1
in Byr,c,/k,0 for j € Jg. Since the filtration is compatible with the multiplica-
tion by 7, that is, " Fil"Bag ¢, /% = Fil"t*" By ¢ ,/%> We have an isomorphism

Bur,c, /% = D Bur,c,/x,0t"-
nez
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Forn e N, let

Cotipdni={ X anv"|aneCp{vpan)tn — oo}
neN®Ji:n|=n

and C {VJ%} =@dC, {VJ%},,. We have a C -algebra homomorphism
neN

tar,c,p /.0 * Cplvy, ) = Burc,/mos V' =07,
which is an isomorphism. One reduces to the case 3 = Ky by Remark 3.6(ii)
below. Then, the assertion follows from the above explicit description of BEEI,C,, 9%
and the formula of the semivaluation vgﬁ)’@p /% (Remark 3.6(iii) below). By this
description, Byr,c,,/3 18 an integral domain.

Remark 3.6. (i) (The perfect residue field case) Assume that ks is perfect. Then,
we have a canonical isomorphism Bo ¢, /0, — Bo,c, /i for © € {dR, HT}. More-
over, Bar,c,/0, 1s @ complete discrete valuation field of equal characteristic 0 with
valuation ring B&liz,c,, /0, ! is a uniformizer and the residue field is C,. We also
have an isomorphism Byr ¢, /0, = D,,c7 Cpt". In fact, the first assertion follows
from Remark 3.5 and the latter assertion reduces to the case where kg is perfect by
regarding C, as the p-adic completion of (KP")¢ [Fontaine 1994a, 1.5.1].

(i1) (Invariance) The above structures on B;‘k,@p /% (ring structure, filtration, topol-
ogy) are invariant under finite or unramified extensions. As a consequence, we
may regard B&'k,@p /% as a %?2-algebra and a similar invariance for Bur,c,/% as
a graded Cp-algebra also holds. As for a filtered ring, the invariance follows
from Lemma 3.4(iii). To prove the rest of the assertion, we have only to prove
that for an unramified extension or a finite extension £/, the p-adic semivalu-
ations vé’ﬁ)ﬁp /o and vgﬁ)’@p /¢ are equivalent for all n € N. The unramified case
follows from Lemma 3.4(i). In the other case, let A§§’) (resp. Ag,f’)) be the im-
age of Ajnpc, /a0 (resp. Apc,/2) in B(TR,C,, sac/ (ker 6, /)" . Replacing J by the
maximal unramified extension of ¥ in &, we may assume that £ /¥ satisfies the
assumption in Lemma 3.4(i1). Since Ayypc,/¢ is a finite Ay c,/%-module by
Lemma 3.4(ii), there exists m € N such that p” AP c AM by Lemma 3 .4(iii).
Since we have A%?) C Agg) by definition, the two p-adic topologies induced by the
lattices Agz’) and Ag’) respectively are equivalent, which implies the assertion.

(iii) Assume J = FHy. Then, we have the formula

U((iﬁ),cp/ac(x) = |,ﬁl<fn vé’l:)ﬁp/@p (@n).

where we have x = ), .\ @y dntt" € [Bjk’@p/% with a, € [B;{i’@p/@p. This follows
from the explicit description of Ay ¢, /5
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3C. Connections on Bgr and Bgt. We denote by Q%®7{BdR ¢,/ the direct 11m1t
llgﬁ?%@g{BdR c,/%- Where the transition maps are the multiplication by 1 & ¢~
Then, the canomcal derivation d : ¥ — Qi uniquely extends to a Byr,c, /0, -linear
continuous derivation

. 515
V:Bar,c,/x — QLy®uBar,c, /-

Indeed, the canonical derivation d : Oy — Q@ extends to an Ay c,/0,-linear
derivation d : Ay c, /% — Q ®@%Amf Cp/ by the construction of Aj,r. After
inverting p, then taking the ker Oc, /-adic Hausdorff completion, we obtain a
desired derivation. Since the image of ¥ ®z Byr,c,/q, 1s dense in Byr ¢,/ by
construction, the uniqueness follows. More precisely, if we denote by {0; } jc s, the
derivations on Byr,c, /3 given by V(x) = ZJEJ% dtj ® dj(x), then {0;};c, are
mutually commutative continuous Byr c,/q,-derivations and we have d; = 9/du;.
More generally, the exterior derivation d, Qg{ — QqH for ¢ € N5 uniquely
extends to a Byr ¢, /0, -linear continuous homomorphlsm

.05 Od+15
Vg 1 Q25,Q%Bar,c,/a = Q23 @uBar,c, /%

such that we have Vg (0 ® x) = Vg(0) ® x + (=1)7w A V(x) for x € Bar,c, /%
and w € Qg{ Obviously, the connection V satisfies Griffith transversality

V(Flln BdR,Cp/‘jf) C Q;{®3{Filn_l BdR,Cp/‘jf

for n € Z. These connections are invariant under finite or unramified extensions by
Lemma 1.10(iii) and Remark 3.6(ii).

Notation. We will use the following notation:
V+ . (mt V=0 RV o V=0
Bar.c, /o = Barc,/a0) " Bar,c, /o = Bar,c, /%)
V . can.
Brir,c, /s = ImBur,c,/0, — Bur,c,/2)-

We endow the first two rings with induced filtrations and the last one with
an induced graded structure. Note that these rings are invariant under finite or
unramified extensions of J and that [BdR ¢,/ and BdR ¢,/ (Xesp. BHT c, /o) have
a canonical (Jcan)*'8-algebra (resp. Cp algebra) structure. By the above descnptlon
of the connection and the explicit descriptions of Byr,c /o and Byr,c,, /%, We have:

Lemma 3.7. The canonical maps

+ V+ v \Y%
Bir,c,/0, = Baric,/s0  Barc,/a, = Barc,/a:  Bur,c,/a, = Barc,/x

are isomorphisms. These maps are compatible with filtrations and gradings.
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Remark 3.8. Assume that [ks; : k;;] < 00. Since SA?;{ is a finite-dimensional J{-
vector space (Remark 1.11), the connection V : Bgr ¢, /5% — folc Qi Bar,c, /%
induces a Byr,c, /0, -linear derivation

. 51
V : Bur,c, /% = Qg ®x Bur,c, /%

More precisely, if we denote by {dj};e, the derivations on By, /5 defined
as above, then, by the explicit description of Byr,c, /%, {9;}jer, are commut-
ing Byr,c, /0, -linear derivations and we have d; = 73/dv;. In particular, BXT,CD /%
coincides with (Bur,c,, /g‘;{)v=0. In the general case, we must handle complicated
topologies to define such a connection. To avoid it, we define BIZT,CD /o 1n an ad-hoc
way as above.

We also have an analogue of Poincaré lemma.

Lemma 3.9. The complex

inc. vV oA Vi oA
V+ " mE - Ol 8. Bt L 828.BT
0 — Barlc,/x Bdr,c, /% 5 ®uBir ¢, /3 Q5 @uBar ¢, /%

is exact.

Proof. By the invariance of the above complex under a finite extension, we may
assume J{ = J{o. Recall the explicit description of Bé'k’@p /% 1n Section 3B. Since
we have v, (n!) < |n| for n € N®Jx, x e B&E,Cp /9 18 written uniquely in the form
X =) pen®Jx apu™ with a, € Baﬁ{’@p/@p such that {véfz),a:,,/@,, (@n)}jn|=n = 00
for all r,n € N. Moreover, we have the inequality

inf v{ an) +r > inf v{p nlay) = v X 1

A dR,Cp/Q, (@n) el dR.Cp/0, (M an) = Ve e, 5 (X) o))
by Remark 3.6(iii). We have only to prove that there exists x € BCJ{R,@I, /5% such
that V(x) =  for w € kerVy. Write w = Y-, dt; @ A; with A; € Bk ¢ /5
such that {véﬁ),cp/%(kj)}jejw — oo for all ¥ € N. The assumption w € ker V;
implies that we have d;/(A;) = dj(Aj/) for j, j" € Jy. As above, we can write
Aj =3 en@iy Ajntu™, where 4 5 € B&’i{,@,,/@p satisfies the convergence condi-
tion as above. We have the relation )\j,n—i-ej/ = )\j’,n+e,- for n e N®Jx and j.Jj' e Jy.
We will define a sequence {ap }, @7y D Bc—ﬁz,a:,, /a, 33 follows: Put ag equal to 0.
For n # 0, choose any j € Jy such that n; # 0 and define a, := )\j,n_ej. By the
above relation, this is independent of the choice of j. To prove the assertion, it
suffices to prove that we have {vé’R),Cp /Qp (@n)}|n|=n —> oo for all r,n € N. Indeed, if
this is proved, we see that the element x := )", @y apul®! belongs to [lek,@p J%
and we have V(x) = w. We have only to prove that, for fixed r,n, N € N, we
have vgﬁ)’cn/@p (an) = N for all but finitely many n € N® 7 such that |n| = n. We
may assume 7 > n. Choose a finite subset J of Jy such that vé’R)’Cp (i) =r+N
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for j € Jy \ J. Let n € N®JK such that |n| = n. If there exists j € Jy \ J such
that n; # 0, then we have

vf(irR)an/@p (an) = Uéﬁ),@,,/@,, (Aj.n—e;) > vc(irR),Cp/%()\‘j) —r>r+N-—-r=N,

where the first inequality follows from inequality (1). This implies the assertion
since our exceptional set {n € N’ | |n| = n} is finite. d
3D. Universal PD-thickenings.

Defintion 3.10. A p-adically formal Oy-PD-thickening of Oc,, is a triple

(D.0p.vp).

where
e D is a p-adically Hausdorff complete Oy-algebra,
* Op : D — O, is a surjective Oy-algebra homomorphism,

e yp is a PD-structure on ker fp, compatible with the canonical PD-structure
on the ideal (p).

Obviously, p-adically formal Og-thickenings of Oc, form a category.

Theorem 3.11 [Fontaine 1994b, Théoreme 2.2.1]. The category of p-adically
Jformal Oy-thickenings of Oc,, admits a universal object, that is, an initial object.

Such an object is unique up to a canonical isomorphism and we denote it
by (Acsis,c, /3 Oc, /3> ¥)- Let’s recall the construction. Let (O ®z W(Rq;p))PD be
the PD-envelope of Oy ®7 W(Rc,) with respect to the ideal

ker (Oc, /3 : Ox ®z W(Rc,) — Oc,),

compatible with the canonical PD-structure on the ideal (p). Then, A ¢, /% 1S
the p-adic Hausdorff completion of (Oy ®z W(R¢c p))PD.

Remark 3.12. (i) By [Fontaine 1994a, Remarques 2.2.3], if we have i = K,
and kg is perfect, then the canonical map A c,/a, —> Acris,c,/3 1S an
isomorphism.

(i) By a similar proof as Lemma 3.4(i), the canonical map

Acris,(Ep/f]{ - Acris,(l?p/?l ur

is an isomorphism. In general, we have no invariance for A c, /5 as in
Remark 3.6(ii) even after inverting p.

If 3 = Jlo and kg is perfect, then we have an explicit description of A ¢, /3

"
Acris,@p/?{ = { Z anﬁ

an € Aing,c,y /305 WVint,c /30 (@n) fnen — OO},
neN
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where @ denotes a generator of ker (6, /% : Ajs,c,,/% — Oc,)- Note that the se-
quence {ay}nen is not uniquely determined. Moreover, we have 1 € Ay ¢, /%
and A ¢,/ 1S an integral domain of characteristic 0 whose PD-structure is given
by ¥u(x) = x = x" /n! for x € ker Oc, /s In fact, the assertions follow from the
case i = Kp by Remark 3.5 and Remark 3.12(i), and the assertion in this case
follows from [Fontaine 1994a, 2.3.3].

We define B;is,@,,/% = Acris,Cp/f]{[p_l] and Bcris,Cp/fK = B(—:';is,([:p/%[t_l]' We
also define Ay ¢,/ ‘= Acrs,c,/[X], where x is a formal variable, and we set
Bjt,@,,/?}{ = Ast,q;p/g;{[p_l] and By c, /9 1= B;"t’@p/%[t_l]. We define a monodromy
operator N on By ¢,y as the Bes c,/x-derivation N := —d/dx. We denote
by Veris,c, /9 the p-adic semivaluation on Bétis,q:p /o (O Acgis ¢, /%) defined by the
lattice Acris,Cp /3

In the following, we will give an explicit description of A ¢, /3. Let

Acris,@l, /Qp (ujaf )

be the p-adic Hausdorff completion of the PD-polynomial A ¢, /0, -algebra on
the indeterminates {u;};jcys,. Note that the PD-structure is given by y;,(u;) =
”/n' = u[ ] forn e Nand j € Jy. We also have

Acris,(Dp/(l.:Dp (ujw )=

n
{ Z anu[ ] an € Acris,GZ,,/tI;D,,s {Ucris,C,,/@,,(an)}neN@Jw - OO}
neN®Jx

We regard A c, /9 as an Agigc,/0,-algebra by functoriality. Then, by the
universal property of PD-polynomial algebras, we have the A ¢, /0,-algebra
homomorphism

. . n n
Leris,Cp /5 - Acris,(IZp/(LZDp (qu,{) — Acris,fllp/%» u[ ] = ”[ ]-

Lemma 3.13. If 5t = Ko, then ici5,c, /3 is an isomorphism. Moreover, we have

Veri x) = inf v a
crls,Cp/fK( ) e ® I crls,Cp/@p( n)

— n + i +
forx =3, cndx aputl e Blis,c,/o With an € B ¢, /0,
We use the following lemma in the proof:

Lemma 3.14. We also assume that X = Ky and we use the notation in Section 1A.

(1) If R is a p-adically Hausdorff complete Z[Tj];c s, -algebra, then the canonical
map

HomZ[Tj]jeJ% (0%, R) — Hom[Fp[Tj]jeJ% (kst, R/(p))
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is bijective, where the Fp[T}]; e, -algebra structure on ky; (resp. R/(p)) is given
by Tj > t; (resp. is induced by Z[Tj)je s, — R). Moreover, the restriction map

ey - Homg, 1), ¢, (R, R/(p)) — Homg 7y, (ky. R/(p))

is bijective, where the [Fp[T |j e, -algebra structure on kff{’ (resp. R/(p)) is given
by Tp — Zp (resp. the composition of the inclusion [FP[T liesr, = FplTjljes, and
the above structure map Fp[Tjljcs, — R/(p)).

(ii) Let ¥ : S — R be a surjective homomorphism of p-adically Hausdorff com-
plete Z[Tj]je s, -algebras, whose kernel admits a PD-structure, compatible with the
canonical PD-structure on the ideal (p). Then, the canonical map

19* : HomZ[Tj]jer{ (©f7f7 S) g HomZ[Tj]jeJ% (GTK’ R), f —Uo f
is bijective.

Proof. (i) The first claim follows from the p-adic formal étaleness of Oy /Z[T}];e r,-
The latter assertion follows by using the isomorphism of kalg-algebras

k;g[n]jej;,{/({ij - _JI')}jng() = ky: Tjr>ij.

(i1) We denote by v : S/(p) — R/(p) the ring homomorphism induced by . By
the first assertion of (i), we have only to prove that the canonical map

Homg,(7,);. . (k. S/ (p)) = Homg (7,y; ., (ks R/(p)); [ V10 f,

which is denoted by 4 again, is bijective.

We first note the following: We regard R/(p) as a quotient of S/(p) by v.
Letx € R/(p) and let X1, X, € S /(p) be lifts of x. Then, we have X; —X, € ker ;.
Since a? = p'yp (a) € pS for a € ker ¥, where y denotes a PD-structure on ker 9,
we have fcl = x2 In particular, if we denote by X € S/(p) a lift of x € R/(p),
then X? depends only on x.

We prove the injectivity. Let f : ks — R/( p) be an [p[Tj]je s, -algebra homo-
morphism and f, f': kg — S/(p) lifts of f, that is, 9«(f) = 9«(f') = f.
For X € kg, f(X) and f'(X) € S/(p) are lifts of f(X) € R/(p), hence we
have f(X?) = f(X)? = f/(X)? = f/(XP) by the above remark. Hence, we
have f|kp =f’ |k1’ that is, / = f” by the latter assertion of (i).

We prove the surjectivity. Let f : ksy — R/(p) be an FplT}]jes,-algebra
homomorphism. We have only to construct an [Fp[T lje Ty~ algebra homomor-
phism f: kff{’ — S/(p) such that 9. (f)| k2 coincides with f| k2 where we en-
dow kylg and S/(p) with F [ 7] j e g algebra structures by a 51m11ar way as in the
statement of (i). In fact, we can uniquely extend f to a Z[T}];e j,-algebra homo-
morphism f : ky — S/(p) by the latter assertion of (i). Moreover, (¢x(/))| p=
U (f] ka?) coincides with f| k2 which implies 9« ( f) = f by the latter assertion
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of (i) again. The set-theoretic map f : kffg — S/(p) taking y to X?, where
% € S/(p) is any lift of f(y? _l) € R/(p), is well-defined by the above remark.
Moreover, f is a Z[Tj];e,-algebra homomorphism by a simple calculation and
U (f)] k2 coincides with f| k2 by construction, which implies the assertion. [

Proof of Lemma 3.13. Obviously, we have only to prove the first assertion. Put o =
Actis,Cp/0p (uJ%). Extend 0c,/0, : Adis,c,/0, = Oc, to a surjective Acsigc,/0,"
algebra homomorphism ¢ : s — Oc,, by ¥ (u nly = (. We first prove that 4 has an
Os-algebra structure such that 9 is an Oy-algebra homomorphism.

Denote by @ a generator of the kernel of 6¢,/q, : Acis,c,/0, —> Oc,- Then,
the PD-structure on the ideal ker 0c /g, of Acs,c,/0, canonically extends to a
PD-structure §; on the ideal (w) of «, compatible with the canonical PD-structure
on the ideal (p). By construction, the kernel of the map & : 4 — Aic,/0,
taking ul™l to 0 is endowed with a PD-structure §,, compatible with the canonical
PD-structure on the ideal (p). Since « is an integral domain of characteristic 0,
81 and 8, induce the same PD-structure on (w) Nker £. Hence, by [Berthelot and
Ogus 1978, Proposition 3.12], the ideal ker % = (w) + ker & admits a PD-structure,
compatible with the canonical PD-structure on the ideal (p). Then, the assertion
follows by applying Lemma 3.14(ii) to ¢:

can.
Oy —— Og,

2Tjljer — d,

where the horizontal structure map is given by 7 > u; + [7;] € .

By the above Og-structure, we may regard s as a p-adically formal Oy-PD-
thickening of Oc,. By universality, we have only to prove that i c, /% 1s an Oy-
algebra homomorphism. Let & : Oy — Ay, /5 be the composition of the structure
map Oy — o and tes,c, /9 SINCe Lers ¢, /% commutes with the projections ¢
and 6c, /5, we have the commutative diagram

can.
Oy —— > Oc,

o
Str. Ocp s

str.
2T}l jer > Acris,(Dp/SJC?

where the horizontal structure map is given by 7 +— ;. By Lemma 3.14(ii), o
coincides with the structure map Oy — A ¢, /9, Which implies the assertion. [

Finally, we remark that if K = o, then Beys ¢,/ and By ¢,/ are integral
domains by the above explicit description of A ¢, /%-
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3E. Connections and Frobenius on B and Bg. In this section, assume 3 = H.
We endow ch Cp/% with the p-adic topology defined by the lattice A ¢, /9. We
regard By ¢,/ as the direct limit of ch Cp/% under the multiplication by ¢!
and we set

/\q ~ T /\q ~ +
§25 @3 Beris,c, /o0 = 1im Qg @B ¢, 3¢

Then, the canonical derivation d : 5 — Q%f uniquely extends to a By ¢, /5¢c-linear
continuous derivation V : Begis c, joc — Q c®ff€ch ¢,/ by the explicit description
of Beris,c, /5 Note that V(x[”]) V(x)-x"=1 for x e ker O /- Asin Section 3C,
if we denote by {0} } j e s, the derivations on By ¢, /3 givenby V(x) =}, jer, dtj®
dj (x), then {9; }; e s, are commuting continuous B ¢, /q,-derivations and we have
dj = 0/0u;. We also have a canonical extension Vq of exterior derivations dg. Also,
we can uniquely extend V, to the map Vq Q {®3{Bst Cp/¥ = Qc,{ (X)%[EBSt Cp/%
by putting V(x) = 0, where we define Q% &yBy, Cp/o i= (QZ & Beis, c,p /30 [X]-

Let ¢ : O3y — Og be a lift of the absolute Frobenius on k3. The ring homomor-
phism ¢ ® ¢ : Oy ® W(Rc,) — Oy ® W(Rc,) induces a ring homomorphism
on A c,/5%- Although the resulting map depends on the choice of a Frobenius
lift of Oy in general, we denote it by ¢ again. By defining ¢(x) := px, we also
have a Frobenius on By ¢, /. By construction, the connection and the Frobenius
on By ¢,/ commute and we have the relation N o ¢ = pp o N by a simple
calculation.

Notation. We define BX,CD /5= Boc, /gf)V=° for <& € {cris, st}.

By the commutativity of V and ¢, these rings are endowed with ¢-actions.
Obviously, BX,C,, /3 18 endowed with the monodromy operator N. By the explicit
description of By ¢, /9, we have:

Lemma 3.15. For & € {cris, st}, the canonical map

v
Be.c,ra, = Bocp/u

is an isomorphism. Since this map is compatible with Frobenius, Frobenius
on B<> Cp/% is mdependent of the choice of a Frobenius lift of Oy. In particular, the
Frobenms on B<> cp/% IS injective.

3F. Compatibility with limit. When a p-basis of ks is not finite, some technical
difficulties occur. In this case, we will reduce to the finite p-basis case by using the
results of Section 1G and the following inverse limits.

Let the notation be as in Section 1G. By functoriality, we have canonical maps

Bo.c, /a0 _)hmJe@(J )Bo,c,,/ﬂcmv Bo Cp/vcﬁllmjegw )B@ Cp/Yss

where <> € {cris, st}, QO € {dR, HT}. Since these morphisms are compatible with
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the above explicit descriptions of these rings, it is easy to see that these maps are
injective.

3G. Embeddings of B.is and By into Bgr. Let
Je, s :=ker (B¢, 5 - Aunt,c, /5~ 1— Cp).

We endow the ideal Jc, 5/ J]ﬁép /5 of the Q-algebra Ay ¢, /5[ 1/ J]ﬁép /5 With the
unique PD-structure. This is compatible with the canonical PD-structure of Oy on
the ideal (p). Hence, the canonical map Oy ®7 W(Rc,) — Ajyr.c,/xl 1/ J]fép /%
factors through (O ®z W(Rc,))™ — Ainge,/xlp "1/ JE, s+ If we endow the
LHS and the RHS with the p-adic topology and the p-adic Banach space topol-
ogy respectively (see Section 3B), then the above morphism is continuous. In
fact, the canonical map times n! factors through the image of Ajypc, /. By
passing to limit, the map extends to Acss c, /% — B;ﬁz,qz,, s%- Thus, we have a
canonical H-algebra homomorphism By ¢ /5 — Bk c, /% Fixing jp € Re,
such that 5(® = p, we extend this map to B;t Cp/Ht = B&E,C,, /% by sending x
to log ([p]/p) := Zn€N>O (=1)"1([p])/p —1)"/n. Note that these morphisms are
compatible with connections.

Proposition 3.16. Assume that the algebraic closure of } in C is dense in Cp.
Then, the canonical maps

v v v v
Hean O%ean,0 Beris,c /0 = Bar,cp/os Hean @euno Bst,c, /310 = Bar,c, /a0
H ®ito Beris,cp /a0 = Bar,c,p /s, I Qo Bi,cpp /ot = Bar,cp /e
are injective.

Proof. By identifying C, with the p-adic completion of 22, we may assume H = K.
Note that if kg is perfect, then this is due to [Fontaine 1994a, 4.2.4]. We consider
the general case. We first prove the first two cases. We have only to prove the
semistable case. The canonical map Kcan ®k,,, Kgf — KPfis injective since
Kcan/ Kcan,o is totally ramified and Kgf is absolutely unramified. Hence, we have
the commutative diagram

v can. \v/
Kcan ®Kcan,0 BSt,Cp/K() BdRsCD/K

~ ~

can. .
¢ f
K ® Koo Bst,Cp/Kpr KP ®Kgf B

can.
(RN
) t.Cp/ KL Bar,c,/ Kot

where the vertical arrows are induced by base changes and the injectivity of the
bottom second arrow follows from the perfect residue field case. Then, the assertion
follows from the above diagram. We consider the latter two cases. By passing
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to limit (Section 3F), we may assume [k : k};] < 00. Then, the crystalline case
follows from [Brinon 2006, Proposition 2.47], where B¢,/ k, 1 denoted by Beyis.
We will prove the semistable case. By regarding K ® g, Beyis,c,,/ k, as a subring
of Frac(Bgr,c,/ k). the assertion is equivalent to saying that x is transcendental
over Frac(Beis,c,/k,)- Suppose that it is not the case. To deduce a contradiction,
we have only to construct a nonzero polynomial in Bcris,Cp / K(;))f[X ] which has x
as a zero. By assumption, we have a nonzero polynomial f(X) =) ;a; X' €
Bj;is,Cp /K, [X] such that f(x) = 0. Form € N®/x | we denote by d™ the product
H jesg O ; 7, where {0;} e, are the derivations defined in Section 3C. Denote by
fm(x) e B(—:i;is,Cp/Kgf[X] the image of the polynomial £ (X):=Y"; o™ (ai) X!
under the canonical homomorphism By ¢ /x — Bk c,/xer. Then, /@™ (X)
has x as a zero since we have x € BdVR—t_C,,/K' Write a; = ), cn®7k aj pul™
with a; p € B;—is,cp Ja, by using the explicit description of Bj;is,Cp /K, given in
Section 3D. We have 0™ (a;) = 3, eneu dintmu™ and fO(X) =3 aim X'
Hence, we obtain the desired polynomial f (m) (x) by choosing m € N®/k such
that we have a; , 7# 0 for some i. O

4. Basic properties of rings of p-adic periods

We will apply the preceding construction to the cases X = Q,, K, KP', among
others. The resulting rings of p-adic periods will have an appropriate Galois action
by the functoriality of the construction: For example, G acts on Byr ¢, /0, and
Bar,c,/ k> Gkt acts on Byg ¢,/ gor- In this section, we will review Galois theoretic
properties of these rings. The proofs of the properties are somewhat technical and the
reader may skip this section by admitting the results including the Gg -regularities
just below. We keep the notation of the previous section.

4A. Calculations of H® and verification of Gk -regularity. In this subsection,
we will prove the G -regularity of the (Q,, Gk )-rings
Bcris,ﬁp/K()’ Bst,Cp/K()v BdR,Cp/K7 BHT,CP/Kv
v v \Y \
Beis,cp/kor Bscp/kor Barc,/k:  Bare,/x

which are used later in the paper, and calculate their /°. Note that these rings are
integral domains by their explicit description.

Lemma 4.1. Let O € {dR, HT}.

(i) H°(Gk.Frac(Boc, k) = K.

(ii) The (Qp, Gg)-ring Bo,c,/k satisfies condition (G- R3) of Section IH.
(iii) The (Qp, Gk)-ring Bo ¢,/ k is Gk -regular.
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Proof. Assertion (iii) follows from (i), (ii) and Lemma 1.21. We will prove (i)
and (ii) separately in the Hodge—Tate case and the de Rham case.

(a) The Hodge—Tate case: We first verify (i). By Theorem 1.15, we have only
to prove that if we have nonzero x, y € Byr,c,/kx such that g(x)y = xg(y)
for all g € Gk, then we have x/y € C,. We first consider the case |Jx| < co.
Note that Bur,c,/x = Cplt, =1 {v; }jeJi] is a uniquely factorization domain.
Hence we may assume that x and y are relatively prime by dividing x and y by
their greatest common divisor. Then we have g(x) = cgx and g(y) = cgy for
cg € Bur,c,/x)* = U,ez Cpt" by assumption. By the explicit description of
Bur,c,/k» we can choose n € Nk such that

0"(x) € Brc,/k \ {0} 2= Cplt. 1711\ {0},

where d; = 19/dv; and 3" :=[]; 8}” (Remark 3.8). Write 0" (x) = ), ez ant”
with a,, € Cp. Then, we have g(3" (x)) = cg0" (x) by the commutativity of d; and
the G -action. Since c¢g is homogeneous with respect to 7, we have ¢y € Cj by
comparing degrees. By comparing the leading terms, we have cg = g(an)/anx"(g)
for all g € Gk, where n is the degree of 9" (x) with respect to z. Hence, we
have x/a,t" € (BHT,@,,/K)GK- Note that we have (BHT,CP/K)GK = K. This
follows from the facts that we have Byr,c,/x = U, en ™" Cplt, {2V} }jesi ] and

HY(Gi . t7"Cplt, {tvj}jes) = K

by [Brinon 2006, Lemme 2.15], where Cp[t, {tvj}je ] is written @, ¢ g (BFR)
in the reference. Thus, we have x € C;t”. By the same argument, we have y € (E;tm
for some m € Z. Write x = at”, y = bt with a,b € C;. Then, we have

gla/b) = X"""(g)(a/b)

for g € Gg. Since H°(Gg,Cp,(n — m)) is nonzero if and only if n =m by
Theorem 1.15, we must have n = m. In particular, we have x/y =a/b € C,,.

We consider the general case. Recall the notation in Section 1G. Let J € ?(Jg)
and denote by x, ys the image of x, y in Byt c,/k,- By applying the above
result to Jg = J, if x5 and y; are nonzero, then there exists Ay € C; such
that xy = Ay yy. Since this A s is uniquely determined, A = A s is independent
of the choice of J. Since Sy, :={J € P(Jg) | xj # 0 and y; # 0} is a cofinal
subset of 2(Jg) by the explicit description of Byr,c,/x, we have x = Ay by the
injection in Section 1G.

We will verify (ii). Let x € Byt c,/x be a generator of a Gk -stable Qp-line
in Byr,c,/ k- Write g(x) = cgx with ¢g € @;. We use the same notation as above.
By a similar argument as above, if xy # 0, then we have xy = ajt"’ foray € C;
and ny € N. Moreover, ay and ny are unique. In particular, {a s} and {n} are
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constant on the cofinal subset S, x of ?(Jk) and we have x € C31" C (Bur,c,/x)”™
by the injection in Section 1G.

(b) The de Rham case: To prove assertion (i), we have only to prove that if we
have nonzero x, y € Bar,c,/k such that g(x)y = xg(y) for all g € Gk, then we
have x/y € K. Let J € P(Jk) and denote by x s, yy € Bar ¢,/ k, the image of x, y.
Ifxy#0and yy #0,thenwehave xy/yy € HO(GKJ,Frac(BdR’@p/KJ))=KJ by
[Brinon 2006, Proposition 2.18], where Frac(Bagr,c,/k ) is denoted by Cgr. Since
the set {J € P(Jg)|xs #0 and yy # 0} is a cofinal subset of (Jg ) by the explicit
description of B(}’}{,CP/K, we have x/y € ﬂje@(h{) Ky = K by the injection in
Section 1G. We will verify (ii). By Remark 3.5(i), we may assume K = K". Let
V be a Gg-stable Qp-line in Byr c,/x generated by x. By Lemma 4.2 below
and Theorem 2.1, there exist n € Z and a finite extension L /K such that V" C
(BdR,@p/K)GL = (BdR’Cp/L)GL = L; in particular, we have x € (Bar,c,/x)™. O

Lemma 4.2. Let V be a Gk -stable Q p-line in Byr,c,/ k- Then, up to a Tate twist,
V is Cp-admissible as a p-adic representation.

Proof. We assume K = K" by Hilbert 90 and Remark 3.6(ii). Let x € Br ¢,/ x be
a generator of V. By multiplying by a power of ¢, we may assume x € B;i,@p /K-
Let p: Gg — @; be the character defined by p(g) = g(x)/x. By the explicit
description of [Bjk’@p /x (Section 3B), we have

X = E anpu”
neN®/k

with a, € B&’k,@,,/@p- Choose n € N®Jk such that ap # 0 and write a, = t"A
withn e Nand A € (B&,Cp/@p)x‘ Since we have g(an) = p(g)an for g € G,
we have (ox™")(g) = g(A)/A for g € Ggyr. By taking the Q p-linear map 6c,/q,,,

we have (px™")(g) = g(0c,/a,(1))/0c,/a,(*) for g € Gk, that is, px™"| o
is Cp-admissible. Hence, px™" is C,-admissible by Theorem 2.1. O

Corollary 4.3. We have
(BZiS,CP/Ko)GK = (BZ’CP/KO)GK = Becan,0,
(Bcris,Cp/Ko)GK = (Bst,Cl,/Ko)GK = KO’
(Bie'c, k) = Birc,/ k) = Kean,
4 4
Bir.c,/ ) = Bare, k) =K,
4
(Br.c,/x) %" = Bur.c,/x) = K.

Proof. Since we have trivial inclusions (such as Ko C (Bis,c,/ KO)GK ), we have
only to show the converse inclusions. By passing to limit (Section 1G and 3F),
we may assume [kg : k;;] < 0o0. We prove the Hodge-Tate case first. Since we
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have BXT,C,, /k = Dyez Cp(n) (Section 3B), the assertion for BXT,CI, sk follows
from Theorem 1.15. The assertion for Byt c,/x follows from [Brinon 2006,
Lemme 2.15].

We will prove the rest of the assertion. Since we have K¢an0 = (Ko)can b
comparing the residue fields, the assertions in the horizontal case follow from those
in the V-less case by taking horizontal sections. The de Rham case follows from
Lemma 4.1(i) and the crystalline and semistable cases follow from de Rham case
and Proposition 3.16. O

Lemma 4.4. The (Qp, Gk)-ring By ¢,/ k, satisfies (G-R3) for & € {cris, st}. In
particular, Be, ¢/, is Gk -regular.

Proof. Note that the last assertion is obtained by applying Lemma 1.20, whose
assumptions are satisfied by Proposition 3.16, Lemma 4.1(iii) and Corollary 4.3.
By Remark 3.12(ii), we may assume K = K. Let V' be a Gg-stable Q-line
in By ¢,/ Kk, With generator x. By Lemma 4.2, there exists n € Z such that V"
is Cp-admissible as a p-adic representation of Gx. By Theorem 2.1, the image of
the map p : Gg — @X that takes g to g(xt")/(xt") is included in (@p)torg, which
is killed by 2(p — 1) Therefore, we have (x¢")2(P~—1 ¢ (Be @p/KO)GK = Ky,
which implies x € BO,C,, /Ko g

Lemma 4.5. The (Q,, Gk )-rings

\Y% \Y v v
Bcris,Cp/Ko’ Bst,C,,/Ko’ BdR,Cp/K7 BHT,C,;/K
are G -regular.

Proof. The Gg-regularity of the field BdR Cp/K follows from Example 1.18.
Since we have a Ggpi-equivariant canonical 1somorphlsm [B<> Cp/Ko = Boc, /Kl
for < € {cris, st}, the verification of (G - R3) for B<> ¢,/ K, is reduced to that
for Beo ¢ b/ KD which follows from [Fontaine 1994b, Proposmon 5.1.2(i1)]. By
a similar reason, (G-R3) for BdR ¢,/ K 1s reduced to [Fontaine 1994b, Proposi-
tion 3.6]. The (Q,, Gg)-ring C p((t)) is a field containing the fractional field
of BHT Cp/ K = Cp[t t~!]. By Theorem 1.15 and dévissage, we have C, (1)%% =

(BHT Cp/ &) PK, where the last equality follows from Corollary 4.3. By apply-
ing Lemma 1.21, [E{%HT c,/k 18 Gg-regular. By Corollary 4.3, the Gk -regularity for
[B%CVrls .Cp/ K, and Bst cp/ K, follows from Lemma 1.20 and Proposition 3.16. O

Remark 4.6. For . € {cris, st,dR, HT}, the (Q,, Gg )-rings B-,C,,/@p and B, o /q,
are G -regular We also have

) = (B, k)

v G
Bec,/a,) * = Bec,/a, «.Cp/Ko

In fact, the assertion follows from canonical isomorphisms BY Cp/0, =Bec,/a, =
BY Cp/ Ko 38 (Qp, Gk )-rings.
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Notation. (i) We define the category of crystalline (resp. horizontal crystalline)

representations of Gg as Rep%dm Cpr i Gy (resp. Repaldm Gk), and we denote
crs.Lp Beyis Cp/

it by RepcmGK (resp. RepcmGK) The corresponding functor D B is denoted by
Deris (resp. IDcm) and the comparison map «g by Qcris,.c,/k, (resp. acvris,Cp / Ko)'
We define the category of semistable representations similarly, with “cris” in place
of “st”.
(i) We define the category of de Rham (resp. horizontal de Rham) representations
of Gk as Repﬁ’B‘i‘;C /KGK (resp. Repaldm GK) and we denote it by Repr Gk
(resp. RedeGK) The corresponding functor Dp is denoted by Dgr (resp. [I])(YR)
and the comparison map «pg (loc. cit.) by agr,c,/x (resp. ay dR,Cp/ x)- We define

the category of Hodge—Tate representations similarly, with “dR” in place of “HT”.

(iii) We define rings with Gg -actions and automorphisms ¢ by

nV+ nmV+
Bng,Cp/Ko m 4 (Bcris,Cp/Ko)’ Blog,Cp/Ko ﬂ 4 ( st Cp/Ko
neN neN

Note that we have [@X'E /Ky = [E‘%X‘E sk for & e {rig, log}.

@iv) In the rest of the paper, when kg is perfect we omit hyperscrlpts V to be
consistent with the usual notation; e.g., we write Bng Cp/ K instead of Bng Cp/ KD

Remark 4.7. Asis explained in Section 1A, there is no canonical choice of a Cohen
ring of kg nor a Frobenius lift when kg is not perfect. Since some definitions,
such as the definition of crystalline representations, involve these choices, we make
some remarks on the independence of definitions.

(i) Since we have a canonical isomorphism Bo, ¢, /0, = [B@ c,p/k for Qe {dR,HT}
(Lemma 3.7), [B@ Cp/K depend only on C, as an abstract ring.

(i1) Since we have a canonical 1som0rphlsm B<> Cp/Qp = B<> Cp/ Ko for & e {cris, st}
(Lemma 3.15), the category Rep<> Gk depends only on C, but not on the choice
of Ky. It also follows that B<> Cp/ Ko for & € {rig,log} is independent of the
choices of K¢ and ¢ as a Q) algebra with g-action. Moreover, for a finite exten-
sion L/K, BX,J(er /K, coincides with BX,J(er /Lo I B(YR‘!'CP /L-

(iii) By definition, the category RepQGK for & € {cris, st} may depend on the
choice of K. In the case [kg : k2 x| < oo with & = cris, the independence is
proved by Brinon [2006, Proposition 3.42]: He proves the assertion by introducing
a ring Amax, k» Which is independent of the choice of Ky and is slightly bigger
than Og ®q, Acris,C,/K,- Although a similar idea seems to work in the general
case, we do not treat this problem in this paper. Instead, we will state a precise
version of the Main Theorem later (see Section 6).

Remark 4.8 (Hilbert 90). Let V' €Repg, G . Then, V is crystalline or semistable if
and only if sois V| gur. In fact, we have By ¢,/ ko = Beris,c,/ Ky by Remark 3.12(i),
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whose Ggu-invariant is K" by Corollary 4.3. Hence, the assertion in the crystalline
case follows from Hilbert 90 and the same proof works also in the semistable case.
We can also prove that V' is de Rham or Hodge-Tate if and only if so is VL
for a finite extension L of the completion of an unramified extension of K. This
follows from the cases when L/K is finite or unramified and in these cases the
claim follows from Remark 3.6(i1) and Hilbert 90.

Algebraic structures of rings of p-adic period, which are compatible with the
action of Gk, induce additional structures on the corresponding . We do not
review these structures here since we do not need all of them to prove the Main
Theorem. For the reader interested in these structures, see [Brinon 2006, 3.5]
for example. We need only the connection on Dgr for the proof of the Main
Theorem: For V' € Repyr Gk, the finite-dimensional K-vector space Dgr (V') has a
connection V : Dgr (V) — SAZ}( ®xk Dgr(V), which is compatible with the canonical
derivation on K.

4B. Restriction to perfection. If we have V € Rep, Gg with « € {cris, st,dR, HT},
then we have V |gr € Rep, Ggrt. Moreover, we have canonical isomorphisms

f
K5 ®xk, Do (V) = Do Vg, KP @k Do(V) = Do(V k),

induced by the canonical map Be, c,/x, — B 6.Cp/ K" and Bo ¢,/ x = Bo,c,/ k"
for <> € {cris, st} and O € {dR, HT}. We first prove the de Rham case. By applying
Bar,c,/ Kk ®Bur ¢,/ x to the comparison isomorphism agg,c,/ x(V), we have a
G pe-equivariant isomorphism

BdR,Cp/KPf ®K [DdR(V) — BdR,Cp/KPf ®@p V.

By taking G -invariant, we have an isomorphism KP'® g Dgr (V') = Dar (V| o).
The other cases follow similarly.

S. Construction of Nng )

In this section, we construct a (¢, Gk )-module NX;(V) over B n_%@ /K, forade
Rham representation V' of Gg, possibly after a Tate twist. Our Nng coincides with
Colmez’s N:{g when the residue field kg is perfect.

We first recall Colmez’s Dieudonné—Manin theorem, which is a key ingredient of
the construction. Let M be a finite free [EBdR ¢,/ Kk -module of rank r > 0. We call N
a [BdR ¢,/ Kk -latticeof M if N isa [E’BdR Cp/K" submodule of finite type of M such that
N [Z 1] = M[t~']. Note that a BdR Cp/ K—lattlce of M is finite free of rank r over
BdR c,p/K since BdR cp/K 182 discrete valuation ring.

For n € Z, denote the composition

=~V Q" inc.
Brlg@ /K()C_>Brlg@ /KOC_)BdRC /K
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by ¢" again. By the commutative diagram

»V+ C . V+
Brig,Cp/Ko BdR,Cp/K

can. l = can. l =
n

Bt Y m+

Bre.c,/ k2" — Bar,c,/ ko

the proof of the following theorem is reduced to the perfect residue field case
[Colmez 2008, Proposition 0.3] (see also the remark below).

Theorem 5.1 (Colmez’s Dieudonné—Manin classification theorem). Let r € N+
and M be a BdR ¢,/ K “lattice of (BdVR—t_Gp/K)r' Let

Mg :={x € (@X;CD/KO)’ | " (x) € M foralln € Z}.

Then, Mg is a finite free [H%ng c,p/ Ko module of rank r with semilinear ¢-action and
there exists a basis e, ..., e, of Miig over Bng Cp/ Ko Such that:

(1) There exist h € Nug and a1 < --- < a, € N such that (,Oh(el-) _ p“"ei
for1 <i<r;

(i) ey,...,e, is a basis of M over BdVR—i,_C,,/K'

Remark 5.2. Though our condition (ii) is weaker than that in [Colmez 2008], the
conclusions of the theorem are the same for the following reason: By definition, ¢
acts on M,;y. Since @™ is an automorphism on Mg by (1), pi is also an automorphism
on M;;s. Hence, (ii) implies that ¢"(e,), ..., ¢"(e,) is a [Bng Cp/ Ko-Dasis of My
for all n € Z. In particular, ¢"(e,),...,¢"(e,) is a BdR Cp /K—bas1s of M.

In the rest of this section, let V' be a de Rham representation of Gg of dimension r
such that Dgr (V) = (Bjx Cp/ K BQ, V)9 . Note that the last assumption is satisfied
for any de Rham representation after some Tate twist. Let

NgR (V) :=Bik ¢,/ x ®k Dar(V).

It is a finite free B&E,C,, /x-module of rank r with Gk -action and V-action which
are commuting. By the comparison isomorphism «gr ¢,/ We have a canonical
isomorphism N&(V)[t_l] = Byr,c,/x ®a, V, in particular, we have

"Birc,/x ®a, V CNR(V) CBRe,/x ®a, V

for sufficiently large n € N. Taking horizontal sections, we see that NV+(V) =
f\J;iQ(V)v 0is a Gg-stable BdR ¢,/ K -lattice of BdR c,/k ®a, V. By applying
Theorem 5.1to M = N V), we have the following proposition: (In the following,
a (¢, Gg)-module over Brigf'@p /Ko (of rank r) means a finite free module (of rank r)
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over [BX;’CP /K, With a semilinear g-action and a semilinear Gk -action, which are
commuting.)

Proposition 5.3. The BY.Y: |k -module

Ny (V) :={x € BY ¢, ko ®a, V | ¢ ®id(x) € NI (V) forall n € Z}

is a (¢, Gk )-module over Bng Cp/ Ko of rank r. Moreover, we have a basise,, ..., e

of NX;‘(V) over Bng Cp/ Ko such that:

(1) There exist h € Nsg and a; < --- < a, € N such that (ph(ei) = pUe;
forl1 <i=<r;

r

(i) ey,...,e, lsabcmsofN F V) over[EBdRC S/K

Note that NX;(V) is independent of the choice of Ky by Remark 4.7(ii). We

will use the following property of NX;’ (V') in the proof of the Main Theorem.

Proposition 5.4. The canonical map
BdR Cp/K ®BdRC /K NV+(V) - N+ (V)

is a Gk -equivariant isomorphism. In particular, BdRC WK ®BV Ko ng T (V) is

isomorphic to (BdR c /K) as a By Cp/K[GK] module by Proposmon 5.3(ii).
Proof. Since V| g is de Rham and we have the canonical isomorphism Byr,c,/a,—

Bar,c,/ ko> We have the comparison isomorphism

Bar,c,/0, ® 6o (Bar,c,/0, ®0, V)K" = Bar c,/a, ®a, V.

Bar.cp/ap)
By taking the base change of this isomorphism by Byr,c,/0, = Bar,c,/x, We
obtain a canonical isomorphism of Bag ¢,/ x [Ggrr]-modules

o:Bar,c,/ k B Bar.c,pyay) K7 (Bar,c,/0, ®a, V)" = Ber.c,/k ®a, V. (2)
We also have the comparison isomorphism
agr,c,/K (V) :Bar,c,/k ®k Dar(V) = Bar,c,/x ®a, V-
Note that we have (Bjﬁz,cp /@p)GKpf = (Bar,c, /@p)GKpf since we have
(l_”B&,CP/@p/I "MBL e ,/Qp) Ckr' = (Cp(—n)) %k =0

for n € N~ . We have only to prove that there exists an isomorphism of BEE{,C,, /K-
modules

(N R(V) =) BdR cp/k @k Dar(V) =
G
B&»CP/K ®([B&|}-2 Cp/@p)GKPf (BdRscp/Qp ®@P V) Kot

which is compatible with the injections agr ¢,/ x (V) and «. Indeed, by taking the
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horizontal sections of both sides, we have

V+ V+ Gpopf
Neg (V) = Barc,/x ®(Béﬁ.w/@p)GKpf (Bar,c,/0, ®a, V)K",
which implies the assertion.
We have
Dar (V) = (Bar,c,/x ®a, V)K" =

B Crt B V) ket
s~ p ]
(Bar,c,/ k) K" @ yoxor (Bar.c,/0, ®a, V)K",

(Bar.cp/ap
where the equality follows by taking Ggpr-invariant of (2). Note that we have
+ G G
(Bar,c, k) 5" = Bar,c,/k) K"
Indeed, if we write x € LHS as x =¢t7" ) _\@sx anu” with a, € B;ﬁ{’@p/@p,
since {u; }jeg, are invariant by the action of Gk, we have
. G G
bn :=an/t" € Bar,c,/a,) K" = (ng’@p/@p) Ko
Therefore, we have x = ) @k bntt" € (B&,CP/K)GK'”. Hence we have a
canonical map
Dar(V) — B B V) Ok,
ar(V) dR,Cp/ K ®(B&Cp/@p)6,<pf( dR,C,/Q, B0, V)

This induces a canonical homomorphism of By ¢,/ Kk -modules

i B,k Ok Dr(V) = B¢,/ k ® @ ¢y 0y KT (Bar,c,/a, ®a, V),

which is compatible with the injections agr c,/x (V') and @ by construction. We
have only to prove the surjectivity of i. By Nakayama’s lemma, we have only
to prove the assertion after applying B&ﬁz,c,, JKPOBE (note that B&E,Cp /K =
B&’i{,@p /vt 1s a surjective homomorphism of local rings). We have the commutative
diagram
N aar.cp/K (V)
Bir,c,/ kv @Kk Dar(V) Bar,c,/ k7 ®a, V

I

O
Bik,c,/ k7 ® g s Bare, /0, ®a, V)" —= Barc, /v ®a, V

cﬁi,@p/@p
can. =
n gr,cp/ kP o)
Bik,c,/ kv ® ket Dar (V] gor) © Bar,c,/ kv ®a, V,

where the left lower arrow is induced by Byr,c,/0, = Bar,c,/ kv the Ggor-
equivariant isomorphism. Denote the composition of the left vertical arrows
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by i’. Since the canonical map Bar,c,/k — Bar,c, /Ko 1s Gger-equivariant,
by the diagram, the restriction of i’ to Dgr(V') coincides with the canonical
map Dgr(V) — Dar(V |get), which is an isomorphism after tensoring KP' (see
Section 4B). Therefore, i’ is an isomorphism and we obtain the assertion. O

6. Proof of the Main Theorem

We will restate our main theorem in the point of view of Remark 4.7(iii):

Main Theorem. Let V be a de Rham representation of Gg. Then, there exists a

finite extension L/ K such that the restriction V| is By ¢,/ L,-admissible for any
choice of Ly.

In this section, we give a proof of the Main Theorem in this form. Before the
proof, we prepare technical lemmas used in the proof. The reader may go to the
proof of the Main Theorem and back to the lemmas if necessary.

We first recall a slightly modified version of [Colmez 2008, Proposition 0.6]. In
the rest of this section, denote the unramified extension of @, of degree 1 € N5
by Q,n

Proposition 6.1. Assume that kg is perfect Let [Uh 2" (Blog C[)/KO)(p =P for h,
aeN. Let M be a (¢, Gg)-module over Bng Cp/ Ko of rank r € Ns.o with basis
el, ...,€e.. Assume that there exists an lsomorphlsm of BdR Cp /k[Gk]-modules
Bz Cp/ K ®B+ =~ (B, c, k)" andthat e, e, sansﬁes the following

2.Cp /K
conditions:

(1) There exists h € Nog and a; < --- < a, € N such that (ph(el.) = pUe,
forl1 <i<r.

(ii) Forall g € Gk, there exists cg € GL, (B:ﬁz,@p /K )» a (unique) upper triangular

matrix whose diagonal entries are 1, such that g(e,, ..., e,) = (ey,...,€,)cg.
. = + . - . ~ + .
Then there exists a Big, ¢ /g, -basis f1..... fr of Bigg ¢,/ Kk, ®Brt /Ky M satis-

fying the following conditions:

(a) f; is fixed by Gg;

®) fi =e¢;+ Xi<jzio1 Ojie; witheji €Uj, . (hence " (f;) = p® fp).
Proof. Note that we add the extra assumption (ii) and the slightly stronger con-
clusion (a) to the original proposition. Let U be the subgroup of GL, (ng,q:p /K)
consisting of upper triangular matrices whose diagonal entries are 1 and whose (i, j)-
component belongs to [U a; for i < j. We endow U with the subspace
topology of GL, (BdR Cp/ K) Then U is a topological Gg-group and the map
g+ ¢g; Gg — U is a continuous 1-cocycle. By [Colmez 2008, Proposition 0.6],
there exists a finite Galois extension L /K such that [c] is mapped to the trivial
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class in H'(Grw, U) by the composite Res}:ur o Resllg, where [¢] denotes the class
represented by c. Note that for all a € N+, we have

ur uolt=pa h_ pa
([U;l,a)GL C ((Bst,Cp/LO)GL )(p P = (Ll(;r)(p p — O,

where the first equality follows from Remark 3.12(ii) and Corollary 4.3 and the
last equality follows from [Colmez 2008, Lemme 10.9]. Hence U 92" = {1} and
[c] is mapped to the trivial class in H'(Gr, U) by the inflation-restriction exact
sequence. Hence, we have only to prove that the inverse image of the trivial element
by Resé : HY(Gg,U) — H' (G, U) consists of the trivial element.

We endow U with a Gk -stable decreasing filtration {% },en by Fp := {(x;j) €
U |xijj =0for0< j—i <n}. Then, we have Fo =U, F, = {1}, F,1 I F,
and %, /%, 4+ is isomorphic to a direct sum of copies of [U;w with @ € N. We have
only to prove that the inverse image of the trivial element under the restriction map
Resllg : HY(Gg, %p) — H' (G, %) for n € N consists of the trivial element. Since
there exists a Gg -equivariant set-theoretic section of the canonical projection ¥, —
Fn/Fn+1 (for example, we can identify

1+ in,i—i-n—i-lEi,i—l—n—l—l € Fn

i

with its image in %,/%,+1), the canonical maps %?K — (Fn/Fny1)9% and
%?L — (Fp/Fns1)CL are surjective. By using long exact sequences, we have the
commutative diagram

0 —= H'(Gx.Fns1) —> H' (Gg.Fn) —> H'(Gg.Fn/Fns1)

l Reslf( L Resk l Reslf(

can. can.
O _— HI(Gngn-i-l) I HI(GL»gn) e HI(GL’@H/@n-i-I)a

whose rows are exact as pointed sets. To prove the assertion, it sufﬁces to prove
the injectivity of the restriction map H' (G, [U;l y— HY(Gp, o) forh,a eN.
Indeed, it implies the injectivity of the right arrow in the diagram and we obtain the
assertion by dévissage and diagram chasing. We first consider the case a = 0, that
is, [U;l o = @, (Lemma 6.2 below). Since H WG /K> @thL) is killed by the multi-
phcatlon by [L : K] (using the corestriction) which induces an isomorphism on the
coefficients, we have H' (G, /K> @g}{“) = (. By the inflation-restriction sequence,
we obtain the assertion. Consider the case a > 0. We denote by x : Gg — Z; the
cyclotomic character. Then, we obtain the assertion by the following commutative
diagram:
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I(N*op™"),
H'(Gg, Uy — [Thxen H (Gx. B ¢ /) = [ xen Klogx

l Resf( [HRCS%
TI(N*o0p™").

HI(GL, )<—> ]_[nkeNH (GL,B;%,CF/K)g]_[n,keNLlogx,

where two isomorphisms follow by dévissage and Lemma 1.14, Theorem 1.15 (a
theorem of J. Tate) and the injectivity of the horizontal arrows follow from [Colmez
2008, Proposition 0.4(ii)]. O

Lemma 6.2. We have

~V4+ h_ —a V4 h_— —a
Brgc,/k)” ~ 7 = Bugc,/k,)” 7 =0 foraeNs,
BV+ =1 _ »V+ h=1 _
Bige,/k0)” ~ = Buoge,/x)” ~ = Qpn.

Proof. We first prove the first assertion. Suppose that we have a nonzero element x
. hep—a . ~ . . .

in ([B%lzg' cp/k)? T “. Since [Blzg' ¢,/ K, is an integral domain, we may assume
that we have x € Ay c,/k, by multlplymg by SOIZIG power of p. By assump-
tion and the g-stability of Ay ¢, /k,, X = p"?9""(x) € p"Ayc,/k,- Hence
X €, P"Aciis,c,/ ko[X] = 10} since Agisc,/k, is p-adically separated. Thus
x = 0, which is a contradiction.

We prove the latter assertion. By a simple calculation, we have

)(ph=1 _ h_—

»V+ »V+4
(Blog,Cp/Ko - (Brlg,Cl,/Ko)(p

By the canonical isomorphism [@rvig—fq:p /Ky = [@FiLg,Cp /KE> We may reduce to the
perfect residue field case, which follows from [Colmez 2002, Proposition 9.2]. [J

Lemma 6.3. Let D be a finite free BdR ¢,/ K -module with semilinear Gk -action.
Then, the canonical map BdR cp/K BK DSK > D is injective. In particular, we
have dimg DOk < rankBJﬁ - /KD < 00.

Proof. Suppose that we have linearly independent elements fi,..., f, € DY
over K, which have a nontrivial relation ) ; A; f; =0 with ; € B&lﬁ,cp /- Choose
the minimum 7 among such n’s. Then for 1 <i <n, we have g(A; /A1) = Xi/Aq
in Frac(Bgr,c,/x)- Hence we have both 4;/A; € H%(Gg, Frac(Bar,c,/x)) = K
and ) ;(A; /A1) fi =0, a contradiction. O

Lemma 6.4. Let W be an r-dimensional Qpn-vector space with semilinear Gk -
action. For 0 <i < h, we define the Q,n-vector space o, W with semilinear Gk -
action by ! W := W as Gg -module with scalar multiplication

Qi x W = W: (A, x) — @' ()x.
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If we have an isomorphism of B&FR,C,, /k[Gk]-modules

Bir,c,/k ®0,, ¢iW = Be, k)"
for0<i <h, then W is Cp-admissible as a p-adic representation of G .

Proof. By assumption, we have isomorphisms

+ ~ + W~ (BT h
Bir,c,/ k ®a, W = @ Bir,c,/x ®0,, ¢xW = Barc,/x)""
0<i<h
of Bc-ﬁz,c,, /k[Gk]-modules, which implies the assertion by tensoring with Cp
over B;ﬁz,c,,/K- g

Lemma 6.5. Assume that e K = 1. Then, the complex
+ Gept V.
K ®KO (Bcris,Cp/K()) kP —>
v
15 + G Lo2s + G
QK®K0 (Bcris,CH/Ko) K — QK®K0([H;cris,tﬁp/l(()) k¥,

which is induced by the inclusion K Q, Bj;is,([:p /Ko~ [B;&’@p /x (Proposition 3.16)
and Lemma 3.9, is exact. Here, we endow (B:;is,cp / KO)GK L with the p-adic topology
induced by the p-adic semivaluation Vs c, /K-

Proof. Note that the connections are K ,,-linear by Proposition 1.13. We may
reduce to the case K = K by Remark 1.4(ii) and Lemma 1.10(iii). Let w € ker V.
We can write 0 =} ¢y dij ® Aj with A € B;’I—'iS,Cp/K such that

{vcris,Cp/K()‘j)}jeJK —> OQ.

We can also write A; = >, @7k Aj au™ with Aj, € [Bj;is,cp/@p such that
{Veris,cp /@, (Ajn)}yen®@Ix — 00. Since uj is invariant under the action of G,
we have Aj , € (Bj;is,q:p/@p)GKPf. Recall the proof of Lemma 3.9: We define a9 =0
and a, = )Lj,,,_ej if nj # 0. Then, we have

X = Z a,,u["] S BdR,Cp/K

neN®J/k

and V(x) = w. Note that we have x € ([EBJ}{,CP / x) k. Hence, we have only
to prove x € B;tis,cp/l(- Fix N € N: we have to show that veisc,/kx (@n) = N
for all but finitely many n € N®/& . Choose a finite subset J of Jg such that
we have ves.c,/k (Aj) = N for j € Jg \ J. We also choose n € N such that
we have vesc,/0,(Ajn) = N for j € J and |n| = n. Letn € NS/ \ N7,
Then, we have vsc,/0,(@n) = Veis,c,/a, (Aj,n—e;) = N for some j € Jg \ J.
Let n € N7 with |n| > n. Then, we have Veris,Cpp /@, (@n) = Veris,cp j0, (Ajn—e;) = N
for some j € J. Since the set {n € N’ | |n| < n} is finite, these inequalities imply
the assertion. O
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Proof of Main Theorem. Obviously, we may assume r := dimg, V' > 0. By
Hilbert 90, we may replace K by K"". Hence, we may assume that kg is separably
closed. After some Tate twist, we may also assume that V' satisfies the assumption
of Section 5, that is, we have Dgr(V') = (B[ﬁ’@p/K ®a, V)Ok

We divide the rest of the proof into two steps: We will construct a finite exten-
sion L /K in Step 1 and after replacing K by L, we will prove the semistability
of V in Step 2. Note that only Step 2 involves the choice of K.

Step 1: Set M := NX;(V) and let e, ..., e, be as in Proposition 5.3. Also let
{a} <---<d,,} be the set of distinct elements in the multiset {ay,...,a,} and
m; the multiplicity of a} in the multiset for 1 <i <r’. Let {e&'), e, e,(f,?} be the
subset of ¢, € {e,, ..., e,} satisfying Q" (e;) = p"; e;. We define an exhaustive and

separated increasing filtration of [l by
0 ifn <0,
M= Dy < <n BYT, ke @ B BYY goem) if1<n<r,
M otherwise.

The filtration is stable under ¢ and G -actions. In fact, for 1 <i <n<r’and g € G,
we have

4 . . . P
(p(egl)), .. .,(p(e,(,g),g(egl)), .. .,g(e,(,’,z) eM? TP C My,
where the last inclusion follows from Lemma 6.2. We also define

h_ pal,
Wy = (Mn/Mn—l)(p =7

for 1 <n <r’. Since we have W,, = @phégn) & DQyn é;,’,? by Lemma 6.2 (where

él(”) denotes the image of el.(n) in My /My—1), Wy is an my,-dimensional Q i -vector
space with continuous semilinear Gg -action. Let

Dy = BE},CP/K ®F My

rivg—-Ep/ Ko
Then, we have the left exact sequence of finite K-vector spaces

inc. pr.
0 p% . pPx . (D,/D, ). 3)

n—1

Hence, we have the inequalities
dimg DY¥ <dimg DCX, + dimg (Dn/Dp—1)%% < dimg DEX, + my,

for n € Z by Lemma 6.3. By Proposition 5.4, we have an isomorphism of Bj[Gk |-
modules
M= (Ba‘i{’@p/[()r, 4)

+ -
Bar.c,/k DY, Ko

which implies dimg D,‘;? X = r for n > r’. Hence, the summation of the above
inequalities are equalities. Therefore, the above inequalities are equalities, in



The p-adic monodromy theorem in the imperfect residue field case 2023

particular, the map pr. : D,,G K — (Dy/Dp_1)% in (3) is surjective. Thus, we have
the commutative diagram

G Gk
0 = B, k®k D5 = Blic,/x®k Dr* = B c,/x®k(Dn/Dp-1)°% — 0
0 Dn—l Dn Dn/Dn—l 0

with exact rows and injective vertical arrows by Lemma 6.3. Since the middle
vertical arrow is an isomorphism for n > r’ by (4), all vertical arrows are isomor-
phisms. In particular, for 1 < n < r’, we have isomorphisms of BdR Cp/ xlGk]-
modules By Cp/K Oy Wn = Dp/Dp—y = ~ (B} a:,,/K)m" Since W is stable
under the action of ¢, the map W, — L W, taking x to ¢'(x) is an isomorphism
of Q,n[Gg]-modules. In particular, we have isomorphisms of BdRC o/ xlGk]-
modules

Bir,c,/k ®a,, #xWn =B c,/x ®a,, Wn = Bk c,/x)™

for 1 <n <r’and 0 <i <h, which implies the C p-admissibility of W, by Lemma 6.4.
Hence, Gk acts on W,, factoring through a finite quotient by Theorem 2.1. We
choose a finite extension L/ K such that G acts on W, trivially forall 1 <n <’
and such that L satisfies condition (H).

Step 2: By replacing V by V|, we will prove that V' is semistable by calculating
Galois cohomology associated to Nng (V). In the following, we fix Ky and a
lift {#j} ey, of a p-basis of kg in Ko. We regard {¢;};c s, as a lift of a p-basis
of kg in K. We also fix notation: For a commutative ring R, let U, (R) C GL,(R)
be the group of unipotent upper triangular matrices. Let N, (R) C M, (R) be the
Lie algebra of U, (R), that is, the group of nilpotent upper triangular matrices. We
denote Ur = Ur(BR cp k) Uy d’; U, (BdR C /K) for simplicity.
By assumption, we have g(e,,...,e,) = (e,,...,e,)cg with 1-cocycle

. mV
C: GK — Ur (Brig+Cp/K0)'
Since we have Nng (V) cC Bng Cp/ Ko ®0, V and
(K ®KO BS[,CP/K() ®@p V) Gk =K ®K0 (Bj-t,(:p/K() ®®p V)GK,

we have only to prove that ¢ is a 1-coboundary in U, (K ®, B;t Cp/ K,)- We have
the exact sequence of pointed sets

S inc.x
(Ur—i:iR/ Urvd—i};)GK - Hl (GK’ Urvd—ili) —_— Hl (GKa Ur—j:iR)’ (5)
where U, dR/ ¥ denotes the left coset of Utk by UY, dR, that is, X ~ Y if

X7y € U, K- The class [c] € H'(Gg, U, dR) represented by ¢ is mapped to
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the trivial class in H'(Gg, U, dR) In fact, since we have e(”) € (Dy/Dy— 1) K
for 1 <n <r’and 1 <i <my, by assumption, there exists an element e( " e Dy, Ox
such that e(") — e(n) € D,_; by the exactness of (3). Then,

('éil) (1) é(n), ) ~(n))

ml,..., 1

isa B&’CP/K—basis of D, for 1 <n <r’ and we have a unique matrix U € UrerR
such that

1 4 / 1 ~ ~ ('
M eD e ey = @MDY
By a simple calculation, we have c¢g = U ~lg(U) for all g € Gk. Hence, the
class [c] is represented by an element of the image of (U dR /U X dJlg)GK under § by
the exact sequence (5). We regard K Qk, B;IS,CP /K, as a subring of Bcﬁz,a:,, /K by

Proposition 3.16. Then, we have the following lemma:

Lemma 6.6. Every element of (UrerR/ Urvd’l:)GK is represented by an element in

Uy (K ®K0 (Bcrls Cp/KO)GKpr)

We leave the proof of Lemma 6.6 to the end of the proof Thanks to the lemma,
there exist X1 € U, (K ®k, (Bcris,Cp/KO)GKpf) and X, e UY dR * such that

ce = X; ' X g (X))g(Xa) (6)

for all g € Gg.

Since the canonical isomorphism i : [@X‘;’r@p /Ko = [@:{g’@p /1" is compatible
with the actions of ¢ and Gg,r, we may regard M :=i*/ as a (¢, Ggpr)-module
over [EB;{g,Cp/Kgf. Then, the triple (M, {e,, ..., e,},i*c) satisfies the assumptions of
Proposition 6.1. Indeed, assumption (i) follows from Proposition 5.3, Proposition 5.4
and the functoriality. The image of ¢ is in U, (Brlg Cp/ K,)> Which implies assump-
tion (ii). Applying Proposmon 6.1 to the above triple, we have X} € U, ([BSt Cp/ Kpt)
such that z(cg) =(X3)~ g(X ). Hence, X3 :=1i 1(X ) e U, ([EBgt Cp /Ko) satlsﬁes
cg = X5 lg(X3) for g € Ggpr. Since we have cg = X5 lg(X5) for g € Gk by
(6), we have

X, X5 e U, +R)Gmf = U,((BXRTCP /x) %K),
Note that the canonical map

V+ G V+ G
Kean @Ko Beris,c, ko) K" = Barlc, k) "

is an 1som0rphlsm In fact, by using the canonical isomorphisms Bcrls Cp/Ko
B;’;B Cp/KY and [BdR Cp/K > BdR ¢,/ Kk it follows from the 1som0rphlsms

f
Kcan ®Kcan,0 Kg ~ K ®K0 Kg = Kpf,
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where the first isomorphism easily follows from Remark 1.4(ii) and the second one
is trivial. Thus, we have

e = (X1 - XX7 X)L (X - XXy XG)

for all g € Gg with X7, X2X3_1, X3 €U (K ®k, Bjt,@p/Ko)’ which implies the
assertion.

Now, we return to the proof of Lemma 6.6. We endow M, ([Bjk’@p /1K) =
(B&’i{,@p k) ? with the product topology. Let

d:MyBirc, k)= Qe®x My Bk e, k) (xij) = (V(xi)),

dy Q}(‘@KMr(BZ%,C,,/K) - Q%{®KMV(BIR,CP/K); (wij) = (Vi(@if))
be the derivations. For i € {1, 2}, we endow SAZ’K ®KMr(B$z,a:p/K) with the left

(resp. right) action of M, (Bc‘ﬁz,(ﬁp /i) induced by the left (resp. right) multiplication
on M, (BSFR’CP /k)- We also have the wedge product

A QE®K Ne(K) x Qg ®k Nr (B ¢, /x) = Qx Ok Nr B ¢, /)
(a),'j) X (a)l']) = ( Z Wik /\a),'cj).
1<k<r

Then, we have the formulas djod =0, d(XX')=dX - X'+ X -dX’, di(w-X) =
diw-X—wndX,and (wA0')- X =oA (0 X), for X, X/EQ}(@)KNr(Bjka/K),
wE Q}(@)KN, (K), and o’ € Q}(@)KNr (BcJﬁz,C,,/K)' We define a log differential

dlog: Ut — Qg ®k Nr Bl c,/x): X dX X1,

which is Gk -equivariant. (Note that it does not preserve the group laws in general.)
Since we have dlog(XA) = dlog(X) for 4 € UrYdJlg and X € UrJ’rdR by the above
formulas, dlog induces a morphism of Gg -sets

dlog, : Ut/ UYk — Qi &k Nr B ¢,/ x)-

Moreover, dlog,, is injective. Indeed, let X, Y e U r:tiR such that dlogX =dlogY. By
dE =d(Y~'Y) =0 and the above formulas, we have d(Y ~!) = —Y 14y .Y~ L.
Hence, we have

dlogY ' X)=@d¥ - X +Yldx)- X"y
=Y 'dy.- Yy '—dx-Xx"1.Yy=0.

Since the inverse image of {0} by dlog is UrYdJlg, we have X ~ Y. By tak-
ing H°(Gg ., —) of dlog,, we have an injection of sets

dlog, : (U} /U)K < G & N (K).
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We define a decreasing filtration on N, (B(‘ﬁ{,@p /x) by
Fil" Ny B c,/x) = {(@ij) € NrBrc,/x) | aij = 0if j —i <n}.
Then, we have Fil’N, B ¢,/x) = Nr Bk c,, K% and Fil"’ N, Bz ¢,/ x) = 0.
Let X € U,y such that we have [X] € (U /U R . Let  := dlog(X) €
QL ®k Ny (K). We will construct X € U, (K ®k, Beis ¢,/ k,) k™) for n € N
satisfying
w- X" =dx™ mod Qi ®kFil"N, (B c,/k)-

Set XY@ :=1. Suppose that we have constructed X ) Since we have w- X = dX,
we have djw - X = w A dX by taking d;. Hence, we have djw = (0 AdX)- X1 =
wAw. Letw' = (a)lfj) =w- XMW _gx®™ ¢ Q}((X)KFil”Nr([B;&’Cp/K). Then, by
a simple calculation using the above formulas, we have

dio' =on(@ XM —dX™)=wre0'=0 mod Qk &xFil" ' N, (B ¢, /x)-

which implies Vi (]

i i+ns1) = 0. Since we have

wl/] € Q}{ @K(K ®K() (Bj;is,CP/KO)GKpf)9

by Lemma 6.5, there exists xlf,l.+n+1 € K ®k, (B;is,a:p/K())GKpf such that

v(xz{,H-n—H) = wz{,i—f-n—f-l'
Let Xt = x4 37 x! 1 Eiipnt1 € Ur (K® kg, Bais ¢,/ ko) %) Then,

by a simple calculation, we have

w - X(n+1) _dX(n-H)

=w- X _gx®™ _g (Z X,{,i+n+1 Ei,i+n+1)
i
=0 =Y Vi) Eiigne1 =0 mod Qg @k Fil" N, (Bl ¢, /x0)-

4

Hence, we have dlog(X ")) = w, which implies the assertion. O

7. Applications

We will give applications of the Main Theorem. In Section 7A, we will recall linear
algebraic structures, which appear in the following. In Section 7B, we will prove
a horizontal analogue of the p-adic monodromy theorem. The results of the next
two subsections are applications of this theorem. In Section 7C, we will prove an
equivalence between the category of horizontal de Rham representations of Gx and
the category of de Rham representation of Gk . In Section 7D, we will prove a
generalization of Hyodo’s Theorem 1.16.
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In this section, unless partlcular mention is stated, we will denote B<> Cp/ Ko
(resp. [B@ c,p/K)bY BQ (resp. B@) for & € {cris, st} (resp. © € {dR, HT}): This nota-
tion is Justlﬁed by the facts that BO Cp/ Ko and B@ cp/K Are isomorphic to Be, ¢, /0,
and Bo ¢, /0, as (Qp, Gk)-rings respectlvely

7A. Additional structures. In the following, let V € Repg, Gk - The vector space
DY (V) has additional structures for « € {cris, st, dR, HT}, which we will recall
following [Fontaine 1994b].

« The Hodge-Tate case

We define a graded K-vector space as a finite-dimensional K-vector space D
endowed with a decomposition D = €, Dn. Denote by M Gk the category of
graded K-vector spaces. The graded ring structure on BIZT induces a graded K-
vector space structure on IDXT(V). Hence, we have a ®-functor

Dyr : RepyGx — M Gy

Assume that we have V' € RepZTGK. We define the Hodge—Tate weights of V' as
the multiset consisting of n € Z with multiplicity m, :=dimg (Cp(—n) ®q, V)Oxk.
Since the comparison isomorphism ong is compatible with Gg -actions and gradings,
by taking the degree zero part, we have an isomorphism of C,[Gg]-modules

Cp®a, V=P Cpm)™.
nez
which is referred to as the Hodge—Tate decomposition of V. Note that if V €
Repg, Gk admits such a decomposition, then it is horizontal Hodge—Tate.

« The de Rham case

We define a filtered K ,,-module as a finite-dimensional K,,-vector space
endowed with a decreasing filtration {Fil” D},ez of Ka,-subspaces such that
Fil"D = D for n < 0 and Fil"D = 0 for n >> 0. Denote by M Fg, the cate-

gory of filtered Kcan-modules. The filtration Fil"BY, = t"BY;" on B} induces a
filtered K ,,-module structure on [DdVR(V). Hence, we have a ®-functor

dn

« The crystalline and semistable cases
We first define filtered (¢, N, G/ x )-modules for our later use.

Defintion 7.1. (i) Let L/ K be a finite Galois extension. A filtered (¢, N, G,k )-
module is a finite-dimensional L,y o-vector space D endowed with

« the Frobenius endomorphism: a bijective ¢-semilinear map ¢ : D — D;

« the monodromy operator: an Ly, o-linear map N : D — D such that Ny =
PeN;



2028 Shun Ohkubo

« the Galois action: an L, 0-semilinear action of G /g, which commutes
with ¢ and NV;

o the filtration: a decreasing filtration {Fil" Dy }nez of G /g -stable Lcan-
subspaces of D, := Lcan ®L,, , D satisfying

can *

Fil"D; = Dy,

can can

forn <0 and FilI"Dy =0 forn> 0.

can

If L = K, then we call D a filtered (¢, N)-module relative to K.,,. Moreover,
if N =0, then we call D a filtered ¢-module relative to Kcyy.

A morphism Dy — D, of filtered (¢, N, G,k )-modules is an Ly, o-linear
map [ : Dy — D; such that / commutes with ¢ and N, G, -actions and we
have f(Fil"Dy ) CFil"D;, . forallneZ.

Denote by MF(¢,N,Gr k) (resp. MFk, (9. N), MFg_ (¢)) the category

of filtered (¢, N, G,k )-modules (resp. filtered (¢, N )-modules relative to Kcan,
filtered ¢-modules relative to K qp).

(i) Let D € MFg

can

(p, N) and r := dimg,_ , D. We define 7y (D) and 75 (D)
in the following way: First, we consider the case r = 1. If we have v € D \ {0}
and ¢(v) = Av, then v,(A) € Z is independent of the choice of v. We denote it
by tn (D). We denote by 7g7 (D) the maximum number n € Z such that Fil” Dg,_ #0.
In the general case, we define

tn(D) = ZN(/\rD), tg (D) = ZH(/\rD).

We say that D is weakly admissible if we have ¢y (D) =t (D) and ¢t (D’) >
tg (D') for any Koy o-subspace D’ of D which is stable by ¢ and N, with D/Km
endowed with the induced filtration of Dg_ .

Denote by M F¥(¢, N, G, k) the full subcategory of M F(¢, N, G ) whose
objects are weakly admissible as object of M Fr__ (¢, N). We define M F;g:‘an (. N)

and M Fg* (¢) similarly.

can

Let < € {cris, st}. By Proposition 3.16, we have a K ,,-linear injection
Kcan ®Kcan_0 DX(V) - [DdVR(V)-

We endow Kean ®k,, o [DX(V) with the induced filtration of [I])(YR(V). Together
with the Frobenius endomorphism ¢ and the monodromy operator N on BX, these

data induce a structure of a filtered (¢, N )-module over K, relative to Kcan,o0
on DY (V). Since we have DY, (V) = (DY (V))N=0, DY, (V) has a structure of a

cris cris
filtered ¢-module over Ky, relative to Kcap 0. Therefore, we have ®-functors
DV

cris

:RepcvrisGK — MFg._ (), I]])SVt : RepVGK — MFg_(¢,N).

can st can

For D € MFg._ (¢, N), we define

can

V(D) := (BY ®k,,, D)V ="=' nFi’(BY; ®x., DK..,)-
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For D € M Fk_ (¢), we define Vi5(D) := V(D). These are (possibly infinite-

can

dimensional) @Q ,-vector spaces with Gk -action.

Remark 7.2. Note that we have the hierarchy of full subcategories of Repg, Gk
RepCVriSGK C ReszK C RepdVRGK C RepZTGK.

In fact, if we have V € Rep; Gk, then we have dimg , V =dimg, DY, (V)<
dimg, I]]JSVt (V), which implies that V' is horizontal semistable by Lemma 1.19.
CVriS(V) — I]])SVt(V) is an isomorphism as
filtered (¢, N)-modules relative to K.,,. The inclusion ReszK C RepdVRGK
follows from Lemma 1.20, Proposition 3.16 and Corollary 4.3. Moreover, if we
have V € Repg G, then the canonical map Keun ®k.,, I]])SVt V) — ID(YR(V) is an
isomorphism of filtered K.,,-modules. Finally, let V' € Rep(jVRGK. We choose a
lift of a K¢ap-basis of gr” ID(YR(V) in Fil” ID)(YR(V) for all n € Z. We denote these
lifts by {e;} and let n; € Z such that ¢; € Fil"i Dy, (V) \Fil"i T!DY, (V). Then, {¢;}
forms a K.,,-basis of IDCYR(V). Consider the comparison isomorphism

an, 0

In this case, the canonical injection D

BdVR ®K [DdVR(V) - BdVR ®a, V.

can

which is compatible with the filtrations. By taking Fil” of both sides, we have

Ztn_ni By ¢; = "Bir” ®a, V.
i

By taking gr” of both sides and taking H%(Gg, —), we have
K @k, e"DR(V) = P Kei = (Cp(n) ®a, V)

i:nj=n

by Theorem 1.15. Hence, we have an isomorphism K ®g., ngDdVR(V) ~ [DZT(V)
of filtered K-vector spaces, which implies V € RepyGx by Lemma 1.19. In
particular, the multiset of Hodge—Tate weights of V' coincides with the multiset
consisting of n € Z with multiplicity dimg_, Fil™"DY, (V)/Fil™"*!DY, (V).

can

Proposition 7.3. The functors DY, and I]])SVt induce the functors

cris

Dy : Repyi Gk — MFY" (¢). Dy :Repy Gx — MFY" (. N).

cris
Moreover, these functors are fully faithful.

Proof. We first prove the weak admissibilities of the images. As noted in Remark 7.2,
if V is horizontal crystalline, then IDCVriS(V) coincides with IDSVt (V) as a filtered
(¢, N)-module relative to K.,,. Therefore, we may reduce to the case that V' is
horizontal semistable.

For a filtered (¢, N )-module D relative to K ,n, we endow the finite Kgf—vector

space Dk} with a structure of a filtered (¢, N)-module relative to KP as follows.
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We extend the Frobenius ¢ on D to Dg}f semilinearly and extend the monodromy
operator N on D to D k' linearly. We also define a filtration of D gt as Fil* D gpr :=
K ® K., Fil* Dk . Moreover, the scalar extension

K ®k., (=) MFg, (¢, N) = MFgu(p,N)

can

induces a functor. We have only to prove that the following diagram is commutative:

v
Repsvt Gg : MFg,_ (¢, N)
L ReSI[gpt L K8f®Kcan.0(_)
Rep, G kot MF (@, N)

In fact, since Dy (V| gor) = Kpf ® Keano V(V) is weakly admissible by [Fontaine
1994b, Proposition 5.4.2(1)], ID (V) is Weakly adm1531ble by definition.

By functoriality, the canomcal map i Kp ® Ko DY (V) — Dy(V|gw) is a
morphism of filtered (¢, N')-modules relative to K pf Cons1der the associated graded
homomorphism after applying K Pf® ki The resultmg homomorphism coincides
with the canonical map KPf @ ID (V) — Dur(V|get). Since V € RepHTGK
by Remark 7.2, a Hodge—Tate decomposmon CprRa, V=P,cnCp(m)™ of V
induces a Hodge—Tate decomposition of V' |gpr. In particular, V| gpr is also Hodge—
Tate and the above canonical map is an isomorphism. Since the filtrations of |]]>SVt V)
and Dy (V| gor) are separated and exhaustive, 7 is an isomorphism as filtered (¢, N )-
modules relative to Kg .

We prove the full faithfulness. We have the fundamental exact sequence

inc. cé

_ an.
0 @P (Bcns)(p_l - B(iVR/BtivR+ — 0.

Indeed, the exactness is reduced to [Colmez and Fontaine 2000, Proposition 9.25] by
identifying ch (resp. [EB(YR"', [BV R) With By ¢,/ K (resp [E’EdR cp/ k¥ Bar,c,/ K00)-
By the fundamental exact sequence we have \/M o IDst(V) =V (resp. Vs ©
CVHS(V) =V)forV e Rep Gk (resp. V € RepmsGK) This implies the full
faithfulness. U
In Proposition 7.5(ii), we will prove that the above functors induce equivalences

of categories, that is, are essentially surjective.

7B. A horizontal analogue of the p-adic monodromy theorem. The following is
a horizontal analogue of the p-adic monodromy theorem. Note that the converse is
true by Hilbert 90 and Corollary 4.3.

Theorem 7.4. Let V € RerRGK. Then, there exists a finite extension K’/ K a,
such that V| g g is horizontal semistable.
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Proof. First, the comparison isomorphism a Y.

dR,Cp/ K induces an isomorphism of
Bar,c,/k[Gk]-modules

BdRaCP/K ®I(can DCIVR(V) - BdR,Cp/K ®@p V

By taking H%(Gg, —), we have dimg Dgr (V) = dimg, V' by Corollary 4.3, which
implies V € Repyr Gk by Lemma 1.19. Hence, there exists a finite extension L/ K
such that V| is semistable by the Main Theorem. We may assume that L/ K is a
finite Galois extension satisfying condition (H) by the proof of the Main Theorem
(Step 1) and Epp’s Theorem 1.6. The extension L/ Kcan is finite Galois by
Lemma 1.5(ii). We will prove the assertion for K = Ly,.

We have canonical isomorphisms

Lean ®L 0 Dst(VIL) = L ®L, Dy(VL) = Dar(VL),

where the first one is induced by a canonical isomorphism Lcy, ®p, o Lo — L
(Remark 1.4(ii)), the second one follows by using Lemma 1.20 and Proposition 3.16.
Moreover, these maps are compatible with the residual Gy /g -actions and the V-
actions. By taking the horizontal sections, we have

DR (V1) = DR (VL) V=" = (Lean ® L., o Dot(V]2)) V=0
= Lcan ®Lcan,0 DSI(V|L)V=0 = Lcan ®Lcan,0 [stt(vlL)v

where the third equality follows from the fact V[ = 0. By taking Gr/k.1.,,
invariants, we have D(YR(V|K.LC“) = Lean ®L 0 [stt(V|K~Lcan)- Since V|k.L,,, 18

horizontal de Rham by Remark 1.22 and since (K- Lcan)can = Lcan by Lemma 1.5(iv),
we have

dimz, DR (VK Le,) = dima, V =dimz_ DY (V|K-L.):
which implies that V'|g.r . is horizontal semistable. O

7C. Equivalences of categories. The surjection of profinite groups * : Gg —
Gk.,,, induces a ®-functor of Tannakian categories

1 Repg, Gk.,, — Repg, Gk .

Obviously, the functor :* is fully faithful. Denote by C, the p-adic comple-
tion of the algebraic closure of K., in K. For.e {cris, st,dR}, we have a
Galois equivariant canonical injection B, ¢,/ k.., = BZGP /k by functoriality and
we have (B,,Cp/Kcan)GKcan o~ (BZQP/K)GK (= Kcan if « = dR, K4y 0 otherwise) by
Proposition 3.16. Hence, if we have V € Rep, Gk, , then we have 1*V € Rep,V Gg.
In fact, we have a canonical injection D,(V) C DY (1*V) of (B.,c, /. ) CKean -

can

vector spaces, which implies the BZCP / k -admissibility of 1*V e Repg,, Gk by
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Lemma 1.19. Hence, 1* induces a fully faithful ®-functor

1} :Rep,Gg.. — Repy G-

can

The following proposition is a direct consequence of théoréeme 4.3 in [Colmez
and Fontaine 2000].

%
cris
and 1}; induce equivalences

Proposition 7.5 (horizontal analogue of Colmez—Fontaine). (i) The functors 1
and 1}; are essentially surjective. In particular, 17
of Tannakian categories.

(ii) The functors

DY : Repyi Gk — MFg (¢), D : Repyy Gk — MFg, (9. N)

cris
induce equivalences of categories with quasi-inverses Vs, V.

Proof. We first prove the assertion in the semistable case. Together with the full
faithfulness of DY

«» we have only to prove the commutativity of the diagram

1*

can Repsvt GK

ELDSI LDX

id
MER (p.N) —= MFg (p.N).

Rep, Gk

where Dy, is an equivalence of categories by Colmez—Fontaine theorem [2000,
Théoreme 4.3]. As we mentioned above, the canonical map Dg (V') — IDX @*V),
which commutes with ¢ and N -actions, is an isomorphism of K,y o-vector spaces.
We have only to prove that the map also preserves the filtrations. Obviously, we
have Fil*Dg (V) C Fil'l]])svt (*V). To prove the converse, it suffices to prove that
the associated graded modules of both sides have the same dimension since the
filtrations are exhaustive and separated. Let C), ®q, V = @, Cp(n)™" be the
Hodge-Tate decomposition of V. Then, it induces the Hodge—Tate decomposition
of 1*V, thatis, Cp ®q, 1*V = ,c7 Cp(n)™", which implies the assertion.

In the horizontal crystalline case, a similar proof works by replacing *y and
MFI"}:n (¢, N) by s and MF}?ZH (p). d
Theorem 7.6. The functor 13y is essentially surjective. In particular, 1}, induces

an equivalence of Tannakian categories.

Proof. For a finite Galois extension L /K such that K - Ly = L, let 6,/ g be the
full subcategory of Rep(YRGK whose objects consist of V' € RepdVRGK such that V|,
is horizontal semistable. Recall the notation in Defintion 7.1. Then, we have an
equivalence of categories

DY €k — MF*™@.N.Grjx):  V>DY(VIp).
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In fact, we have the following quasi-inverse V . : For D € MF¥ (¢, N,Gr k),
we regard D as an object of MFW“l ((p N) and let V 1. (D) := V(D). We have

Vg, .(D) € Repz G by Proposmon 7. 5(ii) and V(D) has a canonical Gk -action,
which is an extension of the action of G, induced by the G/ -action on D. We
have D € 61,k by Remark 4.8 and Remark 7.2. We have V 1 o DY L = = ide, gk
and I]])gt 1 ° Vs, L =idpFvae, NG, k) by Proposition 7.5(ii).

The restriction map Rest Lo -Gk = GpL../ K., induces the equivalence of
categories

(Resf )*:MF“¢.N.Gr/k..) —> MF*(¢.N.GL/g).

can

We will prove that the diagram

L *
(Res Lcan)

MF*(,N,Gr/k)

MFY(@,N,GL.../Keu)

~ \%
= L \/sl,Lcan L \/sl L
*

Lar

(GLcan/Kcan %L/K

is commutative, where the bottom horizontal arrow is induced by i, : Repyr Gk.,, —
Repyp Gx - Indeed, we have the Gg -equivariant inclusion

1 © Ve Ly (D) C VY 1 o (Resp )*(D)

can

for De MF"(p,N,Gp,/Kk.,) by construction. Since both sides have the same
dimension over @, this inclusion is an equality. By the commutative diagram, the
functor 13 : 61 /K., = 6L,k is essentially surjective.

LetV € RepdVRGK. By Theorem 7.4, we have a finite Galois extension K’/ K,
such that V|g xx 18 horizontal semistable. Let L := KK’. By Lemma 1.5(iv), we
have L., = K, thatis, L /K satisfies the above assumption. Since we have V €
%L,k the assertion follows from the essential surjectivity of

*
ldR : %Lcan/Kcan - (GL/K O

The above equivalence induces a @ »-linear isomorphism of Ext! on Repyg Gx...
and Repy, Gx . Note that for V € Repyg G, we may regard EXtRedeGK‘an Qp. V)
and Extéepv G (Qp,1*V) as

(1 ®ld)*

Hy(Gk.,,. V) :=ker (H'(Gx.V) — H'(Gx.Barc,/ Ko ®0, V).

1®id) «
H}Y(Gg.1*V) :=ker (H' (Gg.1*V) (& H'(Gg. B c,/x ®a, V)

respectively. In particular:
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Corollary 7.7. For V € Repyr Gk,

can’

the inflation map

Inf: H'(Gk

can’

V) — H'(Gg,1*V)
induces the isomorphism

Inf : H; (G,

can’

V)= H}Y(Gg . 1*V).

7D. A comparison theorem on H 1. Notation is as in the previous subsection.

Theorem 7.8 (a generalization of Theorem 1.16). Let V' € Repg,Gk,,, be a
de Rham representation whose Hodge—Tate weights are greater than or equal
to 1. Then, we have the exact sequence

(1®id)«

0— H'(Gg_,. V) 2> H' (Gx.1*V) 22 HY(Gk.Cp®q,1*V)  (7)

an *

and a canonical isomorphism

(Cp ®q, V(—1))Cn @g QL =~ H(Gg,Cp ®q, 1*V). )

Moreover, if the Hodge—Tate weights of V are greater than or equal to 2, then
H'(Gg,C p ®a, 1*V) vanishes, in particular, the inflation map
Inf: H'(Gk

can’

V) — H'(Gg,1*V)

is an isomorphism.

Proof. We first prove the exactness of (7). Note that the injectivity of the inflation
map follows by definition. We have the commutative diagram

H'(Gg,,.V)

(1®id)«olInf
j a ®id)*\

Inf
H'(Gk,,,Cp®a, V) —= H'(Gk.Cp®aq, 1*V).

Since we have a Hodge-Tate decomposition Cp ®q, V = P, en., Cp(1)™", we

have H'(Gk,,,. Cp ®q, V) = 0 by Theorem 1.15, which implies (I ®id)s oInf = 0.
Let % := ker {(1 ®id)+ : H'(Gg.1*V) > H'(Gk,C, ®q, 1*V)}. We have

only to prove ¥ is contained in the image of Inf: H!(Gk_, V) — H'(Gg,1*V).

Consider the exact sequence

inc. 0

2 s
0 = Byr'c,/K = Byric,/k

with 6 := 0c,/g. By applying ®q,:*V and taking H*(Gg,—), we have the
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commutative diagram with exact row, where S stands for BXRfCP /K"

H'(Gg,1*V)
(1®id) «
(1®id)«
(inc.®id) % ®id)

HI(GK,IS®QPI*V) H! (Gg, S®@pl V)é H! (Gg,C ®@pl V).

Since V(1) is de Rham with Hodge—Tate weights > 2, we have
H'(Gk. 1BYc,/x ®a, 1*V) =0
by Theorem 1.15, Lemma 1.14 and dévissage. Hence, the canonical map
(1 ®id)« : % — H'(Gx.Big'c,/x ®a,1*V)

vanishes by the above exact sequence In particular, we have # C Hg} V(GK, *V).
By Corollary 7.7, we have Inf : H (G, V)~ HY V(GK 1*V), which implies
().

Then, we will prove the existence of the canonical isomorphism (8). By the
inclusion (Cp ®q, V(— 1))%ken C (C »®a, 1"V (= 1))% and the canonical isomor-
phism Ql — H'(Gg,Cp(1)) in Theorem 1.15, we can define a canonical map f
as the composite

can ’

inc.®can.

Gk .. A
(Cp ®a, V(1)) """ ®k,, QU
(Cp ®a, 1*V(=1)% @ H'(Gg,C,(1)) <> H'(Gg,C,p ®q, 1*V).

We will prove that f is an isomorphism. A Hodge-Tate decomposition of V'
induces a Hodge-Tate decomposition Cp ®q, 1"V = @B, en., Cp(n)™ of 1*V.
By replacing C, ®q,, V and C, ®q, 1V by their Hodge-Tate decompositions, we
may reduce to the case V' = Q,(n) with n € N> since the cup product commutes
with direct sums. Then, the assertion follows from Theorem 1.15.

We will prove the last assertion. The assumption implies that we have m1; = 0 in
the above notation, hence, we have H!(Gg, C » ®a, 1*V) = 0 by the Hodge-Tate
decomposition of 1*V and Theorem 1.15. O

Remark 7.9. (i) Originally, Theorem 1.16(i) and (ii) are proved separately by using
ramification theory in some sense.

(ii) (Finiteness) Suppose that we have [Kca, @ Qp] < 0o. For example, consider
the case that K has a structure of a higher-dimensional local field (Example 1.7).
Let V' € Repg , Gk be horizontal de Rham of Hodge-Tate weights greater than or
equal to 2. Then we have

dimg, H'(Gk, V) = [Keun : Qp]dimg, V < o0.
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Indeed, by Theorem 7.6 and 7.8, we may reduce to the case K = Ky,. By a
Hodge-Tate decomposition Cp ®q, V = Pen., Cp(m)™" with m, € N, we have
H°(Gg,V) C H°(Gg,C) ®aq, V) =0 and H*(Gg.,V) =~ HGg,VV(1)) C
H%(Gg,Cp ®q, V(1)) = 0 by the local Tate duality [Herr 1998, Théoreme in
Introduction], where ¥ denotes the dual. Then, the assertion follows from the
Euler-Poincaré characteristic formula (loc. cit).

Note that H!(Gg, V) is not finite over @, without the condition on Hodge-
Tate weights: For example, H'(Gg,Q,(1)) = Q, ®z, l(lr_nn K*/(KX)?" con-
tains Q, ®z, Ok, which is infinite-dimensional over Q) if kg is imperfect, via
the map Og — UI((I) that takes x to exp (2px).

Acknowledgment

The author thanks his advisor Atsushi Shiho for reading earlier manuscripts carefully.
The author also thanks Professor Takeshi Tsuji for pointing out errors in an earlier
manuscript and thanks Professor Olivier Brinon and Kazuma Morita for helpful
discussions. The author thanks the referee for detailed comments.

References

[Andreatta and Brinon 2010] F. Andreatta and O. Brinon, “B;p-représentations dans le cas relatif”,
Ann. Sci. Ec. Norm. Supér. (4) 43:2 (2010), 279-339. MR 2011e:11097 Zbl 1195.11074

[Berger 2002] L. Berger, “Représentations p—adiques et équations différentielles”, Invent. Math.
148:2 (2002), 219-284. MR 2004a:14022 Zbl 1113.14016

[Berthelot and Ogus 1978] P. Berthelot and A. Ogus, Notes on crystalline cohomology, Princeton
University Press, 1978. MR 58 #10908 Zbl 0383.14010

[Brinon 2006] O. Brinon, “Représentations cristallines dans le cas d’un corps résiduel imparfait”,
Ann. Inst. Fourier (Grenoble) 56:4 (2006), 919-999. MR 2007h:11131 Zbl 1168.11051

[Colmez 2002] P. Colmez, “Espaces de Banach de dimension finie”, J. Inst. Math. Jussieu 1:3 (2002),
331-439. MR 2004b:11160 Zbl 1044.11102

[Colmez 2008] P. Colmez, “Espaces vectoriels de dimension finie et représentations de de Rham”, pp.
117-186 in Représentations p—adiques de groupes p—adiques, 1: Représentations galoisiennes et
(¢, I')—modules, edited by L. Berger et al., Astérisque 319, Société Mathématique de France, Paris,
2008. MR 2010d:11137 Zbl 1168.11021

[Colmez and Fontaine 2000] P. Colmez and J.-M. Fontaine, “Construction des représentations p—
adiques semi-stables”, Invent. Math. 140:1 (2000), 1-43. MR 2001g:11184 Zbl 1010.14004

[Epp 1973] H. P. Epp, “Eliminating wild ramification”, Invent. Math. 19 (1973), 235-249. MR 48
#294 Zbl 0254.13008

[Fesenko and Vostokov 2002] 1. B. Fesenko and S. V. Vostokov, Local fields and their extensions,
2nd ed., Translations of Mathematical Monographs 121, Amer. Math. Soc., Providence, RI, 2002.
MR 2003c:11150 Zbl 1156.11046

[Fontaine 1994a] J.-M. Fontaine, “Le corps des périodes p—adiques”, pp. 59-111 in Périodes p—
adiques (Bures-sur-Yvette, 1988), Astérisque 223, Société Mathématique de France, Paris, 1994.
MR 95k:11086 Zbl 0940.14012


http://www.mat.unimi.it/users/andreat/SenBdR.pdf
http://msp.org/idx/mr/2011e:11097
http://msp.org/idx/zbl/1195.11074
http://dx.doi.org/10.1007/s002220100202
http://msp.org/idx/mr/2004a:14022
http://msp.org/idx/zbl/1113.14016
http://www.mabli.org/mabli/files/BerthelotOgus-Crystalline.pdf
http://msp.org/idx/mr/58:10908
http://msp.org/idx/zbl/0383.14010
http://dx.doi.org/10.5802/aif.2205
http://msp.org/idx/mr/2007h:11131
http://msp.org/idx/zbl/1168.11051
http://dx.doi.org/10.1017/S1474748002000099
http://msp.org/idx/mr/2004b:11160
http://msp.org/idx/zbl/1044.11102
http://www.math.jussieu.fr/~colmez/monodromie.ps
http://msp.org/idx/mr/2010d:11137
http://msp.org/idx/zbl/1168.11021
http://dx.doi.org/10.1007/s002220000042
http://dx.doi.org/10.1007/s002220000042
http://msp.org/idx/mr/2001g:11184
http://msp.org/idx/zbl/1010.14004
http://dx.doi.org/10.1007/BF01390208
http://msp.org/idx/mr/48:294
http://msp.org/idx/mr/48:294
http://msp.org/idx/zbl/0254.13008
http://msp.org/idx/mr/2003c:11150
http://msp.org/idx/zbl/1156.11046
http://math.arizona.edu/~cais/847Page/References/Fontaine-Ex2.pdf
http://msp.org/idx/mr/95k:11086
http://msp.org/idx/zbl/0940.14012

The p-adic monodromy theorem in the imperfect residue field case 2037

[Fontaine 1994b] J.-M. Fontaine, “Représentations p-adiques semi-stables”, pp. 113184 in Périodes
p—adiques (Bures-sur-Yvette, 1988), Astérisque 223, Société Mathématique de France, Paris, 1994.
MR 95g:14024 Zbl 0865.14009

[Grothendieck 1964] A. Grothendieck, “Eléments de géométrie algébrique, IV: Etude locale des
schémas et des morphismes de schémas, 17, Inst. Hautes Etudes Sci. Publ. Math. 20 (1964), 1-259.
MR 30 #3885 Zbl 0136.15901

[Herr 1998] L. Herr, “Sur la cohomologie galoisienne des corps p—adiques”, Bull. Soc. Math. France
126:4 (1998), 563-600. MR 2000m:11118 Zbl 0967.11050

[Hyodo 1986] O. Hyodo, “On the Hodge—Tate decomposition in the imperfect residue field case”, J.
Reine Angew. Math. 365 (1986), 97—-113. MR 87m:14052 Zbl 0571.14004

[Hyodo 1987] O. Hyodo, “Wild ramification in the imperfect residue field case”, pp. 287-314 in
Galois representations and arithmetic algebraic geometry (Kyoto, 1985/Tokyo, 1986), edited by Y.
Ihara, Adv. Stud. Pure Math. 12, North-Holland, Amsterdam, 1987. MR 89j:11116 Zbl 0649.12011

[Morita 2011] K. Morita, “Crystalline and semi-stable representations in the imperfect residue field
case”, preprint, 2011. arXiv 1105.0846v2

[Neukirch et al. 2008] J. Neukirch, A. Schmidt, and K. Wingberg, Cohomology of number fields, 2nd
ed., Grundlehren der Mathematischen Wissenschaften 323, Springer, Berlin, 2008. MR 2008m:11223
7Zbl 1136.11001

[Schneider 2002] P. Schneider, Nonarchimedean functional analysis, Springer, Berlin, 2002. MR
2003a:46106 Zbl 0998.46044

[Scholl 1998] A. J. Scholl, “An introduction to Kato’s Euler systems”, pp. 379—460 in Galois
representations in arithmetic algebraic geometry (Durham, 1996), edited by A. J. Scholl and R. L.
Taylor, London Math. Soc. Lecture Note Ser. 254, Cambridge Univ. Press, 1998. MR 2000g:11057
Zbl 0952.11015

[Sen 1980] S. Sen, “Continuous cohomology and p—adic Galois representations”, Invent. Math. 62:1
(1980), 89-116. MR 82e:12018 Zbl 0463.12005

[Weibel 1994] C. A. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced
Mathematics 38, Cambridge University Press, 1994. MR 95f:18001 Zbl 0797.18001

[Zhukov 2000] 1. Zhukov, “Higher dimensional local fields”, pp. 5-18 in Invitation to higher local
fields (Miinster, 1999), edited by I. Fesenko and M. Kurihara, Geom. Topol. Monogr. 3, Geom. Topol.
Publ., Coventry, 2000. MR 2001k:11245 Zbl 1008.11057

Communicated by Brian Conrad
Received 2012-07-01 Revised 2013-04-02 Accepted 2013-05-02

shuno@ms.u-tokyo.ac.jp Department of Mathematical Sciences, University of Tokyo,
Tokyo 153-8914, Japan

mathematical sciences publishers :.msp


http://math.arizona.edu/~cais/847Page/References/Fontaine-Ex3.pdf
http://msp.org/idx/mr/95g:14024
http://msp.org/idx/zbl/0865.14009
http://www.numdam.org/item?id=PMIHES_1964__20__259_0
http://www.numdam.org/item?id=PMIHES_1964__20__259_0
http://msp.org/idx/mr/30:3885
http://msp.org/idx/zbl/0136.15901
http://www.numdam.org/item?id=BSMF_1998__126_4_563_0
http://msp.org/idx/mr/2000m:11118
http://msp.org/idx/zbl/0967.11050
http://dx.doi.org/10.1515/crll.1986.365.97
http://msp.org/idx/mr/87m:14052
http://msp.org/idx/zbl/0571.14004
http://msp.org/idx/mr/89j:11116
http://msp.org/idx/zbl/0649.12011
http://msp.org/idx/arx/1105.0846v2
http://msp.org/idx/mr/2008m:11223
http://msp.org/idx/zbl/1136.11001
http://msp.org/idx/mr/2003a:46106
http://msp.org/idx/mr/2003a:46106
http://msp.org/idx/zbl/0998.46044
http://dx.doi.org/10.1017/CBO9780511662010.011
http://msp.org/idx/mr/2000g:11057
http://msp.org/idx/zbl/0952.11015
http://dx.doi.org/10.1007/BF01391665
http://msp.org/idx/mr/82e:12018
http://msp.org/idx/zbl/0463.12005
http://www.maths.ed.ac.uk/~aar/papers/weibel2.pdf
http://msp.org/idx/mr/95f:18001
http://msp.org/idx/zbl/0797.18001
http://dx.doi.org/10.2140/gtm.2000.3.5
http://msp.org/idx/mr/2001k:11245
http://msp.org/idx/zbl/1008.11057
mailto:shuno@ms.u-tokyo.ac.jp
http://msp.org

Algebra & Number Theory

msp.org/ant

EDITORS

MANAGING EDITOR

Bjorn Poonen

Massachusetts Institute of Technology

Georgia Benkart
Dave Benson
Richard E. Borcherds
John H. Coates

J-L. Colliot-Thélene
Brian D. Conrad
Hélene Esnault
Hubert Flenner
Edward Frenkel
Andrew Granville
Joseph Gubeladze
Roger Heath-Brown
Ehud Hrushovski
Craig Huneke
Mikhail Kapranov
Yujiro Kawamata
Janos Kollar

Yuri Manin

Barry Mazur
Philippe Michel

Cambridge, USA

EDITORIAL BOARD CHAIR

David Eisenbud

University of California
Berkeley, USA

BOARD OF EDITORS

University of Wisconsin, Madison, USA
University of Aberdeen, Scotland
University of California, Berkeley, USA
University of Cambridge, UK

CNRS, Université Paris-Sud, France
University of Michigan, USA

Freie Universitit Berlin, Germany
Ruhr-Universitit, Germany

University of California, Berkeley, USA
Université de Montréal, Canada

San Francisco State University, USA
Oxford University, UK

Hebrew University, Israel

University of Virginia, USA

Yale University, USA

University of Tokyo, Japan

Princeton University, USA
Northwestern University, USA

Harvard University, USA

Susan Montgomery
Shigefumi Mori
Raman Parimala
Jonathan Pila

Victor Reiner

Karl Rubin

Peter Sarnak

Joseph H. Silverman
Michael Singer
Vasudevan Srinivas
J. Toby Stafford
Bernd Sturmfels
Richard Taylor

Ravi Vakil

Michel van den Bergh

Marie-France Vignéras

Kei-Ichi Watanabe
Efim Zelmanov

Shou-Wu Zhang

Ecole Polytechnique Fédérale de Lausanne

University of Southern California, USA
RIMS, Kyoto University, Japan

Emory University, USA

University of Oxford, UK

University of Minnesota, USA
University of California, Irvine, USA
Princeton University, USA

Brown University, USA

North Carolina State University, USA
Tata Inst. of Fund. Research, India
University of Michigan, USA
University of California, Berkeley, USA
Harvard University, USA

Stanford University, USA

Hasselt University, Belgium

Université Paris VII, France

Nihon University, Japan

University of California, San Diego, USA

Princeton University, USA

PRODUCTION
production @msp.org
Silvio Levy, Scientific Editor

See inside back cover or msp.org/ant for submission instructions.

The subscription price for 2013 is US $200/year for the electronic version, and $350/year (+$40, if shipping outside the US)
for print and electronic. Subscriptions, requests for back issues and changes of subscribers address should be sent to MSP.

Algebra & Number Theory (ISSN 1944-7833 electronic, 1937-0652 printed) at Mathematical Sciences Publishers, 798 Evans
Hall #3840, c/o University of California, Berkeley, CA 94720-3840 is published continuously online. Periodical rate postage
paid at Berkeley, CA 94704, and additional mailing offices.

ANT peer review and production are managed by EditFLow® from Mathematical Sciences Publishers.

PUBLISHED BY
:l mathematical sciences publishers
nonprofit scientific publishing
http://msp.org/
© 2013 Mathematical Sciences Publishers


http://dx.doi.org/10.2140/ant
mailto:production@msp.org
http://dx.doi.org/10.2140/ant
http://msp.org/
http://msp.org/

Algebra & Number Theory

Volume 7 No. 8 2013

The geometry and combinatorics of cographic toric face rings
SEBASTIAN CASALAINA-MARTIN, JESSE LEO KASS and FILIPPO VIVIANI

Essential p-dimension of algebraic groups whose connected component is a torus
ROLAND LOTSCHER, MARK MACDONALD, AUREL MEYER and ZINOVY
REICHSTEIN

Differential characterization of Wilson primes for [ [#]

DINESH S. THAKUR

Principal W-algebras for GL(m|n)

JONATHAN BROWN, JONATHAN BRUNDAN and SIMON M. GOODWIN

Kernels for products of L-functions
NIKOLAOS DIAMANTIS and CORMAC O’ SULLIVAN
Division algebras and quadratic forms over fraction fields of two-dimensional henselian
domains
YONG HU
The operad structure of admissible G-covers
DAN PETERSEN

The p-adic monodromy theorem in the imperfect residue field case
SHUN OHKUBO

On the Manin—-Mumford and Mordell-Lang conjectures in positive characteristic
DAMIAN ROSSLER

1781

1817

1841

1849

1883

1919

1953

1977

2039


http://dx.doi.org/10.2140/ant.2013.7.1781
http://dx.doi.org/10.2140/ant.2013.7.1817
http://dx.doi.org/10.2140/ant.2013.7.1841
http://dx.doi.org/10.2140/ant.2013.7.1849
http://dx.doi.org/10.2140/ant.2013.7.1883
http://dx.doi.org/10.2140/ant.2013.7.1919
http://dx.doi.org/10.2140/ant.2013.7.1919
http://dx.doi.org/10.2140/ant.2013.7.1953
http://dx.doi.org/10.2140/ant.2013.7.2039

	Introduction
	Conventions
	1. Preliminaries
	1A. Cohen ring
	1B. Canonical subfield
	1C. Canonical derivation
	1D. A spectral sequence of continuous group cohomology
	1E. Hyodo's calculations of Galois cohomology
	1F. Closed subgroups of G-3mu K
	1G. Perfection
	1H. G-regular ring

	2. A generalization of Sen's theorem
	3. Basic construction of rings of p-adic periods
	3A. Universal pro-infinitesimal thickenings
	3B. BdR and BHT
	3C. Connections on BdR and BHT
	3D. Universal PD-thickenings
	3E. Connections and Frobenius on Bcris and Bst
	3F. Compatibility with limit
	3G. Embeddings of Bcris and Bst into BdR

	4. Basic properties of rings of p-adic periods
	4A. Calculations of H0 and verification of G-3mu K-regularity
	4B. Restriction to perfection

	5. Construction of rig +(V)
	6. Proof of the Main Theorem
	7. Applications
	7A. Additional structures
	7B. A horizontal analogue of the p-adic monodromy theorem
	7C. Equivalences of categories
	7D. A comparison theorem on H1

	Acknowledgment
	References
	
	

