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This paper concerns the Weil representation of the semidirect product of the
metaplectic and Heisenberg groups. First we present a canonical construction of
the metaplectic group as a central extension of the symplectic group by a subquo-
tient of the Witt group. This leads to simple formulas for the character, for the
inverse Weyl transform, and for the transfer factor appearing in J. Adams’s work
on character lifting. Along the way, we give formulas for outer automorphisms of
the metaplectic group induced by symplectic similitudes. The approach works
uniformly for finite and local fields.

1. Introduction

1.1. This paper presents some calculations related to the character of the Weil
representation. This representation has a fundamental role in the representation
theory of the symplectic group and in many related contexts. Before explaining the
results, let us recall the classical theory as explained by Lion and Vergne [1980].

Let V be a finite-dimensional vector space, with symplectic form ω. The ground
field may be any finite or local field F of characteristic not 2; for example, most
classically, F could be the real numbers. Let Sp(V ) be the corresponding symplectic
group, that is, the group of automorphisms of V preserving ω. Choose a nontrivial,
continuous group homomorphism ψ : F→U (1)⊂C×; for example, in the case of
the real numbers, one may take ψ(x)= ei x . Choose also a Lagrangian subspace
`⊂ V . From the data (ψ, `), one constructs a central extension

1→ Z F →Mpψ,`(V )→ Sp(V )→ 1. (1)

Mpψ,`(V ) is known as “the” metaplectic group; as we will see, it is essentially
independent of ψ and `. In the special case when F is C or a finite field,1 the
central factor Z F is trivial, so that Mpψ,`(V ) is nothing but the symplectic group
Sp(V ); in all other cases, Z F = Z2 = {±1}, and the extension is nontrivial. For
example, when F = R, Mpψ,`(V ) is the unique connected double cover of Sp(V ).

MSC2010: primary 11F27; secondary 20C15.
Keywords: metaplectic group, Weil representation, Weyl transform, transfer factor, Cayley transform,

Maslov index.
1See Section 1.5.2 for more simplifications in these cases.
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The construction of Mpψ,`(V ) goes hand-in-hand with the construction of a
unitary representation ρψ,`Mp , known as the Weil representation (also as the oscillator
or metaplectic representation). One starts from the Heisenberg group H(V ), which
is a central extension of V by F as additive groups; thus

H(V )= V × F (as a set).

Associated to the data (ψ, `) is an irreducible unitary representation ρψ,`H of H(V )
whose restriction to the center F ⊂ H(V ) is ψ (it is, up to nonunique isomorphism,
the unique such representation, but its construction depends also on `). Meanwhile,
the natural action of Sp(V ) on V defines a semidirect product Sp(V ) n H(V ).
The central extension Mpψ,`(V ) is defined so that ρψ,`H naturally extends to a
representation ρψ,` of the covering group Mpψ,`(V )n H(V ). Its restriction to
Mpψ,`(V ) is the Weil representation ρψ,`Mp .

1.2. A number of people have recently studied the character Tr ρψ,`, defined to be
the generalized function on Mpψ,`(V )n H(V ) whose integral against any smooth,
compactly supported measure h on Mpψ,`(V )n H(V ) is∫

h ·Tr ρψ,` = Tr
(∫

h · ρψ,`
)
. (2)

(The right-hand side is the trace of a trace-class operator — see Remark 5.3.1.) The
studies mentioned make some restrictions, focusing on Mpψ,`(V ) (e.g., [Thomas
2008]), or on some open subset (e.g., [Maktouf 1999; Gurevich and Hadani 2007]),
and/or making a particular choice of field (e.g., [de Gosson and Luef 2009] for
the reals, [Gurevich and Hadani 2007; Prasad 2009] for finite fields). This article
completes the project in the following ways.

(A) The different metaplectic groups Mpψ,` corresponding to varying data (ψ, `)
are canonically isomorphic. The first task is to construct an extension

1→ Z F →Mp(V )→ Sp(V )→ 1 (3)

isomorphic to (1), but defined without any reference to ψ and `. Using this
canonical construction, we give explicit formulas for the isomorphisms between
the various groups Mpψ,`(V ). As a by-product, we find explicit formulas for
the conjugation action of GSp(V ) on Mp(V ) and Mpψ,`(V ).

(B) Because of (A), every Weil representation ρψ,` can be considered as a represen-
tation of the single group Mp(V )n H(V ). We give a formula for the character
Tr ρψ,` as a generalized function on Mp(V ) n H(V ). The isomorphisms
described in (A) allow easy translation of this character formula to other
versions of the metaplectic group.
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(C) The answer to (B) also yields explicit formulas for the “invariant presentation”,
or inverse Weyl transform, of ρψ,`Mp ; this is (roughly speaking) a homomorphism
from Mp(V ) into the ψ-coinvariant group algebra of H(V ).

(D) Writing ρψ,`Mp = ρ
ψ,`
+ ⊕ρ

ψ,`
− as the direct sum of two irreducibles, we calculate

the character of the virtual representation ρψ,`+ − ρ
ψ,`
− (which then determines

the characters of ρψ,`+ and ρψ,`− separately). This is a generalized function
on Mp(V ). Over a finite field, the method leads naturally to a “geometric”
version of this virtual character, in the sense of Grothendieck’s sheaf-function
dictionary.

The virtual character in (D) plays a key role in Jeff Adams’s theory [1998] of
character lifting between metaplectic and orthogonal groups, which provides one
of my main motivations for studying this subject.

Remark 1.2.1. The method for (B) is closely related to Roger Howe’s wonderful
unpublished notes [1973], and some similar ideas have been exploited by Gurevich
and Hadani [2007] over finite fields, and de Gosson and Luef [2009] over the reals.
In particular, the work of de Gosson ([op. cit.] and references therein) gives a very
nice, and closely related, character formula in terms of the Conley–Zehnder index
of paths in the real symplectic group.

1.3. Results. (A) The construction of the canonical metaplectic extension (3) pro-
ceeds in two steps, which make sense for any field F of characteristic not 2. The
details are given in Section 2; here we outline the basic features, to fix our notation.
First we define a central extension

0→W (F)/I 3
→ M(V )→ Sp(V )→ 1

where W (F) is the Witt ring of quadratic spaces over F , and I ⊂ W (F) is the
ideal of even-dimensional quadratic spaces (see Section A.1 in the Appendix). This
construction is by means of a cocycle, so that

M(V )= Sp(V )×W (F)/I 3 as a set.

Second, we define Mp(V ) to be a certain subgroup of M(V ). In short, Mp(V ) is
the unique subgroup extending Sp(V ) by I 2/I 3:

0→ I 2/I 3
→Mp(V )→ Sp(V )→ 1. (4)

It turns out (see Theorem A.2) that, for a finite or local field, we can identify
I 2/I 3 with the group Z F , thus obtaining (3) as a special case. Concretely, for each
g ∈ Sp(V ), define a bilinear form σg on (g− 1)V by the formula

σg((g− 1)x, (g− 1)y)= ω(x, (g− 1)y) for all x, y ∈ V .
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Then σg is nondegenerate as a bilinear form, but, in general, asymmetric. It
nonetheless has a rank dim σg = dim(g−1)V and discriminant det σg ∈ F×/(F×)2.
This is enough to determine a class [σg] in W (F)/I 2 — the class of quadratic
spaces with the same rank modulo 2 and the same signed discriminant as σg (see
Section A.1). The definition of Mp(V ) is as follows:

Mp(V )= {(g, q) ∈ M(V ) | q = [σg] mod I 2/I 3
}.

In Proposition 2.4 we show that this definition makes Mp(V ) into a subgroup of
M(V ), and therefore obviously an extension of Sp(V ) by I 2/I 3.

In Section 2.6 we also recall the construction of Mpψ,`(V ) from [Lion and Vergne
1980] — this construction requires F to be finite or local. In Section 3 we describe
canonical isomorphisms Mp(V )→Mpψ,`(V ). They are “canonical” in the sense
of being unique as isomorphisms of central extensions; see Section 3.1.

Remark 1.3.1. The idea of constructing an extension by I 2/I 3 comes from [Pari-
mala et al. 2000] (using, however, a choice of Lagrangian `⊂ V ; see Section 2.7.1
for a synopsis). It also follows from the work of Suslin [1987] that these extensions
can be characterized by a universal property; see Remark 2.5.1.

Remark 1.3.2. The Weil representation (which, again, is defined only when F is
a finite or local field) can be extended very naturally to a representation of M(V )
rather than Mp(V ), and practically all the results stated herein for Mp(V ) hold
also for M(V ). However, we will continue to refer primarily to Mp(V ), to connect
better with the literature.

(B) For the rest of this introduction, we take F to be a finite or local field, so that ρψ,`

is defined (we recall the definition in Section 4). We consider it as a representation
of Mp(V )n H(V ). To describe its character, we need some further notation.

Notation. Let γψ :W (F)/I 3
→ C× be the Weil index (see Section A.3, especially

A.4.1(d)). For any g∈Sp(V ), let Qg be the associated Cayley form: it is a symmetric,
usually degenerate, bilinear form on (g− 1)V defined by

Qg((g− 1)x, (g− 1)y) := 1
2ω((g+ 1)x, (g− 1)y) for all x, y ∈ V .

Some further comments about the Cayley form are given in Section A.6.
Finally, let µσg be the Haar measure on (g−1)V self-dual with respect to ψ ◦σg,

and µV the Haar measure on V self-dual with respect to ψ ◦ω (see Section A.3.1 for
conventions on measures). Define a generalized function Dψ

g on V by the equation∫
V

f Dψ
g µV =

∫
(g−1)V

f µσg (5)

for all compactly supported, smooth functions f on V .
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If F is a finite field, then this definition amounts to the following: Dψ
g is the

function on V supported on (g−1)V and equal there to the constant
√

# ker(g− 1).
When F is infinite, we just have Dψ

g (v)= ‖det(g− 1)‖−1/2 if det(g− 1) 6= 0 (and,
as standard, we choose the norm ‖ · ‖ on F× such that d(ax) = ‖a‖ dx for any
translation-invariant measure dx on F).

Theorem B (character formula). For fixed (g, q) ∈Mp(V ), the character

Tψ

(g,q)(v, t) := Tr ρψ,`(g, q; v, t)

is a well-defined generalized function of (v, t) ∈ H(V ), supported on (g−1)V × F ,
and given by

Tψ

(g,q)(v, t)= ψ
( 1

2 Qg(v, v)
)
· Dψ

g (v) · γψ(q) ·ψ(t).

The main part of the proof, using the Weyl transform, is given in Section 5. Note
that the right-hand side is manifestly independent of `, reflecting the independence
of ρψ,` up to nonunique isomorphism.

Theorem B can be read as a formula for a locally integrable function2 on

Mp(V )n H(V )

representing Tr ρψ,`, but it says something more precise. The point is that, when F
is infinite, Tr ρψ,` is smooth almost everywhere, but “blows up” on the locus where
det(g − 1) = 0. Theorem B gives a natural extension of Tr ρψ,` to that singular
locus — “natural” in the sense that it satisfies Theorem C below.

If we are only interested in the representation ρψ,`Mp of Mp(V ) then Theorem B
takes on the following simple form. Let

D0(g) :=
√

#V g or D0(g) := ‖det(g− 1)‖−1/2

depending on whether F is finite or infinite. Here V g
:= ker(g− 1).

Corollary 1.4 (restriction to Mp(V )). As generalized functions of (g, q) ∈Mp(V ),

Tr ρψ,`Mp (g, q)= D0(g) · γψ(q).

The extreme simplicity of this formula suggests that the cocycle we have used to
define Mp(V ) is the natural one in this context. In particular, it is much better than
the formula we developed in [Thomas 2008]. (In Remark 2.8.2 we explain how the
thing called Mp(V ) in that work is related to the present one.)

2That is, for F infinite, Dψg (v) = ‖det(g − 1)‖−1/2 for almost all (g, v) ∈ Sp(V ) × V , and
(g, q, v, t) 7→ψ( 1

2 Qg(v, v))·‖det(g−1)‖−1/2
·γψ (q)·ψ(t) is locally integrable on Mp(V )nH(V ):

the modulus is just ‖det(g − 1)‖−1/2, so that the singularities of order k/2 lie in subspaces of
codimension at least k.
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(C) The formula of Theorem B also makes explicit the “invariant presentation” of
the Weil representation emphasized, for example, in [Gurevich and Hadani 2007].
Let us recall that description. Let Aψ be the L2-completion of the ψ-coinvariant
group-algebra of H(V ). In more detail, we consider functions on H(V ) that
transform by ψ under the action of the center F ⊂ H(V ); these can be identified
(by restriction) with functions on V . With that in mind, we define Aψ to consist
of all complex L2 functions on V , equipped with the “convolution” multiplication
induced by the multiplication on H(V ):

( f1 ? f2)(x) :=
∫
v∈V

f1(v) ψ
( 1

2ω(v, x)
)

f2(x − v)µV .

(Here µV again denotes the Haar measure on µV that is self-dual with respect
to ψ ◦ ω.) It is well known, and we prove in Proposition 5.2, that there is an
isomorphism Wψ,` from Aψ to the algebra of Hilbert–Schmidt operators on the
representation space of ρψ,`. This Wψ,` is called the Weyl transform.

Theorem C. For any f ∈Aψ , the convolution Tψ

(g,q) ? f is well-defined and lies in
Aψ , and

Wψ,`(Tψ

(g,q) ? f )= ρψ,`(g, q) ◦Wψ,`( f ).

Theorem C may be restated more transparently when F is a finite field: it says
that the map (g, q) 7→ Tψ

(g,q) is a multiplicative homomorphism Mp(V )→Aψ , and
Wψ,`(Tψ

(g,q))= ρ
ψ,`(g, q).

Versions of Theorem C are well known (see for example [Gurevich and Hadani
2007, §1.2; Howe 1973, Theorem 2.9]), so the new aspect is the explicit formula
provided by Theorem B; nonetheless, we will find it convenient and easy to prove
Theorem C in Section 6.

(D) The representation space of ρψ,` can be understood as the space of L2 functions
on V/`. One has a decomposition

ρ
ψ,`

Mp = ρ
ψ,`
+ ⊕ ρ

ψ,`
−

into irreducibles, where ρψ,`+ acts on the subspace of even functions, and ρψ,`− on
the subspace of odd ones. In Section 7 we give two proofs of the following result.

Theorem D. As generalized functions of (g, q) ∈Mp(V ),

Tr
(
ρ
ψ,`
+ − ρ

ψ,`
−

)
(g, q)= γψ(Qg) ·Tr ρψ,`Mp (−g, q).

Again, the right-hand side in Theorem D is manifestly independent of `.

Remark 1.4.1. One knows on general grounds that the characters Tr ρψ,`± are well-
defined (see [Harish-Chandra 1954] for the real case and [Sliman 1984, Theorem
1.2.3] for admissibility in the nonarchimedean case).
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Geometrization. Suppose that F = Fq is a finite field.3 In this situation, the cen-
tral extension (7) is split, so that we may consider ρψ,` as a representation of
Sp(V )n H(V ). We can also consider Sp(V )n H(V ) as the Fq-points of a group
scheme G = Sp(V )n H(V ). Gurevich and Hadani [2007] have constructed an
irreducible perverse sheaf K on G corresponding (under Grothendieck’s sheaf-
function dictionary) to the character Tr ρψ,`. The proof of Theorem D (specifically
(33)) shows that there is, as well, an irreducible perverse sheaf K′ on G whose pull-
back to Sp(V ) corresponds to the virtual character Tr

(
ρ
ψ,`
+ − ρ

ψ,`
−

)
; namely, K′ is

just the Fourier–Deligne transform of K along V with respect to the pairing ψ ◦ 1
2ω.

Remark 1.4.2. The fact (33) that Tr
(
ρ
ψ,`
+ −ρ

ψ,`
−

)
is related to Tr ρψ,` by a Fourier

transform explains the relationship between Theorem B and Theorem D: recall
(Theorem A.4) that the γψ(Qg) appearing in Theorem D is itself related by Fourier
transform to the ψ ◦ 1

2 Qg appearing in Theorem B.

1.5. Remarks.

1.5.1. Dependence on ψ . Let us briefly clarify the dependence of our results on the
character ψ . For any chosen ψ , any other nontrivial additive character is uniquely
of the form ψa(x)=ψ(ax), with a ∈ F×. The isomorphism class of ρψa,`

Mp depends
only on the class of a modulo (F×)2. For (g, q) ∈Mp(V ), we have

γψa (q)= γψ(q) · (γψ(a)/γψ(1))
dim(g−1)V (a, det σg)H

where ( · , · )H is the Hilbert symbol (see Lemma 3.13 and Section A.1.2). Moreover,
Dψa

g = Dψ
g · ‖a‖−(dim V g)/2 (see Section A.3.1).

1.5.2. Special fields. The framework presented here gives a uniform treatment for
any choice of field F . However, some simplifications are possible, case by case.

When F =C, the central factor Z F is trivial, and both γψ and the Hilbert symbol
always equal 1. When F is finite, Z F is again trivial. This means that for each g,
there is a unique q ∈W (F)/I 3 with (g, q) ∈Mp(V ). One has

γψ(q)= γψ(1)dim(g−1)V−1γψ(det σg).

Moreover, the Hilbert symbol always equals 1, γψ takes values in the fourth roots of
unity Z4 (or even Z2 if −1 is a square), and the common expression γψ(a)/γψ(1)
equals 1 if a is a square, and −1 if not.

2. Metaplectic cocycles

In this section we construct the canonical metaplectic extension (4), which exists
for any field of characteristic not 2. We also recall the traditional construction (1)

3Lafforgue and Lysenko [2009] have also considered a geometric version of the even part of the
Weil representation over a local field Fq ((t)).
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in Section 2.6, which makes sense only for a finite or local field, and depends on
the choice of a Lagrangian ` and a character ψ . In Section 2.7 we examine these
choices more closely. This will allow us to give explicit isomorphisms between all
these various incarnations of the metaplectic group in Section 3.

The key tools are the Maslov index τ and the Weil index γψ . The relevant facts
and notation concerning these objects are recalled in Appendix A.

2.1. Generalities. Suppose that G is a group and A an abelian group, written
additively; by a 2-cocycle c : G×G→ A we mean a function such that

c(g, g′)− c(g, g′g′′)+ c(gg′, g′′)− c(g′, g′′)= 0 and c(1, 1)= 0. (6)

Given such a 2-cocycle, define G̃ = G× A as a set, with a multiplication operation

(g, a)(g′, a′) := (gg′, a+ a′+ c(g, g′)).

Then it follows from (6) that G̃ is a group, with A as a central subgroup, and
G = G̃/A. In other words, we have constructed a central extension

0→ A→ G̃→ G→ 1.

Now let us apply this construction to various 2-cocycles, with G = Sp(V ).

2.2. The canonical cocycle. Here we allow F to be any field (but always of char-
acteristic not 2). Let V be the symplectic vector space (V,−ω). Then for each
g ∈ Sp(V ), the graph 0g = {(x, gx) ∈ V ⊕ V } is a Lagrangian subspace of V ⊕ V .
Define

c(g, h)= τ(01, 0g, 0gh)

for g, h ∈ Sp(V ).

Lemma 2.3. The function c : G×G→W (F) is a 2-cocycle.

Proof. The left-hand side of (6) is

τ(01, 0g, 0gg′)− τ(01, 0g, 0gg′g′′)+ τ(01, 0gg′, 0gg′g′′)− τ(01, 0g′, 0g′g′′).

The last term is −τ(0g, 0gg′, 0gg′g′′), applying A.5(d) to 1 ⊕ g ∈ GL(V ⊕ V ).
Thus the sum is a sum over the faces of the following tetrahedron, with each
face contributing the Maslov index of its vertices, in the manner explained in
Section A.5.2.

01 0g

0gg′ 0gg′g′′ .

The sum therefore vanishes. �
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From now on we reduce the values of c modulo I 3, where (as explained in
Section A.1), I ⊂W (F) is the ideal of even-dimensional quadratic spaces.4 Thus
we obtain the following definition.

Definition 2.3.1. Let M(V ) be the central extension

0→W (F)/I 3
→ M(V )→ Sp(V )→ 1 (7)

defined by the cocycle c.

Remark 2.3.2. When F is a local field, M(V ) has a natural topology, as described
in Remark 2.8.3 below.

2.3.3. Reduction to I 2/I 3. We now construct Mp(V ) as a subgroup of M(V ),
fitting into a central extension

0→ I 2/I 3
→Mp(V )→ Sp(V )→ 1. (8)

When F is a finite or local field, I 2/I 3
= Z F (see Theorem A.2), yielding the central

extension (3).

Definition 2.3.4. Let σg be the nondegenerate bilinear form on (g− 1)V defined5

by
σg((g− 1)x, (g− 1)y)= ω(x, (g− 1)y) for all x, y ∈ V .

Let [σg] be the class in W (F)/I 2 generated by quadratic spaces with the same
rank mod 2 and the same signed discriminant as σg; see Remark A.1.1. Let
Mp(V )⊂ M(V ) be the subset of pairs (g, q) such that q = [σg] mod I 2/I 3.

We will have constructed a central extension (8) if we can prove this:

Proposition 2.4. Mp(V ) is a subgroup of M(V ).

Proof. We use the calculation of the rank and discriminant of the Maslov index
described in Section A.5.1. Write αg = (1, g) : 01 → 0g. Choose a nonzero
o1 ∈ det(01), and let og = αg(o1) ∈ det(0g). Let us calculate Q(0g, og;01, o1),
as defined in Section A.5.1. Using α = α−1

g , this is the class in W (F)/I 2 of the
bilinear form

q(x, gx; y, gy)= ω(x, gy)−ω(x, y)= ω(x, (g− 1)y)

4The reduction modulo I 3 is not crucial. We could deal with extensions of Sp(V ) by W (F) and
I 2 rather than W (F)/I 3 and (as below) I 2/I 3. However, it is convenient that for finite and local
fields, we can identify I 2/I 3 with the group Z F (see Theorem A.2; in fact, I 3

= 0 for all finite or
local fields other than R). The reduction modulo I 3 is also necessary for Proposition 3.16.

5To see that σg is well defined, suppose that (g− 1)x = 0. The claim is that ω(x, (g− 1)y)= 0.
By direct calculation, ω(x, (g − 1)y) = −ω((g − 1)x, gy) = −ω(0, gy) = 0. To see that σg is
nondegenerate, observe that if, for some (g− 1)y and all (g− 1)x , σg((g− 1)x, (g− 1)y)= 0, then
ω(x, (g− 1)y)= 0 for all x , whence (g− 1)y = 0 by the nondegeneracy of ω.
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pairing (x, gx) and (y, gy) ∈ 0g/0g ∩01. But (x, gx) 7→ (g− 1)x is an isometry
between (0g/0g ∩01, q) and ((g− 1)V, σg). Therefore

Q(0g, og;01, o1)= [σg] ∈W (F)/I 2.

Now, according to (34) and the preceding discussion,

τ(01,0g,0gg′)= Q(0gg′,ogg′;01,o1)+ Q(01,o1;0g,og)+ Q(0g,og;0gg′,ogg′)

= Q(0gg′,ogg′;01,o1)− Q(0g,og;01,o1)− Q(0g′,og′;01,o1)

(all modulo I 2) and therefore, by our calculation,

τ(01, 0g, 0gg′)= [σgg′] − [σg′] − [σg] mod I 2. (9)

This is exactly the condition for Mp(V ) to be closed under multiplication. �

2.4.1. Uniqueness. Before proceeding, note that in fact Mp(V ) is the unique sub-
group of M(V ) such that the projection to Sp(V ) makes it a central extension of
Sp(V ) by I 2/I 3. Indeed, the following general statement applies.

Lemma 2.5. Suppose that G̃ is a central extension of Sp(V ) by an abelian group
A. For any subgroup B ⊂ A such that A/B has no 3-torsion, there is at most one
subgroup G̃ ′ ⊂ G̃ such that the given projection G̃ ′ → Sp(V ) is surjective with
kernel B.

In our case, A =W (F)/I 3 and B = I 2/I 3; the lemma applies because A/B =
W (F)/I 2 has only 2-primary torsion (being isomorphic to the group W0(F) de-
scribed in Section A.1). In fact, W (F) itself, and therefore any subquotient, has
only 2-primary torsion; see [Lam 2005, Chapter 8, Theorem 3.2].

Proof of Lemma 2.5. Suppose that G̃ ′ and G̃ ′′ are two such subgroups. Then for
each g ∈Sp(V ) there exists f (g)∈ A such that (g, a)∈ G̃ ′ ⇐⇒ (g, a+ f (g))∈ G̃ ′′.
Moreover, f (g) is unique modulo B, and f is a homomorphism Sp(V )→ A/B.
Thus it is enough to prove that there is no nontrivial homomorphism Sp(V )→ A/B.
In fact, Sp(V ) is perfect unless V ∼= F2

3; see [Grove 2001, Propositions 3.7–3.8].
In that exceptional case, the abelianization of Sp(V ) is cyclic of order 3 (one can
compute that Sp(V )∼= SL2(F3) has 24 elements, and that the commutator subgroup
is the unique subgroup of order 8). Since, by assumption, A/B has no 3-torsion,
any homomorphism Sp(V )→ A is trivial. �

Remark 2.5.1. The metaplectic extension Mp(V ) of Sp(V ) by I 2/I 3 also has a
universal property, which can be deduced from the work of Suslin [1987]. Namely,
the metaplectic extension of Sp2n(F) is the universal central extension that extends
to SL2n(F) and splits over SLn(F).
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2.6. The traditional cocycle. Now we assume that F is finite or local, which allows
us to use the Weil index γψ (see Section A.3).

That is, for chosen Lagrangian subspace `⊂ V and nontrivial additive character
ψ : F→ C×, define

cψ,`(g, g′)= γψ(τ (`, g`, gg′`)).

Then cψ,` is a 2-cocycle with values in the group Z8 ⊂ C× of eighth roots of unity
(as can be proved in parallel to Lemma 2.3).

Definition 2.6.1. Define a central extension

1→ Z8→ Mψ,`(V )→ Sp(V )→ 1 (10)

using the cocycle cψ,`.

2.6.2. Reduction to Z F . We now construct Mpψ,`(V ) as a subgroup of Mψ,`(V ),
fitting into a central extension

1→ Z F →Mpψ,`(V )→ Sp(V )→ 1. (11)

We use the notation of Section A.5.1. Choose an orientation o ∈ det(`), and,
for each g ∈ Sp(V ), let go be the corresponding orientation of g`. The class
Q(g`, go; `, o) ∈W (F)/I 2 is independent of the choice of o.

Definition 2.6.3. Let Mpψ,`(V )⊂ Mψ,`(V ) be the subset of pairs (g, ξ) with

ξ = γψ(Q(g`, go; `, o)) mod Z F .

(Recall that Q(g`, go; `, o) is defined modulo I 2, and that γψ(I 2) = Z F ; see
Property A.4.1(d).)

It follows easily from (34) that Mpψ,`(V ) is a subgroup of Mψ,`(V ); indeed, by
Lemma 2.5, it is the unique subgroup yielding a central extension of Sp(V ) by Z F .

Remark 2.6.4. The definition of Mpψ,`(V ) can be unwound a bit to give a standard
formula, as follows. For each g ∈ Sp(V ), choose a basis (q1, . . . , qn) of ` and
a basis (p1, . . . , pm, qm+1, . . . , qn) of g`, such that (qm+1, . . . , qn) is a basis for
`∩ g` and ω(pi , q j )= δi j . Let θ`(g) ∈ F× be the scalar such that

gqq ∧ · · · ∧ gqn = θ
`(g)(p1 ∧ · · · ∧ pm ∧ qm+1 ∧ · · · ∧ qn)

in det(g`). The class of θ`(g) in F×/(F×)2 is independent of the bases. Then
Mpψ,`(V )⊂ Mψ,`(V ) is the subset of pairs (g, ξ) with

ξ = γψ(1)dim(`/`∩g`)−1γψ(θ
`(g)) mod Z F .

Indeed, this follows from Section A.4.1(c): dim(`/` ∩ g`) and θ`(g) are just
the rank and discriminant of the quadratic form used to define Q(g`, go; `, o) in
Section A.5.1.



1546 Teruji Thomas

Remark 2.6.5. For a brief history of this construction of the metaplectic group and
the related calculation of the cocycle of the Weil representation, see the bibliograph-
ical note in [Lion and Vergne 1980].

2.7. Intermediate cocycles. The transition from Mp(V ) to Mpψ,`(V ) involves two
choices: that of the Lagrangian ` ⊂ V , and that of the character ψ . To clarify
the relationship between the different versions of the metaplectic group, we now
examine these choices separately.

2.7.1. Choice of Lagrangian. The definitions follow the same pattern as before,
and make sense for any F .

Definition. Let M`(V ) be the central extension

0→W (F)/I 3
→ M`(V )→ Sp(V )→ 1 (12)

defined by the cocycle
c`(g, h)= τ(`, g`, gh`).

Definition [Parimala et al. 2000]. Let Mp`(V ) ⊂ M`(V ) be the subset of pairs
(g, q) such that q = Q(g`, go; `, o) mod I 2 (in the notation of Definition 2.6.3).
In other words, q has rank n := dim(`/` ∩ g`) mod 2 and signed discriminant
(−1)n(n−1)/2θ`(g) (in the notation of Remark 2.6.4).

With this definition, one can show that Mp`(V ) is a subgroup of M`(V ), and,
indeed, it is the unique (cf. Section 2.4.1) subgroup of M`(V ) yielding a central
extension

0→ I 2/I 3
→Mp`(V )→ Sp(V )→ 1. (13)

Remark 2.7.2. The following relationship is crucial to the proof of Theorem B.
As in Section 2.2, let V be the symplectic vector space (V,−ω). Then the map
M(V )→ M01(V ⊕V ) given by (g, q) 7→ (1⊕ g, q) is a homomorphic embedding
(and, by Section 2.4.1, it embeds Mp(V ) into Mp01(V ⊕ V )). All of what we have
said about Mp(V ) can thereby be reduced to facts about Mp01(V ⊕ V ).

2.7.3. Choice of an additive character. Here we assume that F is finite or local.

Definition. Define a central extension

1→ Z8→ Mψ(V )→ Sp(V )→ 1 (14)

using the cocycle
cψ(g, g′)= γψ(τ (01, 0g, 0gg′)).

We again construct a subgroup Mpψ(V )⊂Mψ(V ) fitting into a central extension

1→ Z F →Mpψ(V )→ Sp(V )→ 1 (15)
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and this subgroup is again unique, by Lemma 2.5.

Definition. Let Mpψ(V )⊂ Mψ(V ) be the subgroup consisting of pairs (g, ξ) with
ξ = γψ([σg]) mod Z F . Equivalently (using Section A.4.1(c)), the requirement is
that

ξ = γψ(1)dim(g−1)V−1γψ(det σg) mod Z F .

2.8. Remarks.

Remark 2.8.1. Given the existence of a unique isomorphism I 2/I 3
→ Z F (Theorem

A.2) when F is finite or local, the introduction of a character ψ may seem entirely
extraneous to the construction of the metaplectic group. Indeed, its use is motivated
by the Weil representation, which may be considered as a representation of Mψ(V )
(or Mψ,`(V )) in which the central factor Z8 acts by scalar multiplication.

Remark 2.8.2. Let us explain the relationship between the present constructions
and the version of the metaplectic group used in [Thomas 2008] (which considered
only finite and local fields). Let Gr(V ) be the set of all Lagrangian subspaces
` ⊂ V . As we explain in the next section, there is a canonical isomorphism
δ
ψ

``′ :Mpψ,`(V )→Mpψ,`
′

(V ) for every pair `, `′ ∈ Gr(V ). Then

G =
{
(g`) ∈

∏
`∈Gr(V )

Mpψ,`(V )
∣∣∣∣ δψ``′(g`)= g`′ for all `, `′ ∈ Gr(V )

}
is a group under component-wise multiplication, with the obvious projections
making G isomorphic to each Mpψ,`(V ). This G is essentially what was called
Mp(V ) in [Thomas 2008, Definition 5.2]. By construction, it does not depend on
any particular choice of ` ∈ Gr(V ); one could, of course, remove the apparent
dependence on ψ by a similar trick.

Remark 2.8.3. Suppose that F is a local field. It is well-known that Mpψ,`(V ) is
naturally a topological covering group of Sp(V )— the topology is the one that makes
the Weil representation continuous. Since, as explained in the next section, Mp(V )
and Mpψ,`(V ) are canonically isomorphic, this defines a topology on Mp(V ), which
can be extended in a unique way to M(V ), making M(V ) a covering group of
Sp(V ) as well. It is interesting to describe this topology more explicitly, by giving
an open neighborhood U of the identity (1, 0)∈M(V ) that maps homeomorphically
onto its image in Sp(V ). It turns out we can take

U = {(g, q) ∈ M(V ) | ker(g+ 1)= 0, q =−Qg mod I 3
}.

For example, this means that the formula in Theorem D is continuous at (1, 0).
For an analogous description of the topology of Mpψ,`(V ), see [Thomas 2008,
Proposition 5.3].
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3. Isomorphisms between metaplectic groups

In this section, we describe isomorphisms between the different versions of the
metaplectic group that were introduced in Section 2. First we consider the choice
of Lagrangian, describing canonical (see Section 3.1) isomorphisms that fit into a
commutative diagram (omitting V from the notation):

M`
α`ψ
//

δ``′

��

Mψ,`

δ
ψ

``′

��

M

αψ

@@

α` 77

α`′

''

Mψ .

α
ψ

`hh

α
ψ

`′

vv

M`′
α`
′

ψ
// Mψ,`′

(The dotted arrows are homomorphisms, not isomorphisms, but all the maps shown
restrict to isomorphisms between the various groups Mp•(V ).) Next we consider
the choice of additive character, describing a commutative diagram of canonical
isomorphisms:

Mψ
α
ψ

`
//

δψψ ′

��

Mψ,`

δ`
ψψ ′

��

M

α`

??

αψ 77

αψ ′

''

M`

α`ψhh

α`
ψ ′

vv

Mψ ′
α
ψ ′

`
// Mψ ′,`.

Finally, we describe canonical actions of GSp(V ) on M(V ) and Mψ,`(V ) that
cover the action by conjugation on Sp(V ).

As in Section 2, objects labeled by the character ψ are defined only when F is a
finite or local field; objects that do not involve ψ make sense more generally.

3.1. In the above overview, we used the word “canonical” to mean “unique” in the
following sense. If G̃ and G̃ ′ are central extensions of a group G by an abelian
group A, then “an isomorphism of central extensions” is an isomorphism G̃→ G̃ ′

which covers the identity G→ G and restricts to the identity A→ A. The claim is
that all the isomorphisms are unique as isomorphisms of central extensions. This
uniqueness is guaranteed by the following lemma.

Lemma 3.2. Let G̃ and G̃ ′ be central extensions of Sp(V ) by an abelian group
A with no 3-torsion. Then there exists at most one isomorphism G̃ → G̃ ′ of
central extensions.

Proof. If f1, f2 : G̃→ G̃ ′ are isomorphisms of central extensions, then

(g, a) 7→ f1(g, a) · f2(g, a)−1
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is given by a homomorphism Sp(V )= G̃/A→ A ⊂ G̃ ′. But, as explained in the
proof of Lemma 2.5, any such homomorphism is trivial. �

As we noted after Lemma 2.5, the Witt group W (F) has only 2-primary torsion,
so Lemma 3.2 applies to all the central extensions of interest.

3.2.1. Coboundary description. We will repeatedly use the following basic ob-
servation. If G̃ and G̃ ′ are defined by 2-cocycles c and c′, then an isomorphism
f : G̃ → G̃ ′ of central extensions is equivalent to giving a function s : G → A
such that

c′(g, g′)− c(g, g′)= s(gg′)− s(g)− s(g′).

(This expresses c′− c as the coboundary of s.) Namely, f (g, a)= (g, a+ s(g)).

3.3. Choice of Lagrangian.

Proposition 3.4. There is a unique isomorphism α` : M(V )→ M`(V ) of central
extensions, and it is given by

α`(g, q)= (g, q + τ(`⊕ `, 01, 0g, `⊕ g`)). (16)

It restricts to an isomorphism Mp(V )→Mp`(V ), also unique.

Proof. For α` to be an isomorphism, it suffices, by Section 3.2.1, to check

c`(g, g′)− c(g, g′)+ s(g)+ s(g′)− s(gg′)= 0 (17)

where s(g) := τ(`⊕ `, 01, 0g, `⊕ g`). Observe that τ(`, `, `)= 0: according to
Section A.5(e), it is represented by the zero bilinear form on `. Therefore

c`(g, g′)= τ(`, g`, gg′`)= τ(`⊕ g`, `⊕ gg′`, `⊕ `)

by A.5(c). Moreover, s(g′) = τ(`⊕ g`, 0g, 0gg′, `⊕ gg′`) by A.5(d) applied to
(1, g)∈GL(V⊕V ). Graphically, then, (17) is a sum over the faces of the polyhedron

01

`⊕ ` 0gg′ 0g

`⊕ gg′` `⊕ g`

and therefore vanishes, as explained in Section A.5.2.
The fact that α` maps Mp(V ) to Mp`(V ) follows from the uniqueness property

of Mp`(V ) (Section 2.4.1), or by direct computation, using (34); the uniqueness of
α` follows from Lemma 3.2. �
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Corollary 3.5. There is a unique isomorphism α
ψ

` : M
ψ(V )→ Mψ,`(V ) of central

extensions, and it is given by

α
ψ

` (g, ξ)= (g, ξ · γψ(τ (`⊕ `, 01, 0g, `⊕ g`))). (18)

It restricts to an isomorphism Mpψ(V )→Mpψ,`(V ), also unique.

3.6. Change of Lagrangian.
Proposition 3.7. There is a unique isomorphism δ``′ : M`(V )→ M`′(V ) of central
extensions, given by

δ``′(g, q)= (g, q + τ(`, g`, g`′, `′)).

It restricts to an isomorphism Mp`(V )→Mp`
′

(V ), also unique.

Proof. The proof is very similar to that of Proposition 3.4. The main difference is
that we must now show

c`′(g, g′)− c`(g, g′)+ s(g)+ s(g′)− s(gg′)= 0 (19)

where now s(g) := τ(`, g`, g`′, `′). Observe that s(g′) = τ(g`, gg′`, gg′`′, g`′)
by Section A.5(d). Thus (19) is a sum over the faces of the polyhedron

`

`′ gg′` g`

gg′`′ g`′

and again vanishes by Section A.5.2. �

Corollary 3.8. There is a unique isomorphism δ
ψ

``′ : Mψ,`(V ) → Mψ,`′(V ) of
central extensions, given by

δ
ψ

``′(g, ξ)= (g, ξ · γψ(τ (`, g`, g`′, `′))).

It restricts to an isomorphism Mpψ,`(V )→Mpψ,`
′

(V ), also unique.

3.9. Choice of additive character. There are obvious homomorphisms

αψ : M(V )→ Mψ(V ), α`ψ : M
`(V )→ Mψ,`(V ),

each given by (g, q) 7→ (g, γψ(q)).

Proposition 3.10. The maps αψ , α`ψ are the unique homomorphisms that cover the
identity on Sp(V ) and restrict to γψ : W (F)/I 3

→ Z8. Moreover, they restrict to
isomorphisms

αψ :Mp(V )→Mpψ(V ), α`ψ :Mp`(V )→Mpψ,`(V ),

that are unique as isomorphisms of central extensions.
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Proof. Uniqueness is a simple variation on Lemma 3.2. The fact that Mp(V ) and
Mp`(V ) map to Mpψ(V ) and Mpψ,`(V ) is immediate from the definitions. The
fact that the restricted maps are isomorphisms follows from the fact that

γψ : I 2/I 3
→ Z F

is an isomorphism (Section A.4.1(d)). �

3.11. Change of additive character. Suppose that ψ , ψ ′ are nontrivial additive
characters of F . Let a ∈ F× be the unique scalar such that ψ ′(x)= ψ(ax) for all
x ∈ F . In the next proposition, ( · , · )H : F×⊗Z F×→ Z F is the Hilbert symbol
(defined in Section A.1.2).

Proposition 3.12. There is a unique isomorphism δψψ ′ : Mψ(V )→ Mψ ′(V ) of
central extensions, and it is given by

δψψ ′(g, ξ)= (g, ra(g)ξ)

where ra(g) := (γψ(a)/γψ(1))dim(g−1)V (a, det σg)H . It restricts to an isomorphism
Mpψ(V )→Mpψ

′

(V ), also unique.

To prove Proposition 3.12, we first study the dependence of γψ on ψ .

Lemma 3.13. For any quadratic space (A, q),

γψ ′(q)= γψ(q) (γψ(a)/γψ(1))dim A(a, det q)H .

Proof. Both sides of the equation define homomorphisms W (F)→ C×. Since any
quadratic space is the perpendicular sum of one-dimensional ones, we can reduce to
the case where A= F and q(x, y)= bxy. Then γψ ′(q)= γψ(ab) and the statement
amounts to the standard formula Section A.4.1(b). �

Proof of Proposition 3.12. To get an isomorphism, by Section 3.2.1 we must check

γψ ′(τ (01, 0g, 0gg′))= γψ(τ (01, 0g, 0gg′)) ·
ra(gg′)

ra(g)ra(g′)
.

The right-hand side simplifies to

γψ(τ (01, 0g, 0gg′)) · (γψ(a)/γψ(1))d(a, δ)H ,

where

d=dim(gg′−1)V−dim(g−1)V−dim(g′−1)V and δ=det σgg′/(det σg det σg′).

Comparing this to Lemma 3.13, we are reduced to checking that τ(01, 0g, 0gg′)

has rank d mod 2 and signed discriminant (−1)d(d−1)/2δ. This is equivalent to (9).
We therefore have an isomorphism; uniqueness follows from Lemma 3.2, and

the fact that Mpψ(V ) maps to Mpψ
′

(V ) follows from Lemma 2.5. �

Here is the analogue of Proposition 3.12 for Mψ,`(V ).
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Proposition 3.14. There is a unique isomorphism δ`ψψ ′ : M
ψ,`(V )→ Mψ ′,`(V ) of

central extensions, and it is given by

δ`ψψ ′(g, ξ)= (g, r
`
a(g)ξ)

where r`a(g) := (γψ(a)/γψ(1))
dim(`/`∩g`) (a, θ`(g))H . It restricts to an isomorphism

Mpψ,`(V )→Mpψ
′,`(V ), also unique.

3.15. Outer automorphisms. We return to the general setting where F is any field
of characteristic not 2. Let GSp(V )⊂GL(V ) be the group of symplectic similitudes,
that is, linear transformations f ∈GL(V ) such that there exists λ( f )∈ F× satisfying
ω( f x, f y) = λ( f )ω(x, y) for all x, y ∈ V . Then GSp(V ) contains Sp(V ) as a
normal subgroup, and so acts on it by conjugation. (In fact, according to [Hua
1948], any automorphism of Sp(V ) can be written as a composition ϕ ◦Ad f with
f ∈ GSp(V ) and ϕ a field automorphism of F .)

The goal of this section is to describe explicitly an action of GSp(V ) on the
metaplectic group, lifting the conjugation action on Sp(V ). This lifting is unique.

First let us define a function

Sp(V )× F×→W (F)/I 3.

Given (g, a) ∈ Sp(V )× F×, let bg ∈W (F) be represented by a quadratic space of
rank dim(g− 1)V and discriminant det σg (thus bg = [σg] modulo I 2). Now let
qg,a = (qa − 1)⊗ bg. The class of qg,a in W (F)/I 3 is independent of choices.

Proposition 3.16. For any f ∈ GSp(V ) there is a unique automorphism N f of
M(V ) covering Ad f and restricting to the identity on W (F)/I 3. It is given
by N f (g, q)= (Ad f (g), q + qg,λ( f )).

Proof. Simple variations on Lemma 3.2 and Section 3.2.1 show that N f will be a
unique isomorphism so long as

τ(01, 0Ad f (g), 0Ad f (gg′))− τ(01, 0g, 0gg′)= qgg′,λ( f )− qg,λ( f )− qg′,λ( f ) (20)

modulo I 3. Now,

0Ad f (g) = {(v, f g f −1v)} = {( f v, f gv)} = ( f, f ) ·0g ⊂ V ⊕ V .

This and Section A.5(d) imply that

τ(01, 0Ad f (g), 0Ad f (gg′))= qλ( f )⊗ τ(01, 0g, 0gg′). (21)

Thus the left-hand side of (20) is (qλ( f )− 1)⊗ τ(01, 0g, 0gg′). By the definition
of qg,λ( f ), to establish (20), it suffices to show that

τ(01, 0g, 0gg′)= bgg′ − bg − bg′ mod I 2.

But this is equivalent to (9). �
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Remark 3.16.1. Proposition 3.16 is stated for M(V ), but the uniqueness of Mp(V )
(Section 2.4.1) implies that N f restricts to an automorphism of that subgroup, which
is again the unique automorphism covering Ad f .

A description of the automorphisms of M`(V ), Mψ(V ), and Mψ,`(V ) covering
the action of GSp(V ) is easily deduced in parallel to Proposition 3.16, using the
isomorphisms of Sections 3.6–3.11. For example, we have:

Proposition 3.17. For any f ∈ GSp(V ) there is a unique automorphism Nψ,`

f of
Mψ,`(V ) covering Ad f and restricting to the identity on Z8. It is given by

Nψ,`

f (g, ξ)= (Ad f (g), γψ(τ (`, g`, g f −1`, f −1`)) · r f −1`

λ( f ) (g) · ξ).

Proof. Put a := λ( f ), ψ ′(x)= ψ(ax), and `′ = f −1`. By Section A.5(d), we have

cψ,`(Ad f (g),Ad f (g′))= γψ(τ (`, f g f −1`, f gg′ f −1`)

= γψ ′(τ (`
′, g`′, gg′`′))= cψ ′,`′(g, g′).

It follows that s : (g, ξ) 7→ (Ad f (g), ξ) is an isomorphism Mψ ′,`′(V )→ Mψ,`(V )
and thence that Nψ,`

f (g, ξ)= s ◦ δ`
′

ψψ ′ ◦ δ
ψ

``′ is an automorphism of Mψ,`(V ) of the
required kind. �

Remark 3.17.1. Proposition 3.17 is related to Proposition 3.16 in the sense that
we must have Nψ,`

f ◦ α
`
ψ ◦ α` = α

`
ψ ◦ α` ◦ N f . (One can even use this to deduce

Proposition 3.17 from Proposition 3.16, but the proof we have presented is much
easier, given what we already know.)

4. Heisenberg group and Weil representation

Henceforth F is a finite or local field with characteristic not 2.
In this section we recall the definition and basic properties of the Weil represen-

tation ρψ,`. A more detailed exposition can be found in [Lion and Vergne 1980,
§1.2–1.4 and Appendix].

4.1. Hilbert spaces and norms. In describing representations, we use natural Hil-
bert spaces of half-densities, with the notation laid out in Section A.3.1. Thus if
X is a finite-dimensional vector space over F then L2(X) denotes the space of L2

functions X→�1/2(X).

4.2. The Heisenberg group. The Heisenberg group H(V ) based on V is, as a set,
the direct product H(V )= V × F , equipped with the multiplication

(v, s)(w, t)=
(
v+w, s+ t + 1

2ω(v,w)
)
.

The center of H(V ) is the factor F . We are interested in representations of
H(V ) with fixed central character ψ (so again ψ is a continuous homomorphism
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F → U (1)). To avoid always writing the action of the center, note that such a
representation ρ is determined by the family of operators {ρ(v)}v∈V , which satisfy

ρ(v)ρ(w)= ψ
(1

2ω(v,w)
)
· ρ(v+w).

Theorem 4.3 (Stone and von Neumann). H(V ) has, for each nontrivial central
character ψ , a unique isomorphism class of unitary, continuous, irreducible repre-
sentations. (The notion of continuity is that of the strong operator topology.)

The proof over R can be found in [Lion and Vergne 1980, §1.3], and a general
exposition is in [Prasad 2011]. The main step is Proposition 5.2(a) below.

4.4. Formulas for its representation. For chosen ` ∈ Lagr(V ), the representation
from Theorem 4.3 is realized by

ρ
ψ,`

H := IndH
`×F (ψ̃)

where ψ̃ is the composition `× F → F
ψ
→ C×. One has the following explicit

description of the corresponding Hilbert space Hψ,`. It is the completion of the
space of smooth functions φ : V →�1/2(V/`) that satisfy

φ(v+w)= φ(v)ψ
( 1

2ω(v,w)
)

for all w ∈ ` (22)

and that are finite under the norm

|φ|2 :=

∫
v∈V/`

φ(v)φ(v).

The action of H(V ) on Hψ,` is given, for φ ∈Hψ,` and v ∈ V , by

ρ
ψ,`

H (v)φ(x)= φ(x − v)ψ
( 1

2ω(v, x)
)
. (23)

4.4.1. Transverse Lagrangians. For any Lagrangian `′ transverse to `, the isomor-
phism V/`→ `′ yields an isometry

Res`′ :Hψ,`
→ L2(`′).

The action of H(V ) on L2(`′) is described by the formula(
Res`′ ◦ ρ

ψ,`

H (v+ v′) ◦Res−1
`′

)
(φ)(x ′)= φ(x ′− v′) ·ψ

(
ω
(
v, x ′− 1

2v
′
))

(24)

for all v ∈ ` and v′, x ′ ∈ `′.

4.5. The Weil representation. Since Sp(V ) is the group of automorphisms of H(V )
preserving the center, one obtains a projective representation ρψ,`Sp of Sp(V ) acting
on Hψ,`, characterized by

ρ
ψ,`

Sp (g) ◦ ρ
ψ,`

H (v) ◦ ρ
ψ,`

Sp (g)
−1
= ρ

ψ,`

H (gv).
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In detail, (ρψ,`H )g : v 7→ ρ
ψ,`

H (gv) defines a representation of H(V ) on Hψ,` with
central character ψ . By Theorem 4.3, there is a unique-up-to-scale operator ρψ,`Sp (g)
on Hψ,` intertwining from ρ

ψ,`

H to (ρψ,`H )g.
The next result is due to Lion and Perrin.

Theorem 4.6 [Perrin 1981]. There is a true representation ρψ,`Mp of Mpψ,`(V ),
uniquely characterized by the formulas

ρ
ψ,`

Mp (g, ξ) ◦ ρ
ψ,`

H (v) ◦ ρ
ψ,`

Mp (g, ξ)
−1
= ρ

ψ,`

H (gv), ρ
ψ,`

Mp (1, ξ)= ξ · id.

The operators ρψ,`Mp (g, ξ) :H
ψ,`
→Hψ,` are given on Schwartz functions φ by

ρ
ψ,`

Mp (g, ξ)φ(x) := ξ ·
∫

y∈(g−1`)/(`∩g−1`)

φ(g−1x + y) ψ
( 1

2ω(y, g−1x)
)
µψ,`g

where µψ,`g ∈ �1
(
(g−1`)/(` ∩ g−1`)

)
is the unique invariant measure such that

ρ
ψ,`

Mp (g, ξ) is unitary.

Remark 4.6.1. More concretely, µψ,`g is characterized by the following property.
First, g−1`/(`∩ g−1`) and `/(`∩ g−1`) are Pontryagin-dual abelian groups under
the pairing ψ ◦ω. Let µ be the measure on `/(`∩ g−1`) dual to µψ,`g . Choose a
measure µ0 on `∩ g−1`. Then µψ,`g ⊗µ0 and µ⊗µ0 are measures on g−1` and `,
respectively. The property is that these measures correspond under the isomorphism
g : g−1`→ `.

4.7. Definition. Let ρψ,` be the representation of Mpψ,`(V )n H(V ) defined by

ρψ,`(g, ξ ; v, t)= ρψ,`Mp (g, ξ) ◦ ρ
ψ,`

H (v, t).

We also use ρψ,` to denote the corresponding representation of Mp(V )n H(V ),
defined using the canonical isomorphism α`ψ ◦α` = α

ψ

` ◦αψ :Mp(V )→Mpψ,`(V ).
Thus for q ∈W (F)/I 3,

ρ
ψ,`

Mp (g, q) := ρψ,`Mp (g, ξ), with ξ := γψ(q + τ(`⊕ `, 01, 0g, `⊕ g`)) ∈ Z8.

5. The character: Proof of Theorem B

The goal of this section is to prove Theorem B. There are two main ideas involved:
first, the Weyl transform, developed in Section 5.1, and second, the homomorphism
Sp(V )→ Sp(V ⊕V ), studied in Section 5.4. We conclude the proof of Theorem B
in Section 5.6.
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5.1. Weyl transform. Let S(V )⊂ L2(V ) be the subspace of Schwartz-class half-
densities.6 Let End0 Hψ,` ∼= S(V/` × V/`) be the algebra of operators on the
Hilbert space Hψ,` ∼= L2(V/`) that can be represented by Schwartz-class integral
kernels. It is dense in the algebra End Hψ,` ∼= L2(V/`× V/`) of Hilbert–Schmidt
operators (that is, those with L2 integral kernels).

The following proposition is well-known (it is the heart of the Stone–von Neu-
mann Theorem, 4.3). As usual, µV denotes the measure on V self-dual with respect
to ψ ◦ω.

Proposition 5.2. For h ∈ S(V ), let Wψ,`(h) be the operator on Hψ,` defined by

Wψ,`(h)(φ)(x)=
∫
v∈V

ρ
ψ,`

H (v)φ(x) · h(v) µ1/2
V . (25)

(a) Wψ,` is an isomorphism S(V )→ End0(H
ψ,`) and extends to an isometry

Wψ,`
: L2(V )→ End(Hψ,`).

(b) If we equip L2(V ) with the multiplication

( f1 ? f2)(x) :=
∫
v∈V

f1(v) ψ
( 1

2ω(v, x)
)

f2(x − v)µ
1/2
V

then Wψ,` becomes an algebra isomorphism Wψ,`
: L2(V )→ End(Hψ,`).

(c) For h ∈ S(V ), the operator Wψ,`(h) is trace class, and

Tr Wψ,`(h) ·µ1/2
V = h(0).

Proof. Choose `′ transverse to `, and identify L2(V )= L2(`× `′). Let F0 be the
Fourier transform L2(`)→ L2(`′) with respect to the pairing ψ ◦ 1

2ω:

F0 f (a′) := ‖2‖−
dim V

4

∫
a∈`

f (a)ψ
( 1

2ω(a, a′)
)
µ

1/2
V .

(There is a canonical isomorphism �1/2(`)⊗�1/2(V )=�1(`)⊗�1/2(`
′) which

allows us to interpret F0 as a map from half-densities on ` to half-densities on `′.)
Let A ∈ GL(`′× `′) be the isomorphism A(a′, x ′) = (x ′+ a′, x ′− a′). Write A∗

for the corresponding isometry f 7→ ‖2‖(dim V )/4 ( f ◦ A) of L2(`× `′).

Lemma 5.3. Wψ,` factors as a composition of isometries

L2(V )= L2(`× `′)
F0⊗id
−−−→ L2(`′× `′)

A∗
−→ L2(`′× `′)= End(Hψ,`).

6 Our exposition here differs slightly from the sketch in Section 1.3(C) in that we use half-densities
rather than complex-valued functions; the square root µ1/2

V of the self-dual measure for ψ ◦ω can be
used to pass between the two.
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Proof. By (25) and (24), we have

Wψ,`(h)φ(x ′)=
∫

(a,a′)∈V

φ(x ′− a′) ·ψ
(
ω
(
a, x ′− 1

2a′
))
· h(a, a′) µ1/2

V

=

∫
a′∈`′

φ(a′)
∫

a∈`

ψ
( 1

2ω(a, x ′+ a′)
)
· h(a, x ′− a′) µ1/2

V (26)

with a change of variables a′ 7→ x ′− a′; this is exactly what the lemma claims. �

Part (a) of the proposition follows from the fact that Fourier transforms preserve
the Schwartz class. In part (b), the ?-product is just the product induced on L2(V )
by viewing it as the ψ-coinvariants of the group algebra L2(H(V )); thus the fact
that Wψ,` is a homomorphism is just due to the fact that ρψ,`H is a representation.

As for part (c), formula (26) expresses Wψ,`(h) as a smooth integral kernel; we
calculate the trace by integrating along the diagonal x ′ = a′ to find

Tr Wψ,`(h) ·µ1/2
V =

∫
a′∈`′

∫
a∈`

ψ(ω(a, a′)) · h(a, 0) µV = h(0),

the last equality being Fourier inversion. �

Remark 5.3.1. Since trace-class operators form an ideal among bounded opera-
tors, we conclude from Proposition 5.2(c) that for any (g, q) ∈Mp(V ) and any h
smooth and compactly supported (or even Schwartz) on V , the composed operator
ρ
ψ,`

Mp (g, q) ◦Wψ,`(h) is also trace-class; its trace is the integral of Tψ

(g,q) against
h (this is the defining property of Tψ

(g,q) in Theorem B). Moreover, if h is now
compactly supported on Mpψ,`(V )n H(V ), we can see why Tr ρψ,`(h)— that is,
the right-hand side of (2) — is well-defined. For let hg,ξ,t be the restriction of h to

{(g, ξ)}× V ×{t} ⊂Mpψ,`(V )n H(V ).

Then (g, ξ, t) 7→ ψ(t)ρψ,`Mp (g, ξ) ◦ Wψ,`(hg,ξ,t) is a continuous, compactly sup-
ported, hence integrable function from Mpψ,`(V )× F to trace-class operators, and
the trace of its integral is Tr ρψ,`(h).

5.4. Doubling. The metaplectic group Mp(V ) acts on L2(V ) in two ways. First
we have a representation A1,

A1(g, q)(h) := (Wψ,`)−1(ρ
ψ,`

Mp (g, q) ◦Wψ,`(h)).

(The right-hand side makes sense — ρ
ψ,`

Mp (g, q)◦Wψ,`(h) is in the image of Wψ,` —
because Hilbert–Schmidt operators form an ideal.) An integral formula for A1 will
be given in Proposition 6.2. Second, let us identify Sp(V ) with the subgroup of
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Sp(V ⊕ V ) acting trivially on V . The subgroup of Mp01(V ⊕ V ) over Sp(V ) is
precisely Mp(V ) (see Remark 2.7.2). We have an isomorphism

b : V → 0−1, b(x)= (−x/2, x/2) (27)

and the restriction map Res0−1 :H
ψ,01 → L2(0−1) as in Section 4.4.1. Define

R :Hψ,01 → L2(V ), R := b∗ ◦Res0−1 (28)

so that Mp(V ) acts on L2(V ) by A2(g, q) := R ◦ ρψ,01
Mp (g, q) ◦ R−1.

Proposition 5.5. A1 = A2.

Proof. Consider the representations B1, B2 of H(V ⊕ V ) on L2(V ) defined by

B1(v̄, v)h(x)= (Wψ,`)−1(ρ
ψ,`

H (v) ◦Wψ,`(h) ◦ ρψ,`H (v̄)−1)

B2(v̄, v)h(x)= R ◦ ρψ,01
H (v̄, v) ◦ R−1(h)(x)

for all (v̄, v) ∈ V ⊕ V . We have

Ai (g, q) ◦ Bi (v̄, v) ◦ Ai (g, q)−1
= Bi (v̄, gv), Bi (1, q)= γψ(q) · id

for i = 1, 2, and, as in Theorem 4.6, A2 is uniquely characterized by these equations.
We show that in fact B1 = B2, from which it follows that A1 = A2.

Write b′(v) := (v/2, v/2) for v ∈ V , so that (v̄, v)= b(v− v̄)+b′(v+ v̄). Then

B2(v̄, v)h(x)=
(
R ◦ ρψ,01

H (v̄, v) ◦ R−1)(h)(x)
=
(
ρ
ψ,01
H (b(v− v̄)+ b′(v+ v̄)) ◦ R−1)(h)(b(x))

=
(
R−1(h)

)
(b(x)− b(v− v̄)) ·ψ(ω(b′(v+ v̄), b(x − (v− v̄)/2)))

= h(x + v̄− v) ·ψ
( 1

2ω(v+ v̄, x + v̄)
)

using (24) for the third equality. On the other hand,

ρ
ψ,`

H (v) ◦Wψ,`(h) ◦ ρψ,`H (v̄)−1

=

∫
x∈V

h(x)ρψ,`H (v)ρ
ψ,`

H (x)ρψ,`H (v̄)−1 µ
1/2
V

=

∫
x∈V

h(x)ψ
(1

2ω(v+ v̄, x + v)
)
ρ
ψ,`

H (v+ x − v̄) µ1/2
V

=

∫
x∈V

h(x + v̄− v)ψ
( 1

2ω(v+ v̄, x + v̄)
)
ρ
ψ,`

H (x) µ1/2
V

using the multiplication law of H(V ) and then a change of variables. It follows
that B1(v)h(x)= h(x + v̄− v) ·ψ

( 1
2ω(v+ v̄, x + v̄)

)
= B2(v)h(x) as claimed. �
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5.6. Proof of Theorem B. By the definition of Tψ

(g,q), we have∫
V

Tψ

(g,q) h µ1/2
V = Tr(ρψ,`Mp (g, q) ◦Wψ,`(h))µ1/2

V

for any h ∈ S(V ). According to Proposition 5.2(c), the right-hand side equals
A1(g, q)h(0). Therefore, by Proposition 5.5 and Theorem 4.6, we have∫

V
Tψ

(g,q) h µ1/2
V = (R ◦ ρ

ψ,01
Mp (g, q) ◦ R−1)(h)(0)

= γψ(q) ·
∫

y∈0
(R−1h)(y) µψ,01

g (29)

where, for brevity, 0 := 0g−1/01 ∩0g−1 . As in the proof of Lemma A.7, define
P : V ⊕ V → V by P(v,w)= w− v; it restricts to an isomorphism

P : 0→ (g−1
−1)V = (g−1)V, P(x, g−1x) := (g−1

−1)x = (g−1)(−g−1x).

We use P to rewrite (29) as an integral over (g− 1)V .
Let p : 0→ 0−1 be the projection along 01, and b : V → 0−1 as in (27). Then

P = b−1
◦ p. By (28) and (22) we have, for y ∈ 0,

(R−1h)(y)= (Res−1
0−1
◦ (b∗)−1h)(y)= h(P(y))ψ

( 1
2ω(p(y), y− p(y))

)
= h(P(y))ψ

( 1
2ω(p(y), y)

)
.

Now (36) gives ω(p(y), y)=−Qg−1(P(y), P(y)). Moreover, it is easy to verify
from the definition (35) that −Qg−1 = Qg. We therefore have∫

V
Tψ

(g,q) h µ1/2
V = γψ(q) ·

∫
v∈(g−1)V

h(v) ψ
( 1

2 Qg(v, v)
)

P∗µψ,01
g

and it only remains to argue that P∗µ
ψ,01
g = µσg .

To do so, note that the natural action of g on (the second factor of) V ⊕ V fixes
0g−1∩01 point-wise. Therefore, following Remark 4.6.1, we conclude that µψ,01

g is
the measure on 0 that is self-dual with respect to ψ ◦q , where q is the bilinear form
q(x, y)= ω(x, gy). On the other hand, it is elementary to check that P intertwines
the forms q and σg, that is, σg(P(x), P(y)) = q(x, y). Since µσg is self-dual for
ψ ◦ σg, we must have P∗µg,01 = µσg as desired.

6. Invariant presentation: Proof of Theorem C

6.1. Now we deduce Theorem C. Here is a reformulation of it, in terms of the
representation A1 of Mp(V ) on L2(V ) defined in Section 5.4. (As noted in footnote
6, we continue to deal with Hilbert spaces of half-densities rather than functions.)
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Proposition 6.2. For any (g, q) ∈Mp(V ) and h ∈ S(V ),

A1(g, q)(h)(x)=
∫
v∈V

Tψ

(g,q)(v) ψ
( 1

2ω(v, x)
)

h(x − v)µ1/2
V

=:
(
Tψ

(g,q)µ
1/2
V ? h

)
(x). (30)

Proof. Suppose h is Schwartz. Setting h̃ := A1(g, q)(h), we want to calculate h̃(x).
For any f ∈ S(V ) one has Wψ,`( f ) ◦ ρψ,`H (x)=Wψ,`( fx), where

fx(v) := f (v− x)ψ
( 1

2ω(v, x)
)
.

According to Proposition 5.2(c),

h̃(x)= h̃−x(0)= Tr(Wψ,`(h̃−x)) ·µ
1/2
V .

Unraveling the definitions, we find

h̃(x)= Tr(Wψ,`(h̃) ◦ ρψ,`H (−x)) ·µ1/2
V

= Tr(ρψ,`Mp (g, q) ◦Wψ,`(h) ◦ ρψ,`H (−x)) ·µ1/2
V

=

∫
V

Tψ

(g,q) h−x µ
1/2
V =

∫
v∈V

Tψ

(g,q)(v) ψ(
1
2ω(v,−x)) h(v+ x) µ1/2

V .

Since Tψ

(g,q) is an even function on V , we obtain the right-hand side of (30). �

7. Transfer factor: Proof of Theorem D

7.1. First, in Section 7.2, we give a purely algebraic proof, using the central
characters to distinguish between ρψ,`+ and ρψ,`− . Then, in Section 7.4, we sketch
an alternative argument, because it emphasizes the structure of the Weyl transform,
and leads naturally to the geometrization mentioned in Section 1.3. Both methods
rely on the following observation.

The decomposition ρψ,`Mp = ρ
ψ,`
+ ⊕ ρ

ψ,`
− into irreducible representations corre-

sponds to the decomposition of the representation space Hψ,` ∼= L2(`′) into even
and odd functions. Let 5 :Hψ,`

→Hψ,` be the parity operator defined by

(5 f )(x)= f (−x).

Then, as generalized functions on Mp(V ),

Tr ρψ,`± (g, q)= 1
2 Tr(ρψ,`Mp (g, q)± ρψ,`Mp (g, q) ◦5),

whence

Tr(ρψ,`+ − ρ
ψ,`
− )(g, q)= Tr

(
ρ
ψ,`

Mp (g, q) ◦5
)
. (31)
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7.2. “Algebraic” proof. The representations ρψ,`+ and ρψ,`− have different central
characters, and this can be used to distinguish them. Concretely, the central ele-
ment (−1, 1) ∈Mpψ,`(V ) acts as 5 on Hψ,`. Given (g, ξ) ∈Mpψ,`(V ), one has
(g, ξ)(−1, 1)= (−g, ξ) ∈Mpψ,`(V ), and therefore(

Tr ρψ,`+ −Tr ρψ,`−
)
(g, ξ)= Tr ρψ,`Mp (−g, ξ).

On the other hand, if in the notation of Section 3.3 we have α`(g, q)= (g, ξ), then
α−1
` (−g, ξ)= (−g, q + εg) as elements of Mp(V ), where

εg := τ(`⊕ `, 01, 0g, `⊕ g`)− τ(`⊕ `, 01, 0−g, `⊕ (−g)`).

Since the central factor W (F)/I 3
⊂Mp(V ) acts through γψ , we have

(Tr ρψ,`+ −Tr ρψ,`− )(g, q)= Tr ρ(−g, q + εg)= Tr ρψ,`(−g, q) · γψ(εg).

Thus it remains to prove the following lemma, which relies on the combinatorics of
the Maslov index.

Lemma 7.3. One has εg = Qg in W (F).

Proof. Consider the polyhedron with two triangular and two quadrilateral faces:

`⊕ `

01 `⊕ g`

0−g 0g

As explained in Section A.5.2, the sum of the Maslov indices of the faces vanishes.
The sum over the two quadrilateral faces is εg (note that (−g)`= g`); therefore

εg = τ(0−g, 01, 0g)+ τ(0g, `⊕ g`, 0−g).

The second term must vanish, since

τ(0g, `⊕ g`, 0−g)=−τ(0−g, `⊕ g`, 0g)=−τ(0g, `⊕ g`, 0−g)

by Section A.5(a) and (d) applied to

1⊕ (−1) ∈ GL(V ⊕ V ).

The first term τ(0−g, 01, 0g) equals τ(01, 0g, 0−1) by Section A.5(d) applied to
(x, y) 7→ (g−1 y, x), with λ=−1; but Lemma A.7 says that τ(01, 0g, 0−1) is the
class of Qg. �
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7.4. “Analytic” proof.

Lemma 7.5. For any h ∈ S(V ), we have Wψ,`(h) ◦5=Wψ,`(Fh), where

F : L2(V )→ L2(V )

is the Fourier transform

(Fh)(x) := ‖2‖−
dim V

2

∫
v∈V

h(v) ψ
( 1

2ω(v, x)
)
µV .

Moreover, 5 ◦Wψ,`(h) ◦5=Wψ,`(5h) where 5h(v) := h(−v).

Proof. The last statement follows directly from (26). From there, too, one sees
that Wψ,`(h) ◦ 5 is represented by the kernel A∗ ◦ B∗ ◦ (F0 ⊗ id)(h), where
B(a, b)= (b, a). The result then follows from the commutativity of the diagram

L2(V )

Wψ,`
◦F

��

L2(`× `′)
F0⊗id

// L2(`′× `′)
id⊗F−1

0
//

B∗
��

L2(`′× `) L2(V )

End(Hψ,`) L2(`′× `′) L2(`′× `′)
A∗

oo L2(`× `′)
F0⊗id

oo L2(V ).

Here the top row composes to F and the bottom row to Wψ,` by Lemma 5.3. �

Now to deduce Theorem D. For brevity, we detail only the case when F is finite,
but the infinite case is parallel. Applying the formula for Tr ρψ,`Mp from Corollary 1.4,
the claim is that

Tr(ρψ,`+ − ρ
ψ,`
− )(g, q)=

√

#V−g · γψ(q)γψ(Qg). (32)

By Theorem C, ρψ,`Mp (g, q) is the Weyl transform Wψ,`(Tψ

(g,q) µ
1/2
V ), so (31), Lemma

7.5, and Proposition 5.2(c) give

Tr
(
ρ
ψ,`
+ − ρ

ψ,`
−

)
(g, q)= Tr

(
ρ
ψ,`

Mp (g, q) ◦5
)

= Tr Wψ,`(F(Tψ

(g,q)µ
1/2
V ))= F(Tψ

(g,q))(0). (33)

The result now follows from Theorem B and the definition of γψ in Section A.3. In
detail:

F(Tψ

(g,q))(0)= γψ(q) ·
∫
v∈V

ψ
( 1

2 Qg(v, v)
)
· Dψ

g ·µV (by Thm B)

= γψ(q) ·
∫
v∈(g−1)V

ψ
( 1

2 Qg(v, v)
)
·µσg (by def. of Dψ

g )

= γψ(q) ·M
∫
v∈(g−1)V/V−g

ψ
( 1

2 Qg(v, v)
)
·µQg (see below)

= Mγψ(q)γψ(Qg) (by def. of γψ ).
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To explain the third line, there is a unique measure µ on V−g such that µσg is a
product measure µσg = µ⊗ µQg , and then M :=

∫
V−g µ. However, a self-dual

measure on a vector space X is always 1/
√

#X times counting measure; this implies
that M =

√
#V−g, and the proof of (32) is complete.

Appendix: Witt, Weil, Maslov, Cayley

A.1. Witt group. (The basic reference is [Lam 2005].) Let F be a field of charac-
teristic not 2. A quadratic space is a pair (W, q), where W is a finite-dimensional
vector space over F and q : W ⊗W → F is a nondegenerate symmetric bilinear
form. The perpendicular direct sum and the tensor product of two quadratic spaces
can be defined in an obvious way. With these operations, the set of isomorphism
classes of quadratic spaces forms a commutative semiring. The Witt group (or ring)
W (F) is the commutative ring defined by imposing the relation

(W, q)+ (W,−q)= 0.

The dimension (or rank) of a quadratic space (W, q) is dim W ∈Z. The discriminant
of (W, q) is defined as follows. First, q defines a symmetric map 8 : W → W ∗

such that q(x, y)=8(x)(y). Suppose e1, . . . , en is a basis for W , and e∗1, . . . , e∗n
the dual basis for W ∗: e∗i (e j )= δi j . Then det q ∈ F is the scalar such that

8e1 ∧ · · · ∧8en = (det q)(e∗1 ∧ · · · ∧ e∗n) ∈ ∧
nW ∗.

The class of det q in F×/(F×)2 is well defined, and is called the disciminant of
(W, q). The signed discriminant sdet q of (W, q) is (−1)n(n−1)/2 det q ∈ F×/(F×)2.

Define a commutative ring W0(F) to be Z/2Z× F×/(F×)2 as a set, with the
operations

(d1,11)+ (d2,12) := (d1+ d2, (−1)d1d21112),

(d1,11)(d2,12) := (d1d2,1
d2
1 1

d1
2 ).

The dimension and signed discriminant together define a surjective homomorphism

Q̃ = (dim, sdet) :W (F)→W0(F).

Let I ⊂ W (F) be the kernel I = ker(dim). Then ker Q̃ = I 2; see [Lam 2005,
Chapter 2, Proposition 2.1]. In other words, Q̃ identifies W (F)/I 2 with W0(F).

Remark A.1.1. The dimension and signed discriminant make sense for any non-
degenerate bilinear form, symmetric or not. Such a form q therefore defines a class
[q] in W0(F)=W (F)/I 2.
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A.1.2. Finite and local fields. We want to describe W (F)/I 3, in case F is a finite
or local field. For a, b ∈ F×, the Hilbert symbol (a, b)H is defined to equal 1 if a
is a norm from F(

√
b), and to equal −1 if not. Let Z F be the image of the Hilbert

symbol; it is either Z F = {±1} (when F is real or nonarchimedean) or Z F = {1}
(when F is finite or complex). The Hasse invariant s(q)∈ {±1} of a quadratic space
(W, q) over F can be defined inductively by s(q ⊕ q ′)= s(q)s(q ′)(det q, det q ′)H ,
and s(q)= 1 if dim q = 1.

Theorem A.2. Let F be any finite or local field of characteristic not 2. Two classes
in W (F) are equal modulo I if and only if they can be represented by quadratic
spaces of the same rank. Two quadratic spaces of the same rank have the same class
modulo I 2 if and only if they have the same discriminant. Two quadratic spaces of
the same rank and discriminant have the same class modulo I 3 if and only if they
have the same Hasse invariant; moreover, I 2/I 3 is canonically isomorphic to Z F .

Proof. For the first statement, every class in W (F) is represented by some quadratic
space; see, e.g., [Lam 2005, Chapter 2, Proposition 1.4(1)]. If our two classes are
represented by (W, q) and (W ′, q ′), with dim W − dim W ′ = 2m ≥ 0, let (W0, q0)

be any quadratic space of rank m. Then q ′ ⊕ q0 ⊕ (−q0) has the same class as
q ′ and the same rank as q. The second statement follows from the isomorphism
Q̃ :W (F)/I 2

→W0(F). (The argument so far does not use the assumption that F
is finite or local.)

For the third statement, we use the fact that two quadratic spaces of the same
dimension have the same class in W (F) if and only if they are isometric [Lam
2005, Chapter 2, Proposition 1.4(3)]. There are four cases.

First, suppose F is nonarchimedean local. Then two quadratic spaces are iso-
metric if and only if they have the same rank, discriminant, and Hasse invariant
[Lam 2005, Chapter 6, Theorem 2.12]; moreover, I 3

= 0 [Lam 2005, Chapter 6,
Corollary 2.15]. So two quadratic spaces of the same rank have the same class
in W (F) = W (F)/I 3 if and only if they have the same discriminant and Hasse
invariant.

Second, suppose F = Fq . This time quadratic spaces are isometric if and only if
they have the same rank and discriminant [Lam 2005, Chapter 2, Thdorem 3.5];
the Hasse invariant (like the Hilbert symbol) always equals 1. From this it follows
that I 3

= I 2
= 0, and we can argue as for the nonarchimedean local case.

Third, suppose F = C. Now two quadratic spaces are isometric if and only if
they have the same rank; the discriminant and Hasse invariant (like the Hilbert
symbol) always equal 1. This time I 3

= I = 0, and we can argue as before.
Fourth, suppose F = R. Isomorphism classes of quadratic spaces are classified

by pairs (n+, n−) of nonnegative integers, n± being the dimension of the largest
positive/negative-definite subspace. The “signature” sig : (n+, n−) 7→ n+ − n−
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defines an isomorphism W (F)→ Z, identifying I with 2Z and I 3 with 8Z. (For
all this see [Lam 2005, Chapter 2, Proposition 3.2]. One finds that the rank is
dim(n+, n−)= n++ n−, det(n+, n−)= (−1)n− , and s(n+, n−)= (−1)n−(n−−1)/2.
It follows that the rank and signed discriminant determine the signature mod 4, and
that for fixed rank and discriminant, the two choices of Hasse invariant correspond
to the two choices of signature mod 8.

For the last statement, it is formally only necessary to show that I 2/I 3 and Z F

have the same number of elements, which follows from the above considerations;
however, we will explain the isomorphism using the Weil index — see A.4.1(d)
below. �

A.3. Weil index. In this section, let F be a finite or local field of characteristic not
2. The Weil index is a homomorphism γψ : W (F)→ Z8, where Z8 ⊂ C× is the
group of eighth roots of unity. It is defined using Fourier transforms.

A.3.1. Densities and measures. First let us recall some facts about measures and
densities that will be useful both here and in the main text. A nice introduction to
densities can be found in [Woodhouse 1980, §5.9].

For s ∈ R, and X any finite-dimensional vector space over F , let �s(X) denote
the space of complex translation-invariant s-densities on X ; it is a one-dimensional
complex vector space, the complexification of the space of real translation-invariant
s-densities. In particular, there is a canonical isomorphism

�1/2(X)⊗C�1/2(X)→�1(X),

and every positive invariant density (that is, Haar measure) µ ∈ �1(X) has a
canonical square root µ1/2

∈�1/2(X). The space of functions X→�1/2(X) has a
natural Hermitian inner product:

( f1, f2) :=

∫
X

f1 f2

considering f1 f2 : X→�1/2(X)⊗�1/2(X)=�1(X) as a density on X . Let L2(X)
denote the corresponding Hilbert space.

A perfect pairing B : X ⊗F Y → U (1) (making X the Pontryagin dual of Y )
associates to each nonzero µ ∈ �1(X) a dual measure µ∗ ∈ �1(Y ). It can be
usefully characterized by the Fourier inversion formula (Fµ

∗

B∗F
µ
B f )(z)= f (−z) for

all Schwartz functions f : X→ C. Here

(F
µ
B f )(y)=

∫
x∈X

f (x)B(x, y) µ

and B∗(y, x) := B(x, y) for all (x, y) ∈ X × Y .
If Y = X then there is a unique self-dual µ ∈ �1(X) such that µ∗ = µ. Of

particular interest is the situation where B = Bψq := ψ ◦ q for some nontrivial,
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continuous homomorphism ψ : F→U (1) and some nondegenerate bilinear form
q : X ⊗F X → F . It is easy to see from the Fourier inversion formula that if
µ
ψ
q is self-dual for Bψq , then the measure that is self-dual for Bψaq , a ∈ F×, is
µ
ψ
aq = ‖a‖(dim X)/2 µ

ψ
q .

A.3.2. Definition. Suppose now that (X, q) is a quadratic space (that is, q is from
now on symmetric). We fix a nontrivial, continuous homomorphism ψ : F→U (1)
and write f ψq for the function f ψq (x)= ψ

( 1
2q(x, x)

)
.

Theorem A.4 [Weil 1964, Theorem 2 and Proposition 3]. There exists a number
γψ(q) ∈ Z8 such that

F
µ
ψ
q

Bψq
f ψq = γψ(q) · f ψ−q

as generalized functions on X. Moreover, (X, q) 7→ γψ(q) defines a character
γψψ :W (F)→ Z8.

Note that f ψq is not Schwartz, but its Fourier transform can be defined in the
sense of distributions.

A.4.1. Properties. The following properties of γψ are used in this paper, and go
back to [Weil 1964]. For a ∈ F×, let qa be the bilinear form qa(x, y)= axy on F ,
and write γψ(a) := γψ(qa). We again write ( · , · )H for the Hilbert symbol, Z F for
its image, and s(q) ∈ Z F for the Hasse invariant of any quadratic space (W, q) (see
Section A.1.2).

(a) If ψ ′(x)= ψ(ax), then γψ(qa ⊗ q)= γψ ′(q).

(b) γψ(a) γψ(b)= γψ(1) γψ(ab) (a, b)H .

(c) γψ(q)= γψ(1)dim q−1γψ(det q)s(q).

(d) γψ is trivial on I 3
⊂W (F), and γψ restricts to an isomorphism I 2/I 3

→ Z F .

Proofs. Statement (a) follows easily from the definition of γψ in Theorem A.4 (note
that f ψqa⊗q = f ψ

′

q , Bψqa⊗q = Bψ
′

q , µψqa⊗q = µ
ψ ′

q ). Statement (b) is equivalent to the
last formula on p. 176 of [Weil 1964]. Statement (c) follows from (b) by induction
on the dimension (that is, if we decompose q as a perpendicular sum of two smaller
spaces). The first part of statement (d) follows from Theorem A.2: if two classes in
W (F) are equal modulo I 3, then they can be represented by spaces of the same
rank, discriminant, and Hasse invariant, and so by (c) have the same Weil index. For
the second part of (d), set qa,b = (q1⊕ q−a)⊗ (q1⊕ q−b)= q1⊕ q−a ⊕ q−b⊕ qab,
for any a, b ∈ F×; I 2 is generated by forms of this type [Lam 2005, Chapter 2,
Proposition 1.2]. By (b), γψ(qa,b)= (a, b)H , so indeed γψ(I 2)= Z F . To see that
I 3 is the kernel of γψ on I 2, recall from Theorem A.2 that any two classes in
I 2 can be represented by quadratic spaces (W, q), (W ′, q ′) of the same rank and



Weil representation and transfer factor 1567

discriminant; according to (c), γψ(q)= γψ(q ′) if and only if s(q)= s(q ′), in other
words (again according to Theorem A.2) if and only if q = q ′ mod I 3. �

A.5. Maslov index. In this section, let F be any field of characteristic not 2. Let
(V, ω) be a finite-dimensional symplectic vector space over F . The Maslov index
τ associates to each arbitrary sequence `1, . . . , `n ⊂ V of Lagrangian subspaces, a
class τ(`1, . . . , `n) in W (F). It is characterized by the following properties:

(a) Dihedral symmetry:

τ(`1, . . . , `n)=−τ(`n, . . . , `1)= τ(`n, `1, . . . , `n−1).

(b) Chain condition: For any j , 1< j < n,

τ(`1, `2, . . . , ` j )+ τ(`1, ` j , . . . , `n)= τ(`1, `2, . . . , `n).

(c) Additivity: If V, V ′ are symplectic spaces, `1, . . . , `n ∈Lagr(V ), `′1, . . . , `
′
n ∈

Lagr(V ′), so that `i ⊕ `
′

i ∈ Lagr(V ⊕ V ′), then we have

τ(`1⊕ `
′

1, . . . , `n ⊕ `
′

n)= τ(`1, . . . , `n)+ τ(`
′

1, . . . , `
′

n).

(d) Invariance: Suppose g∈GL(V ) satisfies ω(gx, gy)=λω(x, y) for all x, y∈V .
Then

τ(g`1, . . . , g`n)= qλ⊗ τ(`1, . . . , `n)

where qλ ∈W (F) is the bilinear form on F defined by (x, y) 7→ λxy.

(e) τ(`1, `2, `3) can be represented by the (possibly degenerate) bilinear form on
`2 ∩ (`1+ `3) given by (x, y) 7→ ω(x, y3) (where y = y1+ y3 with yi ∈ `i ).

For a definition and proofs of (a) and (b), see [Thomas 2006]; (c), (d), and (e) are
simple consequences of the definition given there.

A.5.1. Rank and discriminant. The rank and discriminant were calculated in [Pari-
mala et al. 2000, Proposition 2.1], with the following result. For each Lagrangian
`, choose an “orientation” o, that is, a nonzero element of det(`), the top exterior
power of `. Given (`, o), (`′, o′), choose an isomorphism α : `→ `′ such that α is
the identity on `∩ `′, and α∗(o) = o′. Consider the nondegenerate bilinear form
q(x, y)= ω(α(x), y) on `/`∩ `′. Set

Q(`, o; `′, o′)= [q] ∈W (F)/I 2

(in the notation of Remark A.1.1). It is easy to check that Q(`, o; `′, o′), unlike
q, is independent of the choice of α; moreover, Q(`′, o′; `, o) = −Q(`, o; `′, o′).
What [Parimala et al. 2000] show is that, for any choice of orientations oi ∈ det `i ,

τ(`1, . . . , ln)=
∑

i∈Z/nZ

Q(`i , oi ; `i+1, oi+1) mod I 2. (34)
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A.5.2. Polygons and polyhedra. Properties (a) and (b) deserve further comment.
Suppose given an oriented n-sided polygon F with vertices `1, . . . , `n . The dihedral
symmetry (a) allows us to unambiguously define τ(F)= τ(`1, . . . , `n); reversing
the orientation of the polygon reverses the sign of τ(F). The chain condition (b)
has the following interpretation: suppose that P is a closed, oriented polyhedron
with vertices `1, . . . , `n . Then (b) implies that∑

F

τ(F)= 0

where the sum is over the faces F of P .

A.6. Cayley transform. We continue with any field F of characteristic not 2. Let
(V, ω) be a finite-dimensional symplectic vector space over F .

A.6.1. Formulas. For all g ∈ Sp(V ) there is a symmetric form Q on V given by

Q(x, y)= 1
2ω((g+ 1)x, (g− 1)y).

The kernel is V g
+ V−g (a direct sum in V ). The corresponding map

Sp(V )→ Sym2(V ∗)= sp(V )

is the Cayley transform (usually defined without the factor 1
2 ); it is traditionally

formulated [Cayley 1846] as a bijection between the open subsets of Sp(V ) and
sp(V ) defined (in both cases) by the condition det(g− 1) 6= 0.

The canonical isomorphism V/V g
→ (g−1)V transfers Q to a symmetric form

Qg on (g− 1)V , with kernel V−g. This is the form used in the main text:

Qg((g− 1)x, (g− 1)y) := 1
2ω((g+ 1)x, (g− 1)y) for all x, y ∈ V . (35)

It is easy to check that Qg =−Qg−1 = Q−g−1 .

A.6.2. The Cayley form as a Maslov index. Let V be the same vector space V , but
equipped with symplectic form −ω. For g ∈ Sp(V ), we write 0g for the graph
0g = {(v, gv) | v ∈ V } considered as a Lagrangian subspace of the symplectic
vector space V ⊕ V .

Lemma A.7. The class of Qg in the Witt group W (F) equals the Maslov in-
dex τ(01, 0g, 0−1).

Proof. Let p : V ⊕ V → 0−1 be the projection along 01. According to Section
A.5(e), τ(01, 0g, 0−1) can be represented by the degenerate symmetric bilinear
form on 0g defined by

q(x, y)= ω(x, p(y)).
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Now consider the map P : V ⊕ V → V given by P(v,w)= w− v. We have the
following more precise claim, which is easy to check: P induces an isomorphism
0g/01 ∩0g→ (g− 1)V that is an isometry between q and Qg. In particular,

Qg(P(x), P(y))= ω(x, p(y)). (36)

This concludes the proof. �
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