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Parametrizing quartic algebras over an
arbitrary base

Melanie Matchett Wood

We parametrize quartic commutative algebras over any base ring or scheme
(equivalently finite, flat degree-4 S-schemes), with their cubic resolvents, by
pairs of ternary quadratic forms over the base. This generalizes Bhargava’s
parametrization of quartic rings with their cubic resolvent rings over Z by pairs
of integral ternary quadratic forms, as well as Casnati and Ekedahl’s construc-
tion of Gorenstein quartic covers by certain rank-2 families of ternary quadratic
forms. We give a geometric construction of a quartic algebra from any pair of
ternary quadratic forms, and prove this construction commutes with base change
and also agrees with Bhargava’s explicit construction over Z.

1. Introduction

Definitions and main result. A n-ic algebra Q over a scheme S is an Og-algebra
Q that is a locally free rank-n Og-module, or equivalently Spec Q is a finite, flat
degree-n S-scheme. For n = 3, 4, we call such algebras cubic and quartic respec-
tively. Given a quartic algebra, we can define a cubic resolvent which is a model
over S of the classical cubic resolvent field of a quartic field (but which is not
always determined uniquely by the quartic algebra). For a quartic algebra Q over
S, a cubic resolvent C of Q is a cubic algebra C over S, with a quadratic map
¢:0/0s— C/Og and an isomorphism § : /\4Q 5 A, such that for any sections
x,yof Qwehave (1 AxAYAXY)=1A@(x)A@(y) and also C is the cubic
algebra corresponding to Det(¢) (see Section 3 for more details). An isomorphism
from a pair (Q, C) of a quartic algebra and cubic resolvent to a pair (Q’, C’) is
given by isomorphisms of the respective algebras that respect ¢ and é.

A double ternary quadratic form over S is a locally free rank-3 Og-module W,
a locally free rank-2 Og-module U, and a global section p € Sym> W ® U, and an
isomorphism A°W ® A’U = Og which is called an orientation. An isomorphism
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of double ternary quadratic forms (W, U, p) and (W', U’, p’) is given by isomor-
phisms W = W’ and U = U’ that send p to p’ and respect the orientations.
The main theorem of this paper is the following.

Theorem 1.1. There is an isomorphism between the moduli stack for quartic al-
gebras with cubic resolvents and the moduli stack for double ternary quadratic
forms. In other words, for a scheme S there is an equivalence between the cate-
gory of quartic algebras with cubic resolvents and the category of double ternary
quadratic forms (with morphisms given by isomorphisms in both categories), and
this natural equivalence commutes with base change in S.

The moduli stack of double ternary quadratic forms is simply [A!2/ '], where I’
is the sub-group scheme of GL, x GL3 of elements (g, /) such that det g deth = 1.
The action of I on A'? is given by viewing A!? as the space Sym? 7> ® 72, where
GL; has the standard action on the Z> (and the thereby induced action on Sym2 73)
and acts trivially on the Z2 and GL, acts trivially on the Sym? Z> and with the
standard action on Z2. In particular, we have a parametrization of quartic algebras
with cubic resolvents.

Corollary 1.2. Over a scheme S, there is a bijection between isomorphism classes
of double ternary quadratic forms over S and isomorphism classes of pairs (Q, C)
where Q is a quartic algebra over S and C is a cubic resolvent of Q.

Remark 1.3. The geometric language of this paper makes it more natural to work
over a scheme S, but all of our work includes the case S = Spec R, in which case
we are simply working over a ring R. The reader mainly interested in a base ring
can replace Og with R and “global section” with “element” throughout the paper.

Background and previous work. It has been known since [Delone and Faddeev
1940] (see also Section 2 of this paper and [Davenport and Heilbronn 1971; Gan
et al. 2002; Bhargava 2004b]) that cubic rings are parametrized by binary cubic
forms. A cubic ring is a ring whose additive structure is a free rank-3 Z-module,
and a binary cubic form is a polynomial

f =ax®+bx*y +cxy* +dy’

with a, b, c,d € Z. Cubic rings, up to isomorphism, are in natural discriminant-
preserving bijection with GL,(Z)-classes of binary cubic forms. If we prefer to
think geometrically, a cubic ring is a finite, flat degree-3 cover of SpecZ. A
parametrization analogous to that of [Delone and Faddeev 1940] was proven in
[Miranda 1985] for finite, flat degree-3 covers of an irreducible scheme over an al-
gebraically closed field of characteristic not 2 or 3. Though these correspondences
were originally given by writing down a multiplication table for the cubic ring
(or sheaf of functions on the cubic cover), when f is a non-zero integral binary
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cubic form, the associated cubic ring is simply the ring of global functions of the
subscheme of [P’lZ cut out by f; see [Deligne 2000; Wood 2011b, Theorem 2.4;
Casnati and Ekedahl 1996].

In this paper, we study quartic (commutative) algebras, or equivalently, finite,
flat degree-4 covers of a base scheme. Casnati and Ekedahl [1996] found that finite,
flat degree-4 Gorenstein covers of an integral base scheme are given by global
sections of certain double ternary quadratic forms, with a codimension condition
on the section at every point of the base. (See also [Hahn and Miranda 1999]
on quartic covers of algebraic varieties in characteristic not 2.) Recently, quartic
algebras over Z have been parametrized in [Bhargava 2004b]. More precisely,
Bhargava proved that isomorphism classes of pairs (Q, C), where Q is a quar-
tic ring (i.e., isomorphic to Z* as a Z-module) and C is a cubic resolvent of Q,
are in natural bijection with GL;(Z) x GL3(Z)-classes of pairs of integral ternary
quadratic forms. (We could view a pair of ternary quadratic forms over Z as a
double ternary quadratic form 21555,153 a,-jxixjy+21§[§j§3 bijxix;z.) Bhargava
[2004b] introduced cubic resolvents as models of the classical cubic resolvent field
of a quartic field. All quartic rings over Z have at least one cubic resolvent, and
many quartic rings (for example, maximal quartic rings over Z) have a unique
cubic resolvent [Bhargava 2004b, Corollary 4]. This has allowed Bhargava [2005]
to count asymptotically the number of S4 number fields of discriminant less than
X (as well as the number of orders in S4 number fields). Casnati [1998] has also
given a construction of a finite, flat degree-3 “discriminant cover” corresponding to
a finite, flat degree-4 Gorenstein cover of an integral scheme over an algebraically
closed field of characteristic not equal to 2, but since he was only considering
quartic covers that turn out to have unique cubic resolvents, the importance of the
cubic resolvent to the moduli problem was not apparent. Bhargava [2004b] realized
that to obtain a nice parametrization of quartic rings over Z, one must parametrize
them along with their cubic resolvents.

In this paper, we generalize the results of [Bhargava 2004b] from Z to an arbi-
trary scheme, and those of [Casnati and Ekedahl 1996] from the case of Gorenstein
covers and special forms to all quartic covers and forms, as well as to an arbitrary
base scheme. Moreover, we prove our correspondence between quartic algebras
with resolvents and double ternary quadratic forms commutes with base change.

Bhargava [2004b] describes the relationship between quartic rings with cubic re-
solvents and pairs of ternary quadratic forms by giving the multiplication tables for
the quartic and cubic rings explicitly in terms of the coefficients of the forms. In this
paper, we give a geometric, coordinate-free description of a quartic ring Q given by
a pair of integral ternary quadratic forms. For the nicest forms, the pair of ternary
quadratic forms gives a pencil of conics in IP’% and the quartic ring is given by the
global functions of the degree-4 subscheme cut out by the pencil. In Section 4, we
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give a global, geometric, coordinate-free construction over a quartic algebra from
a double ternary quadratic form over any scheme S. The construction that works
for all forms is taking the degree-0 hypercohomology of the Koszul complex of the
double ternary quadratic form. This agrees with the intuitive geometric description
given above for nice cases, but unlike the above description, always gives a quartic
algebra. Casnati and Ekedahl [1996] have given an analogous geometric construc-
tion over an arbitrary scheme in the case when the quartic algebra is Gorenstein.
Deligne, in a letter to Bhargava [2004], gives an analogous geometric construction
when the generic conic in the pencil is non-singular over each geometric point,
and proves that it extends (without giving a geometric construction in the extended
case) to all pairs of ternary quadratic forms. The geometric construction in this
paper works for all double ternary quadratic forms, for example when the form is
identically O in some fiber, when the conics given by the ternary quadratic forms
share a component, or even when both forms are identically 0!

In Section 5, we explain how the quartic algebra associated to a double ternary
quadratic form over S can be defined locally in terms of the multiplication tables
given in [Bhargava 2004b], and prove that these constructions agree. The calcula-
tions showing this agreement are not straightforward and are given in Theorem 5.1.

In Section 2, we review the parametrization of cubic algebras. This is not only
motivation for our study of quartic algebras, but also is important background
for the results in this paper because the cubic resolvent C is a cubic algebra. In
Section 3 we give the definition of a cubic resolvent in more detail. In Section 6,
we give the construction of a cubic resolvent from a double ternary quadratic form.
In Section 7, we prove Theorem 1.1.

Notation. If % is a sheaf, we use s € ¥ to denote that s is a global section of &F. If
V is a locally free Og-module, we use V* to denote the Og-module %om@s (V,0y).
We use Sym” V to denote the usual quotient of V®", and Sym, V to denote the
submodule of symmetric elements of V®". Note that when V is locally free we
have Sym, V = (Sym”" V*)* (see Lemma A.4). We define P(V) = Proj Sym* V.

Normally, in the language of algebra, one says that an R-module M is locally
free of rank n if for all prime ideals o of R, the localization My, is free of rank n.
However, if we have a scheme S and an Og-module M, we normally say that M is
locally free of rank #n if on some open cover of S it is free of rank »; in the algebraic
language this is equivalent to saying that for every prime ideal g of R, there is an
f € R\ g such that the) localization M is free of rank n. In this paper we shall
use the geometric sense of the term locally free of rank n. The geometric condition
of locally free of rank n is equivalent to being finitely generated and having the
algebraic condition of locally free of rank n.
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2. The parametrization of cubic algebras

In this section, we review the parametrization of cubic algebras. A binary cubic
form over a scheme S is a locally free rank-2 Og-module V and an f € Sym® V ®
/\2\/*. An isomorphism of binary cubic forms (V, f) = (V, f’) is given by an
isomorphism V = V' that takes f to f’. (Normally, we would call these twisted
binary cubic forms but since they are the only binary cubic forms in this paper,
we will use the shorter name for simplicity.) Of course, if V is the free rank-2
Og-module Ogx @ Ogy, then the binary cubic forms f € Sym® V ® NV* are just
polynomials (ax® 4+ bx%y + cxy?> +dy®) ® (x A y)*, where a, b, ¢, d € 0.

Over an arbitrary base, we have the following theorem of Deligne, also proved
by Poonen.

Theorem 2.1 [Deligne 2000; Poonen 2008, Proposition 5.1]. There is an isomor-
phism between the moduli stack for cubic algebras and the moduli stack for binary
cubic forms. That is, there is an equivalence of categories between the category of
cubic algebras over S where morphisms are given by isomorphisms and the cate-
gory of binary cubic forms over S where morphisms are given by isomorphisms,
and this equivalence commutes with base change in S. Thus, over a scheme S, there
is a bijection between isomorphism classes of cubic algebras and isomorphism

classes of binary cubic forms. If a cubic algebra C corresponds to a binary cubic
form (V, f), then as Og-modules, we have C /Og = V*,

Miranda [1985] gives the bijection between isomorphism classes over a base
which is an irreducible scheme over an algebraically closed field of characteristic
not equal to 2 or 3. Also, this isomorphism of stacks is studied and proven as part
of a series of such isomorphisms involving binary forms of any degree in [Wood
2011b].

In [Bhargava 2004a, Footnote 3], the following algebraic, global, coordinate
free description of the construction of a binary cubic form from a cubic algebra is
mentioned. Given a cubic algebra C, we can define an Og-module V = (C/0g)*.
(Note that V is a locally free rank-2 Og-module; see [Voight 2010, Lemma 1.3],
for example.) We can then define an Og-module homomorphism Sym; C/0g —
NC /Os given by xyz = x A yz. One can check that this map is well-defined, and
so it gives a binary cubic form f € (Sym; C/05)* ® /\2C/@S =Sym’V ® NV,
Deligne [2000] gives a different, geometric construction in the case when C is
Gorenstein and then argues that the construction extends across the non-Gorenstein
locus.

It is often useful to also have the following local, explicit version of the con-
struction. Where C is a free Og-module, we can choose a basis 1, w, 6 for C and
then shift w and 6 by elements of Og so that w6 € Og. Then, the associative law
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implies that we have a multiplication table

wb = —ad,
w? = —ac +bw — ab, (D
0% = —bd +dw — 0,

where a, b, ¢, d € Og. Let x, y be the basis of V dual to w, 8. Then we can define
aform (ax® +bx2y+cxy?+dy>) @ (x Ay)* € Sym® V@ A*V*. We can check that
if we pick another basis 1, «’, 6 (also normalized so that »'0” € Og) and another
corresponding x” and y’ we would define the same form in Sym® V ® A?V*. Thus
the form is defined everywhere locally in a way that agrees on overlapping open
sets, and we have constructed a global binary cubic form (V, f).

One construction of a cubic algebra from a form (i.e., the inverse to the above
construction) simply gives the cubic algebra locally by the above multiplication
table. This gives the bijection locally in terms of bases with explicit formulas.
However, it is hard to see where the formula for the multiplication table came
from or why the local constructions are invariant under change of basis. The fol-
lowing global description is given by Deligne in his letter [Deligne 2000]. Given
a binary form f € Sym* V ® A2V* over a base scheme S, the form f determines
a subscheme Sy of P(V). Let w : P(V) — S. Let G(k) denote the usual sheaf
on P(V) and Oy, (k) denote the pullback of O(k) to S¢. Then we can define the
Og-algebra by the hypercohomology

C := HRr, (0(=3) @ 7* NV 5 0), 2)

where O(—3) @ * /\2V — 0 is a complex in degrees —1 and 0. The product on C
is given by the product on the Koszul complex 0(—3) ® 7* /\2V - O with itself
and the Og-algebra structure is induced from the map of O as a complex in degree
0 to the complex O(—3) A O (see Section B for more details on the inheritance of
the algebra structure). (Note that H ORm,.(0) =0y.)

Given a map of schemes X 5 S, the construction of global functions of X rela-
tive to S is just the pushforward 7, (Ox). So the natural notion of global functions
of Sy relative to § would be 7, of Os,. We have that @Sf =0g5/f(0(— 3)®n*/\ V).
When f is injective, then Os, = Og/f(0(=3) ® n*/\ V) as a complex in degree 0
has the same hypercohomology as 0(—3) ® TNV L oasa complex in degrees
—1 and 0. Thus we see when f is injective that C is just 77,(Os,). When f gives
an injective map and S = Spec R then C is just the ring of global functions of Sy.
Unfortunately, this simpler construction does not give a cubic algebra when f =0.
When f =0, then Sy = P! and the global functions are a rank-1 Og-algebra, i.e.,
Oy itself. Hypercohomology is exactly the machinery we need to naturally extend
the construction to all f.
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3. Cubic resolvents

We now give the definition of a cubic resolvent, given first in [Bhargava 2004b,
Definition 20] over Z. The definition might seem complicated at first, but we will
explain each aspect of it.

Definition. Given a quartic algebra Q over a base scheme S, a cubic resolvent C
of Qis

e a cubic algebra C over S,
 a quadratic map ¢ : Q/0g — C/Og, and

e an isomorphism § : /\4Q S AN (or equivalently 8 : A 0/0s > /\2C/@S),
which we call the orientation,

such that

(1) for any open set U C S and for all x, y € Q(U), we have S(1 Ax Ay Axy) =
L A@(x) Ap(y), and
(2) C is the cubic algebra corresponding to Det(¢).

Note that Q/0Og and C /Oy are locally free Os-modules of ranks 3 and 2, respec-
tively (see [ Voight 2010, Lemma 1.3], for example). A quadratic map from A to B
is given by an Og-module homomorphism Sym, A — B evaluated on the diagonal
(see Section A.iin Appendix A). (In [Wood 2011a, Proposition 6.1] it is shown this
is equivalent to the more classical notion of a quadratic map.) The map ¢ models
the map from quartic fields to their resolvent fields given by x — xx’+x"x"", where
x,x',x”, x"" are the conjugates of an element x. In [Bhargava 2004b, Lemma 9]
it is shown that condition 1 above holds for such classical resolvent maps, and it
turns out that condition 1 is the key property of resolvent maps that allows them to
be useful in the parametrization of quartic algebras. So the definition of resolvent
allows all quadratic maps that have this key property.

Another important property of the cubic resolvent over Z is that the discrim-
inant of the cubic resolvent is equal to the discriminant of the quartic ring. In
[Bhargava 2004b], this is a crucial part of the definition of a cubic resolvent over
the integers. With the above formulation of the definition of a cubic resolvent, the
equality of discriminants follows as a corollary of properties 1 and 2. However,
since the discriminant of an algebra R of rank n lies in (/\" R)®~2, we need the
orientation isomorphism to even state the question of the equality of discriminants.
The orientation is a phenomenon that it is hard to recognize the importance of over
Z because GL|(Z) is so small, however it appears in Bhargava’s choice of bases
for a quartic ring and its cubic resolvent.

The quadratic map ¢ is equivalent to a double ternary quadratic form in the
module Sym?(Q/0s)* ® C/Os. The determinant of a double ternary quadratic
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form is given by a natural cubic map from Sym> W ® V to (/\3W)®2 ® Sym’ V.
We have a natural cubic determinant map from Sym? W to (/\3W)®2. For free W
and an element of Sym> W represented by the matrix

1 1
an 3an 5413
1 1
A=|jza12 an zaxs|,

1 1
7d13 3423 433

the map is given by the polynomial 4 Det(A), and since this is invariant under GL3
change of basis, it defines a determinant map for all locally free W. We use 2’s in
the denominator of our expression for A because it allows us a convenient way to
express the polynomial 4 Det(A), but note that the polynomial given by 4 Det(A)
does not have any denominators, and thus we do not need to require that 2 is invert-
ible to construct the determinant of a double ternary quadratic form. We can extend
to a cubic determinant map from Sym> W ® V to (/\3 W)®2®Sym?® V by using the
elements of V as coefficients (see Section A.ii). Thus the determinant of ¢ lies in
(N Q/05)®~2® Sym>(C/O5), which is isomorphic to (A?C/0s) ® Sym>(C/0g)*
by the orientation isomorphism (see also Corollary A.3). From Theorem 2.1, we
have that C corresponds to a global section of (/\2C /0s) ® Sym*(C/0g)*, and
condition (2) above is that C corresponds to the section Det(¢).

When we speak of a pair (Q, C) of a quartic algebra Q and a cubic resolvent
C of Q, the maps ¢ and § are implicit. An isomorphism of pairs is given by
isomorphisms of the respective algebras that respect ¢ and §.

4. The geometric construction

In this section, we will construct a quartic algebra from a double ternary quadratic
form p € Sym> W ® U over a base S. We consider the map 7 : P(W) — S, and the
usual line bundles O(k) on P(W). We can view p as a two-dimensional family of
quadratic forms on P(W) (the two dimensions being given by U). More precisely,
since p is equivalent to a map U* — Sym? W, we have a naturally induced map
7*U* — 0(2), which is equivalent to a map p; : 7*U* ® 0(—2) — 0. The image
of p; is functions that are zero on the space cut out by the forms of p. The regular
functions on the scheme cut out by p are just given by 0/ im(p;). From p we can
construct one more map to make the Koszul complex of p, given as follows

%, NaU*@0(—4) B U 00(-2) 2 0.

The complex J{, has O in degree 0, and the other two terms in degrees —1
and —2. We can construct p, similarly to p; since p is also equivalent to a map
NU*QU — Sym? W. (Recall that NU*® U = U*; see Lemma A.2.) One can
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read about the construction of all the maps in the Koszul complex in [Eisenbud
2005, Appendices A2F and A2H].

Example 4.1. Suppose U is free with basis x, y, and dual basis x and y. Then we
can write p = f1®x+ f,®y. The map p; justsends xQg > figand yRgr> fog.
We can write how p; acts on a general element as a ® g — gp(a), where p acts
on an element of U* by evaluating the U components of p at the given element of
U*. The map pr sends x Ay ® g+ gf1 ® y — gf>» ® x. We can write how p, acts
on a general element as a AbQ g — b® gp(a) —a ® gp(b). From this we see that
K, is a complex.

For sufficiently nice p the Koszul complex will be exact in all places except
the last and thus give a resolution of O/ im(p;). For example, this it true when p
is the universal double ternary quadratic form over the polynomial ring in twelve
variables. In this well-behaved case, p will cut out four (relative) points in P(W)
(i.e., a finite, flat degree four S-scheme) and the pushforward of the global functions
of those points will give us a quadratic algebra over the base S.

When the Koszul complex of p is not a resolution, instead of taking the push-
forward of the global functions of the scheme cut out by p, we will take the Oth
hypercohomology of the complex J,. We define Q, to be H ORm (X p), Where
Rm, denotes the pushforward of the complex in the derived category. Alterna-
tively, we can view the construction as the hypercohomological derived functor of
m,, where the hypercohomology is necessary since we are operating on a complex
and not just a single sheaf. If p is nice enough that its Koszul complex ¥, is a
resolution of 0/im(p;), then Q, will just be 7,(0/im(p;)). However, what is
convenient about the hypercohomology construction is that Q, will be a quartic
algebra even when J{,, is not a resolution (as we’ll see in Section 4.ii). So far we
have constructed Q, as an Og-module, however, the Koszul complex has a natural
differential graded algebra structure, and that gives the cohomology an inherited
algebra structure (see Section B for more details on the inheritance of the algebra
structure). The map from O as a complex in degree O to the complex J{,, induces a
map from H°Rm,(0) =05 — Q p- This gives O, the structure of an Og-algebra.

4.i. Examples when J(, is not a resolution. When constructing the cubic algebra
from a binary cubic form, we took

HORm, (0(-3) L 0)

on P(V), which, as long as the cubic form f gives an injective map above is the
same as m,(0/im f). For example, when the base S is integral, whenever f # 0

then O(—3) i) O is injective. However, when f = 0, of course 0(—3) i> O is not
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injective, and HORm, (0(=3) —f> 0) is not the same as 7, (0/im f). When f =0,
the latter is an Og-module of rank 1.

Again, when constructing our quartic algebra as H° R, (% »),if p =0 the com-
plex will not be a resolution and H ORm, (K ») won’t agree with 7, (0/im py). This
is the case when both “conics” are given by the 0 form. However, even over an
integral base, there are now more situations on which the complex J{, is not a res-
olution. The geometric constructions of [Casnati and Ekedahl 1996] and [Deligne
2004] for certain nice quartic algebras are in cases when 7, (0/ im p;) simply gives
the quartic algebra.

We now give several examples in which %, is not a resolution.

Example 4.2. Let p =0. Then Q, = 05 ® W*, with the multiplication given by
wH* R0y wW* — 0.

Let U be free with the notation of Example 4.1.

Example 4.3. If f, =0, then Q, = Og ® W*, with the multiplication given by
w* R0 wW* — 0.

Now, let W be free on wq, ws, ws.

Example 4.4. If f; = w,w, and f, = wjws, then Qp =0s®0s5(z1, 221/ (21, 12)2.
This is the case where the two conics share a linear component, and the pencil of
second lines all go through a point not on the shared line.

Example 4.5. If fi = wjw; and f» = w?, then Q, = Oslz1, 221/(23, 2122, 23).
This is the case where the two conics share a linear component, and the pencil of
second lines all go through a point on the shared line.

Example 4.6. If f; = w% +wiws and fr = w% +wows, then J{, is a resolution and
0,=R:=05005®05®0s. However, unlike in the case of binary cubic forms,
we can change p in just one closed fiber and J, will no longer be a resolution.
For simplicity, let S = Spec Z, and let g be a prime. Then if f; = q(wl2 + wiws)
and fo = q(w% + wow3), the global functions of the subscheme cut out by p are
isomorphic to Z® pR C R (a quartic Z-algebra) but 0, =7 @ p*R CR.

4.ii. Module structure of Q. In this section, we determine the Og-module struc-
ture of Q,. We consider the short exact sequence of complexes O — s — K, —
9% — 0, where

A 00— > T U*®0(=2) —25 0
%, N U* @ 0(—4) —— 7*U* ® 0(=2) —— @

B Nr*U* @ 0(—4) 0 0.
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From this short exact sequence we obtain a long exact sequence of hypercohomol-
ogy sheaves on §, of which we consider the following part:

H™ 'R, (B) — HORm, () — H°Rm.(¥,) — HORm,(B) — H'Rm, ().
[
Op

This sequence will allow us the determine the modules structure of Q, once we
compute the other terms. It is natural to shift the term in % to degree O and obtain

R'7z (N7 U* @ 0(—4))
— HORm, () — Qp — R2m (N'm*U* ® 0(—4)) — H'Rm.(s).
|
0 wre Nwre N2U*
i%
W*

We can analyze the o terms by putting the complex & in its own short exact
sequence of complexes 0 — % — s — € — 0, given by the following

% - 0———0
A U R0(=2) 6
€: a*U*®0(—-2) —— 0.

Taking the long exact sequence for this short exact sequence of complexes gives

H ™ 'R7,.(€) > H'Rr. (@) - HR7,.(s) — HOR7,.(€)
— H'Rn.(9) > H'Rm,(sd) - H'R7,(€),

or

ROz, (m*U* ® 0(—=2)) — R7,(0) — HORm, () — R'm (7*U* ® 0(=2))
I I I
0 Og 0
and

R'7,(0) —— H'Rm.(A) — R*n,(n*U* ® 0(=2)).
I I
0 0

Thus, we conclude that HORm, (s4) = Og and H' R, (s4) = 0.
Going back to our original long exact sequence, we have

0—0g— Q,—> W*—0.
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This proves that Q, is a locally free rank-4 Og-module. Also, it gives us the
necessary map Og — Q, for our algebra to have a unit. (We can check this map
respects the algebra structures because it is induced from the map of complexes
% — I, that respects the differential graded algebra structures on % and J{,,.)

Theorem 4.7. The construction of Q , commutes with base change in S.

Proof. To prove this theorem, we will compute all of the cohomology of J{,. The
complex J{,, has no cohomology in degrees other than 0. We have R¥(0(—=4))=0
for k # 2, and R*m,.(0(—2)) = 0 for all k, and R*m,(0) = 0 for k # 0. Thus
HkRn*(%p) = 0 for k # 0. We have just seen that HORN*(%,,) is locally free.
Thus since all H R, (¥ p) are flat, by [EGAIIL2 1963, corollaire 6.9.9], we have
that cohomology and base change commute. U

5. Local construction by multiplication table

Given a double ternary quadratic form p € Sym?> W ® U (with a given Nw =
/\2U *), now that we know that there is a natural quartic algebra Q , we could define
the structure locally where W and U are free by giving multiplication tables, as in
the case of cubic algebras from binary cubic forms.

For a double ternary quadratic form over Z (and therefore with W and U nec-
essarily free), Bhargava [2004b, Equations (15) and (21)] gives a ring structure
on Z* whose multiplication table is given in terms of the coefficients of p. Each
entry in the multiplication table is a polynomial in the coefficients of p. This, of
course, is the multiplication table we would impose for free W and U in the above
local construction. We will now see that this local construction agrees with the
geometric construction we have given in Section 4. We will show this by working
over the universal algebra R = Z[{a;;, b;j}1<i<;<3] for double ternary quadratic
forms, and with the universal free form u = 21515153 a;jxixjy1 +bijxix;ys.

Theorem 5.1. For the universal form u, the quartic algebra Q, is isomorphic to
the quartic algebra over R that is constructed above using Bhargava’s multiplica-
tion tables.

In particular, since our geometric construction of Q, is invariant under change of
basis of W and U (respecting Nw = NU *), this gives a proof of the invariance
of Bhargava’s multiplication table under change of basis, as long as the correct
GL3; x GL; action is used. Since all double ternary quadratic forms are locally pull-
backs from the universal form, and both the local construction by multiplication
tables and the global geometric construction of Section 4 respect base change,
Theorem 5.1 implies that the two constructions of quartic algebras from double
ternary quadratic forms agree. We now prove Theorem 5.1.



Parametrizing quartic algebras over an arbitrary base 1081

Proof. For the universal form u, the complex X, used to define Q, is exact, and
therefore O, is just the global functions on the scheme S, in [P’%e cut out by

A= Z ajjxix; and B = Z bl‘jx,'x]'.
1<i<j=<3 I=<i<j=<3
(We can just work in terms of global functions instead of the pushforward to the
base since the base Spec R is affine. Moreover, the multiplicative structure of the
global functions of S, is the same as the induced multiplicative structure on the
hypercohomological construction of Q,.) We cover S, with open sets U,, coming
from the usual open sets in IP’%Q. As afirst step, we will find (f, g) € T'(Uy, ) x ' (Uy;)
such that f = g in I"(Uy, mcuxj). This will find all regular functions on U, uﬁuxj,
and it will turn out that they all extend uniquely to global functions on §,. Thus,
we will have found all the regular functions on S,. We will identify these regular
functions with the basis in Bhargava’s quartic ring construction, and then it can be
checked that the multiplication tables agree.
Let i, j, k be some permutation of 1, 2, 3. We have that

I(Wy,) = R[x;/x;, xi/x;1/(A/x}, B/x}).
Let I; be the ideal (A/x?, B/x?) of R[x;/x;, x¢/x;], and similarly for /;. Also,
I Uy, NUy,) = RI[x;/xi, x¢/xi, xi/x;1/ (A/x}, B/x}).

If we have (f, g) € I'(Uy;) X ['(Uy;) such that f = g in I'(Uy, NU;), then f and
g are represented by polynomials f € Rlxj/xi, xx/x;] and g € R[x;/x;, xk/x;]
such the element f — g € R[x;/x;, xi/X;, x; /x;] is in the ideal I = (A/x?, B/x?).
However, f — g will not have any terms with an x; and an x; in the denominator.
We define 7 to be the sub R-module of I of elements that do not have any terms
with both an x; and an x; in the denominator. The set 7T} gives all the relations
between polynomials representing elements in I"'(U,,) and polynomials represent-
ing elements in F(Olej). We define 7, to be the sub R-module of 77 generated by
the images of /; and I; under their natural inclusion into R[x;/x;, xi/x;, x; /x;].
The set T, gives all the relations of 7; that come from relations already in U,,
and already in U,;. We now seek to determine 77 /73, which gives rise to all pairs
(f, 8) e "'(Uy,) x F(Ouxj) such that f = g in I'(Uy, mouxj) that are not functions
on the base Spec R.
We first define some notation to help us write down elements of 77/ 7». Let

xn1+n—2
Al'mjn = A k

m.,n °’
xixj

where the subscript i j” is a product of formal symbols, where a missing exponent
denotes an exponent of 1. We define B;» j» analogously.
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Lemma 5.2. Lett € T\/T,. We can write

= Z Cm,nAi’"j" +dm,nBi’"j” with ¢y, dn.n € R.
m,n>1
m+n<3
Proof. Clearly we can write any ¢ in I as such as sum over m, n € Z withm+n > 2.
Any term with m < 0 is in the image of /; and thus in 7>, and any term with n <0
is in the image of /; and thus in 75. It remains to show that we do not need terms
with m +n > 4 in order to represent ¢.

We suppose for the sake of contradiction that a term with m+n > 4 was required,
and we take a ¢ with m + n maximal for this condition, and m maximal given
that. Then ¢, ,A;» j» contributes a xm+" /x’”x term with coefficient ¢, ,ax; and
. nBim jn contributes xm+” /xmx. term with coefficient d,, ,brx. No other terms
of the summand for ¢ can contrlbute a term with xl.mx;? in the denominator, and so
we must have ¢, , = rbxx and d,, , = —rayx for some element r € R.

Now we claim we did not need to use the terms rby Ajm jn — ragy Bim j» in the
sum that represents . To prove this claim, we use the following identity

bkkAimj" — Ak Bim jn
= blkAlm 1 +alkBlm l bjkA n l+aJkB in— 1+al] jm— l] —1

_biin”l_lj"_l - b]] Al’mjn—Z + au l'mjn—Z - bi,iAi”’_zj” + (ll‘l’Binz—Zjn .

This proves the lemma. O

The above lemma tells us that every element of 7;/7, can be written as an
R-linear combination of A;j, Bjj, A2, Bi2j, A;j2, and B;;>. Since only A;2; and
B;2; have terms with xl. x; in the denominator, we must have that A;2; and B
appear with coefficients c; | and d» 1 so as to cancel those terms out. We can argue
similarly for A; 2 and B; 2 Thus, every element of 77/T, can be written as a R
linear combmatlon of A,], Bij, bik A2 j — axr Bj2 j, and bii A;j2 — agg B;j2. We note
that all four of A;j, Bij, bk A2 j — akkB,-zj, and by A;j> — agy B;j» have terms with
a x;x;j denominator.

We define some notation so we can write combinations of these elements down
more easily. Fori < j, let aj; = a;;. Let )‘2;24 = ag,e,be30, — bey0,a0,0,. We note
that

H; j =bikAj2j — ari B2 j + bix Aij — aikBij
XXk Xk Xk X e Xk
)\u 12 +)»” n ;clk_+ kk 2+A]J ]-H» + §}(—l+)»f,f—
X; Xi Xj X; Xj Xi
and
Hj,,' = bkkA,-jz — akkBij2 + bjkA,'j — ajkB,-.,-
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do not have any terms with both x; and x; in the denominator. Every element of
T1/ T can be written as a R linear combination of A;;, B;;, H; ; and H; ;, because
this is just a unipotent triangular transformation of the last list of four generators.
We have seen that H; ; and H;; have no x,f /xix; terms, and A;; and B;; have
x,f /xix; terms with coefficients ay; and by, respectively. Since an element of ¢
does not have a term with x;x; in the denominator, it can be written as a linear
combination of H; ;, H;; and F;; = Fj; = by Aij — axB;j. Moreover, H; ;, H; ;
and F;; are all in 71. We now define A; ; to be the sum of terms in H; ; that do not
have an x; in the denominator, and h; ; = H; j — h;,j. We define f;; = f;; to be
the sum of terms in F;; with x; in the denominator, so that f;; + f;; + )»Zc = Fjj.

We have now found that the pairs (f, g) € T'(Uy,;) x T'(Uy;) such that f=gin
I'(Uy; NUy;) can be written in terms of four R-module generators:

(L 1), (hy jo—hij), (hjin—hja). (fij. = fii + A0

Letting i and j vary, this information is enough to determine the global functions
on S,. In this case, it turns out that the regular functions on AU, that can be extended
to Uy, are exactly the same as the regular functions on U,, that can be extended to
Ay, . In particular, in the polynomial ring R[x;/x;, xi/x;], we can compute that

hij+hix=Mj +auB/x} —bjA/x}
and
hji=~fik

Moreover, it will turn out that the extensions to U,; and U, agree on their inter-
section. We see that the global functions of S, are generated as a R-module by four
generators g1, 82, 83, 84 € I'(Uy,) x I'(Uy,) x I'(Uy,), whose components are:

NQS) | M@, | M)
g |1 1 1
g | hio=—hi3+A | —hi2= fo — o+ Ay =h13+ A
83 | ha1=—f13 —ha 1 =ha3+ 2y —ha3+ip = fa1+ 2y
84 | Srz=—h31 —fu A5 =h3p+ 235 | —haa+ A3 =hs,

We now show that the g; are generators for a free R-module of rank 4. Suppose
for the sake of contradiction that there was a relation among these generators.
Then over the generic point of R the global functions of S, would be a vector
space of at most dimension 3. But we have seen (top of page 1080) that the global
functions of S, form a locally free four-dimensional R module, and thus will be a



1084 Melanie Matchett Wood

four-dimensional vector space over the generic point of Spec R.

To construct the multiplication table on our four generators g; of the global
functions on §,, we can reduce to finding a multiplication table in the I"(Uy,)
component, since the g; are R-linearly independent even in this component. We
can further reduce to finding the multiplication table over the generic point of
Spec R. We first construct a multiplication table on 1, xo/x, x3/x1, X2X3 /xl2 over
the generic point of Spec R. To do this, we replace A and B by linear combinations
of A and B, one of which has no (x3/x; )2 term, and one of which has no (x3 /x1)2
term. Then on AU, over the generic point of Spec R, we can write all functions
in terms of 1, x2/x1, x3/x1, x2x3/x12. We can then also write the g; in terms of
1, x2/x1, x3/Xx1, X2X3 /xlz, and just apply this change of basis to the multiplication

table to obtain a multiplication table for the g;. If we take o) = —g», ao = —g3,
and o3 = — g4, we obtain exactly the multiplication tables in [Bhargava 2004b, (15)
and (21)]. O

In Section 4.ii, we found that Q , /Oy is canonically isomorphic to W*. However,
we also have explicit basis for Q,/0s when we have a basis for W. We see how
these bases are related.

Theorem 5.3. For the universal form u, in the map Q, — W* from Section 4.ii,
we have
Q> X[, 8F>Xy, g X3

Proof. We compute the map in two steps. We first find the map
R, (0/u(0(=2)%)) = R'm,.(0(=2)%/u(0(~4)))
and then the map
R'7(0(=2)%/u(0(~4))) — R*m,(0(~4)).

We compute each of the individual maps by using the snake lemma on the Cech
complex with the usual affine cover of P2. The charts on pages 1085-1087, which
should be read from upper right to lower left, summarize the computation. (|

6. Construction of the cubic resolvent

In Section 2, we have already given a geometric construction of a cubic algebra
from a binary cubic form. In Section 3, we defined the determinant of a double
ternary quadratic form p to be a binary cubic form det(p) € Sym® U* ® (/\2U ).
The cubic algebra C of this binary cubic form can be constructed as described in
Section 2, and is the desired cubic resolvent.

We have C/0Og = U (see [Wood 2011b, Section 3.1] for a similar, but simpler
argument to the one in Section 4.ii). Thus, p gives the required quadratic map
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from Q/Os to C/Os. The orientation isomorphism & : /A’ Q/0s—> /\*C/Os comes
from the orientation on the double ternary quadratic form. On any open set, we
can check that §(x A y A xy) = p(x) A p(y) by looking on a open subcover on
which W and U are trivial and pulling back from the universal form on each open
set in that subcover. It remains to check that §(x A y Axy) = p(x) A p(y) when
p is the universal ternary quadratic form, which can be checked explicitly given
the multiplication table of Q,. In particular, at the end of the proof of the main
theorem in Section 7, we lay out a plan to determine the multiplication table of
Q) in terms of p. The result agrees with the multiplication table given explicitly
in [Bhargava 2004b, Equations (15) and (21)]. The expressions §(x A y A xy) and
p(x) A p(y) both represent linear maps from Sym,(Q,/0s) ® Sym,(Q,/0s) to
A Q. Thus it suffices to check that these maps agree on a basis of global sections
of Sym,(Q,/0s5) ® Sym,(Q,/0s), since in this case Q, /05 is a free Og module.
This is easily checked, especially exploiting the symmetry of the situation.

7. Main theorem

In this section, we prove the main theorem of this paper.

Theorem 7.1. There is an isomorphism between the moduli stack for quartic al-
gebras with cubic resolvents and the moduli stack for double ternary quadratic
forms. In other words, for a scheme S there is an equivalence between the cate-
gory of quartic algebras with cubic resolvents and the category of double ternary
quadratic forms (with morphisms given by isomorphisms in both categories), and
this natural equivalence commutes with base change in S.

Proof. Given a double ternary quadratic form p over a base S, we have shown how
to construct a pair (Q,, Cp,), and all aspects of the construction commute with base
change in S. Given a pair (Q, C) over S, we can just take the quadratic map ¢
from Q/0s to C/Og to be our double ternary quadratic form with W = (Q/0g)*
and U = C/Og (using the orientation A 0/0s > NC /Os). This construction
clearly commutes with base change.

It remains to prove that the compositions of these two constructions (in either
order) are the identity. To prove this, we rigidify the moduli problems. A based
double ternary quadratic form is a ternary quadratic form p € Sym2 W ® U and
a choice of bases wy, wy, w3 and uy, up for W and U respectively as free Og-
modules, such that (w; Awy Aws) ® (u1 Auy) corresponds to the identity under the
orientation isomorphism. A based pair (Q, C) of a quadratic algebra and cubic
resolvent is a pair (Q, C) of quadratic algebra and cubic resolvent and choices
of basis ¢1, g2, g3 and ¢, ¢; for Q/0Og and C/Og as free Og-modules, such that
(g1 N g2 A g3) corresponds to (cy A ¢2) under the orientation isomorphism. We see
that our constructions above extend to the moduli stacks for these rigidified moduli
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problems. In particular, we obtain a basis for Q/Os as a dual basis for the basis of
W and vice versa.

It now suffices to show that these constructions compose to the identity on the
rigidified moduli stacks. If we start with a double ternary quadratic form p €
Sym?> W ® U, we obtain a pair (Q, C) whose quadratic map is given exactly by
the form, and then the construction of a form from (Q, C) gives back exactly our
original form. The choices of bases for W and U and the orientation are clearly
preserved under this composition.

We can start with a based pair (Q, C), then build another based pair (Qg, Cy)
from the quadratic map ¢ of (Q, C), and we wish to show that (Q, C) and (Qy, Cy)
are equal. (We can use the notion of equal instead of isomorphic since all of the
objects are based.) We have that C and Cy4 are both given as the cubic algebra
corresponding to Det(¢) and thus are equal. The quadratic resolvent maps are the
same, since ¢ carries through the two constructions. The orientation isomorphism
are clearly the same since they also carry through the constructions. It remains to
show that the multiplication on Q agrees with the multiplication on Q4. To do
this, we will show that the condition §(1 Ax Ay Axy) = ¢ (x) A ¢(y) determines
the multiplication table on Q from the resolvent map ¢. Since Q and Q4 have the
same resolvent map, this will show that they are isomorphic as Og-algebras.

Let the quadratic map ¢ be written as Ac, + Bcy, where A = 21515153 ajjXiXj
and B = 21515153 bijx;xj, and the x; are a dual basis for g; in Q/0g. We recall
the notation

bily _
Moye, = Aeie:bese, — beyoyaese,.

We lift the basis ¢; of Q/Og to a basis of Q uniquely so that g;g» has no ¢
or g, term and so that g;g3 has no ¢; term. Let mi.‘j be the coefficient of g, in
the ¢;g;. From Equation (23) in [Bhargava 2004b], we know that the constant
coefficient of g;g; in given as a polynomial in the various m coefficients. Thus, it
remains to show that the mf‘j are determined by ¢. We plug various x and y into
SAAXAYAXxY)=¢(x)A@(y). In the below, we always let i, j, k be a permutation
of 1, 2, 3 and let & be the sign of this permutation. First, letting x =g;and y=gq;,
gives m :EAJJ Then, letting x = ¢q; +¢; and y = gq; gives m :I:A” Next,
letting x = g; +¢gx and y = g; glves mkk — m = :i:k{,f Us1ng the choice of
lift, which gives m}z = m%l = m1 5 =0, thlS determlnes all m . Finally, letting
X =q; +qi and y = g; +g; determines m;; in terms of the A’s and the m’s that we
have already determined. (I

Appendix A. Maps between locally free Og-modules

Let S be a scheme. In this appendix we will give several basic facts about maps
between locally free Og-modules.
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Lemma A.1. If L is a locally free Og-module and V is a locally free rank-n Og-
module, then Sym*(V ® L) = Sym* V ® L®,

Proof. We have the canonical map

Sym*(V®L) — Sym*V®Sym‘L,
L) (i ®L) > v Ly Ly,

which we can check is an isomorphism on free modules and thus is an isomorphism
on locally free modules. Moreover, we have that L® = Sym* L. We have the
canonical quotient map L® — Sym* L, which is clearly an isomorphism for L
free of rank 1 and thus locally free of rank 1. (]

Lemma A.2. IfV is a locally free Os-module of rank 2 then V ® /\2V* =V
Proof. We have
VRNV - v,
v (on /\OVQ) = on (U)OVZ — OVQ(U)OVl.

We can define the canonical map which is an isomorphism for free and thus locally
free modules of rank 2. ]

We combine these two lemmas to obtain a corollary that is used throughout this
paper.
Corollary A.3. If V is a locally free Og-module of rank 2 then
Sym® V@ (N°V)®72 = Sym® v @ (N Ve,
Lemma A4. IfV is a locally free Os-module, we have (Sym,, V)* = Sym" V*.
Proof. We give a map from Sym” V* to (Sym,, V)* as follows:
ViVa V> (V1 Q- @y > V(W) V2(v2) -+ - Vi (V).

If we permute the V'; factors, we see the result does not change because the elements
of Sym, V that we evaluate on are invariant with respect to this permutation. When
V is free, we can explicitly see that this map is an isomorphism. U

A.i. Degree-k maps. Let M and N be locally free Os-modules. A linear map from
M to R is equivalent to a global section of M*. In other words, sections of M™* are
the degree-1 functions on M. We define the degree-n functions on M as the global
sections of Sym”" M*, symmetric polynomials in linear functions on M.

Definition. A degree-n map from M to N is a global section of

Sym” M*® N = ¥om(Sym, M, N).
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Note that the identity map on Sym, M gives a canonical degree-n map from M
to Sym, M.

The language “degree-n map from M to N suggests that we should be able to
evaluate such a thing on elements of M.

Definition. Let a degree-n map from M to N be given, and regarded as an element
f € Hom(Sym, M, N), the evaluation of f on anelementof M is f(m®---@m).

When M is free, say with generators my, ..., m; and dual basis my, ... m; of
M*, then we defined a degree-n map f from M to R to be a homogeneous poly-
nomial of degree-n in the my, ... my. If we evaluate f on (cym + - - -+ cxmy) for
arbitrary sections c¢; of Og, we will have a degree-n polynomial in the ¢;. Replacing
the ¢; in this polynomial by m; we obtain the homogeneous polynomial of degree
n in the my, ... m; which is the realization of f as an element of Sym” M*.

When M is free, we may have a non-linear map p : M — Og (or p: M — N,
but we take N = Oy for simplicity) and wish to realize it as the evaluation of a
degree-n map. We can consider p(cim| + - - - + cgmy) for arbitrary ¢; € R and if
p(cimi+- - -+cymy) is a degree-n polynomial in the ¢;, we have an f € Sym”" M*
(given by replacing the ¢; by m;) of which p is the evaluation).

Since M is locally free, we locally have f € Sym" M* and see that the above
recipe is invariant under change of basis and so we have a global f € Sym" M* (as
long as everywhere locally where M is free p(cim + - - - + cxmy) is a degree-n
polynomial in the ;).

As an example, we explicitly realize the determinant as a distinguished element
of

Hom(Symn Hom(M, N), Hom(/\" M, /\”N)).

Let 1 ®---® ¢, € Hom(M, N)®". Then we can map ¢; @ - - - @ ¢, to the element
of Hom(/\"M, /\"N) which sends m{A- - - Am,, to g1 (m)A- - A, (m,). This will
not be well-defined for ¢1 ® - - - ® ¢, € Hom(M, N)®", but it will be well-defined

when restricted to Sym, Hom(M, N).
Sym, Hom(M, N) — Hom(A\"M, \'N), 3)
D1, = (ml/\"'/\mn'_>¢1(m1)/\"'/\¢n(mn))-

This is our realization of the determinant function (as opposed to the determinant
of a specific homomorphism) as an element of

Hom(Sym, Hom(M, N), Hom(A\"M, \'N)).

When we evaluate the determinant on a map ¢ € Hom(M, N), we have ¢ (m) A
-+ A¢(m,). For example, let N and M be free of rank 2. Evaluating our degree-2
determinant map on a generic element of Hom(M, N) that sends m to an| + cn»



1092 Melanie Matchett Wood

and m, to bn| +dn,, we see that we obtain the element of Hom(/\zM XN ) that
sends my Amy to (any + cna) A (bny +dny) = (ad — be)ny Anyj.

A.ii. Degree-k maps with coefficients. Recall that we have defined a degree-k
map from a locally free Og-module M to a locally free Og-module V to be a linear
map from Sym;, M to V. This is equivalent to a global section of Symf M*QV. We
use the following proposition to show that we can “add coefficients” to a degree-k
map.

Proposition A.5. In the natural map
Sym, (M @ N) - M®* @ Sym* N,
the image of Sym,; (M ® N) is inside Sym;, M ® Symf N.

Proof. We prove this proposition by checking the statement locally where the
modules are free. If we symmetrize a pure tensor of basis elements in (M ® N)®,
we see that when we forget the terms from N we still obtain an element of Sym; M.
Since all of the terms in the symmetrization will have the same factor in Sym* N,
this completes the proof. (]

Thus, given a degree-k map from M to V, we naturally obtain a degree-k map
from M@N to V@Sym* N (by composing Sym; (M@N) — Sym, M®Sym* N —
V ® Sym* N). We call this construction using V as coefficients, because it is as if
we treat the elements of V as formal ring elements.

Appendix B. Inherited algebra structure

Let X be a scheme. A multiplication on a chain complex C of Ox-modules is
given by amap C ® C — C. (See [Weibel 1994, 2.7.1] for the definition of the
tensor product of two chain complexes.) Associativity and commutativity of the
multiplication are given by the commutativity of the expected diagrams built out
of the multiplication map. A unit is given by a map Oy — C that satisfies the
expected properties with respect to the multiplication.

If 7 : X — Y is a morphism of schemes, such a multiplication on C is inherited
by Rm.C in the derived category of Y. To be more precise, we let O be the
localization functor that maps complexes of Ox-modules to the associated objects
in the derived category of X. From the universal property of the derived tensor
(see, [Weibel 1994, 10.5.1], for instance), we have a morphism

(0)®Q(C) » (CRO0), “

where the ® of the left side denotes the total tensor in the derived category (see
[Weibel 1994, 10.6] or [Hartshorne 1966, 11.4]). From Equation (4) composed with
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Q(C®C)— Q(C) from the multiplication map, we see that the multiplication on
C is inherited by Q(C) in the derived category of X.
Next we see there is a map

R, Q(C) ® Rm, Q(C) — Rm, (Q(C) ® Q(0)) (&)

which can be obtained from the morphism R, Q(C)® R, Q(C) — Rm,.(Q(C)®
Ln*Rm,Q(C)) of the projection formula (see [Weibel 1994, 10.8.1] [Hartshorne
1966, 11.5.6]) and the morphism Lz *Rm,Q(C) — Q(C) that comes from the
adjointness of L™ and R, and the identity map Rw, — Rm,; see [Weibel 1994,
10.7.1; Hartshorne 1966, 11.5.10, I1.5.11]. Thus the multiplication is inherited by
R, Q(C). Finally, the natural map

HY(R7,.0(C)) ® H'(R7.Q(C)) - HY(R7,Q(C) ® Rm,.Q(C))  (6)

shows how the multiplication is inherited by H°(Rm,Q(C)). If the original mul-
tiplication on C is associative and commutative, one can follow the diagrams to
see that the inherited multiplication on H°(Rw, Q(C)) will also be associative and
commutative. Moreover, if we have a unit Oy — C, and 7,0y = Oy, then one can
similarly follow diagrams to see that the inherited map Oy = H Y(Rm,0(0x)) —
H°(R7,Q(C)) is a unit. Thus if C has a commutative, associative multiplication
and a unit and 7,0y = Oy, then H°(R7,,Q(C)) in an Oy-algebra.
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