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Let A be a local ring in which 2 is invertible. It is known that the localization of
the cohomology ring H∗ét(A,Z/2) with respect to the class (−1) ∈ H 1

ét(A,Z/2) is
isomorphic to the ring C(sper A,Z/2) of continuous Z/2-valued functions on the
real spectrum of A. Let I n(A) denote the powers of the fundamental ideal in the
Witt ring of symmetric bilinear forms over A. The starting point of this article
is the “integral” version: the localization of the graded ring

⊕
n≥0 I n(A) with

respect to the class 〈〈−1〉〉 := 〈1, 1〉 ∈ I (A) is isomorphic to the ring C(sper A,Z)

of continuous Z-valued functions on the real spectrum of A.
This has interesting applications to schemes. For instance, for any algebraic

variety X over the field of real numbers R and any integer n strictly greater than
the Krull dimension of X , we obtain a bijection between the Zariski cohomology
groups H∗Zar(X, In) with coefficients in the sheaf In associated to the n-th power
of the fundamental ideal in the Witt ring W (X) and the singular cohomology
groups H∗sing(X (R),Z).

1. Introduction

Let X be an algebraic variety over the field of real numbers and let d denote
the Krull dimension of X . Let Hn denote the Zariski sheaf associated to the
presheaf U 7→ H n

ét(U,Z/2), where H n
ét(U,Z/2) denotes the étale cohomology

of U with Z/2Z-coefficients. Under the hypotheses that X is smooth, integral,
and quasiprojective, a classic theorem of Jean-Louis Colliot-Thélène and Raman
Parimala [1990, Theorem 2.3.1] states that the sections of Hn are in bijection with

The author wishes to thank Raman Parimala and Suresh Venapally for their support and encourage-
ment. He would like to thank Claus Scheiderer for helpful answers to several questions and Marco
Schlichting for comments on an earlier draft, both of which led to improvements over an earlier
version. He would also like to thank Jean Fasel, Max Karoubi, Charles Weibel, Tom Bachmann, and
an anonymous reviewer of an earlier draft for helpful comments. The author would like to thank the
Emory University Department of Mathematics and Computer Science for a travel grant supporting
conference travel.
MSC2010: 11E81, 14F20, 14F25, 19G12.
Keywords: Witt group, real cohomology, real variety.

357

http://msp.org
http://msp.org/akt
http://dx.doi.org/10.2140/akt.2017.2-3
http://dx.doi.org/10.2140/akt.2017.2.357


358 JEREMY A. JACOBSON

H 0
sing(X (R),Z/2) when n ≥ d + 1; it follows from this that there is a bijection of

cohomology groups

H∗Zar(X,H
n)' H∗sing(X (R),Z/2) (1.1)

when n ≥ d + 1, where X (R) denotes the real points of X equipped with the
Euclidean topology (defined in Remark 4.4) and H∗sing(X (R),Z/2) denotes the
singular cohomology groups of the real points with Z/2Z-coefficients.

Let W (X) denote the Witt ring of symmetric bilinear forms over X and I n(X)
the powers of the fundamental ideal; see [Knebusch 1977]. Let In denote the
Zariski sheaf associated to the presheaf U 7→ I n(U ). Let In denote the sheaf
associated to the presheaf U 7→ In(U )/In+1(U ). The short exact sequence of
sheaves

0→ In+1
→ In

→ In→ 0

induces a long exact sequence in Zariski cohomology

· · · → H m
Zar(X, I

n+1)→ H m
Zar(X, I

n)

→ H m
Zar(X, In)

∂
→ H m+1

Zar (X, I
n+1)→ · · · . (1.2)

The introduction to [Fasel 2013] made the following assertions:

• the Zariski cohomology groups H∗Zar(X, I
n) are the analogue of the singular

cohomology groups H∗sing(X (R),Z), while H∗Zar(X, In) are the analogue of
H∗sing(X (R),Z/2);

• the map H∗Zar(X, I
n+1)→ H∗Zar(X, I

n) corresponds to the homomorphism

H∗sing(X (R),Z)
2
→ H∗sing(X (R),Z)

induced by the multiplication by 2 on the coefficients;

• the connecting homomorphism H∗Zar(X, In)
∂
→ H∗Zar(X, I

n+1) is analogous to
the Bockstein homomorphism

H∗sing(X (R),Z/2)
β
→ H∗+1

sing (X (R),Z).

Under the additional hypothesis that X is affine, smooth, and has trivial canonical
sheaf, Fasel [2011, Proposition 5.1] proved that H d

Zar(X, I
n)' H d

sing(X (R),Z) for
all n ≥ d .

We prove these assertions as a consequence of our more general results on
real cohomology and the powers of the fundamental ideal. Precisely, we show
in Corollary 8.11 that when n ≥ d + 1, the global signature induces an isomor-
phism H m

Zar(X, I
n) 'sign H m

sing(X (R),Z) for all m ≥ 0, which in turn induces an
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isomorphism of long exact sequences from (1.2) to

· · · → H m
sing(X (R),Z)

2
→ H m

sing(X (R),Z)

→ H m
sing(X (R),Z/2)

β
→ H m+1

sing (X (R),Z)→ · · · .

Real cohomology is a cohomology theory for schemes that globalizes singular
cohomology to any scheme X in the sense that when X is a real variety, the real
cohomology groups H m(Xr ,Z) may be identified with the singular cohomology
groups H m

sing(X (R),Z). For details, see Remark 4.4. The foundations and funda-
mental results on real cohomology are due to Claus Scheiderer [1994]. There
is a close relationship between real and étale cohomology: the étale cohomol-
ogy of X with 2-primary coefficients stabilizes in high degrees against the real
cohomology of X with 2-primary coefficients [Scheiderer 1994, Corollary 7.19,
Proposition 19.8]. Scheiderer also obtained a generalization to schemes of the
bijection (1.1). To introduce it, first recall that for any scheme X , multiplication by
cup product with (−1)∈ H 1(Xét,Z/2) induces a morphism of sheaves Hn

→Hn+1.
Consequently, one may consider the colimit lim

−−→
Hn over the system

H0 (−1)
−−→H1 (−1)

−−→H2 (−1)
−−→ · · · .

The signature modulo 2 induces an isomorphism of sheaves lim
−−→

Hn
→ supp∗ Z/2

which induces an isomorphism of cohomology groups

H m
Zar(X, lim

−−→
Hn)' H m(Xr ,Z/2) (1.3)

for all m ≥ 0, where H m(Xr ,Z/2) denotes the real cohomology of X with coeffi-
cients in the constant sheaf Z/2 [Scheiderer 1994, Corollary 19.5.1].

Note that one cannot obtain integral coefficient versions of the isomorphisms
(1.1) and (1.3) by simply replacing everywhere Z/2 with Z, because when n > d
the étale cohomology groups H n

ét(U,Z) are always torsion for any open subscheme
U of X [Scheiderer 1994, Corollary 7.23.3].

Here, we obtain integral versions by demonstrating in Theorem 8.6 that for any
scheme X with 2 invertible in its global sections, the signature induces an isomor-
phism of sheaves lim

−−→
In
→ supp∗ Z which induces an isomorphism of cohomology

groups

H m
Zar(X, lim

−−→
In)

sign
' H m(Xr ,Z)

for all m ≥ 0, where lim
−−→

In denotes the Zariski sheaf on X obtained by taking the
colimit of the system of sheaves

W
〈〈−1〉〉
−−−→ I

〈〈−1〉〉
−−−→ I2 〈〈−1〉〉

−−−→ · · ·
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and In 〈〈−1〉〉
−−−→ In+1 denotes the map induced by tensor product with the Pfister form

〈〈−1〉〉 := 〈1, 1〉.
These global results follow from the local case, that is, the statement on the

localization of the graded ring I ∗(A) from the abstract. Another way of stating
this is to say that

sign : lim
−−→

I n(A)→ C(sper A,Z) (1.4)

is bijective for any local ring A with 2 invertible. Injectivity of (1.4) is well-known
and follows from the local ring version of Pfister’s local-global principal (for in-
stance [Knebusch 1977, Chapter II, §5], or directly in terms of the signature used
in this article [Mahé 1982, Théorème 2.1 and Corollaire]). The statement that (1.4)
is surjective is stronger than Mahé’s theorem, which states that the cokernel of
sign :W (A)→ C(sper A,Z) is 2-primary torsion for any commutative ring with 2
invertible. We believe that surjectivity of (1.4) when A is local is known as well,
but we don’t know of a reference in the literature. We give a proof of bijectivity
of (1.4) in Proposition 7.2 in a much different way using cohomological methods.
For instance, in Theorem 5.3 we prove the Gersten conjecture for the Witt groups
with 2 inverted of any regular excellent local ring. From this we deduce injectivity
of (1.4) for any local ring with 2 invertible using “Hoobler’s trick”. Similarly, in
Proposition 6.3 we prove a purity result for lim

−−→
I n(A) in “geometric” cases and

deduce surjectivity in general from this.

2. Total signature

Throughout this section, let F be a field of characteristic different from 2, though
the hypothesis on the characteristic is not necessary for the definitions.

Definition 2.1. An ordering on F is a subset P ⊂ F satisfying

(1) P + P ⊂ P , PP ⊂ P;

(2) P ∩ (−P)= 0;

(3) P ∪−P = F .

If b− a ∈ P , then we write a ≤P b. If a ∈ P and a 6= 0, then a >P 0. It follows
from the axioms that if F is nontrivial, then 1>P 0. Also, for any a 6= 0 we write
sgnP(a) = 1 if a ∈ P and sgnP(a) = −1 if a ∈ −P . From the axioms one has
that sgnP(ab)= sgnP(a) sgnP(b) for any a, b ∈ F×; consequently, assigning any
a ∈ F× to sgnP(a) determines a homomorphism sgnP : F

×
→{±1} of groups. The

pair (F, P) is called an ordered field [Knebusch and Scheiderer 1989, Kapitel I,
Definition 1 and Bemerkungen].

Definition 2.2. The real spectrum of F , denoted sper F , is the topological space
formed by equipping the set of all orderings on F with the topology generated by
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the subbasis consisting of subsets H(a)⊂ sper F , a ∈ F , where H(a) denotes the
set of all orderings P satisfying a >P 0.

Definition 2.3. Let P be an ordering on F . Any nondegenerate quadratic form φ

over F splits as an orthogonal sum φ ' φ+ ⊥ φ−, where the form φ+ is positive
definite with respect to the ordering (for all 0 6= v, q(v) > 0 with respect to P) and
the form φ− is negative definite with respect to the ordering (i.e., −φ− is positive
definite). The numbers n+ := dimφ+ and n− := dimφ− do not change under an
isometry of φ [Knebusch and Scheiderer 1989, Kapitel I, §2, Satz 2]. The integer
signP([φ]) := n+ − n− is called the signature of [φ] with respect to P . As the
signature of the hyperbolic form is trivial, assigning to an isometry class [φ] its
signature signP([φ]) defines a map

signP :W (F)→ Z

which is a homomorphism of rings [loc. cit.]. Let C(sper F,Z) denote the set of
continuous integer-valued functions on the real spectrum of F . The total signature
is the ring homomorphism

sign :W (F)→ C(sper F,Z)

which assigns to an isometry class [φ] the continuous function P 7→ signP([φ])

[Knebusch and Scheiderer 1989, Kapitel III, §8, Satz 1]. If F has no ordering, then
sign is trivial.

The following lemma is obtained directly from the definition of the signature
and the fact that the signature is a ring homomorphism.

Lemma 2.4. Let P be an ordering on F.

(1) If φ is a diagonalizable form, φ ' 〈a1〉 ⊥ · · · ⊥ 〈an〉 for some a1, . . . , an ∈ F×,
then

signP([φ]) :=

n∑
i=1

sgnP(ai ).

(2) Let a ∈ F×. The Pfister form 〈〈a〉〉 := 〈1,−a〉 has total signature

sign(〈〈a〉〉)= 21{a<0}.

(3) Let a1, a2, . . . , an ∈ F×. The n-fold Pfister form

〈〈a1, . . . , an〉〉 := 〈〈a1〉〉⊗ · · ·⊗ 〈〈an〉〉

has total signature

sign(〈〈a1, . . . , an〉〉)= 2n1{a1<0,...,an<0}.
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Definition 2.5. As hyperbolic forms have even rank, assigning a quadratic form to
its rank modulo 2 determines a ring homomorphism W (F)→ Z/2Z. The kernel
is denoted I (F) and is called the fundamental ideal of F . The powers of the
fundamental ideal I j (F) are additively generated by Pfister forms 〈〈a1, . . . , a j 〉〉,
so it follows from Lemma 2.4 that the signature induces a group homomorphism

sign : I j (F)→ C(sper F, 2 j Z)

and the diagram

I j (F)
sign

//

〈〈−1〉〉
��

C(sper F, 2 j Z)

2
��

I j+1(F)
sign
// C(sper F, 2 j+1Z)

commutes. So after identifying

lim
−−→

(
C(sper F,Z)

2
→ C(sper F, 2Z)

2
→ C(sper F, 22Z)

2
→ · · ·

)
' C(sper F,Z),

one obtains the map

lim
−−→

(
W (F)

〈〈−1〉〉
−−−→ I (F)

〈〈−1〉〉
−−−→ I 2(F)

〈〈−1〉〉
−−−→ · · ·

) sign
−−→ C(sper F,Z), (2.6)

where lim
−−→

denotes the colimit of the directed system of groups.

The following result first appeared in a paper of J. Arason and M. Knebusch.
Injectivity follows from A. Pfister’s local-global principal [Pfister 1966, Satz 22],
and surjectivity follows immediately from the “normality theorem” of R. Elman
and T.Y. Lam [1972, 3.2].

Proposition 2.7 [Arason and Knebusch 1978, Satz 2a]. The morphism (2.6) is a
bijection.

3. Residues

Throughout this section A denotes a discrete valuation ring with fraction field K
and residue field k = A/m of characteristic different from 2. Let π be a uniformiz-
ing parameter for A. The following lemma restates well-known facts on the second
residue for Witt groups; see [Milnor and Husemoller 1973, Chapter IV (1.2)–(1.3)].

Lemma 3.1. (1) Every rank one quadratic form over K is isometric to some 〈c〉,
where c = bπn , b is a unit in A, and either n = 0 or n = 1.

(2) The second residue ∂π :W (K )→W (k) has the description

∂π (〈c〉)=
{
〈b〉 if n = 1,
0 if n = 0,

on rank one forms 〈c〉 as in (1).
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(3) The second residue respects the powers of the fundamental ideal, that is, for
any integer n ≥ 1, it induces a homomorphism of groups

∂π : I n(K )→ I n−1(k),

where I 0(k) :=W (k).

Definition 3.2. Let P be an ordering on the fraction field K . One says that A is
convex in K (with respect to P) when for all x, y, z ∈ K ,

{x ≤P z ≤P y and x, y ∈ A} ⇒ z ∈ A;

see [Knebusch and Scheiderer 1989, Kapitel II, §1, Definition 1 and §2, Satz 3;
Bochnak et al. 1998, Definition 10.1.3(ii), Proposition 10.1.4]. If A is convex
in K , then the subset P := σ(P ∩ A)⊂ k, where σ : A→ k is the surjection onto
the residue field, defines an ordering on k called the induced ordering [Knebusch
and Scheiderer 1989, Kapitel II, §2, Bemerkungen]. For any ordering ξ ∈ sper k,
let Yξ ⊂ sper K denote the subset consisting of orderings such that A is convex in
K and ξ = P is the induced ordering. The assignment

P 7→ sgnP(π)

defines a bijection from Yξ to the set {±1} [Knebusch and Scheiderer 1989, Kapi-
tel II, §7, Theorem (Baer–Krull)], cf. [Bochnak et al. 1998, Theorem 10.1.10 and
its proof]. That is to say, there are exactly two orderings in Yξ , say η+ and η−,
where sgnη+(π)= 1 and sgnη−(π)=−1. The group homomorphism

βπ : C(sper K ,Z)→ C(sper A/m,Z)

is defined by assigning s ∈ C(sper K ,Z) to the map ξ 7→ βπ (s)(ξ), where

βπ (s)(ξ) := s(η+)− s(η−).

If sper A/m =∅, then it is defined to be zero.

Lemma 3.3. Let π be a uniformizing parameter for A. The morphism βπ of
Definition 3.2 has the following description on elements sign(〈c〉), where c = bπn ,
b is a unit in A, and either n = 0 or n = 1:

βπ (sign(〈c〉))=
{

2 sign(〈b〉) if n is 1,
0 if n is 0.

Proof. Let c = bπn , where b is a unit in A, and either n = 0 or n = 1. For any
ξ ∈ sper A/m,
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βπ (sign(〈c〉))(ξ)

= signη+(〈c〉)− signη−(〈c〉)

= sgnη+(c)− sgnη−(c)

=

{
sgnξ (c̄)− sgnξ (c̄) if n = 0 (both orderings induce ξ ),
sgnη+(bπ)− sgnη−(bπ) if n = 1,

=


0 if n = 0,
sgnη+(b) sgnη+(π)
− sgnη−(b) sgnη−(π)

if n = 1,

=

{
0 if n = 0,
sgnη+(b)+ sgnη−(b) if n = 1 (by definition of η+ and η−),

=

{
0 if n = 0,
sgnξ (b)+ sgnξ (b) if n = 1 (both orderings induce ξ ),

=

{
0 if n = 0,
2 sgnξ (b) if n = 1.

The above equalities prove the lemma. �

The next lemma follows from Lemmas 3.1 and 3.3.

Lemma 3.4. The diagram of abelian groups below is commutative:

lim
−−→

I n(K )
∂π
//

sign
��

lim
−−→n≥−1 I n(k)

2 sign
��

C(sper K ,Z)
βπ
// C(sper k,Z)

where lim
−−→n≥−1 I n(k) denotes the colimit over

W (k)
〈〈−1〉〉
−−−→W (k)

〈〈−1〉〉
−−−→ I (k)

〈〈−1〉〉
−−−→ I 2(k)

〈〈−1〉〉
−−−→ · · · .

4. Real cohomology

C. Scheiderer [1994] developed a theory of real cohomology for schemes. It “glob-
alizes” to schemes the singular cohomology of the real points of a real variety in
the same way that étale cohomology globalizes the singular cohomology of the
complex points of a complex variety. Following [Scheiderer 1994], we recall the
definition and some needed properties.

Definition 4.1. The real spectrum of a ring A is a topological space denoted
by sper A. As a set it consists of all pairs ξ = ( p, P) with p ∈ spec A and P
an ordering of the residue field k( p). For any point ξ ∈ sper A, let k(ξ) denote
the real closure of the ordered field k( p) with respect to P . For a ∈ A, write
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a(ξ) > 0 to indicate that the image of a in k(ξ) is positive. The sets of the form
D(a) := {ξ ∈ sper A : a(ξ) > 0} for a ∈ A are a subbasis for the topology on sper A.
The real spectrum of a scheme X is the topological space Xr formed by glueing the
real spectra of its open affine subschemes. This does not depend on the open cover
of X that was chosen. Furthermore, any map of schemes f : Y → X induces a
continuous map of real spectra fr : Yr → Xr . The assignment ( p, P) 7→ p defines
a continuous map of topological spaces sper A→ spec A, and similarly one has a
continuous map supp : Xr → X called the support map.

Definition 4.2. Let X be a scheme. First we recall the definition of the real site
of X , which we also denote by Xr . It is the category O(Xr ) of open subsets of Xr

equipped with the “usual” coverings, i.e., a family of open subspaces {Uλ→U }
is a covering of U ∈ O(Xr ) if U =

⋃
Uλ.1 The category of sheaves of abelian

groups on Xr is denoted Ab(Xr ) and the category of abelian groups by Ab. For
any F ∈ Ab(Xr ), the real cohomology groups of X with coefficients in F are the
right derived functors of the global sections functor 0 : Ab(Xr )→ Ab. They are
denoted by

H p(Xr ,F) := R p0F,

where R p0 is the p-th derived functor of 0. When X = spec A is affine, we may
write H p(sper A,F) instead of H p(Xr ,F). For any abelian group M , we also
denote by M the sheaf on Xr associated to the presheaf U 7→ M for U any open
set in Xr . Such a sheaf is called a constant sheaf. Moreover, when the group
M is equipped with the discrete topology we may write C(sper A,M) instead of
H 0(sper A,M). If i : S→ Xr is a closed subspace, then for any abelian sheaf F
on Xr , define

H 0
S (Xr , F) := ker(F(Xr )→ F(Xr \ S)).

The functor F 7→ H 0
S (Xr , F) is left exact and its right derived functors

Hq
S (Xr , F) := Rq H 0

S (Xr , F)

are called the relative cohomology of F with support in S [Scheiderer 1995, No-
tations] see [SGA 43 1973, Exposé V, 6.3] or [SGA 2 2005, Exposé I, §2, Defini-

1The real étale site, denoted Xrét, is obtained by equipping the category of étale X -schemes
with coverings given by the real surjective families, that is, { fλ :Uλ→U } is a covering if the real
spectrum Ur equals the union of the images ( fλ)r ((Uλ)r ). For any sheaf F on Xr ,{

X
′ f
−→ X

}
7→ H0(X

′

r , f ∗r F)

defines a sheaf on Xrét denoted F[. This determines a functor from the category X̃r of sheaves
on Xr to the category X̃rét of sheaves on Xrét, which is an equivalence of categories compatible with
morphisms Y → X of schemes [Scheiderer 1994, Theorem 1.3, Theorem 1.14, and Remark 1.16].
We follow [Scheiderer 1995, Notation] in defining real cohomology and cohomology with supports
as sheaf cohomology on the topological space Xr .
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tion 2.1]. Additionally, i !F is defined to be the sheaf

S ∩U 7→ ker(F(U )→ F(U \ (S ∩U )))

on S (U open in Xr ) and one has that

H 0
S (Xr , F)= H 0(Xr , i∗i !F)

using the exact sequence

0→ i∗i !F→ F→ j∗ j∗F→ i∗R1i !F→ 0; (4.3)

see [SGA 43 1973, Exposé V, Proposition 6.5] or [SGA 2 2005, Exposé I, Corol-
laire 2.11], noting that R1i∗i !F ' i∗R1i !F since i∗ is exact [Scheiderer 1994,
Corollary 3.11.1].

Remark 4.4. Let X be an algebraic variety over R, by which we mean an R-
scheme that is separated and of finite type. We explain in this remark how to equip
X (R) with a topology and identify its singular cohomology with the real cohomol-
ogy of Xr . For any affine scheme U = spec R[T1, T2, . . . , Tn]/I , we consider the
R-points U (R) as a topological space by equipping U (R)⊂ Rn with the subspace
topology, where Rn has the Euclidean topology. The Euclidean topology on the
set of R-points X (R) is the topological space formed by glueing the U (R) of the
open affine subschemes U taken from an open cover of X. This does not depend on
the open cover of X that was chosen. The inclusion map i : X (R)→ Xr , sending
an R-point x to the pair (x,R≥0), is continuous and i−1 induces a bijection from
connected components of Xr to connected components of X (R) and from con-
nected components of any basic open D(a1, a2, . . . , an) in Xr to connected com-
ponents of i−1(D(a1, a2, . . . , an)) [Coste and Roy 1982, Corollaire 3.7 ]. Hence,
the functor i∗ determines an equivalence from the category of constant sheaves of
abelian groups on X (R) to the category of constant sheaves of abelian groups on
Xr . Consequently, for any abelian group M , the sheaf cohomology H∗(X (R),M)
coincides with the real cohomology groups H∗(Xr , i∗M) and H∗(Xr ,M). Also,
singular cohomology H∗sing(X (R),M) is canonically isomorphic to sheaf coho-
mology H∗(X (R),M); see [Scheiderer 1994, Remark 13.6]. In particular, the
real cohomology groups H∗(Xr ,Z) are finitely generated groups, isomorphic to
H∗sing(X (R),Z).

Definition 4.5. Let Ab(XZar) denote the category of sheaves of abelian groups on
the Zariski site XZar. Since the support map is a continuous map of topological
spaces, it induces the direct image functor

supp∗ : Ab(Xr )→ Ab(XZar),

and this functor is faithful and exact [Scheiderer 1994, Theorem 19.2].
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Lemma 4.6. Let X be a scheme. For any sheaf F ∈ Ab(Xr ),

H p(Xr ,F)' H p
Zar(X, supp∗ F).

Proof. Using the Grothendieck spectral sequence for the composition of the func-
tors supp∗ and the global sections functor 0, we obtain a spectral sequence with
Ep,q

2 = H p
Zar(X, Rq supp∗ F) that abuts to H p+q(Xr ,F). For q > 0, the sheaves

Rq supp∗ F vanish [Scheiderer 1994, Theorem 19.2]. Therefore the edge maps
in this spectral sequence determine isomorphisms H p(Xr ,F)

'
−→H p

Zar(X, supp∗ F)
for p ≥ 0. �

Next we recall the work of C. Scheiderer [1995], in which he constructs a
“Bloch–Ogus” style complex that computes real cohomology. The codimension
of support filtration on X determines a spectral sequence abutting to real coho-
mology. Scheiderer shows that for regular excellent schemes the E1-page is zero
except for the complex E∗,01 , and hence obtains the result below. Recall that a
locally noetherian scheme is called excellent if X can be covered by open affine
subschemes spec Aα , where the Aα are excellent rings [EGA IV2 1965, 7.8.5]. For
a point x ∈ X of a scheme, we denote sper k(x) by xr .

Proposition 4.7 [Scheiderer 1995, Theorem 2.1]. Let X be a noetherian regular
excellent scheme. Let W be an open constructible subset of Xr , and let F be a
locally constant sheaf on W . Then there is a complex of abelian groups⊕

x∈X (0)

H 0
x (W,F)→

⊕
x∈X (1)

H 1
x (W,F)→

⊕
x∈X (2)

H 2
x (W,F)→ · · · (4.8)

natural in W and F , whose q-th cohomology group is canonically isomorphic to
Hq(W,F), q ≥ 0. Here Hq

x (W,F) := Hq
xr∩W (sperOX,x ∩W,F) are the relative

cohomology groups of sperOX,x with support in xr ∩W (Definition 4.2) and X (i)

denotes, for i ≥ 0, the set of codimension i points (dimOX,x = i) of X. This
complex is contravariantly functorial for flat morphisms of schemes.

The following lemma is based on the proof of [Scheiderer 1995, Proposition 2.6],
where M = Z/2Z.

Lemma 4.9. Let X be a noetherian regular excellent scheme which is integral with
function field K . Let x ∈ X (1) and let π denote a choice of uniformizing parameter
for OX,x . Fix an integer n ≥ 0 and let M denote the constant sheaf Z. Denote by
∂ the map

H 0(sper K ,M)→ H 1
xr
(sperOX,x ,M)

induced by first differential of the complex (4.8) from Proposition 4.7. Then there
is an isomorphism ιπ : H 1

xr
(sperOX,x ,M)→ H 0(xr ,M) for which ιπ ◦ ∂ = βπ ,

where βπ is the map of Definition 3.2.
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Proof. Let X
′

= sperOX,x and Z
′

= xr . Let i : Z
′

→ X
′

denote the inclusion, and
let j : sper K → X

′

denote the inclusion of the complement to Z
′

. For any abelian
sheaf M on X

′

the sequence

M→ j∗ j∗M→ i∗R1i !(M)→ 0

is exact (Definition 4.2, (4.3)). By [Scheiderer 1995, Lemma 1.3], for any locally
constant sheaf M on X

′

the sequence

M→ j∗ j∗M
β
→ i∗i∗M→ 0

is exact, where β is defined on stalks as (βs)ζ = s(η+)− s(η−) ∈ M . Hence we
get an isomorphism ιπ of cokernels and a commutative diagram

j∗ j∗M(X
′

)
∂
//

β

''

i∗R1i !M(X
′

)

ιπ
��

i∗i∗M(X
′

)

(4.10)

Tracking down all the definitions, one finds that (4.10) is equal to the diagram

H 0(X
′

− Z
′

,M) ∂
//

βπ

''

H 1
Z ′
(X
′

,M)

ιπ

��

H 0(Z
′

,M)

where the vertical map is the isomorphism ιπ , the diagonal map is the map βπ of
Definition 3.2, and sper K equals X

′

− Z
′

. This finishes the proof of the lemma. �

Lemma 4.11. Let A be a regular excellent local ring with fraction field K . Let
X = spec A, and for any x ∈ X (1), let πx be a choice of uniformizing parameter
for OX,x . Then the sequence

0−→ C(sper A,Z)−→ C(sper K ,Z)
⊕βπ
−−→

⊕
x∈X (1)

C(sper k(x),Z)

is exact, where βπ is the map of Definition 3.2.

Proof. To prove the lemma, choose isomorphisms ιπ for each x ∈ X (1) as in
Lemma 4.9, and then use Proposition 4.7. �

5. On the Gersten conjecture with 2 inverted

Definition 5.1. Let A be a regular local ring with 2 invertible and let X = spec A.
Let d denote the Krull dimension of A and K the fraction field of A. We work
with the Gersten complex for the Witt groups of X as found for instance in [Balmer
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et al. 2002, Definition 3.1], which we denote by C•(A,W ). Recall that for any
integer p ≥ 0, after choosing local parameters for OX,x for each x ∈ X (p) one may
write down isomorphisms ιp : C p(A,W )

'
→
⊕

x∈X (p) W (k(x)). Then C•(A,W ) is
isomorphic to the complex

C•(A,W, ι) :=W (K )
∂ι
−→

⊕
x∈X (1)

W (k(x))
∂ι
−→ · · ·

∂ι
−→

⊕
x∈X (d)

W (k(x)),

where the differentials are ∂ι := ιp+1 ◦ ∂ ◦ ι
−1
p and ∂ is the differential leaving

C p(A,W ). The differentials ∂ι may differ for different choices of isomorphisms ιp
but the resulting complexes will all be isomorphic. For all x ∈ X (1) we may choose
parameters π ∈ OX,x so that ∂ι : W (K )→ W (k(x)) equals the second residue
∂π of Lemma 3.1; see [Balmer and Walter 2002, Lemma 8.4], cf. [Gille 2007,
Proposition 6.5]. It was proved by J. Arason that the second residue ∂π respects
the filtration by powers of the fundamental ideal, that is, ∂π (I n(K ))⊂ I n−1(k(x))
[Arason 1975] and similarly one may show that all the differentials ∂ι respect this
filtration; for instance, this was shown by S. Gille [2007, Corollary 7.3] for coherent
Witt groups, which gives the same complex since A is regular [Balmer et al. 2002,
Section 3]. So one may obtain a subcomplex

C•(A, I n, ι) :=
⊕

x∈X (0)

I n(k(x))
∂ι
−→

⊕
x∈X (1)

I n−1(k(x))
∂ι
−→ · · ·

∂ι
−→

⊕
x∈X (d)

I n−d(k(x)),

where we set I m(k(x))=W (k(x)) when m ≤ 0. Define

C•(A,W/I n) := C•(A,W )/C•(A, I n, ι)

to be the quotient complex. The exact sequence of complexes

0 // C•(A, I n, ι) //

2
��

C•(A,W ) //

2
��

C•(A,W/I n) //

2
��

0

0 // C•(A, I n+1, ι) // C•(A,W ) // C•(A,W/I n+1) // 0

determines an exact sequence of colimits

0→ C•(A, lim
−−→

I n)→ C•(A, lim
−−→

W )→ C•(A, lim
−−→

W/I n)→ 0, (5.2)

where we define

C•(A, lim
−−→

I n) := lim
−−→

C•(A, I n, ι),

C•(A, lim
−−→

W/I n) := lim
−−→

C•(A,W/I n),

C•
(

A,W
[1

2

])
:= lim
−−→

(
C•(A,W )

2
→ C•(A,W )

2
→ C•(A,W )

2
→ · · ·

)
.
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Theorem 5.3. If A is a regular excellent local ring with 2 invertible, then the
Gersten complex C•

(
A,W

[ 1
2

])
is exact and H 0

(
C•
(

A,W
[1

2

]))
=W (A)

[ 1
2

]
.

Proof. We proceed by induction on the Krull dimension of A. The Gersten complex
without inverting 2 is exact already in low dimensions for any regular local ring
[Balmer et al. 2002, Lemma 3.2]. Fix A and assume that the statement of the
proposition is known for regular excellent local rings of Krull dimension less than
that of A. It is sufficient to show that the cohomology of C•

(
A,W

[ 1
2

])
vanishes

in degrees 2 and higher: one may use the Balmer–Walter spectral sequence with
2 inverted for Witt groups to show that this implies H∗

(
C•
(

A,W
[ 1

2

]))
= 0 in

positive degree and H 0
(
C•
(

A,W
[ 1

2

]))
=W (A)

[ 1
2

]
; see, e.g., [Balmer et al. 2002,

Lemma 3.2]. For any regular parameter f ∈ A, there is a short exact sequence of
complexes

0→ C•(A,W )→ C•(A f ,W )→ C•(A/ f,W )[−1] → 0;

see, for instance, [Balmer et al. 2002, Lemma 3.3 and proof of Theorem 4.4].
Taking colimits it remains exact. As dim A/ f is strictly less than dim A and A/ f
is again regular and excellent we have that C•

(
A/ f,W

[ 1
2

])
[−1] is exact.

Hence it remains to see that C•(A f ,W ) is exact in degrees 2 and higher. Note
that for any p ∈ spec A f , dim(A f ) p is strictly less than dim A and (A f ) p is
again regular and excellent, hence the cohomology of C•

(
A f ,W

[ 1
2

])
agrees with

H∗Zar(spec A f , lim
−−→

W), where lim
−−→

W denotes the colimit over the sheaves

W
〈〈−1〉〉
−−−→W

〈〈−1〉〉
−−−→W

〈〈−1〉〉
−−−→ · · · .

For any point p in spec Ap, using the induction hypothesis we have that the top
row in the commutative diagram

0 // lim
−−→

W ((A f ) p) //

��

lim
−−→

W (K )
⊕∂π

//

sign
��

⊕
x∈Y (1) lim

−−→
W (k(x))

2 sign
��

0 // C
(
sper(A f ) p,Z

[ 1
2

])
// C
(
sper K ,Z

[1
2

])⊕βπ
//
⊕

x∈Y (1) C
(
sper k(x),Z

[ 1
2

])
is exact, and using Lemma 4.11 we have that the bottom row is exact, where
Y := spec(A f ) p. Proposition 2.7 implies the middle vertical map is a bijection
and the rightmost vertical map is an injection, from which it follows that the left-
most vertical map is bijective. Thus we get an isomorphism lim

−−→
W '
→ supp∗ Z

[ 1
2

]
of sheaves on A f as it is an isomorphism on stalks, where we use Lemma 4.6
to identify the sheaf supp∗ Z

[1
2

]
as the sheaf U 7→ C

(
Ur ,Z

[ 1
2

])
. Then the real

cohomology groups H∗
(
sper A f ,Z

[ 1
2

])
are isomorphic to H∗Zar(spec A f , lim

−−→
W),

so it remains to prove their vanishing in degree 2 and higher. This is true since the
real cohomology of local rings vanish in positive degree (in fact, semilocal too)
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[Scheiderer 1994, Proposition 19.2.1] and the real cohomology of sper A f sits in
a long exact sequence with that of sper A/ f and sper A whenever A is regular
excellent [Scheiderer 1995, Corollary (1.10)]. This finishes the proof. �

Since the diagram
lim
−−→

I n(A) //

��

W (A)
[1

2

]
��

lim
−−→

I n(K ) // W (K )
[ 1

2

]
is commutative and the horizontal maps in the diagram are injective, we have the
following corollary to Theorem 5.3.

Corollary 5.4. Let A be a regular excellent local ring with 2 invertible. The map

lim
−−→

I n(A)→ lim
−−→

I n(K )
is injective.

We will also need the following result later.

Lemma 5.5. Let A be a regular excellent local ring with 2 invertible. The coho-
mology groups H m(C•(A, lim

−−→
I n)) vanish when m ≥ 2.

Proof. Consider the long exact sequence in cohomology

· · ·→H m(C•(A, lim
−−→

I n))→H m(C•(A, lim
−−→

W ))→H m(C•(A, lim
−−→

W/I n))→· · ·

associated to the short exact sequence of complexes (5.2). The cohomology groups
H m(C•(A, lim

−−→
W )) vanish when m > 0 by Theorem 5.3. Then H m(C•(A, lim

−−→
I n))

is isomorphic to H m−1(C•(A, lim
−−→

W/I n)) for all m ≥ 2. The cohomology groups
H m(C•(A, lim

−−→
W/I n)) are 2-primary torsion since the complex C•(A, lim

−−→
W/I n)

is, while the groups H m(C•(A, lim
−−→

I n)) have no 2-primary torsion since multipli-
cation by 2

C•(A, lim
−−→

I n)
2
→ C•(A, lim

−−→
I n)

is an isomorphism of complexes. Thus both groups vanish proving, the lemma. �

6. Purity of the limit in the local “geometric” case

For any prime p, we use Z〈p〉 to denote the localization of Z at the prime ideal
〈p〉 ∈ spec Z. In this section we prove purity of lim

−−→
I n(A) in the case that A is

essentially smooth over either Q or Z〈p〉 (Proposition 6.3). When A is a local ring
of mixed characteristic (0, p) with p 6= 2 (that is to say, the characteristic of the
fraction field K is 0 and the characteristic of the residue field is p) we say that A
is essentially smooth over Z〈p〉 if A = R p is the localization at a prime p ∈ spec R
of a smooth and finite type Z〈p〉-algebra R = Z〈p〉[T1, T2, . . . , Tn]/I .
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Lemma 6.1. If A is essentially smooth over Z〈p〉 for some prime p 6= 2 or over Q,
then the sequence

I n(A)/I n+1(A)−→ I n(K )/I n+1(K )
⊕∂π
−−→

⊕
x∈X (1)

I n−1(k(x))/I n(k(x))

is exact, where X = spec A and K is the fraction field of A.

Proof. Let K M
n (A)/2 denote the “naive” Milnor K-theory defined exactly as for a

field. Kummer theory gives a “symbol map” K M
n (A)/2→ H n

ét(A,Z/2), and in the
commutative diagram

K M
n (A)/2 //

��

K M
n (K )/2 //

��

⊕
x∈X (1) K M

n−1(k(x))/2

��

0 // H n
ét(A,Z/2) // H n

ét(K ,Z/2) //
⊕

x∈X (1) H n−1
ét (k(x),Z/2)

where X = spec A and K is the fraction field of A, the lower row is exact as a
consequence of Gillet’s Gersten conjecture for étale cohomology in the Z〈p〉 case,2

and Bloch–Ogus in the Q case. Furthermore, the Galois symbol

K M
n (A)/2→ H n

ét(A,Z/2)

is surjective when A is essentially smooth over Q [Kerz 2009; 2010] and when
A is essentially smooth over a discrete valuation ring3; see [Kahn 2002, p. 114,
surjectivity of the Galois symbol]. Applying the Milnor conjecture as proved by
V. Voevodsky, we have that the vertical maps in the middle and on the right are
bijections. It follows that the upper row is exact in the middle. Since 〈〈a, 1−a〉〉= 0
in W (A) for a ∈ A× such that 1− a ∈ A×, there is a well-defined homomorphism
K M

n (A)/2→ I n(A)/I n+1(A). Hence, in the commutative diagram

K M
n (A)/2 //

��

K M
n (K )/2 //

��

⊕
x∈X (1) K M

n−1(k(x))/2

��

I n(A)/I n+1(A) // I n(K )/I n+1(K ) //
⊕

x∈X (1) I n−1(k(x))/I n(k(x))

2Manuscript notes titled “Bloch–Ogus for the étale cohomology of certain arithmetic schemes”
distributed at the 1997 Seattle algebraic K-theory conference. Also, this follows from Thomas
Geisser’s proof of the Gersten conjecture for motivic cohomology [Geisser 2004]. This is explicitly
stated in the sentence after Geisser’s Theorem 1.2, because Rnε∗µ2 is the Zariski sheaf associated
to the presheaf U 7→ Hn

ét(U, µ2), and the affirmation of the Milnor conjecture allows one to identify
the Gersten complex for motivic cohomology with the Gersten complex for étale cohomology.

3In a correspondence with the author, B. Kahn explained that the passage from surjectivity in the
essentially smooth over a field case to this case is easy and goes back to Lichtenbaum, if you grant
Gillet’s Gersten conjecture for étale cohomology.
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after using again the Milnor conjecture, by which the vertical maps in the middle
and on the right are bijections, we have that the lower row is exact in the middle. �

Lemma 6.2. Let A be essentially smooth over Z〈p〉 (p 6= 2) or Q.

(1) There exists an integer N such that C•(A, I s, ι)
2
→ C•(A, I s+1, ι) is an iso-

morphism of complexes for all s ≥ N.

(2) The groups H m(C•(A,W )) are 2N -torsion for all m ≥ 2.

(3) There exists an integer B ≥ 0 such that 2B H 0(C•(A,W ))⊂ i∗(W (A)), where
i∗ :W (A)→W (K ) denotes the map induced by i : spec K → spec A.

(4) 2B+N H 0(C•(A,W ))⊂ i∗(I N (A)).

Proof. To prove (1), note that the cohomological 2-dimension of k(x)[
√
−1] is

finite and, for all points x , bounded strictly less than some integer n. Using
the Arason–Pfister Hauptsatz and the Milnor conjecture for fields it follows that
I n(k(x)[

√
−1]) vanishes for all x , and from this it follows that, for all x , we have

an isomorphism I s(k(x))
2
→ I s+1(k(x)) for all s ≥ n [Elman et al. 2008, Corollary

35.27]. Hence C•(A, I s, ι)
2
→ C•(A, I s+1, ι) is an isomorphism of complexes for

all s ≥ N , where N := n+ dim X . Then C•(A, lim
−−→

I n) and C•(A, I N , ι) are iso-
morphic complexes, so the cohomology group H m(C•(A, I N , ι)) vanishes when
m ≥ 2 by Lemma 5.5. It follows that the groups H m(C•(A,W )) are 2N -torsion
when m ≥ 2 since H m(C•(A,W ))

2N
→ H m(C•(A,W )) factors

H m(C•(A,W ))

2N

))

2N
// H m(C•(A,W ))

H m(C•(A, I N , ι))

55

proving (2).
Now to prove (3), let q ∈ H 0(C•(A,W )). From the Balmer–Walter spectral se-

quence for Witt groups [Balmer and Walter 2002] we have that W (A) surjects onto
E0,0
∞

, which consists of the elements in H 0(C•(A,W ))mapped to zero under all the
differentials in the spectral sequence leaving H 0(C•(A,W )). So it suffices to show
that some 2-power of q maps to zero under all of these finitely many nontrivial dif-
ferentials. The first nontrivial differential is d : H 0(C•(A,W ))→ H 5(C•(A,W )).
Since 2N H 5(C•(A,W ))= 0, we have that d(2N q)= 0. Repeating this argument for
each nontrivial differential d : H 0(C•(A,W ))→ H 4∗+1(C•(A,W )) we eventually
find some 2-power 2B, which does not depend on q , such that 2Bq is in the kernel of
all differentials, hence is in E0,0

∞
. Finally, to prove (4), let q ∈ 2B+N H 0(C•(A,W )).

Write it as q = 2B+N qunr for some qunr ∈ H 0(C•(A,W )). By (3), we have that
2Bqunr = i∗(Q) for some Q ∈ W (A). So i∗(2N Q) = q and 2N Q ∈ I N (A). This
proves 2B+N H 0(C•(A,W ))⊂ i∗(I N (A)), finishing the proof of the lemma. �



374 JEREMY A. JACOBSON

Proposition 6.3. Let A be essentially smooth over either Z〈p〉 (p 6= 2) or Q. The
sequence

lim
−−→

I n(A)−→ lim
−−→

I n(K )
⊕∂π
−−→

⊕
x∈X (1)

lim
−−→n≥−1 I n(k(x))

is exact, where lim
−−→n≥−1 I n(k(x)) denotes the colimit over

W (k(x))
〈〈−1〉〉
−−−→W (k(x))

〈〈−1〉〉
−−−→ I (k(x))

〈〈−1〉〉
−−−→ I 2(k(x))

〈〈−1〉〉
−−−→ · · · .

Proof. Let q be in the kernel of the residue, hence q ∈ H 0(C•(A, I N , ι)) for
some N ≥ 0. We may assume that N is the integer N from Lemma 6.2(1) by
either multiplying by 2 or dividing by 2 as needed. Using Lemma 6.1 we find
QN ∈ I N (A)/I N+1(A), which we may then lift to obtain QN ∈ I N (A) satis-
fying q − i∗(QN ) ∈ H 0(C•(A, I N+1, ι)). By repeating this argument we find
that q − i∗(QN + QN+1 + · · · + Q B+2N−1) ∈ H 0(C•(A, I B+2N , ι)), where B
is the integer from Lemma 6.2(3). Since we are in the “stable” range we have
that H 0(C•(A, I B+2N , ι)) = 2B+N H 0(C•(A, I N , ι)) ⊂ 2B+N H 0(C•(A,W )) ⊂

i∗(I N (A)), where we used Lemma 6.2(4) to obtain the rightmost inclusion. Hence
we have Q

′

N ∈ I N (A) such that

q = i∗(QN + QN+1+ · · ·+ Q B+2N−1+ Q
′

N ),

where QN + QN+1+ · · ·+ Q B+2N−1+ Q
′

N ∈ I N (A). This finishes the proof. �

7. On the signature: local case

In this section we use “Hoobler’s trick”, which is a method due to R. Hoobler
[2006] for passing from the smooth geometric case to the geometric case for many
questions involving cohomological invariants satisfying “rigidity” in the sense of
the following lemma.

Lemma 7.1. If B is a local ring and (B, I ) a henselian pair such that 2 is invertible
in both B and B/I , then for all integers n ≥ 0, the homomorphisms of groups

I n(B)→ I n(B/I ),

I n(B)/I n+1(B)→ I n(B/I )/I n+1(B/I )

induced by the surjection B→ B/I are bijections.

Proof. Let B be a local ring and (B, I ) a henselian pair such that 2 is invertible in
both B and B/I . Considering the diagram

0 // I n+1(B) //

��

I n(B) //

��

I n(B)/I n+1(B)

��

// 0

0 // I n+1(B/I ) // I n(B/I ) // I n(B/I )/I n+1(B/I ) // 0
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we see, by the two out of three lemma, that it suffices to prove I n(B)→ I n(B/I )
is a bijection for all n ≥ 0. To prove injectivity for all n ≥ 0, note that as I n(B) is
contained in W (B), it suffices to prove that W (B)→W (B/I ) is injective.

We now claim that the assignment b+ I 7→ b determines a well-defined map
(B/I )×/(B/I )×2

→ B×/B×2. This claim follows from rigidity for étale coho-
mology due to Strano [1984] and Gabber [1994] (independently), but one may also
prove it directly from the definition of Henselian pair4: let b1, b2 ∈ B× be such that
b1+ I = b2+ I ; the polynomial T 2

−b1/b2 has image T 2
−1 in B/I [T ]; as (B, I )

is a henselian pair, from the factorization T 2
− 1= (T − 1)(T + 1) in B/I [T ] we

obtain a factorization T 2
−b1/b2= (T −a)(T +a) in B[T ], for some a ∈ B; hence

b1 = a2b2 for some a ∈ B×, that is, b1 = b2 in B×/(B×)2. The claim follows.
Next recall that for any semilocal ring A, the Witt group W (A) is a quotient of

the group ring Z[A×/A×2
] modulo the set of relations R additively generated by

[1] + [−1] and all elements
h∑

i=1

[ai ] −

h∑
i=1

[bi ]

satisfying
⊥

h
i=1〈ai 〉 ' ⊥

h
i=1〈bi 〉

with h = 4 [Knebusch 1977, Chapter 2, §4, Theorem 2]. Hence, the rows are exact
in the commutative diagram

0 // R // Z[B×/B×2
] // W (B) // 0

0 // R

OO

// Z[(B/I )×/(B/I )×2
] //

OO

W (B/I ) // 0

Thus we obtain a well-defined map of cokernels W (B/I )→W (B) such that the
composition W (B)→ W (B/I )→ W (B) is the identity. This proves the desired
injectivity. The composition W (B/I )→W (B)→W (B/I ) is the identity, hence
W (B)→W (B/I ) is surjective. To prove surjectivity of I n(B)→ I n(B/I ) for all
n≥ 0, recall that I n(B/I ) is additively generated by Pfister forms 〈〈b1, b2, . . . , bn〉〉,
where b1, b2, . . . , bn are units in B/I [Baeza 1978, Chapter V, Section 1, Remark
1.3]. For any Pfister form 〈〈b1, b2, . . . , bn〉〉 we may lift the bi to units bi of B to
obtain an element 〈〈b1, b2, . . . , bn〉〉 ∈ I n(B) mapping to it, proving surjectivity of
I n(B)→ I n(B/I ) and finishing the proof of the lemma. �

Proposition 7.2. If A is a local ring with 2 ∈ A×, then the signature map

lim
−−→

I n(A)→ C(sper A,Z)

is a bijection.

4The author learned this from a recent preprint of Stefan Gille [2015].
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Proof. As both groups respect filtered colimits, it suffices to consider the case
where A is a localization of a finite type Z-algebra: any local ring may be written
as a union of its finitely generated subrings Aα; pulling back the maximal ideal of
A over Aα→ A yields a prime ideal pα ∈ spec Aα; localizing the Aα with respect
to these primes yields a directed system of local rings A pα , and taking the direct
limit yields A.

From now on we assume A= R p, where p∈ spec R and R=Z[T1, T2, . . . , Tn]/I
for some ideal I . We obtain a henselian pair (B, I ) for A as follows: let s denote
the quotient map Z[T1, T2, . . . , Tn] → R, and let B0 := Z[T1, T2, . . . , Tn]s−1( p)
and similarly I0 := Is−1( p); also let B denote the henselization of B0 along I0

and I := I0 B. Recall that the henselization along I0 is obtained by taking the
colimit over the directed category consisting of those étale B0-algebras C having
the property that B0/I0→ C/I0C is an isomorphism. The map B0→ B induces
on quotients A= B0/I0→ B/I an isomorphism of local rings. In the commutative
diagram

lim
−−→

I n(B)

sign
��

// lim
−−→

I n(A)

sign
��

C(sper B,Z) // C(sper A,Z)

the horizontal maps induced by the surjection B→ B/I ' A are isomorphisms
for the powers of the fundamental ideal (Lemma 7.1) and for real cohomology.5

Therefore it suffices to prove bijectivity for B.
We claim that the local ring B is a filtered colimit of local rings which are essen-

tially smooth over either Z〈p〉 (p 6= 2) or over Q. To prove the claim, first note that
the pullback of s−1( p) ∈ spec Z[T1, T2, . . . , Tn] over Z→ Z[T1, T2, . . . , Tn] yields
a prime 〈p〉 ∈ spec Z, and localizing with respect to this prime induces Z〈p〉 ↪→ B0.
When 〈p〉 = 0 it follows that B0 contains Q, otherwise B0 contains Z〈p〉, p 6= 2.
The morphisms Z〈p〉→ B0 and B0→ B are both flat with geometrically regular
fibers, hence the composition Z〈p〉→ B has these properties. Then it follows from
Popescu’s theorem that B is a filtered colimit of either smooth Z〈p〉-algebras or
Q-algebras Aα. Pulling back the maximal ideal over Aα→ B and localizing, one
obtains the statement of the claim. Thus, we may assume that B is essentially
smooth over Q or Z〈p〉. Then we may apply Lemma 4.11 to get exactness of the
lower row in the commutative diagram

5The following proof was communicated to the author by C. Scheiderer: every point in sper B
specializes to a point in sper B/I by the henselian property; since any real spectrum is a “normal”
spectral space, meaning that every point of Xr specializes to a unique closed point, the restriction
map in sheaf cohomology H∗(Xr ,F)→ H∗((Xr )max,F) is an isomorphism for every sheaf F on
any scheme X ; thus restriction gives isomorphisms

H∗(sper(B),F)→ H∗(sper(B)max,F)
'
← H∗(sper(B/I ),F).
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0 // lim
−−→

I n(B) //

��

lim
−−→

I n(K )
⊕∂π

//

sign
��

⊕
x∈Y (1) lim

−−→n≥−1 I n(k(x))

2 sign
��

0 // C(sper B,Z) // C(sper K ,Z)
⊕βπ

//
⊕

x∈Y (1) C(sper k(x),Z)

where Y = spec B. We have exactness of the upper row by Proposition 6.3 and
Corollary 5.4. Using the bijection of Proposition 2.7 we get that the middle vertical
map in the diagram above is bijective and the rightmost vertical map is injective.
The square on the right commutes by Lemma 3.4. Hence lim

−−→
I n(B)→C(sper B,Z)

is bijective, finishing the proof of the theorem. �

The following corollary is well-known, as mentioned in the introduction.

Corollary 7.3. Let A be a local ring with 2 ∈ A×. Then the signature induces an
isomorphism

W (A)
[1

2

]
→ C(sper A,Z)

[ 1
2

]
.

Proof. From the preceding theorem, any f ∈ C(sper A,Z) has 2n f = sign(Q)
for some Q ∈ I n(A) ⊂ W (A), proving surjectivity, and for any Q

′

∈ W (A), if
sign(Q

′

)= 0 then 2n Q
′

= 0 for some n, proving injectivity. �

Remark 7.4. Let A =
⊕

n≥0 An be a Z+-graded ring and let s ∈ A1 be a ho-
mogeneous element of degree 1. Recall that the homogeneous localization A(s)
is the subring of degree zero elements in the localization of A with respect to
{1, s, s2, . . . }, and that A(s) ' A/(s − 1)A as rings. Furthermore, A(s) may be
obtained by taking the direct limit of the sequence A0

s
→ A1

s
→ A2

s
→ · · · .

Corollary 7.5. Let A be a local ring with 2 invertible.

(1) Let I ∗(A)〈〈−1〉〉 be the homogeneous localization of the graded ring
⊕

n≥0 I n(A)
with respect to the element 〈〈−1〉〉 = 〈1, 1〉 ∈ I (A). The signature defines an
isomorphism of rings

I ∗(A)〈〈−1〉〉 ' C(sper A,Z).

(2) Let I ∗(A)〈〈−1〉〉 be the homogeneous localization of the graded ring
⊕

n≥0 I n(A)

with respect to 〈〈−1〉〉 = 〈1, 1〉 ∈ I 1(A), where I n(A) := I n(A)/I n+1(A). The
signature defines an isomorphism of rings

I ∗(A)〈〈−1〉〉 ' C(sper A,Z/2).

Proof. Recall (Remark 7.4) that one may identify lim
−−→

I n(A) with I ∗(A)〈〈−1〉〉: using
the direct sum construction of the direct limit lim

−−→
I n(A), the relations one finds

are the same as the relations defining the localization I ∗(A)〈〈−1〉〉; explicitly, the
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isomorphism ϕ : lim
−−→

I n(A)→ I ∗(A)〈〈−1〉〉 is given by ϕn : I n(A)→ I ∗(A)〈〈−1〉〉

defined by
q 7→

q
〈〈−1〉〉n

,

and consequently we obtain using the preceding proposition that the assignment

q
〈〈−1〉〉n

7→
sign(q)

2n ,

for q ∈ I n(A), defines an isomorphism from I ∗(A)〈〈−1〉〉 to C(sper A,Z). To prove
(2), we obtain the desired isomorphism as an isomorphism of cokernels in the
commutative diagram

0 // lim
−−→n≥1 I n(A) //

��

lim
−−→

I n(A) //

��

lim
−−→

I n(A) //

��

0

0 // C(sper A, 2Z) // C(sper A,Z) // C(sper A,Z/2) // 0

where lim
−−→n≥1→ C(sper A, 2Z) is an isomorphism since in the commutative dia-

gram
lim
−−→n≥1 I n(A) // C(sper A, 2Z)

lim
−−→

I n(A) //

〈〈−1〉〉
OO

C(sper A,Z)

2

OO

the vertical maps and the lower horizontal map are isomorphisms. �

Corollary 7.6. Let A be a local ring with 2 invertible. Let H∗ét(A,Z/2)(−1) denote
the homogeneous localization of the cohomology ring

⊕
n≥0 H n

ét(A,Z/2Z) with
respect to (−1) ∈ H 1

ét(A,Z/2Z). Then the n-th cohomological invariant

ēn : I n→ H n
ét(A,Z/2),

which assigns the class of a Pfister form 〈〈a1, . . . , an〉〉 to the cup product (a1)∪

· · · ∪ (an), determines a well-defined homomorphism

ē∗ : I ∗(A)〈〈−1〉〉 ' H∗ét(A,Z/2)(−1)

which is an isomorphism of rings.

Proof. For any local ring A essentially smooth over Z〈p〉 or Q, the diagram

I n(A) //

��

I n(K ) //

��

⊕
x∈X (1) I n−1(k(x))/2

��

0 // H n
ét(A,Z/2) // H n

ét(K ) //
⊕

x∈X (1) H n−1
ét (k(x))
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commutes and the lower row is exact as the Gersten conjecture is known for étale
cohomology in this case.

As the diagram commutes it follows that I n(A)/I n+1(A) maps into H n(A,Z/2).
Let ēn denote this map. As the lower row is exact, it has the description asserted on
Pfister forms. Using rigidity and the fact that both groups respect filtered colimits
as in the proof of Theorem 8.6, we obtain the map ēn for any local ring, and after
localizing, we obtain the map in the commutative diagram

I ∗(A)〈〈−1〉〉

'

''

ē∗
// H∗ét(A,Z/2)(−1)

'

��

C(sper A,Z/2)

where we use the fact that for any semilocal ring A with 2 invertible, the signature
modulo 2 defines an isomorphism

H∗ét(A,Z/2)(−1)
'
→ C(sper A,Z/2) (7.7)

of rings. This is due to J. Burési and L. Mahé in the semilocal case [Burési 1995;
Mahé 1995] and C. Scheiderer in general [Scheiderer 1994, Corollaries 7.10.3 and
7.19]. From the isomorphisms in the diagram, the desired isomorphism follows. �

8. Globalization

In this section X always denotes a scheme. Let W (X) denote the Witt ring of
symmetric bilinear forms over X ; see [Knebusch 1977].

Definition 8.1. Recall that the global signature is the ring homomorphism

sign :W (X)→ H 0(Xr ,Z)

that assigns an isometry class [φ] of a symmetric bilinear form φ over X to the
function on Xr defined by

sign([φ])(x, P) := signP([i
∗

xφ]),

where ix : x→ X is any point and P is any ordering on k(x); see [Mahé 1982].

Definition 8.2. There exists a well-defined ring homomorphism on the Witt ring
W (X) → H 0

ét(X,Z/2Z), called the rank, which assigns an isometry class of a
symmetric bilinear form [E, φ] over X to the rank of its underlying vector bundle
E modulo 2; see [Knebusch 1977, Chapter 1, §7]. The kernel of the rank map is
called the fundamental ideal and is denoted by I (X).
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It follows from the definitions that the diagram

W (X)

rank mod 2
��

sign
// H 0(Xr ,Z)

��

H 0
ét(X,Z/2Z)

h0
// H 0(Xr ,Z/2Z)

(8.3)

commutes, where h0 denotes the signature modulo 2 defined as follows: given
α ∈ H 0

ét(X,Z/2Z), if ξ : x→ X is the inclusion of a “real” point (that is, for some
(x, P) ∈ Xr ), then h0(α) evaluated at ξ is ξ∗α ∈ H 0(xét,Z/2Z) = Z/2Z; write
α(ξ) for this element of Z/2Z, so h0(α) is the locally constant map Xr → Z/2Z,
ξ 7→ α(ξ); see [Scheiderer 1994, (7.19.1)].

Definition 8.4. As there is an exact sequence

0→ H 0(Xr , 2Z)→ H 0(Xr ,Z)→ H 0(Xr ,Z/2Z)

one finds using commutativity of (8.3) that the restriction of the signature to I (X)
defines the homomorphism of groups

I (X)→ H 0(Xr , 2Z).

For n≥ 0, let I n(X) denote the powers of the fundamental ideal and I 0(X)=W (X).
Since the global signature is a ring homomorphism that maps elements of I (X) into
H 0(Xr , 2Z), it follows that for any n ≥ 0 it induces a homomorphism

I n(X)→ H 0(Xr , 2nZ)

of groups. Moreover, multiplication by 2 = 〈〈−1〉〉 ∈ I (X) induces a homomor-
phism I n(X) 〈〈−1〉〉

−−−→ I n+1(X) such that the diagram

I j (X)
sign

//

〈〈−1〉〉
��

H 0(Xr , 2 j Z)

2
��

I j+1(X)
sign

// H 0(Xr , 2 j+1Z)

commutes. Hence, we obtain a homomorphism

lim
−−→

I n(X)→ H 0(Xr ,Z),

where lim
−−→

I n(X) denotes the direct limit of the sequence of groups

W (X)
〈〈−1〉〉
−−−→ I (X)

〈〈−1〉〉
−−−→ I 2(X)

〈〈−1〉〉
−−−→ · · · .

Definition 8.5. It follows from Lemma 4.6 that supp∗ Z is the Zariski sheaf U 7→
H 0(Ur ,Z) on X . Recall that In denotes the Zariski sheaf on X associated to the
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presheaf U 7→ I n(U ). For any integer n ≥ 0, the restriction of the global signature
to the powers of the fundamental ideal of Definition 8.4 induces a homomorphism

In
→ supp∗ 2nZ

of Zariski sheaves on X . Similarly, I n(X) 〈〈−1〉〉
−−−→ I n+1(X) induces a homomor-

phism In 〈〈−1〉〉
−−−→ In+1 of sheaves for any n ≥ 0, and a homomorphism of sheaves

lim
−−→

I n
→ supp∗ Z,

where lim
−−→

I n denotes the direct limit of the sequence of sheaves

W
〈〈−1〉〉
−−−→ I

〈〈−1〉〉
−−−→ I2 〈〈−1〉〉

−−−→ · · · .

Similarly, the signature induces a morphism of sheaves

W
[1

2

]
→ supp∗ Z

[ 1
2

]
,

where W
[ 1

2

]
is the sheaf associated to the presheaf U 7→W (U )

[ 1
2

]
and supp∗ Z

[ 1
2

]
is the sheaf U 7→ H 0

(
Ur ,Z

[ 1
2

])
.

Theorem 8.6. Let X be a scheme with 2 invertible in its global sections.

(1) The signature morphism of sheaves

lim
−−→

In
→ supp∗ Z (8.7)

of Definition 8.5 is an isomorphism.

(2) The signature morphism of sheaves

W
[ 1

2

]
→ supp∗ Z

[ 1
2

]
(8.8)

of Definition 8.5 is an isomorphism.

(3) The signature induces an isomorphism of short exact sequence of sheaves
on X ,

0 // lim
−−→

In //

��

W
[ 1

2

]
//

��

lim
−−→

W/In //

��

0

0 // supp∗ Z // supp∗ Z
[1

2

]
// supp∗

(
Z
[1

2

]
/Z
)

// 0

where W/In denotes the sheaf associated to the presheaf U 7→W(U )/In(U ).
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(4) The signature induces an isomorphism of short exact sequence of sheaves
on X ,

0 // lim
−−→

In 〈〈−1〉〉
//

��

lim
−−→

In //

��

lim
−−→

In //

��

0

0 // supp∗ Z
2
// supp∗ Z // supp∗ Z/2 // 0

where In denotes the sheaf associated to the presheaf U 7→ In(U )/In+1(U ).

Proof. Statements (1) and (2) follow immediately from the local case, Proposition 7.2
and Corollary 7.3 respectively, as it is sufficient to prove that they induce an iso-
morphism on stalks. As supp∗ is exact, statements (3) and (4) may be obtained by
applying supp∗ to the analogous short exact sequences of groups and then using
the two out of three lemma to conclude. For (4), one should also note that

lim
−−→

In 〈〈−1〉〉
−−−→ lim

−−→n≥1 I
n

is an isomorphism to obtain exactness of the top row of the diagram in (4). �

The next corollary is an immediate consequence of the previous theorem and
Lemma 4.6.

Corollary 8.9. Let X be a scheme with 2 invertible.

(1) For any m ≥ 0, the morphism (8.7) induces an isomorphism of cohomology
groups

H m
Zar(X, lim

−−→
In)→ H m(Xr ,Z).

(2) For any m ≥ 0, the morphism (8.8) induces an isomorphism of cohomology
groups

H m
Zar
(
X,W

[ 1
2

])
→ H m(Xr ,Z

[1
2

])
.

Corollary 8.10. Let X be a scheme with 2 invertible which is quasiseparated and
quasicompact. Then there is an isomorphism of cohomology groups for all m ≥ 0,⊕

m≥0

H m
Zar(X, lim

−−→
In)' lim

−−→
H n

ét(X,Z/2).

Proof. Under the hypotheses stated C. Scheiderer [1994, Corollary 7.19] has proved
that there is an isomorphism

lim
−−→

H n
ét(X,Z/2)

'
→

⊕
m≥0

H m(Xr ,Z/2),

and from Theorem 8.6 one has an isomorphism H m
Zar(X, In)

'
→ H m(Xr ,Z/2) for

all m ≥ 0. Thus one obtains the isomorphism stated. �
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Corollary 8.11. If X is a real variety (by which we mean a scheme which is sepa-
rated and of finite type over R) and the Krull dimension of X is d, then whenever
n ≥ d + 1, the signature induces an isomorphism in cohomology

H m
Zar(X, I

n)
sign
' H m

sing(X (R),Z)

for all integers m ≥ 0 and an isomorphism of long exact sequences as stated in the
introduction.

Proof. It suffices to see that the morphism of sheaves In 〈〈−1〉〉
−−−→ In+1 is an isomor-

phism for n ≥ d + 1, for then multiplication by 2d+1 defines an isomorphism of
sheaves Id+1

' lim
−−→

In and hence we obtain the statement of the corollary using
Theorem 8.6 in view of Remark 4.4. When n ≥ d + 1, for any U open in X we
have an isomorphism of kernels in the diagram of residues

0 // In(U ) //

2
��

I n(K ) //

2
��

⊕
x∈X (1) I n−1(k(x))

2
��

0 // In+1(U ) // I n+1(K ) //
⊕

x∈X (1) I n(k(x))

since the two rightmost vertical maps are isomorphisms for n ≥ d+1, which proves
the desired isomorphism. �
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