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We show that the relative Farrell–Jones assembly map from the family of finite
subgroups to the family of virtually cyclic subgroups for algebraic K-theory is
split injective in the setting where the coefficients are additive categories with
group action. This generalizes a result of Bartels for rings as coefficients. We
give an explicit description of the relative term. This enables us to show that it
vanishes rationally if we take coefficients in a regular ring. Moreover, it is, con-
sidered as a Z[Z/2]-module by the involution coming from taking dual modules,
an extended module and in particular all its Tate cohomology groups vanish,
provided that the infinite virtually cyclic subgroups of type I of G are orientable.
The latter condition is for instance satisfied for torsionfree hyperbolic groups.

Introduction

0A. Motivation. The K-theoretic Farrell–Jones conjecture [1993, 1.6 on page 257
and 1.7 on page 262] for a group G and a ring R predicts that the assembly map

asmbn : H G
n (EG; KR)→ H G

n (G/G; KR)= Kn(RG)

is an isomorphism for all n ∈Z. Here EG = EVC(G) is the classifying space for the
family VC of virtually cyclic subgroups and H G

n (−; K G
R ) is the G-homology theory

associated to a specific covariant functor K G
R from the orbit category Or(G) to

the category Spectra of spectra. It satisfies H G
n (G/H ; K G

R )= πn(K G(G/H))=
Kn(RH) for any subgroup H ⊆ G and n ∈ Z. The assembly map is induced by
the projection EG→ G/G. More information about the Farrell–Jones conjecture
and the classifying spaces for families can be found for instance in the survey
articles [Lück 2005; Lück and Reich 2005].

Let EG = EF in(G) be the classifying space for the family F in of finite sub-
groups, sometimes also called the classifying space for proper G-actions. The G-
map EG→ EG, which is unique up to G-homotopy, induces a so-called relative

MSC2010: 18F25, 19A31, 19B28, 19D35.
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assembly map

asmbn : H G
n (EG; KR)→ H G

n (EG; KR).

The main result of a paper by Bartels [2003, Theorem 1.3] says that asmbn is split
injective for all n ∈ Z.

In this paper we improve on this result in two different directions: First, we
generalize from the context of rings R to the context of additive categories A with
G-action. This improvement allows us to consider twisted group rings and involu-
tions twisted by an orientation homomorphism G→ {±1}; moreover one obtains
better inheritance properties and gets fibered versions for free.

Secondly, we give an explicit description of the relative term in terms of so-
called NK-spectra. This becomes relevant for instance in the study of the involution
on the cokernel of the relative assembly map induced by an involution of A. In
more detail, we prove:

0B. Splitting the relative assembly map. Our main splitting result is:

Theorem 0.1 (splitting the K-theoretic assembly map from F in to VC). Let G be
a group and let A be an additive G-category. Let n be any integer.

Then the relative K-theoretic assembly map

asmbn : H G
n (EG; K G

A )→ H G
n (EG; K G

A )

is split injective. In particular we obtain a natural splitting

H G
n (EG; K G

A )
∼=
−→ H G

n (EG; K G
A )⊕ H G

n (EG→ EG; K G
A ).

Moreover, there exists an Or(G)-spectrum NK G
A and a natural isomorphism

H G
n (EG→ EVC I (G); NK G

A)
∼=
−→ H G

n (EG→ EG; K G
A ).

Here EVC I (G) denotes the classifying space for the family of virtually cyclic
subgroups of type I; see Section 1. The proof will appear in Section 7. The point
is that, instead of considering K G

R for a ring R, we can treat the more general
setup K G

A for an additive G-category A, as explained in [Bartels and Lück 2010;
Bartels and Reich 2007]. (One recovers the case of a ring R if one considers for
A the category R-FGF of finitely generated free R-modules with the trivial G-
action. Notice that we tacitly always apply idempotent completion to the additive
categories before taking K-theory.) Whereas in [Bartels 2003, Theorem 1.3] just
a splitting is constructed, we construct explicit Or(G)-spectra NK G

A and identify
the relative terms. This is crucial for the following results.
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0C. Involutions and vanishing of Tate cohomology. We will prove in Section 8C:

Theorem 0.2 (the relative term is induced). Let G be a group and let A be an
additive G-category with involution. Suppose that the virtually cyclic subgroups of
type I of G are orientable (see Definition 8.5).

Then the Z/2-module Hn(EG→ EG; K G
A ) is isomorphic to Z[Z/2] ⊗Z A for

some Z-module A.

In [Farrell et al. 2016] we consider the conclusion of Theorem 0.2 that the
Tate cohomology groups Ĥ i (Z/2, Hn(EG → EG; K G

A )) vanish for all i , n ∈ Z

if the virtually cyclic subgroups of type I of G are orientable. In general the Tate
spectrum of the involution on the Whitehead spectrum plays a role in the study
of automorphisms of manifolds (see [Weiss and Williams 2000, Section 4], for
example).

0D. Rational vanishing of the relative term.

Theorem 0.3. Let G be a group and let R be a regular ring.
Then the relative assembly map

asmbn : H G
n (EG; K G

R )→ H G
n (EG; K G

R )

is rationally bijective for all n ∈ Z.

If R = Z and n ≤−1, then, by [Farrell and Jones 1995], the relative assembly
map H G

n (EG; K G
Z )

∼=
−→ H G

n (EG; K G
Z ) is an isomorphism.

In Section 10, we briefly discuss further computations of the relative term
H G

n (EG→ EVC I (G); NK G
A)
∼= H G

n (EG→ EG; K G
A ).

0E. A fibered case. In Section 11 we discuss a fibered situation which will be
relevant for [Farrell et al. 2016] and can be handled by our general treatment for
additive G-categories.

1. Virtually cyclic groups

A virtually cyclic group V is called of type I if it admits an epimorphism to the
infinite cyclic group, and of type II if it admits an epimorphism onto the infinite
dihedral group. The statements appearing in the next lemma are well-known; we
insert a proof for the reader’s convenience.

Lemma 1.1. Let V be an infinite virtually cyclic group.

(i) V is either of type I or of type II.

(ii) The following assertions are equivalent:
(a) V is of type I;
(b) H1(V ) is infinite;
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(c) H1(V )/ tors(V ) is infinite cyclic;
(d) the center of V is infinite.

(iii) There exists a unique maximal normal finite subgroup KV ⊆ V , i.e., KV is
a finite normal subgroup and every normal finite subgroup of V is contained
in KV .

(iv) Let QV := V/KV . Then we obtain a canonical exact sequence

1→ KV
iV
−→ V

pV
−→ QV → 1.

Moreover, QV is infinite cyclic if and only if V is of type I, and QV is isomor-
phic to the infinite dihedral group if and only if V is of type II.

(v) Let f : V → Q be any epimorphism onto the infinite cyclic group or onto the
infinite dihedral group. Then the kernel of f agrees with KV .

(vi) Let φ : V →W be a homomorphism of infinite virtually cyclic groups with infi-
nite image. Then φ maps KV to KW and we obtain the canonical commutative
diagram with exact rows

1 // KV
iV
//

φK

��

V
pV
//

φ

��

QV //

φQ

��

1

1 // KW
iW
// W

pW
// QW // 1

with injective φQ .

Proof. (ii) If V is of type I, then we obtain epimorphisms

V → H1(V )→ H1(V )/ tors(H1(V ))→ Z.

The kernel of V → Z is finite, since for an exact sequence 1→ Z
i
→ V q

→ H → 1
with finite H the composite of V → Z with i is injective and hence the restriction
of q to the kernel of V → Z is injective. This implies that H1(V ) is infinite and
H1(V )/ tors(H1(V )) is infinite cyclic. If H1(V )/ tors(H1(V )) is infinite cyclic or
if H1(V ) is infinite, then H1(V ) surjects onto Z and hence so does V . This shows
(a)⇐⇒ (b)⇐⇒ (c).

Consider the exact sequence 1→ cent(V )→ V → V/ cent(V )→ 1, where
cent(V ) is the center of V . Suppose that cent(V ) is infinite. Then V/ cent(V ) is fi-
nite and the Lyndon–Serre spectral sequence yields an isomorphism cent(V )⊗ZQ→

H1(V ;Q). Hence H1(V ) is infinite. This shows (d)=⇒ (b).
Suppose that V is of type I. Choose an exact sequence 1→ K → V → Z→ 1

with finite K . Let v ∈ V be an element which is mapped to a generator of Z. Then
conjugation with v induces an automorphism of K . Since K is finite, we can find
a natural number k such that conjugation with vk induces the identity on K . One
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easily checks that vk belongs to the center of V and v has infinite order. This shows
(a)=⇒ (d) and finishes the proof of assertion (ii).

(iii) If K1 and K2 are two finite normal subgroups of V , then

K1 · K2 := {v ∈ V | v = k1k2 for some k1 ∈ K1 and k2 ∈ K2}

is a finite normal subgroup of V . Hence we are left to show that V has only finitely
many different finite normal subgroups.

To see this, choose an exact sequence 1→ Z
i
→ V f

→ H → 1 for some finite
group H . The map f induces a map from the finite normal subgroups of V to
the normal subgroups of H ; we will show that it is an injection. Let t ∈ V be the
image under i of some generator of Z and consider two finite normal subgroups
K1 and K2 of V with f (K1) = f (K2). Consider k1 ∈ K1. We can find k2 ∈ K2

and n ∈ Z with k2 = k1 · tn . Then tn belongs to the finite normal subgroup K1 · K2.
This implies n = 0 and hence k1 = k2. This shows K1 ⊆ K2. By symmetry we get
K1 = K2. Since H contains only finitely many subgroups, we conclude that there
are only finitely many different finite normal subgroups in V . Now assertion (iii)
follows.

(i) and (iv) Let V be an infinite virtually cyclic group. Then QV is an infinite
virtually cyclic subgroup which does not contain a nontrivial finite normal sub-
group. There exists an exact sequence 1→ Z

i
→ QV

f
→ H → 1 for some finite

group H . There exists a subgroup of index at most two H ′ ⊆ H such that the
conjugation action of H on Z restricted to H ′ is trivial. Put Q′V = f −1(H ′). Then
the center of Q′V contains i(Z) and hence is infinite. By assertion (ii) we can find
an exact sequence 1→ K → Q′V

f
→Z→ 1 with finite K . The group Q′V contains

a unique maximal normal finite subgroup K ′ by assertion (iii). This implies that
K ′ ⊆ Q′V is characteristic. Since Q′V is a normal subgroup of QV , K ′ ⊆ QV is a
normal subgroup and therefore K ′ is trivial. Hence Q′V contains no nontrivial finite
normal subgroup. This implies that Q′V is infinite cyclic. Since Q′V is a normal
subgroup of index 2 in QV and QV contains no nontrivial finite normal subgroup,
QV is infinite cyclic or D∞.

In particular we see that every infinite virtual cyclic group is of type I or of type II.
It remains to show that an infinite virtually cyclic group V which is of type II cannot
be of type I. If 1→ K→V→ D∞→1 is an extension with finite K , then we obtain
from the Lyndon–Serre spectral sequence an exact sequence H1(K )⊗ZQ Z→

H1(V )→ H1(D∞). Hence H1(V ) is finite, since both H1(D∞) and H1(K ) are
finite. We conclude from assertion (ii) that V is not of type I. This finishes the
proof of assertions (i) and (iv).

(v) Since V is virtually cyclic, the kernel of f is finite. Since Q does not contain a
nontrivial finite normal subgroup, every normal finite subgroup of V is contained
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in the kernel of f . Hence ker( f ) is the unique maximal finite normal subgroup
of V .

(vi) Since KW is finite and the image of φ is by assumption infinite, the composite
pW ◦ φ : V → QW has infinite image. Since QW is isomorphic to Z or D∞, the
same is true for the image of pW ◦ φ : V → QW . By assertion (v) the kernel of
pW ◦ φ : V → QW is KV . Hence φ(KV ) ⊆ KW and φ induces maps φK and φQ

making the diagram appearing in assertion (vi) commutative. Since the image of
pW ◦φ : V → QW is infinite, φQ(QV ) is infinite. This implies that φQ is injective
since both QV and QW are isomorphic to D∞ or Z. This finishes the proof of
Lemma 1.1. �

2. Some categories attached to homogeneous spaces

Let G be a group and let S be a G-set, for instance a homogeneous space G/H .
Let GG(S) be the associated transport groupoid. Objects are the elements in S.
The set of morphisms from s1 to s2 consists of those elements g ∈ G for which
gs1 = s2. Composition is given by the group multiplication in G. Obviously GG(S)
is a connected groupoid if G acts transitively on S. A G-map f : S→ T induces a
functor GG( f ) :GG(S)→GG(T ) by sending an object s ∈ S to f (s) and a morphism
g : s1→ s2 to the morphism g : f (s1)→ f (s2). We mention that for two objects
s1 and s2 in GG(S) the induced map morGG(S)(s1, s2)→morGG(T )( f (s1), f (s2)) is
injective.

A functor F : C0→ C1 of categories is called an equivalence if there exists a func-
tor F ′ : C1→ C0 with the property that F ′ ◦ F is naturally equivalent to the identity
functor idC0 and F ◦F ′ is naturally equivalent to the identity functor idC1 . A functor
F is a natural equivalence if and only if it is essentially surjective (i.e., it induces
a bijection on the isomorphism classes of objects) and it is full and faithful, (i.e.,
for any two objects c, d in C0 the induced map morC0(c, d)→morC1(F(c), F(d))
is bijective).

Given a monoid M , let M̂ be the category with precisely one object and M as the
monoid of endomorphisms of this object. For any subgroup H of G, the inclusion

e(G/H) : Ĥ → GG(G/H), g 7→ (eH g
→ eH)

(where e ∈ G is the unit element), is an equivalence of categories, whose inverse
sends g : g1 H → g2 H to g−1

2 gg1 ∈ G.
Now fix an infinite virtually cyclic subgroup V ⊆ G of type I. Then QV is an

infinite cyclic group. Let gen(QV ) be the set of generators. Given a generator
σ ∈ gen(QV ), define QV [σ ] to be the submonoid of QV consisting of elements of
the form σ n for n∈Z, n≥0. Let V [σ ]⊆V be the submonoid given by p−1

V (QV [σ ]).
Let GG(G/V )[σ ] be the subcategory of GG(G/V ) whose objects are the objects in
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GG(G/V ) and whose morphisms g : g1V → g2V satisfy g−1
2 gg1 ∈ V [σ ]. Notice

that GG(G/V )[σ ] is not a groupoid anymore, but any two objects are isomorphic.
Let GG(G/V )K be the subcategory of GG(G/V ) whose objects are the objects in
GG(G/V ) and whose morphisms g : g1V → g2V satisfy g−1

2 gg1 ∈ KV . Obviously
GG(G/V )K is a connected groupoid and a subcategory of GG(G/V )[σ ].

We obtain the commutative diagram of categories

GG(G/V )[σ ]
j (G/V )[σ ]

// GG(G/V )

V̂ [σ ]
ĵV [σ ]

//

e(G/V )[σ ]

'

OO

V̂

e(G/V )'

OO

(2.1)

whose horizontal arrows are induced by the obvious inclusions and whose left
vertical arrow is the restriction of e(G/V ) (and is also an equivalence of categories).
The functor e(G/V ) also restricts to an equivalence of categories

e(G/V )K : K̂V
'
−→GG(G/V )K . (2.2)

Remark. The relation between the categories K̂V , V̂ [σ ] and V̂ and the categories
GG(G/V )K , GG(G/V )[σ ] and GG(G/V ) is analogous to the relation between the
fundamental group of a path connected space and its fundamental groupoid.

Let σ ∈ V be any element which is mapped under the projection pV : V → QV

to the fixed generator σ . Right multiplication with σ induces a G-map Rσ :
G/KV → G/KV , gKV 7→ gσKV . One easily checks that Rσ depends only on σ
and is independent of the choice of σ . Let prV : G/KV → G/V be the projection.
We obtain the following commutative diagram:

GG(G/KV )
Rσ

//

GG(prV ) &&

GG(G/KV )

GG(prV )xx

GG(G/V )

(2.3)

3. Homotopy colimits of Z-linear and additive categories

Homotopy colimits of additive categories have been defined for instance in [Bartels
and Lück 2010, Section 5]. Here we review their definition and describe some
properties, first in the setting of Z-linear categories.

Recall that a Z-linear category is a category where all Hom-sets are provided
with the structure of abelian groups and composition is bilinear. Denote by Z-Cat
the category whose objects are Z-linear categories and whose morphisms are ad-
ditive functors between them. Given a collection of Z-linear categories (Ai )i∈I ,
their coproduct

∐
i∈I Ci in Z-Cat exists and has the following explicit description:
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Objects are pairs (i, X) where i ∈ I and X ∈Ai . The abelian group of morphisms
(i, X)→ ( j, Y ) is nonzero only if i = j , in which case it is morAi (X, Y ).

Let C be a small category. Given a contravariant functor F : C→ Z-Cat, its
homotopy colimit (see [Thomason 1979], for instance)∫

C
F (3.1)

is the Z-linear category obtained from the coproduct
∐

c∈C F(c) by adjoining mor-
phisms

T f : (d, f ∗X)→ (c, X)

for each (c, X) ∈
∐

c∈C F(c) and each morphism f : d→ c in C. (Here we write
f ∗X for F( f )(X).) They are subject to the relations that Tid = id and that all
possible diagrams

(e, g∗ f ∗X)
Tg
//

T f ◦g &&

(d, f ∗X)

T f

��

(d, f ∗X)
T f
//

f ∗u
��

(c, X)

u
��

(c, X) (d, f ∗Y )
T f

// (c, Y )

are to be commutative.
Hence, a morphism in

∫
C F from (x, A) to (y, B) can be uniquely written as a

sum ∑
f ∈morC(x,y)

T f ◦φ f , (3.2)

where φ f : A→ f ∗B is a morphism in F(x) and all but finitely many of the mor-
phisms φ f are zero. The composition of two such morphisms can be determined
by the distributivity law and the rule

(T f ◦φ) ◦ (Tg ◦ψ)= T f ◦g ◦ (g∗φ ◦ψ),

which just follows from the fact that both upper squares are commutative.
Using this description, it follows that the homotopy colimit has the following

universal property for additive functors
∫
C F→ A into some other Z-linear cate-

gory A: Suppose that we are given additive functors jc : F(c)→A for each c ∈ C
and morphisms S f : jd( f ∗X)→ jc(X) for each X ∈ F(c) and each f : d→ c in C.
If Sid = id and all possible diagrams

jc(g∗ f ∗X)
Sg
//

S f ◦g &&

jd( f ∗X)

S f

��

jd( f ∗X)
S f
//

jd ( f ∗u)
��

jc(X)

jc(u)
��

jc(X) jd( f ∗Y )
S f
// jc(Y )
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are commutative, then this data specifies an additive functor
∫
C F→A by sending

T f to S f .
The homotopy colimit is functorial in F . Namely, if S : F0→ F1 is a natural

transformation of contravariant functors C→ Z-Cat, then it induces an additive
functor ∫

C
S :
∫
C

F0→

∫
C

F1 (3.3)

of Z-linear categories. It is defined using the universal property by sending F0(c)
to F1(c) ⊂

∫
C F1 via S and “sending T f to T f ”. In more detail, the image of

T f : (c, f ∗(X))→ (d, X) in
∫
C F0 is given by T f : (c, f ∗(S(X)))→ (d, S(X))

in
∫
C F1. Obviously we have, for S1 : F0→ F1 and S2 : F1→ F2,(∫

C
S2

)
◦

(∫
C

S1

)
=

∫
C
(S2 ◦ S1), (3.4)∫

C
idF = id∫

C F . (3.5)

The construction is also functorial in C. Namely, let W : C1→ C2 be a covariant
functor. Then we obtain a covariant functor

W∗ :
∫
C1

F ◦W →
∫
C2

F (3.6)

of additive categories that is the identity on each F(W (c)) and “sends T f to TW ( f )”,
again interpreted appropriately. For covariant functors W1 : C1→ C2, W2 : C2→ C3

and a contravariant functor F : C3→Add-Cat, we have

(W2)∗ ◦ (W1)∗ = (W2 ◦W1)∗, (3.7)

(idC)∗ = id∫
C F . (3.8)

These two constructions are compatible. Namely, given a natural transformation
S : F1→ F2 of contravariant functors C2→ Z-Cat and a covariant functor W :
C1→ C2, we get (∫

C2

S
)
◦W∗ =W∗ ◦

(∫
C1

(S ◦W )

)
. (3.9)

Lemma 3.10.

(i) Let W : D→ C be an equivalence of categories. Let F : C → Z-Cat be a
contravariant functor. Then

W∗ :
∫
D

F ◦W →
∫
C

F

is an equivalence of categories.
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(ii) Let C be a category and let S : F1→ F2 be a transformation of contravariant
functors C → Z-Cat such that, for every object c in C, the functor S(c) :
F0(c)→ F1(c) is an equivalence of categories. Then∫

C
S :
∫
C

F1→

∫
C

F2

is an equivalence of categories.

The proof is an easy exercise. Note the general fact that, if F : C → D is an
additive functor between Z-linear categories such that F is an equivalence between
the underlying categories, then it follows automatically that there exists an additive
inverse equivalence F ′ and two additive natural equivalences F ′ ◦ F ' idC and
F ◦ F ′ ' idD.

Notation 3.11. If W : C1→ C is the inclusion of a subcategory, then the same is
true for W∗. If no confusion is possible, we just write∫

C1

F :=
∫
C1

F ◦W ⊂
∫
C

F.

Denote by Add-Cat the category whose objects are additive categories and
whose morphisms are given by additive functors between them. Notice that

∫
C F

is not necessarily an additive category even if all the F(c) are — the direct sum
(c, X)⊕ (d, Y ) need not exist. However, any isomorphism f : c→ d in C induces
an isomorphism T f : (c, f ∗Y )→ (d, Y ), so that

(c, X)⊕ (d, Y )∼= (c, X)⊕ (c, f ∗Y )∼= (c, X ⊕ f ∗Y ).

Hence, if in the index category all objects are isomorphic and all the F(c) are
additive, then

∫
C F is an additive category. Since for additive categories A, B we

have
morZ-Cat(A, B)=morAdd-Cat(A, B)

(in both cases the morphisms are just additive functors), the universal property for
additive functors

∫
C F→A into Z-linear categories extends to a universal property

for additive functors into additive categories.
In the general case of an arbitrary indexing category, the homotopy colimit in

the setting of additive categories still exists. It is obtained by freely adjoining direct
sums to the homotopy colimit for Z-linear categories; the universal properties then
hold in the setting of “additive categories with choice of direct sum”. We will
not discuss this in detail here since, in all the cases we will consider, the indexing
category has the property that any two objects are isomorphic.

Notation 3.12. If the indexing category C has a single object and F : C→ Z-Cat
is a contravariant functor, then we will write X instead of ( ∗ , X) for a typical
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element of the homotopy colimit. The structural morphisms in
∫
C F thus take the

simple form

T f : f ∗X→ X

for f a morphism (from the single object to itself) in C.

4. The twisted Bass–Heller–Swan theorem for additive categories

Given an additive category A, we denote by K (A) the nonconnective K-theory
spectrum associated to it (after idempotent completion); see [Lück and Steimle
2014; Pedersen and Weibel 1989]. Thus we obtain a covariant functor

K :Add-Cat→ Spectra. (4.1)

Let B be an additive Z-category, i.e., an additive category with a right action
of the infinite cyclic group. Fix a generator σ of the infinite cyclic group Z. Let
8 : B→ B be the automorphism of additive categories given by multiplication
with σ . Of course, one can recover the Z-action from 8. Since Ẑ has precisely
one object, we can and will identify the set of objects of

∫
Ẑ
B and B in the sequel.

Let iB : B→
∫

Ẑ
B be the inclusion into the homotopy colimit.

The structural morphisms Tσ :8(B)→ B of
∫

Ẑ
B assemble to a natural isomor-

phism iB ◦8→ iB in the following diagram:

B 8
//

iB
  

B

iB
~~∫

Ẑ
B

If we apply the nonconnective K-theory spectrum to it, we obtain a diagram of
spectra which commutes up to preferred homotopy:

K (B)
K (8)

//

K (iB)
$$

K (B)

K (iB)
zz

K
(∫

Ẑ
B
)

It induces a map of spectra

aB : TK (8)→ K
(∫

Ẑ

B
)
,

where TK (8) is the mapping torus of the map of spectra K (8) : K (B)→ K (B),
which is defined as the pushout
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K (B)∧ {0, 1}+ = K (B)∨ K (B)
K (8)∨idK (B)

//

��

K (B)

��

K (B)∧ [0, 1]+ // TK (8)

Let Z[σ ] be the submonoid {σ n
| n ∈Z, n≥ 0} generated by σ . Let j[σ ] :Z[σ ]→Z

be the inclusion. Let iB[σ ] : B→
∫

Ẑ]σ ]
B be the inclusion induced by iB. Define a

functor of additive categories

evB[σ ] :

∫
Ẑ[σ ]

B→ B

extending the identity on B by sending a morphism Tσ n to 0 for n > 0. (Of course,
σ 0
= id must go to the identity.) We obtain the following diagram of spectra:

K (B)

id

77

K (iB[σ ])
// K
(∫

Ẑ[σ ]
B
) K (evB[σ ])

// K (B)

Define NK (B, σ ) as the homotopy fiber of the map K (evB[σ ]) : K
(∫

Ẑ[σ ]
B
)
→K (B).

Let bB[σ ] denote the composite

bB[σ ] : NK (B, σ )→ K
(∫

Ẑ[σ ]

B
)
→ K

(∫
Ẑ

B
)

of the canonical map with the inclusion. Let gen(Z) be the set of generators of the
infinite cyclic group Z. Put

NK (B) :=
∨

σ∈gen(Z)

NK (B, σ )

and define

bB :=
∨

σ∈gen(Z)

bB[σ ] :
∨

σ∈gen(Z)

NK (B, σ )→ K
(∫

Ẑ

B
)
.

The proof of the following result can be found in [Lück and Steimle 2016].
The case where the Z-action on B is trivial and one considers only K-groups in
dimensions n ≤ 1 has already been treated by [Ranicki 1992, Chapters 10 and 11].
If R is a ring with an automorphism and one takes B to be the category R-FGF

of finitely generated free R-modules with the induced Z-action, Theorem 4.2 boils
down for higher algebraic K-theory to the twisted Bass–Heller–Swan decomposi-
tion of [Grayson 1988, Theorems 2.1 and 2.3].
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Theorem 4.2 (twisted Bass–Heller–Swan decomposition for additive categories).
The map of spectra

aB ∨ bB : TK (8) ∨ NK (B) '−→ K
(∫

Ẑ

B
)

is a weak equivalence of spectra.

5. Some additive categories associated to an additive G-category

Let G be a group. Let A be an additive G-category, i.e., an additive category with
a right G-operation by isomorphisms of additive categories. We can consider A as
a contravariant functor Ĝ→ Add-Cat. Fix a homogeneous G-space G/H . Let
prG/H : GG(G/H)→ GG(G/G)= Ĝ be the projection induced by the canonical G-
map G/H→G/G. Then we obtain a covariant functor GG(G/H)→Add-Cat by
sending G/H to A◦prG . Let

∫
GG(G/H)A◦prG/H be the additive category given by

the homotopy colimit (defined in (3.1)) of this functor. A G-map f :G/H→G/K
induces a functor GG( f ) : GG(G/H)→ GG(G/K ) which is compatible with the
projections to Ĝ. Hence it induces a functor of additive categories — see (3.6) —

GG( f )∗ :
∫
GG(G/H)

A ◦ prG/H →

∫
GG(G/K )

A ◦ prG/K .

Thus we obtain a covariant functor

Or(G)→Add-Cat, G/H 7→
∫
GG(G/H)

A ◦ prG/H . (5.1)

Remark 5.2. Applying Lemma 3.10(i) to the equivalence of categories e(G/H) :
Ĥ→ GG(G/H), we see that the functor (5.1), at G/H , takes the value

∫
Ĥ A, where

A carries the restricted H -action. The more complicated description is however
needed for the functoriality.

Notation 5.3. For the sake of brevity, we will just write A for any composite
A ◦ prG/H if no confusion is possible. In this notation, (5.1) takes the form

G/H 7→
∫
GG(G/H)

A.

Let V ⊆ G be an infinite virtually cyclic subgroup of type I. In the sequel we
abbreviate K = KV and Q = QV . Let prK : GG(G/V )K → K̂ be the functor which
sends a morphism g : g1V → g2V to g−1

2 gg1 ∈ K .
Fixing a generator σ of the infinite cyclic group Q, the inclusions GG(G/V )K ⊂

GG(G/V )[σ ] ⊂ GG(G/V ) induce inclusions∫
GG(G/V )K

A⊂
∫
GG(G/V )[σ ]

A⊂
∫
GG(G/V )

A. (5.4)
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Actually, the category into the middle retracts onto the smaller one. To see this,
define a retraction

ev(G/V )[σ ]K :
∫
GG(G/V )[σ ]

A→
∫
GG(G/V )K

A (5.5)

as follows: It is the identity on every copy of the additive category A inside the
homotopy colimit. Let Tg : (g1V, g∗A)→ (g2V, A) be a structural morphism in
the homotopy colimit, where g : g1V → g2V in GG(G/V )[σ ] is a morphism in
GG(G/V )[σ ] (that is, g is an element of G satisfying g−1

2 gg1 ∈ V [σ ]). If

g−1
2 gg1 ∈ K ⊂ V [σ ],

then g is by definition a morphism in GG(G/V )K ⊂ GG(G/V )[σ ] and we may let

ev(G/V )[σ ]K (Tg)= Tg.

Otherwise we send the morphism Tg to 0. This is well-defined, since for two
elements h1, h2 ∈ V [σ ] we have h1h2 ∈ K if and only if both h1 ∈ K and h2 ∈ K
hold.

Similarly the inclusion
∫

K̂ A⊂
∫

V̂ [σ ]A is split by a retraction

evV [σ ] :

∫
V̂ [σ ]

A→
∫

K̂
A

defined as follows: On the copy of A inside
∫

V̂ [σ ]A, the functor is defined to be
the identity. A structural morphism Tg : g∗A→ A is sent to itself if g ∈ K , and
to zero otherwise. One easily checks that the following diagram commutes (where
the unlabelled arrows are inclusions) and has equivalences of additive categories
as vertical maps:

∫
GG(G/V )K

A //

id

))∫
GG(G/V )[σ ]A

ev(G/V )[σ ]
//
∫
GG(G/V )K

A

∫
K̂ A //

'

(e(G/V )K )∗

OO

id

66

∫
V̂ [σ ]A

evV [σ ]
//

'

e(G/V )[σ ]∗

OO

∫
K̂ A

'

(e(G/V )K )∗

OO

(5.6)

We obtain from (2.1) and Lemma 3.10(i) the following commutative diagram of
additive categories with equivalences of additive categories as vertical maps:
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GG(G/V )[σ ]A //

∫
GG(G/V )A

∫
V̂ [σ ]A //

e(G/V )[σ ]∗

'

OO

∫
V̂ A

e(G/V )∗'

OO

(5.7)

(where again the unlabelled arrows are the inclusions).
Now we abbreviate B =

∫
K̂ A. Next we define a right Q-action on B which will

depend on a choice of an element σ ∈ V such that pV : V → Q sends σ to σ . Such
an element induces a section of the projection G→ Q by which any action of G
induces an action of Q. In short, the action of Q on B is given by the action of G
onto A ⊂ B, and by the conjugation action of Q on the indexing category K̂ . In
more detail, the action of σ ∈ Q is specified by the automorphism

8 :

∫
K̂
A→

∫
K̂
A

defined as follows: A morphism ϕ : A→ B in A is sent to σ ∗ϕ : σ ∗A→ σ ∗B, and
a structural morphism Tg : g∗A→ A is sent to the morphism

Tσ−1gσ : σ
∗g∗A = (σ−1gσ)∗σ ∗A→ σ ∗A.

With this notation we obtain an additive functor

9 :

∫
Q̂
B→

∫
V̂
A

defined to extend the inclusion B =
∫

K̂ A→
∫

V̂ A and such that a structural mor-
phism Tσ :8(A)→ A is sent to Tσ :8(A)= σ ∗A→ A.

In more detail, a morphism in
∫

Q̂ B can be uniquely written as a finite sum∑
n∈Z

Tσ n ◦

(∑
k∈K

Tk ◦φk,n

)
=

∑
n,k

Tσ n ·k ◦φk,n.

Since any element in V is uniquely a product σ n
· k with k ∈ K , the functor 9 is

fully faithful. As it is the identity on objects, 9 is an isomorphism of categories.
It also restricts to an isomorphism of categories

9[σ ] :

∫
Q̂[σ ]

B→
∫

V̂ [σ ]
A.

Define a functor
evB[σ ] :

∫
Q̂[σ ]

B→ B

as follows. It is the identity functor on B, and a nonidentity structural morphism
Tq : q∗B → B is sent to 0. One easily checks using (5.6) and (5.7) that the fol-
lowing diagram of additive categories commutes (with unlabelled arrows given by
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inclusions) and that all vertical arrows are equivalences of additive categories:∫
GG(G/V )K

A
∫
GG(G/V )[σ ]A

ev(G/V )[σ ]K
oo //

∫
GG(G/V )A

∫
K̂ A

(e(G/V )K )∗

'

OO

∫
V̂ [σ ]A //

evV [σ ]
oo

e(G/V )[σ ]∗

'

OO

∫
V̂ A

e(G/V )∗

'
OO

B

id

∼=

OO

∫
Q̂[σ ] B //

evB[σ ]
oo

9[σ ]

∼=

OO

∫
Q̂ B

9

∼=

OO

(5.8)

Recall from Section 2 that qV : G/K → G/V is the projection and that Rσ is
the automorphism of

∫
GG(G/K )A induced by right multiplication with σ .

We have the following (not necessarily commutative) diagram of additive cate-
gories, all of whose vertical arrows are equivalences of additive categories, and the
unlabelled arrows are the inclusions:∫

GG(G/K )A

GG(prV )∗ ((

Rσ
//
∫
GG(G/K )A

GG(prV )∗vv∫
GG(G/V )A

∫
K̂ A

((

(e(G/V )K )∗
'

OO

8
//
∫

K̂ A

vv

(e(G/V )K )∗'

OO

∫
V̂ A

e(G/V )∗

'

OO

B

iB
((

8
//

∼=

id

OO

B

iB
vv

∼ = id

OO

∫
Q̂ B

9

'

OO

(5.9)

The lowest triangle commutes up to a preferred natural isomorphism T : iB◦8
∼=
−→iB,

which is part of the structural data of the homotopy colimit. We equip the middle
triangle with the natural isomorphism 9 ◦ T . Explicitly it is just given by the
structural morphisms Tσ : σ ∗A→ A.

The three squares ranging from the middle to the lower level commute and the
two natural equivalences above are compatible with these squares. The top triangle
commutes. The back upper square commutes up to a preferred natural isomorphism
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S : (e(G/V )K )∗ ◦8
∼=
−→ Rσ ◦ (e(G/V )K )∗. It assigns to an object A ∈ A, which

is the same as an object in
∫

K̂ A, the structural isomorphism

S(A) := Tσ : (eK , σ ∗A)→ (σK , A).

The other two squares joining the upper to the middle level commute. From the
explicit description of the natural isomorphisms it becomes apparent that the pre-
ferred natural isomorphism for the middle triangle defined above and the preferred
natural isomorphism for the upper back square are compatible, in the sense that
e(G/V )[σ ]∗ ◦9 ◦ T = GG(prV )∗ ◦ S.

6. Some K-theory-spectra over the orbit category

In this section we introduce various K-theory spectra. For a detailed introduction
to spaces, spectra and modules over a category and some constructions of K-theory
spectra, we refer to [Davis and Lück 1998].

Given an additive G-category A, we obtain a covariant Or(G)-spectrum

K G
A :Or(G)→ Spectra, G/H 7→ K

(∫
GG(G/H)

A ◦ prG/H

)
, (6.1)

by the composite of the two functors (4.1) and (5.1). It is naturally equivalent to
the covariant Or(G)-spectrum, which is written in the same way and constructed
in [Bartels and Reich 2007, Definition 3.1].

We again adopt Notation 5.3, abbreviating an expression such as A ◦ prG/H just
by A. Given a virtually cyclic subgroup V ⊆ G, we obtain the following map of
spectra induced by the functors j (G/V )[σ ]∗ of (5.4) and ev(G/V )[σ ] of (5.5):

K
(∫

GG(G/V )K

A
)

K (ev(G/V )[σ ])
←−−−−−−−− K

(∫
GG(G/V )[σ ]

A
)

K ( j (G/V )[σ ]∗)
−−−−−−−−−→K

(∫
GG(G/V )

A
)
.

Notation 6.2. Let NK (G/V ;A, σ ) be the spectrum given by the homotopy fiber
of K

(
ev(G/V )[σ ]∗

)
: K
(∫

GG(G/V )[σ ]A
)
→ K

(∫
GG(G/V )K

A
)
.

Let l : NK (G/V ;A, σ )→ K
(∫

GG(G/V )[σ ]A
)

be the canonical map of spectra.
Define the map of spectra

j(G/V ;A, σ ) : NK (G/V ;A, σ )→ K
(∫

GG(G/V )
A
)

to be the composite K ( j (G/V )[σ ]∗) ◦ l .

Consider a G-map f :G/V→G/W , where V and W are virtually cyclic groups
of type I. It induces a functor GG( f ) : GG(G/V )→ GG(G/W ).

It also induces a bijection

gen( f ) : gen(QV )→ gen(QW ) (6.3)
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as follows. Fix an element g ∈ G such that f (eV )= gW . Then g−1V g ⊆W . The
injective group homomorphism c(g) : V →W , v 7→ g−1vg, induces an injective
group homomorphism Qc(g) : QV → QW by Lemma 1.1(vi). For σ ∈ gen(QV )

let gen( f )(σ ) ∈ gen(QW ) be uniquely determined by the property that Qc(g)(σ )=

gen( f )(σ )n for some n≥ 1. One easily checks that this is independent of the choice
of g ∈ G with f (eV ) = gW since, for w ∈ W , the conjugation homomorphism
c(w) :W →W induces the identity on QW . Using Lemma 1.1(vi) it follows that
GG( f ) : GG(G/V )→ GG(G/W ) induces functors

GG( f )[σ ] : GG(G/V )[σ ] → GG(G/W )[gen( f )(σ )],

GG( f )K : GG(G/V )K → GG(G/W )K .

Hence we obtain a commutative diagram of maps of spectra

K
(∫

GG(G/V )K
A
) K ((GG( f )K )∗)

// K
(∫

GG(G/W )K
A
)

K
(∫

GG(G/V )[σ ]A
)K (ev(G/V )[σ ])

OO

K (GG( f )[σ ]∗)
//

K ( j (G/V )[σ ]∗)
��

K
(∫

GG(G/W )[gen( f )(σ )]A
)K(ev(G/W )[gen( f )(σ )])

OO

K( j (G/W )[gen( f )(σ )]∗)
��

K
(∫

GG(G/V )A
) K (GG( f )∗)

// K
(∫

GG(G/W )
A
)

Thus we obtain a map of spectra

NK ( f ;A, σ ) : NK (G/V ;A, σ )→ NK (G/W ;A, gen( f )(σ ))

such that the following diagram of spectra commutes:

NK (G/V ;A, σ )
NK ( f ;A,σ )

//

j(G/V ;A,σ )
��

NK (G/W ;A, gen( f )(σ ))

j(G/W ;A,gen( f )(σ ))
��

K
(∫

GG(G/V )A
)

K (GG( f )∗)
// K
(∫

GG(G/W )
A
)

Let VC I be the family of subgroups of G which consists of all finite groups and
all virtually cyclic subgroups of type I. Let OrVC I (G) be the full subcategory of
the orbit category Or(G) consisting of objects G/V for which V belongs to VC I .
Define a functor

NK G
A :OrVC I (G)→ Spectra

as follows: It sends G/H for a finite subgroup H to the trivial spectrum and G/V
for a virtually cyclic subgroup V of type I to

∨
σ∈gen(QV ) NK (G/V ;A, σ ). Con-

sider a map f : G/V → G/W . If V or W is finite, it is sent to the trivial map.
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Suppose that both V and W are infinite virtually cyclic subgroups of type I. Then
it is sent to the wedge of the two maps

NK ( f ;A, σ1) : NK (G/V ;A, σ1)→ NK (G/W ;A, gen( f )(σ1)),

NK ( f ;A, σ2) : NK (G/V ;A, σ2)→ NK (G/W ;A, gen( f )(σ2)),

for gen(QV )= {σ1, σ2}.
The restriction of the covariant Or(G)-spectrum K G

A : Or(G)→ Spectra to
OrVC I (G) will be denoted by the same symbol

K G
A :OrVC I (G)→ Spectra.

The wedge of the maps j(G/V ;A, σ1) and j(G/V ;A, σ2) for V a virtually cyclic
subgroup of G of type I yields a map of spectra NK G

A(G/V )→ K G
A (G/V ). Thus

we obtain a transformation of functors from OrVC I (G) to Spectra,

bG
A : NK G

A→ K G
A . (6.4)

7. Splitting the relative assembly map and identifying the relative term

Let X be a G-space. It defines a contravariant Or(G)-space OG(X), i.e., a contra-
variant functor from Or(G) to the category of spaces, by sending G/H to the
H -fixed point set mapG(G/H, X) = X H. Let OG(X)+ be the pointed Or(G)-
space, where OG(X)+(G/H) is obtained from OG(X)(G/H) by adding an extra
base point. If f : X→ Y is a G-map, we obtain a natural transformation OG( f )+ :
OG(X)+→ OG(Y )+.

Let E be a covariant Or(G)-spectrum, i.e., a covariant functor from Or(G) to
the category of spectra. Fix a G-space Z . Define the covariant Or(G)-spectrum

EZ :Or(G)→ Spectra

as follows. It sends an object G/H to the spectrum OG(G/H × Z)+ ∧Or(G) E,
where ∧Or(G) is the wedge product of a pointed space and a spectrum over a cate-
gory (see [Davis and Lück 1998, Section 1], where ∧Or(G) is denoted by ⊗Or(G)).
The obvious identification of OG(G/H)+(?)∧Or(G) E(?) with E(G/H) and the
projection G/H × Z→ G/H yields a natural transformation of covariant functors
Or(G)→ Spectra,

a : EZ → E. (7.1)

Lemma 7.2. Given a G-space X , there exists an isomorphism of spectra

uG(X) : OG(X × Z)+ ∧Or(G) E ∼=
−→ OG(X)+ ∧Or(G) EZ ,

which is natural in X and Z.
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Proof. The smash product ∧Or(G) is associative, i.e., there is a natural isomorphism
of spectra(
OG(X)+(?1 )∧Or(G) OG(?2× Z)+(?1 )

)
∧Or(G) E(?2 )

∼=
−→ OG(X)+(?1 )∧Or(G)

(
OG(?2× Z)+(?1 )∧Or(G) E(?2 )

)
.

There is a natural isomorphism of covariant Or(G)-spaces

OG(X × Z)+
∼=
−→ OG(X)+(?)∧Or(G) OG(?× Z)+

which, evaluated at G/H , sends α :G/H→ X×Z to (pr1◦α)∧(idG/H×(pr2 ◦α))

if pri is the projection onto the i-th factor of X × Z . The inverse evaluated at G/H
sends (β1 :G/K→ X)∧(β2 :G/H→G/K×Z) to (β1×idZ )◦β2. The composite
of these two isomorphisms yield the desired isomorphism uG(X). �

If F is a family of subgroups of the group G, e.g., VC I or the family F in of
finite subgroups, then we denote by EF (G) the classifying space of F . (For a
survey on these spaces we refer for instance to [Lück 2005].) Let EG denote the
classifying space for proper G-actions, or in other words, a model for EF in(G). If
we restrict a covariant Or(G) spectrum E to OrVC I (G), we will denote it by the
same symbol E and analogously for OG(X).

Lemma 7.3. Let F be a family of subgroups. Let X be a G-CW-complex whose
isotropy groups belong to F . Let E be a covariant Or(G)-spectrum. Then there is
a natural homeomorphism of spectra

OG(X)+ ∧OrF (G) E ∼=
−→ OG(X)+ ∧Or(G) E.

Proof. Let I : OrF (G)→ Or(G) be the inclusion. The claim follows from the
adjunction of the induction I∗ and restriction I ∗— see [Davis and Lück 1998,
Lemma 1.9] — and the fact that for the Or(G)-space OG(X) the canonical map
I∗ I ∗OG(X)→ OG(X) is a homeomorphism of Or(G)-spaces. �

In the sequel we will abbreviate EEG by E.

Lemma 7.4. Let E be a covariant Or(G)-spectrum. Let f : EG→ EVC I (G) be
a G-map. (It is unique up to G-homotopy.) Then there is an up-to-homotopy com-
mutative diagram of spectra whose upper horizontal map is a weak equivalence

OG(EVC I (G))∧OrVC I (G) E

id∧OrVC I (G)
a

))

'
// OG(EG)∧OrVC I (G) E

OG( f )∧OrVC I (G)
iduu

OG(EVC I (G))∧OrVC I (G) E
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Proof. From Lemma 7.2 we obtain a commutative diagram with an isomorphism
as horizontal map

OG(EVC I (G))∧OrVC I (G) E

id∧OrVC I (G)
a

''

∼=
// OG(EVC I (G)× EG)∧OrVC I (G) E

OG(pr1)∧OrVC I (G)
idww

OG(EVC I (G))∧OrVC I (G) E

where pr1 : EVC I (G)× EG→ EVC I (G) is the obvious projection. The projection
pr2 : EVC I (G)× EG→ EG is a G-homotopy equivalence and its composite with
f : EG→ EVC I (G) is G-homotopic to pr1. Hence the following diagram of spectra
commutes up to G-homotopy and has a weak equivalence as horizontal map:

OG(EVC I (G)× EG)∧OrVC I (G) E
OG(pr2)∧OrVC I (G)

id

'
//

OG(pr1)∧OrVC I (G)
id ))

OG(EG)∧OrVC I (G) E

OG( f )∧OrVC I (G)
iduu

OG(EVC I (G))∧OrVC I (G) E

Putting these two diagrams together finishes the proof of Lemma 7.4 �

If E is the functor K G
A defined in (6.1) and Z = EG, we will write K G

A for
E = EEG .

Lemma 7.5. Let H be a finite group or an infinite virtually cyclic group of type I.
Then the map of spectra (see (6.4) and (7.1))

a(G/H)∨ b(G/H) : K G
A(G/H)∨ NK G

A(G/H)→ K G
A (G/H)

is a weak equivalence.

Proof. Given an infinite cyclic subgroup V ⊆ G of type I, we next construct an
up-to-homotopy commutative diagram (on the next page) of spectra whose vertical
arrows are all weak homotopy equivalences for K = KV and Q = QV . Let iV :

V → G be the inclusion and pV : V → QV := V/KV be the projection.
We first explain the vertical arrows, starting at the top. The first one is the identity

by definition. The second one comes from the G-homeomorphism G/V × EG ∼=
−→

(iV )∗(iV )
∗EG = G ×V EG sending (gV, x) to (g, g−1x). The third one comes

from the adjunction of the induction (iV )∗ and restriction i∗V ; see [Davis and Lück
1998, Lemma 1.9]. The fourth one comes from the fact that p∗V E Q and i∗V EG are
both models for EV and hence are V-homotopy equivalent. The fifth one comes
from the adjunction of the restriction p∗V with the coinduction (pV )!; see [Davis
and Lück 1998, Lemma 1.9]. The sixth one comes from the fact that E Q is a
free Q-CW-complex and Lemma 7.3 applied to the family consisting of one sub-
group, namely the trivial subgroup. The seventh one comes from the identification



360 WOLFGANG LÜCK AND WOLFGANG STEIMLE

(pV )!(iV )
∗K G

A (QV /1)= (iV )
∗K G

A (V/K )= K G
A (G/K ). The last one comes from

the obvious homeomorphism if we use for E QV the standard model with R as the
underlying QV=Z-space. The arrow a′(G/V ) is induced by the upper triangle
in (5.9), which commutes (strictly). One easily checks that the diagram commutes:

K G
A(G/V )

id(1)
��

a(G/V )

��

OG(G/V × EG)+ ∧Or(G) K G
A

∼=

(2)
��

OG((iV )∗(iV )
∗EG)+ ∧Or(G) K G

A

∼=

(3)
��

OV ((iV )
∗EG)+ ∧Or(V ) (iV )

∗K G
A

'

(4)
��

OV ((pV )
∗E QV )+ ∧Or(V ) (iV )

∗K G
A

∼=

(5)
��

K G
A(G/V )

O QV (E QV )+ ∧Or(QV ) (pV )!(iV )
∗K G

A

∼=

(6)
��

(E QV )+ ∧QV (pV )!(iV )
∗K G

A (QV /1)

∼=

(7)
��

(E QV )+ ∧QV K G
A (G/K )

∼=

(8)
��

TK (Rσ ):K G
A(G/K )→K G

A(G/K )

a′(G/V )

OO

Here is a short explanation of the diagram above. The map a(G/V ) is basi-
cally given by the projection G/V × EG → G/V . Following the equivalences
(1) through (5), this corresponds to projecting E QV to a point. On the domain of
the equivalence (8), this corresponds to projecting E QV to a point and taking the
inclusion-induced map K G

A (G/K )→ K G
A (G/V ) on the other factor. But this is

precisely the definition of the map a′(G/V ).
From the diagram (5.9) (including the preferred equivalences and the fact that a

natural isomorphism of functors induces a preferred homotopy after applying the
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K-theory spectrum) we obtain the following diagram of spectra, which commutes
up to homotopy and has weak homotopy equivalences as vertical arrows:

TK (Rσ ):K G
A(G/K )→K G

A(G/K )
a′(G/V )

// K G
A(G/V )

T
K (8):K

(∫
K̂ A
)
→K

(∫
K̂ A
)'

OO

a′′(G/V )
// K
(∫

V̂ A
)'

OO

TK (φ):K (B)→K (B)

id
OO

aB
// K
(∫

Q̂ B
)∼ =

OO

We obtain from the diagram (5.8) the following commutative diagram of spectra
with weak homotopy equivalences as vertical arrows:

NK G
A(G/V )

b(G/V )
// K G

A (G/V )

NK (B)
bB

//

'

OO

K (
∫

Q̂V
B)

'
OO

We conclude from the three diagrams of spectra above that

a(G/V )∨ b(G/V ) : K G
A(G/V )∨ NK G

A(G/V )→ K G
A (G/V )

is a weak homotopy of spectra if and only if

aB ∨ bB : TK (φ):K (B)→K (B) ∨ NK (B)→ K
(∫

Q̂V

B
)

is a weak homotopy equivalence. Since this is just the assertion of Theorem 4.2,
the claim of Lemma 7.5 follows in the case where H is an infinite virtually cyclic
group of type I.

It remains to consider the case where H is finite. Then NK G
A(G/V ) is, by

definition, the trivial spectrum. Hence it remains to show for a finite subgroup
H of G that a(G/H) : K G

A(G/H)→ K G
A (G/H) is a weak homotopy equivalence.

This follows from the fact that the projection G/H×EG→G/H is a G-homotopy
equivalence for finite H . �

Recall that any covariant Or(G)-spectrum E determines a G-homology theory
H G
∗
(−; E) satisfying H G

n (G/H ; E)= πn(E(G/H)), namely (see [Davis and Lück
1998]) put

H G
∗
(X; E) := π∗(OG(X)∧Or(G) E). (7.6)
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In the sequel we often follow the convention in the literature to abbreviate
EG := EVC(G) for the family VC of virtually cyclic subgroups. Recall that for
two families of subgroups F1 and F2 with F1 ⊆ F2 there is, up to G-homotopy,
one G-map f : EF1(G)→ EF2(G). We will define Hn(EF1(G)→ EF2(G); K G

R ) :=

Hn(cyl( f ), EF1(G); K G
R ), where (cyl( f ), EF1(G)) is the G-pair coming from the

mapping cylinder of f .
Notice that NK G

A is defined only over OrV CycI (G). It can be extended to a
spectrum over Or(G) by applying the coinduction functor — see [Davis and Lück
1998, Definition 1.8] — associated to the inclusion OrVC I (G)→Or(G), so that the
G-homology theory H G

n (−; NK G
A) makes sense for all pairs of G-CW-complexes

(X, A). Moreover, H G
n (X; NK G

A) can be identified with πn(OG(X)∧OrVC I (G)NK G
A)

for all G-CW-complexes X .
The remainder of this section is devoted to the proof of Theorem 0.1. Its proof

will need the following result, taken from [Davis et al. 2011, Remark 1.6]:

Theorem 7.7 (passage from VC I to VC in K-theory). The relative assembly map

H G
n (EVC I (G); K G

A )
∼=
−→ H G

n (EG; K G
A )

is bijective for all n ∈ Z.

Hence, in the proof of Theorem 0.1 we only have to deal with the passage from
F in to VC I .

Proof of Theorem 0.1. From Lemma 7.5 and [Davis and Lück 1998, Lemma 4.6],
we obtain a weak equivalence of spectra

id∧OrVC I (G) (a∨ b) : OG(EVC I (G))∧OrVC I (G) (K
G
A ∨ NK G

A)

→ OG(EVC I (G))∧OrVC I (G) K G
A .

Hence we obtain a weak equivalence of spectra

(id∧OrVC I (G) a)∨ (id∧OrVC I (G) b) :(
OG(EVC I (G))∧OrVC I (G) K G

A
)
∨
(
OG(EVC I (G))∧OrVC I (G) NK G

A
)

→ OG(EVC I (G))∧OrVC I (G) K G
A .

If we combine this with Lemma 7.4 we obtain a weak equivalence of spectra

( f ∧OrVC I (G) id)∨ (id∧OrVC I (G) b) :

(OG(EG)∧OrVC I (G) K G
A )∨ (O

G(EVC I (G))∧OrVC I (G) NK G
A)

→ OG(EVC I (G))∧OrVC I (G) K G
A .
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Using Lemma 7.3 this yields a natural weak equivalence of spectra

( f ∧Or(G) id)∨ b′ : (OG(EG)∧Or(G) K G
A )∨

(
OG(EVC I (G))∧OrVC I (G) NK G

A
)

→ OG(EVC I (G))∧Or(G) K G
A ,

where b′ comes from id∧OrVC I (G) b. If we take homotopy groups, we obtain for
every n ∈ Z an isomorphism

H G
n ( f ; K G

A )⊕πn(b′) : H G
n (EG; K G

A )⊕πn
(
OG(EVC I (G))∧OrVC I (G) NK G

A
)

∼=
−→ Hn(EVC I (G); K G

A ).

We have already explained above that H G
n (EVC I (G); NK G

A) can be identified with
πn
(
OG(EVC I (G)) ∧OrVC I (G) NK G

A
)
. Since, by construction, NK G

A(G/H) is the
trivial spectrum for finite H and all isotropy groups of EG are finite, we conclude
H G

n (EG; NK G
A)= 0 for all n ∈ Z from Lemma 7.3. We derive from the long exact

sequence of f : E(G)→ EVC I (G) that the canonical map

H G
n (EVC I (G); NK G

A)
∼=
−→ H G

n (EG→ EVC I (G); NK G
A)

is bijective for all n ∈ Z. Hence we obtain for all n ∈ Z a natural isomorphism

H G
n ( f ; K G

A )⊕ bn : H G
n (EG; K G

A )⊕ H G
n (EG→ EVC I (G); NK G

A)
∼=
−→ Hn(EVC I (G); K G

A ).

From the long exact homology sequence associated to f : EG → EVC I (G), we
conclude that the map

H G
n ( f ; K G

A ) : H
G
n (EG; K G

A )→ H G
n (EVC I (G); K G

A )

is split injective, there is a natural splitting

H G
n (EVC I (G); K G

A )
∼=
−→ H G

n (EG; K G
A )⊕ Hn(EG→ EVC I (G); K G

A ),

and there exists a natural isomorphism, which is induced by the natural transfor-
mation b : NK G

A→ K G
A of spectra over OrVC I (G),

H G
n (EG→ EVC I (G); NK G

A)
∼=
−→ H G

n (EG→ EVC I (G); K G
A ).

Now Theorem 0.1 follows from Theorem 7.7. �

8. Involutions and vanishing of Tate cohomology

8A. Involutions on K-theory spectra. Let A= (A, I ) be an additive G-category
with involution, i.e., an additive G-category A together with a contravariant functor
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I :A→A satisfying I ◦ I = idA and I ◦Rg= Rg◦ I for all g ∈G. Examples coming
from twisted group rings, or more generally crossed product rings equipped with
involutions twisted by orientation homomorphisms, are discussed in [Bartels and
Lück 2010, Section 8].

In the sequel for a category C we denote its opposite category by Cop. It has
the same objects as C. A morphism in Cop from x to y is a morphism y→ x in C.
Obviously we can and will identify (Cop)op

= C.
Next we define a covariant functor

I (G/H) :
∫
GG(G/H)

A→
(∫

GG(G/H)
A
)op

. (8.1)

It is defined to extend the involution∐
x∈GG(G/H)

I :
∐

x∈GG(G/H)

A→
( ∐

x∈GG(G/H)

A
)op

and to send a structural morphism Tg : (g1 H, A · g)→ (g2 H, A) to the morphism
Tg−1 : (g2 H, I (A))→ (g1 H, I (A) · g). One easily checks I (G/H)◦ I (G/H)= id.

Notice that there is a canonical identification K (Bop)= K (B) for every additive
category B. Hence I (G/H) induces a map of spectra

i(G/H)= K (I (G/H)) : K
(∫

GG(G/H)
A
)
→ K

(∫
GG(G/H)

A
)

such that i(G/H) ◦ i(G/H) = id. Let Z/2-Spectra be the category of spectra
with a (strict) Z/2-operation. Thus the functor K G

R becomes a functor

K G
R :Or(G)→ Z/2-Spectra. (8.2)

Consider an infinite virtually cyclic subgroup V ⊆ G and a fixed generator
σ ∈ QV . The functor I (G/V ) of (8.1) induces functors

I (G/H)[σ ] :
∫
GG(G/H)[σ ]

A→
(∫

GG(G/H)[σ−1]

A
)op

,

I (G/H)K :

∫
GG(G/H)K

A→
(∫

GG(G/H)K

A
)op

.

Since ev(G/V )[σ−1
]∗ ◦ I (G/V )[σ ] = I (G/V )K ◦ ev(G/V )[σ ] and

j (G/V )[σ−1
]∗ ◦ I (G/V )[σ ] = I (G/V ) ◦ j (G/V )[σ ]∗,
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we obtain a commutative diagram of spectra

K
(∫

GG(G/V )K
A
) K (I (G/V )K )

// K
(∫

GG(G/V )K
A
)

K
(∫

GG(G/V )[σ ]A
)K (ev(G/V )[σ ]∗)

OO

K ( j (G/V )[σ ]∗)
��

K (I (G/V ))[σ ]
// K
(∫

GG(G/V )[σ−1]
A
)K (ev(G/V )[σ−1

]∗)

OO

K ( j (G/V )[σ−1
]∗)

��

K
(∫

GG(G/V )A
) K (I (G/V ))

// K
(∫

GG(G/V )A
)

Since I (G/H)[σ−1
]◦ I (G/H)[σ ] = id and I (G/H)K ◦ I (G/H)K = id, we obtain

a Z/2-operation on NK G
A and hence a functor

NK G
A :Or(G)→ Z/2-Spectra, (8.3)

and we conclude:

Lemma 8.4. The transformation b : NK G
A→ K G

A of OrVC I (G)-spectra is compat-
ible with the Z/2-actions.

8B. Orientable virtually cyclic subgroups of type I.
Definition 8.5 (orientable virtually cyclic subgroups of type I). Given a group G,
we say that the infinite virtually cyclic subgroups of type I of G are orientable if
there is, for every virtually cyclic subgroup V of type I, a choice σV of a generator
of the infinite cyclic group QV with the following property: whenever V and V ′

are infinite virtually cyclic subgroups of type I, and f : V → V ′ is an inclusion or
a conjugation by some element of G, then the map Q f : QV → QW sends σV to
a positive multiple of σW . Such a choice of elements {σV | V ∈ VC I } is called an
orientation.

Lemma 8.6. Suppose that the virtually cyclic subgroups of type I of G are ori-
entable. Then all infinite virtually cyclic subgroups of G are of type I, and the
fundamental group ZoZ of the Klein bottle is not a subgroup of G.

Proof. Suppose that G contains an infinite virtually cyclic subgroup V of type II.
Then QV is the infinite dihedral group. Its commutator [QV , QV ] is infinite cyclic.
Let W be the preimage of the commutator [QV , QV ] under the canonical projection
pV : V → QV . There exists an element y ∈ QV such that conjugation by y induces
−id on [QV , QV ]. Obviously W is an infinite virtually cyclic group of type I, and
the restriction of pV to W is the canonical map pW :W→QW =[QV , QV ]. Choose
an element x ∈ V with pV (x) = y. Conjugation by x induces an automorphism
of W which induces −id on QW . Hence the virtually cyclic subgroups of type I of
G are not orientable.

The statement about the Klein bottle is obvious. �
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For the notions of a CAT(0)-group and of a hyperbolic group we refer for
instance to [Bridson and Haefliger 1999; Ghys and de la Harpe 1990; Gromov
1987]. The fundamental group of a closed Riemannian manifold is hyperbolic if
the sectional curvature is strictly negative, and is a CAT(0)-group if the sectional
curvature is nonpositive.

Lemma 8.7. Let G be a hyperbolic group. Then the infinite virtually cyclic sub-
groups of type I of G are orientable if and only if all infinite virtually cyclic sub-
groups of G are of type I.

Proof. The “only if” statement follows from Lemma 8.6. To prove the “if” state-
ment, assume that all infinite virtually cyclic subgroups of G are of type I.

By [Lück and Weiermann 2012, Example 3.6], every hyperbolic group satis-
fies the condition (NMF in⊆VC I ), i.e., every infinite virtually cyclic subgroup V
is contained in a unique maximal one Vmax and the normalizer of Vmax satisfies
NVmax = Vmax. Let M be a complete system of representatives of the conjugacy
classes of maximal infinite virtually cyclic subgroups. Since by assumption V ∈M
is of type I, we can fix a generator σV ∈ QV for each V ∈M.

Consider any infinite virtually cyclic subgroup W of G type I. Choose g ∈ G
and V ∈M such that gWg−1

⊆ V . Then conjugation with g induces an injection
Qc(g) : QW→ QV by Lemma 1.1(vi). We equip W with the generator σW ∈ QW for
which there exists an integer n ≥ 1 with Qc(g)(σW )= (σV )

n . This is independent
of the choice of g and V : for every g ∈ G and V ∈M with |gV g−1

∩ V | = ∞,
the condition (NMF in⊆VC I ) implies that g belongs to V and conjugation with an
element g ∈ V induces the identity on QV . �

Lemma 8.8. Let G be a CAT(0)-group. Then the infinite virtually cyclic subgroups
of type I of G are orientable if and only if all infinite virtually cyclic subgroups of G
are of type I and the fundamental group ZoZ of the Klein bottle is not a subgroup
of G.

Proof. Because of Lemma 8.6 it suffices to construct for a CAT(0)-group an orien-
tation for its infinite virtually cyclic subgroups of type I, provided that all infinite
virtually cyclic subgroups of G are of type I and the fundamental group ZoZ of
the Klein bottle is not a subgroup of G.

Consider on the set of infinite virtually cyclic subgroups of type I of G the
relation ∼, where we put V1 ∼ V2 if and only if there exists an element g ∈ G
with |gV1g−1

∩ V2| = ∞. This is an equivalence relation since, for any infinite
virtually cyclic group V and elements v1, v2 ∈ V of infinite order, we can find
integers n1, n2 with vn1

1 = v
n2
2 , n1 6= 0 and n2 6= 0. Choose a complete system of

representatives S for the classes under ∼. For each element V ∈ S we choose an
orientation σV ∈ QV .
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Given any infinite virtually cyclic subgroup W⊆G of type I we define a preferred
generator σW ∈ QW as follows: Choose g ∈ G and V ∈ S with |gWg−1

∩ V | =∞.
Let i1 :gWg−1

∩V→W be the injection sending v to g−1vg and i2 :gWg−1
∩V→V

be the inclusion. By Lemma 1.1(vi) we obtain injections of infinite cyclic groups
Qi1 : QgWg−1∩V → QW and Qi2 : QgWg−1∩V → QV . Equip QW with the gen-
erator σW for which there exist integers n1, n2 ≥ 1 and σ ∈ QgWg−1∩V with
Qi1(σ )= (σW )

n1 and Qi2(σ )= (σV )
n2 .

We have to show that this is well-defined. Obviously it is independent of the
choice of σ , n1 and n2. It remains to show that the choice of g does not matter. For
this purpose we have to consider the special case W = V and have to show that the
new generator σW agrees with the given one σV . We conclude from [Lück 2009,
Lemma 4.2] and the argument about the validity of condition (C) appearing in the
proof of [Lück 2009, Theorem 1.1(ii)] that there exists an infinite cyclic subgroup
C ⊆ gV g−1

∩V such that g belongs to the normalizer NGC . It suffices to show that
conjugation with g induces the identity on C . Let H ⊆G be the subgroup generated
by g and C . We obtain a short exact sequence 1→ C→ H pr

→ H/C→ 1, where
H/C is the cyclic subgroup generated by pr(g). Suppose that H/C is finite. Then
H is an infinite virtually cyclic subgroup of G which must, by assumption, be of
type I. Since the center of H must be infinite by Lemma 1.1(ii) and hence the
intersection of the center of H with C is infinite cyclic, the conjugation action of
g on C must be trivial. Suppose that H/C is infinite. Then H is the fundamental
group of the Klein bottle if the conjugation action of g on C is nontrivial. Since
the fundamental group of the Klein bottle is not a subgroup of G by assumption,
the conjugation action of g on C is trivial also in this case. �

8C. Proof of Theorem 0.2. Let OrVC I \F in(G) be the full subcategory of the orbit
category Or(G) consisting of those objects G/V for which V is an infinite virtually
cyclic subgroup of type I. We obtain a functor

gen(Q?) :OrVC I \F in(G)→ Z/2-Sets

sending G/V to gen(QV ), and a G-map f : G/V → G/W to gen( f ) as defined
in (6.3). The Z/2-action on gen(QV ) is given by taking the inverse of a generator.
The condition that the virtually cyclic subgroups of type I of G are orientable (see
Definition 8.5) is equivalent to the condition that the functor gen(Q?) is isomorphic
to the constant functor sending G/V to Z/2. A choice of an orientation corresponds
to a choice of such an isomorphism.

Proof of Theorem 0.2. Because of Theorem 0.1 and Lemma 8.4 it suffices to show
that the Z[Z/2]-module H G

n (EG→ EVC I (G); NK G
A) is isomorphic to Z[Z/2]⊗Z A

for some Z-module A.
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Fix an orientation {σV | V ∈ VC I } in the sense of Definition 8.5. We have the
OrVC I (G)-spectrum

NK G ′
R :OrVC I (G)→ Spectra,

which sends G/V to the trivial spectrum if V is finite and to NK (G/V ;A, σV )

if V is infinite virtually cyclic of type I. This is well-defined by the orientabil-
ity assumption. Now there is an obvious natural isomorphism of functors from
OrVC I (G) to the category of Z/2-spectra

NK G ′
A ∧ (Z/2)+

∼=
−→ NK G

A,

which is a weak equivalence of OrVC I (G)-spectra. It induces a Z[Z/2]-isomorphism

H G
n (EG→ EVC I (G); NK G ′

A )⊗Z Z[Z/2] ∼=−→ H G
n (EG→ EVC I (G); NK G

A).

This finishes the proof of Theorem 0.2. �

9. Rational vanishing of the relative term

This section is devoted to the proof of Theorem 0.3.
Consider the following diagram of groups, where the vertical maps are inclu-

sions of subgroups of finite index and the horizontal arrows are automorphisms:

H
φ
//

i
��

H

i
��

K
ψ
// K

We obtain a commutative diagram

Kn(RHφ[t])
i[t]∗
//

(evH )∗

��

Kn(RKψ [t])
i[t]∗
//

(evK )∗

��

Kn(RHφ[t])

(evH )∗

��

Kn(RH)
i∗

// Kn(RK) i∗
// Kn(RH)

(9.1)

as follows: i∗ and i∗ are the maps induced by induction and restriction with the
ring homomorphism Ri : RH → RK; i[t]∗ and i[t]∗ are the maps induced by
induction and restriction with the ring homomorphism Ri[t] : RHφ[t] → RKψ [t];
evH : RHφ[t] → RH and evK : RKψ [t] → RK are the ring homomorphisms given
by putting t = 0.

The left square is obviously well-defined and commutative. The right square is
well-defined since the restriction of RK to RH by Ri is a finitely generated free
RH -module and the restriction of RKψ [t] to RHφ[t] by Ri[t] is a finitely generated
free RHφ-module by the following argument.
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Put l := [K : H ]. Choose a subset {k1, k2, . . . , kl} of K such that K/H can be
written as {k1 H, k2 H, . . . , kl H}. The map

α :

l⊕
i=1

RH ∼=
−→ i∗RK, (x1, x2, . . . , xl) 7→

l∑
i=1

xi · ki ,

is an homomorphism of RH -modules and the map

β :

l⊕
i=1

RHφ[t]
∼=
−→ i[t]∗RKψ [t], (y1, y2, . . . , yl) 7→

l∑
i=1

yi · ki ,

is a homomorphism of RHφ[t]-modules. Obviously α is bijective. The map β is bi-
jective since for any integer m we get K/H={ψm(k1)H, ψm(k2)H, . . . , ψm(ki )H}.

To show that the right square commutes we have to define for every finitely
generated projective RKψ [t]-module P a natural RH -isomorphism

T (P) : (evH )∗i[t]∗P ∼=
−→ i∗(evK )∗P.

First we define T (P). By the adjunction of induction and restriction it suffices
to construct a natural map T ′(P) : i∗(evH )∗i[t]∗P → (evK )∗P . Since i ◦ evH =

evK ◦ i[t] we have to construct a natural map T ′′(P) : i[t]∗i[t]∗P → P , since
then we define T ′(P) to be (evK )∗(T ′′(P)). Now define T ′′(P) to be the adjoint
of the identity id : i[t]∗P → i[t]∗P . Explicitly T (P) sends an element h ⊗ x in
(evH )∗i[t]∗P= RH⊗evH i[t]∗P to the element i(h)⊗x in i∗(evK )∗P=RK⊗evK P .

Obviously T (P) is natural in P and compatible with direct sums. Hence, in
order to show that T (P) is bijective for all finitely generated projective RKψ [t]-
modules P , it suffices to do that for P = RKψ [t]. Now the claim follows since the
following diagram of RH -modules commutes:

RH ⊗evH i[t]∗RKψ [t]
T (RKψ [t])

// i∗(RK⊗evK RKψ [t])

∼=

��

RH ⊗evH

(⊕l
i=1 RHφ[t]

)id⊗evH β

∼=

OO

i∗RK

⊕l
i=1 RH ⊗evH RHφ[t]

∼=

OO

∼=
//
⊕l

i=1 RH

α

OO

where the isomorphisms α and β have been defined above and all other arrows
marked with ∼= are the obvious isomorphisms. Recall that NKn(RH, Rφ) is by
definition the kernel of (evH )∗ : Kn(RHφ[t])→ Kn(RH) and the analogous state-
ment holds for NKn(RK, Rψ).
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The diagram (9.1) induces homomorphisms

i∗ : NKn(RH, Rφ)→ NKn(RK, Rψ),

i∗ : NKn(RK, Rψ)→ NKn(RH, Rφ).

Since both composites

Kn(RHφ[t])
i[t]∗◦i[t]∗
−−−−−→ Kn(RHφ[t]) and Kn(RH)

i∗◦i∗
−−→ Kn(RH)

are multiplication with l, we conclude:

Lemma 9.2. The composite i∗ ◦ i∗ : NKn(RH, Rφ)→ NKn(RH, Rφ) is multipli-
cation with l for all n ∈ Z.

Lemma 9.3. Let φ : K → K be an inner automorphism of the group K . Then there
is, for all n ∈ Z, an isomorphism

NKn(RK, Rφ) ∼=−→NKn(RK).

Proof. Let k be an element such that φ is given by conjugation with k. We obtain
a ring isomorphism

η : RK Rφ[t]
∼=
−→RK[t],

∑
i

λi t i
7→ λi ki t i .

Let evRK,φ : RKφ[t] → RK and evRK : RK[t] → RK be the ring homomorphisms
given by putting t = 0. Then we obtain a commutative diagram with isomorphisms
as vertical arrows

Kn(RK Rφ[t]) η

∼=
//

evRK,φ

��

Kn(RK[t])

evRK

��

Kn(RK)
∼=

id
// Kn(RK)

It induces the desired isomorphism NKn(RK, Rφ) ∼=−→NKn(RK). �

Remark. As the referee has pointed out, this results holds more generally (with
identical proof) for the twisted Bass group NF(S, φ) of any functor F from rings
to abelian groups and any inner ring automorphism φ : S→ S.

Theorem 9.4. Let R be a regular ring. Let K be a finite group of order r and let
φ : K ∼=

−→ K be an automorphism of order s. Then NKn(RK, Rφ)[1/rs] = 0 for
all n ∈ Z. In particular, NKn(RK, Rφ)⊗Z Q= 0 for all n ∈ Z.

Proof. Let t be a generator of the cyclic group Z/s of order s. Consider the
semidirect product K oφ Z/s. Let i : K → K oφ Z/s be the canonical inclusion.
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Let ψ be the inner automorphism of K oφ Z/s given by conjugation with t . Then
[K oφ Z/s : K ] = s and the following diagram commutes:

K
φ

//

i
��

K

i
��

K oφ Z/s
ψ
// K oφ Z/s

Lemmas 9.2 and 9.3 yield maps i∗ : NKn(RK, φ) → NKn(R[K oφ Z/s]) and
i∗ : NKn(R[K oφ Z/s])→ NKn(RK, φ) such that i∗ ◦ i∗ = s · id. This implies
that NKn(RK, φ)[1/s] is a direct summand in NKn(R[K oφ Z/s])[1/s]. Since R
is regular by assumption and hence NKn(R) vanishes for all n ∈ Z, we conclude
from [Hambleton and Lück 2012, Theorem A] that

NKn(R[K oφ Z/s])[1/rs] = 0.

(For R = Z and some related rings, this has already been proved by Weibel [1981,
(6.5), p. 490].) This implies NKn(RK, φ)[1/rs] = 0. �

Theorem 9.4 has already been proved for R = Z in [Grunewald 2008, Theo-
rem 5.11].

Now we are ready to give the proof of Theorem 0.3.

Proof of Theorem 0.3. Because of Theorem 0.1 it suffices to prove, for all n ∈ Z,

H G
n (EG→ EVC I (G); NK G

R )⊗Z Q
∼=
−→{0}.

There is a spectral sequence converging to H G
p+q(EG→ EVC I (G); NK G

R ) whose
E2-term is the Bredon homology

E2
p,q = H

ZOrVC I (G)
p (EG→ EVC I (G);πq(NK G

R ))

with coefficients in the covariant functor from OrVC I (G) to the category of Z-
modules coming from composing NK G

R :OrVC I (G)→ Spectra with the functor
taking the q-homotopy group; see [Davis and Lück 1998, Theorems 4.7 and 7.4].
Since Q is flat over Z, it suffices to show, for all V ∈ VC I ,

πq(NK G
R (G/V ))⊗Z Q= 0.

If V is finite, NK G
R (G/V ) is by construction the trivial spectrum and the claim is

obviously true. If V is a virtually cyclic group of type I, then we conclude from
the diagram (5.6) that

πn(NK G
R (G/V ))∼= NKn(RKV , Rφ)⊕NKn(RKV , Rφ−1).

Now the claim follows from Theorem 9.4. �
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10. On the computation of the relative term

In this section we give some further information about the computation of the
relative term H G

n (EG→ EG; K G
R )
∼= H G

n (EG→ EVC(G); NK G
R ).

Lück and Weiermann [2012] give a systematic analysis of how the space EVC I (G)
is obtained from EG. We say that G satisfies the condition (MF in⊆VC I ) if any
virtually cyclic subgroup of type I is contained in a unique maximal infinite cyclic
subgroup of type I. We say that G satisfies the condition (NMF in⊆VC I ) if it satisfies
(MF in⊆VC I ) and, for any maximal virtually cyclic subgroup V of type I, its normal-
izer NG V agrees with V . Every word hyperbolic group satisfies (NMF in⊆VC I ); see
[Lück and Weiermann 2012, Example 3.6].

Suppose that G satisfies (MF in⊆VC I ). Let M be a complete system of repre-
sentatives V of the conjugacy classes of maximal virtually cyclic subgroups of
type I. Then we conclude from [Lück and Weiermann 2012, Corollary 2.8] that
there exists a G-pushout of G-CW-complexes with inclusions as horizontal maps

∐
V∈M G×NG V E NG V∐

V∈M idG× fV

��

i
// EG

f
��∐

V∈M G×NG V EVC I (NG V ) // EVC I (G)

This yields for all n ∈ Z an isomorphism, using the induction structure in the sense
of [Lück 2002, Section 1],⊕

V∈M

H NG V
n (E NG V → EVC I (NG V ); K NG V

R )
∼=
−→ H G

n (EG→ EVC I (G); K G
R ).

Combining this with Theorem 0.1 yields the isomorphism⊕
V∈M

H NG V
n (E NG V → EVC I (NG V ); NK NG V

R )
∼=
−→ H G

n (EG→ EVC I (G); K G
R ).

Suppose now that G satisfies (NMF in⊆VC I ) and recall that NKG
R (V/H)= 0 for

finite H , by definition. Then the isomorphism above reduces to the isomorphism⊕
V∈M

πn(NK V
R (V/V )) ∼=−→ H G

n (EG→ EVC I (G); K G
R ),

and πn(NK V
R (V/V )) is the Nil-term NKn(RKV , Rφ)⊕NKn(RKV ; Rφ−1) appear-

ing in the twisted version of the Bass–Heller–Swan decomposition of RV (see
[Grayson 1988, Theorems 2.1 and 2.3]) if we write V ∼= KV oφ Z.
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11. Fibered version

We illustrate in this section, by an example which will be crucial in [Farrell et al.
2016], that we do get information from our setting also in a fibered situation.

Let p : X → B be a map of path connected spaces. We will assume that it is
π1-surjective, i.e., induces an epimorphism on fundamental groups. Suppose that
B admits a universal covering q : B̃→ B.

Choose base points x0 ∈ X , b0 ∈ B and b̃0 ∈ B̃ satisfying p(x0)= b0 = q(b̃0).
We will abbreviate 0 = π1(X, x0) and G = π1(B, b0). Recall that we have a free
right proper G-action on B̃ and q induces a homeomorphism B̃/G ∼=

−→ B. For
a subgroup H ⊆ G denote by q(G/H) : B̃ ×G G/H = B̃/H → B the obvious
covering induced by q . The pullback construction yields a commutative square of
spaces

X (G/H)
q̄(G/H)

//

p̄(G/H)
��

X

p
��

B̃×G G/H
q(G/H)

// B

where q̄(G/H) is again a covering. This yields covariant functors from the orbit
category of G to the category of topological spaces,

B :Or(G)→ Spaces, G/H 7→ B̃×G G/H,

X :Or(G)→ Spaces, G/H 7→ X (G/H).

The assumption that p is π1-surjective ensures that X (G/H) is path connected for
all H ⊆ G.

By composition with the fundamental groupoid functor we obtain a functor

5(X) :Or(G)→Groupoids, G/H 7→5(X (G/H)).

Let R-FGF be the additive category whose set of objects is {Rn
| n = 0, 1, 2, . . . }

and whose morphisms are R-linear maps. In the sequel it will always be equipped
with the trivial G- or 0-action or considered as constant functor G→ Add-Cat.
Consider the functor

ξ :Groupoids→ Spectra, G 7→ K
(∫

G
R-FGF

)
.

The composite of the last two functors yields a functor

K (p) := ξ ◦5(X) :Or(G)→ Spectra.

Associated to this functor there is — see [Davis and Lück 1998] — a G-homology
theory H G

∗
(−; K (p)) := πn(OG(−) ∧Or(G) K (p)). We will be interested in the
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associated assembly map induced by the projection EG→ G/G,

H G
n (EG; K (p))→ H G

n (G/G; K (p))∼= Kn(R0). (11.1)

The goal of this section is to identify this assembly map with the assembly map

H G
n (EG; KA)→ H G

n (G/G; KA)= Kn(R0)

for a suitable additive category with G-action A. Thus the results of this paper
apply also in the fibered setup.

Consider the functor

G0 :Or(G)→Groupoids, G/H 7→ G0(G/H),

where we consider G/H as a 0-set by restriction along the group homomorphism
0→ G induced by p.

Lemma 11.2. There is a natural equivalence

T : G0→5(X)

of covariant functors Or(G)→Groupoids.

Proof. Given an object G/H in Or(G), we have to specify an equivalence of
groupoids T (G/H) : G0(G/H)→5(X (G/H)). For an object in G0(G/H) which
is given by an element wH ∈ G/H , define T (wH) to be the point in X (G/H)
which is determined by (b̃0, wH) ∈ B̃ ×G G/H and x0 ∈ X . This makes sense
since q(G/H)((b̃0, wH))= b0 = q(x0).

Let γ : w0 H → w1 H be a morphism in G0(G/H). Choose a loop u X in X at
x0 ∈ X which represents γ . Let u B be the loop p ◦ u X in B at b0 ∈ B. There is
precisely one path u B̃ in B̃ which starts at b̃0 and satisfies q ◦u B̃ = u B . Let [u B] ∈G
be the class of u B , or, equivalently, the image of γ under π1(p, x0) : 0→ G. By
definition of the right G-action on B̃ we have b̃0 · [u B] = u B(1). Define a path
u B̃/H in B̃×G G/H from (b̃0, w0 H) to (b̃0, w1 H) by t 7→ (u B(t), w0 H). This is
indeed a path ending at (b̃0, w1 H) since (b̃0 · [u B], w0 H) = (b̃0, [u B] ·w0 H) =
(b̃0, w1 H) holds in B̃×G G/H . Obviously the composite of u B̃/H with q(G/H) :
B̃ ×G G/H → B is u B . Hence u B̃/H and u X determine a path in X (G/H) from
T (w0 H)→ T (w1 H) and hence a morphism T (w0 H)→ T (w1 H) in5(X (G/H)).
One easily checks that the homotopy class (relative to the endpoints) of u depends
only on γ . Thus we obtain the desired functor T (G/H) :G0(G/H)→5(X (G/H)).
One easily checks that they fit together, so that we obtain a natural transformation
T : G0→5(X).

At a homogeneous space G/H , the value of G0 is a groupoid equivalent to the
group π1(p, x0)

−1(H), while the value of 5(X) is a groupoid equivalent to the
fundamental group of X (G/H). Up to this equivalence, the functor T , at G/H ,
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is the standard identification of these two groupoids. Hence T is a natural equiva-
lence. �

We obtain a covariant functor

K (p)′ :Or(G)→ Spectra, G/H 7→ K
(∫

G0(G/H)
R-FGF

)
.

Lemma 11.2 implies that the following diagram commutes, where the vertical ar-
row is the isomorphism induced by T :

H G
n (EG; K (p))

H G
n (pr;K (p))

++

H G
n (G/G; K (p))= Kn(R0)

H G
n (EG; K (p)′)

H G
n (pr;K (p)′)

33

∼=

T∗

OO

Now the functor K (p)′ is, up to natural equivalence, of the form K G
A for some

additive G-category, namely for A= indq:0→G R-FGF; see [Bartels and Lück 2010,
(11.5) and Lemma 11.6]. We conclude:

Lemma 11.3. The assembly map (11.1) is an isomorphism for all n ∈ Z if the
K-theoretic Farrell–Jones conjecture for additive categories holds for G.
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