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The local symbol complex of a reciprocity functor

Evangelia Gazaki

For a reciprocity functor M we consider the local symbol complex

(M⊗M Gm)(ηC)→
⊕
P∈C

M(k)→M(k),

where C is a smooth complete curve over an algebraically closed field k with
generic point ηC and ⊗M is the product of Mackey functors. We prove that if M
satisfies certain assumptions, then the homology of this complex is isomorphic
to the K-group of reciprocity functors T (M,CH0(C)

0)(Spec k).

1. Introduction

Let F be a perfect field. We consider the category EF of finitely generated field
extensions of F . F. Ivorra and K. Rülling [2015] created a theory of reciprocity
functors. A reciprocity functor is a presheaf with transfers in the category Reg≤1

of regular schemes of dimension at most one over some field k ∈ EF that satisfies
various properties.

Some examples of reciprocity functors include commutative algebraic groups,
homotopy invariant Nisnevich sheaves with transfers, Kähler differentials. More-
over, if M1, . . . ,Mr are reciprocity functors, Ivorra and Rülling construct a K-
group T (M1, . . . ,Mr ) which is itself a reciprocity functor.

One of the crucial properties of a reciprocity functor M is that it has local
symbols. Namely, if C is a smooth, complete and geometrically connected curve
over some field k ∈ EF with generic point η, then at each closed point P ∈ C there
is a local symbol assignment

(. ; .)P :M(η)×Gm(η)→M(k),

satisfying three characterizing properties, one of which is a reciprocity relation∑
P∈C(g; f )P = 0, for every g ∈M(η) and f ∈ Gm(η). We note here that if G is

a commutative algebraic group over an algebraically closed field k, then the local
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symbol of G coincides with the local symbol constructed by Rosenlicht–Serre in
[Serre 1959]. The reciprocity relation induces a local symbol complex (C)(

M
M⊗

Gm

)
(η)

((. ;.)P )P∈C
−→

⊕
P∈C

M(k)
∑

P
−→M(k),

where by ⊗M we denote the product of Mackey functors (see Definition 3.2). The
main goal of this article is to give a description of the homology H(C) of the above
complex in terms of K-groups of reciprocity functors. Our computations work well
for curves C over an algebraically closed field k. In the last section we describe
some special cases where the method could be refined to include nonalgebraically
closed base fields. To obtain a concrete result, we need to impose two conditions on
the reciprocity functor T (M,CH 0(C)0) (see Assumptions 3.3, 3.10). In Section 3
we prove the following theorem.

Theorem 1.1. Let C be a smooth, complete curve over an algebraically closed
field k. Let M be a reciprocity functor such that the K-group of reciprocity func-
tors T (M,CH 0(C)0) satisfies the assumptions 3.3 and 3.10. Then the homol-
ogy of the local symbol complex (C) is canonically isomorphic to the K-group
T (M,CH 0(C)0)(Spec k).

Here CH 0(C)0 is a reciprocity functor that is identified with the Jacobian variety
J of C .

In Section 4 we give some examples of reciprocity functors that satisfy the two
assumptions. In particular, we prove the following theorem.

Theorem 1.2. Let F1, . . . ,Fr be homotopy invariant Nisnevich sheaves with trans-
fers, and consider the reciprocity functor M= T (F1, . . . ,Fr ). Let C be a smooth,
complete curve over an algebraically closed field k. Then there is an isomorphism

H(C)' T (F1, . . . ,Fr ,CH 0(C)0)(Spec k).

In particular, if G1, . . . ,Gr are semiabelian varieties over k, then we obtain an
isomorphism

H(C )' T (G1, . . . ,Gr ,CH 0(C)0)(Spec k)' K (k;G1, . . . ,Gr ,CH 0(C)0),

where
K (k;G1, . . . ,Gr ,CH 0(C)0)

is the Somekawa K-group attached to

G1, . . . ,Gr .

Another case where the assumptions of Theorem 1.1 are satisfied is when M=
T (M1, . . . ,Mr ) such that Mi = Ga for some i ∈ {1, . . . , r}. Using the main
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result of [Rülling and Yamazaki 2014] together with Theorem 5.4.7. of [Ivorra
and Rülling 2015], we obtain the following corollary.

Corollary 1.3. Let M1, . . . ,Mr be reciprocity functors. Let

M= T (Ga,M1, . . . ,Mr ).

Then for any smooth complete curve C over k, H(C)=0. In particular, if char k=0,
the complex

�n+1
k(C)

ResP
−→

⊕
P∈C

�n
k

∑
P
−→�n

k

is exact.

The idea for Theorem 1.1 stems from the special case when M= Gm . In this
case the local symbol

k(C)×⊗M k(C)×
(. ;.)P
−→ k×

at a closed point P ∈ C factors through the group T (Gm,Gm)(ηC). By a theorem
in [Ivorra and Rülling 2015] this group is isomorphic to the usual Milnor K-group
K M

2 (k(C)) and we recover the Milnor complex

K M
2 (k(C))→

⊕
P∈C

k×
∑

P
−→ k×.

This complex was studied by M. Somekawa [1990] and R. Akhtar [2000]. Using
different methods, they both prove that the homology of the above complex is
isomorphic to the Somekawa K-group K (k;Gm,CH 0(C)0). This group turns out
to be isomorphic to the group T (Gm,CH 0(C)0)(Spec k). (by [Ivorra and Rülling
2015, Theorem 5.1.8; Kahn and Yamazaki 2013, Theorem 11.14]). A similar result
was proved by T. Hiranouchi [2014] for his Somekawa-type additive K-groups. Our
method to prove Theorem 1.1 is similar to the method used by R. Akhtar and T.
Hiranouchi.

Notation 1.4. For a smooth connected variety X over k ∈ EF , we denote by k(X)
the function field of X . Let C be a smooth complete curve over k ∈ EF and P ∈C a
closed point. We write ordP for the normalized discrete valuation on k(C) defined
by the point P and for an integer n ≥ 1, we put

U (n)
C,P = { f ∈ k(C)× : ordP(1− f )≥ n}.

2. Review of definitions

Reciprocity functors. Let Reg≤1 be the category whose objects are regular F-
schemes of dimension at most one which are separated and of finite type over
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some k ∈ EF . Let Reg≤1 Cor be the category with the same objects as Reg≤1 and
with morphisms finite correspondences. A reciprocity functor M is a presheaf
of abelian groups on Reg≤1 Cor which satisfies various properties. Here we only
recall those properties that we will need later in the paper.

Notation 2.1. Let M be a reciprocity functor. For k ∈ EF we will write

M(k) :=M(Spec k).

Let E/k be a finite extension of fields in EF . The morphism Spec E→ Spec k
induces a pull-back map M(k)→M(E), which we call restriction and will denote
by resE/k . Moreover, there is a finite correspondence Spec k → Spec E which
induces a push-forward M(E)→M(k), which we will call the trace and denote
it by TrE/k .

Injectivity. Let C be a smooth, complete curve over k ∈ EF . Each open set U ⊂ C
induces a pull-back map M(C)→M(U ) that is required to be injective. Addi-
tionally, if ηC is the generic point of C , we have an isomorphism

lim
−→

M(U )
'
−→M(ηC),

where the limit extends over all open subsets U ⊂ C .

Specialization and trace maps. Let P ∈C be a closed point. For each open U ⊂C
with P ∈U , the closed immersion P ↪→U induces M(U )→M(P). We consider
the stalk MC,P = lim

−→
M(U ), where the limit extends over all open U ⊂ C with

P ∈U . The above morphisms induce a specialization map

sP :MC,P →M(P).

Moreover, for every closed point P ∈ C we obtain a Trace map, which we will
denote by

TrP/k :M(P)→M(k).

The modulus condition and local symbols. Let M be a reciprocity functor. Let
C be a smooth, projective and geometrically connected curve over k ∈ EF . The
definition of a reciprocity functor imposes the existence for each section

g ∈M(ηC)

of a modulus m corresponding to g. The modulus m is an effective divisor

m=
∑
P∈S

n P P

on C , where S is a closed subset of C , such that g ∈MC,P , for every P 6∈ S and
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for every function f ∈ k(C)× with f ∈
⋂

P∈S U (n P )
C,P , we have∑

P∈C\S

ordP( f )TrP/k(sP(g))= 0.

Notation 2.2. Let f ∈ k(C)× be such that f ∈
⋂

P∈S U (n P )
C,P . Then we will write

f ≡ 1 mod m.

The modulus condition on M is equivalent to the existence, for each closed
point P ∈ C , of a biadditive pairing called the local symbol at P

(. ; .)P :M(ηC)×Gm(ηC)→M(k),

which satisfies the following three characterizing properties:

(1) (g; f )P =0, for f ∈U (n P )
C,P , where m=

∑
P∈S n P P is a modulus corresponding

to g.

(2) (g; f )P = ordP( f )TrP/k(sP(g)), for all g ∈MC,P and f ∈ k(C)×.

(3)
∑

P∈C(g; f )P = 0, for every g ∈M(ηC) and f ∈ k(C)×.

The proof of existence and uniqueness of this local symbol is along the lines of
[Serre 1959, Proposition 1, Chapter III]. In this paper we will use the precise defi-
nition of (g; f )P , for g ∈M(ηC) and f ∈ k(C)×, so we review it here.

Case 1: If g∈MC,P , property (2) forces us to define (g; f )P=ordP( f )TrP/k(sP(g)).

Case 2: Let P ∈ S. Using the weak approximation theorem for valuations, we
consider an auxiliary function fP for f at P , i.e., a function fP ∈ k(C)× such that
fP ∈U (n P ′ )

C,P ′ at every P ′ ∈ S, P ′ 6= P and f/ fP ∈U (n P )
C,P . Then we define

(g; f )P =−
∑
Q 6∈S

ordQ( fP)TrQ/k(sQ(g)).

Using the local symbol, one can define for each closed point P ∈ C ,

Fil0P M(ηC) :=MC,P

and for r ≥ 1

FilrP M(ηC) :=
{
g ∈M(ηC) : (g; f )P = 0, for all f ∈U (r)

C,P

}
.

Then {FilrP}r≥0 form an increasing and exhaustive filtration of M(ηC).
The reciprocity functors M for which there exists an integer n ≥ 0 such that

M(ηC) = FilnP M(ηC), for every smooth complete and geometrically connected
curve C and every closed point P ∈ C , form a full subcategory of RF , which is
denoted by RFn . (see [Ivorra and Rülling 2015, Definition 1.5.7]).
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K-group of reciprocity functors. Let M1, . . . ,Mn be reciprocity functors. The
K-group of reciprocity functors T (M1, . . . ,Mn) is itself a reciprocity functor that
satisfies various properties [Ivorra and Rülling 2015, Theorem 4.2.4]. We will not
need the precise definition of T (M1, . . . ,Mn), but only the following properties.

(a) For k ∈ EF , the group T (M1, . . . ,Mn)(k) is a quotient of(
M1

M⊗
· · ·

M⊗
Mn

)
(k),

where by
⊗M we denote the product of Mackey functors (see Definition 3.2).

The group T (M1, . . . ,Mn)(k) is generated by elements of the form

Trk′/k(x1⊗ · · ·⊗ xn),

with xi ∈Mi (k ′), where k ′/k is any finite extension.

(b) Let C be a smooth, complete and geometrically connected curve over L ∈ Ek

and let P ∈ C be a closed point. Let gi ∈Mi (ηC). Then:

(i) If for some r ≥ 0 we have gi ∈ FilrP Mi (ηC) for i = 1, . . . , n, then

g1⊗ · · ·⊗ gn ∈ FilrP T (M1, . . . ,Mn)(ηC).

Moreover, if the element gi has modulus mi =
∑

P∈Si
ni

P P , for i =
1, . . . , n, then m=

∑
P∈∪Si

max1≤i≤n{ni
P}P is a modulus for g1⊗· · ·⊗gn .

(ii) If gi ∈ Fil0P Mi (ηC), for i = 1, . . . , n, then we have an equality

sP(g1⊗ · · ·⊗ gn)= sP(g1)⊗ · · ·⊗ sP(gn).

Examples. Some examples of reciprocity functors include constant reciprocity func-
tors, commutative algebraic groups, homotopy invariant Nisnevich sheaves with
transfers. For an explicit description of each of these examples we refer to [Ivorra
and Rülling 2015, Section 2]. The following example is of particular interest to us.

Let X be a smooth projective variety over k ∈ EF . Then there is a reciprocity
functor CH 0(X) such that for any scheme U ∈ Reg≤1 over k we have

CH 0(X)(U )= C H0(X ×k k(U )).

Since we assumed X is projective, the degree map C H0(X)→ Z induces a map
of reciprocity functors CH 0(X)→ Z whose kernel will be denoted by CH 0(X)0.
Both CH 0(X) and CH 0(X)0 are in RF0.

Remark 2.3. If X has a k-rational point, we have a decomposition of reciprocity
functors CH 0(X) ' CH 0(X)0 ⊕ Z, where Z is the constant reciprocity functor.
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Moreover, if M1, . . . ,Mr are reciprocity functors, then by [Ivorra and Rülling
2015, Corollary 4.2.5(2)] we have a decomposition

T (CH 0(X),M1, . . . ,Mr )' T (CH 0(X)0,M1, . . . ,Mr )⊕ T (Z,M1, . . . ,Mr ).

Relation to Milnor K-theory and Kähler differentials. If we consider the reci-
procity functor T (G×n

m ) := T (Gm, . . . ,Gm) attached to n copies of Gm , then for
every k ∈ EF the group T (G×n

m )(k) is isomorphic to the usual Milnor K-group
K M

n (k) [Ivorra and Rülling 2015, Theorem 5.3.3].
Moreover, if k is of characteristic zero, then the group T (Ga,G×n−1

m )(k), n ≥ 1,
is isomorphic to the group of Kähler differentials �n−1

k/Z [Ivorra and Rülling 2015,
Theorem 5.4.7].

3. The homology of the complex

Convention 3.1. From now on, unless otherwise mentioned, we will be working
over an algebraically closed base field k ∈ EF .

Let M be a reciprocity functor. Let C be a smooth complete curve over k with
generic point ηC . At each closed point P ∈ C we have a local symbol (. ; .)P . We
will denote by (. ; .)C the collection of all symbols {(. ; .)P}P∈C , namely

(. ; .)C :M(ηC)⊗Gm(ηC)→
⊕
P∈C

M(k).

We note here that a reciprocity functor M is also a Mackey functor. In what fol-
lows, we will need the definition of the product of Mackey functors M1, . . . ,Mr ,
evaluated at a finitely generated extension L of k. We review this definition here.

Definition 3.2. Let M1, . . . ,Mr be Mackey functors over k. Let L be a finitely
generated extension of k. Then,(

M1

M⊗
· · ·

M⊗
Mr

)
(L) :=

(⊕
L ′/L

M1(L ′)
⊗
· · ·

⊗
Mr (L ′)

)/
R,

where the sum is extended over all finite extensions L ′ of L and R is the subgroup
generated by the following family of elements: If L ⊂ K ⊂ E is a tower of finite
field extensions and we have elements xi ∈Mi (E) for some i ∈ {1, . . . , r} and
x j ∈M j (K ), for every j 6= i , then

x1⊗ · · ·⊗TrE/K (xi )⊗ · · ·⊗ xr − resE/K (x1)⊗ · · ·⊗ xi ⊗ · · ·⊗ resE/K (xr ) ∈ R.

The relation in R is known as the projection formula. Using the functoriality
properties of the local symbol at each closed point P ∈ C [Ivorra and Rülling 2015,
Proposition 1.5.5], we obtain a complex
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(
M

M⊗
Gm

)
(ηC)

(. ;.)C
−→

⊕
P∈C

M(k)
∑

P
−→M(k).

Namely, if C ′ is a smooth complete curve over k with function field k(C ′)⊃ k(C)
and we have a section g ∈M(ηC ′) and a function f ∈ k(C ′)×, then we define

(g; f )C =
( ∑
λ(P ′)=P

(g; f )P ′

)
P
∈

⊕
P∈C

M(k),

where λ : C ′→ C is the finite covering induced by the inclusion k(C)⊂ k(C ′).
We will denote this complex by (C) and its homology by H(C). We consider

the reciprocity functor CH 0(C). Notice that the existence of a k-rational point
P0 ∈C(k) yields a decomposition of reciprocity functors CH 0(C)'CH 0(C)0⊕Z.
We make the following assumption on the K-group T (M,CH 0(C)).

Assumption 3.3. Let M be a reciprocity functor. Let g∈M(ηC), h∈CH 0(C)(ηC)

and f ∈ k(C)×. Let P ∈ C be a closed point of C . Assume that the local symbol
(g⊗ h; f )P ∈ T (M,CH 0(C))(k) vanishes at every point P such that sP(h)= 0.

In the next section we will give examples where Assumption 3.3 is satisfied.

Proposition 3.4. Let M be a reciprocity functor over k satisfying Assumption 3.3.
Then there is a well defined map

8 :

(⊕
P∈C

M(k)
)/

Im((. ; .)C)→ T (M,CH 0(C))(k),

(aP)P∈C →
∑
P∈C

aP ⊗[P].

Proof. First, we immediately observe that if P ∈ C is any closed point of C , then
the map φP :M(k)→ T (M,CH 0(C))(k) given by a→ a⊗[P] is well defined.
In particular, the map

8=
∑

P

φP :
⊕
P∈C

M(k)→ T (M,CH 0(C))(k)

is well defined. Let D be a smooth complete curve over k with generic point
ηD and assume there is a finite covering λ : D → C . Let g ∈ M(ηD) and
f ∈ k(D)× be a function. For every closed point P ∈ C we consider the ele-
ment (aP)P ∈

⊕
P∈C M(k) such that aP = (g; f )P . We are going to show that

8
(∑

P∈C(g; f )P
)
= 0.

First, we treat the case D = C and λ = 1C . The element g ∈M(ηC) admits a
modulus m with support S. We consider the zero-cycle h = [ηC ] ∈ CH 0(C)(ηC).
Notice that for a closed point P ∈ C , the specialization map

sP : CH 0(C)(ηC)→ CH 0(C)(k)
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has the property sP(h)= [P]. We are going to show that

8((g; f )P)= (g⊗ h; f )P for every P ∈ C,

and the required property will follow from the reciprocity law of the local symbol.
We consider the following cases.

(1) Let P 6∈ S. Then,

8((g; f )P)= φP(ordP( f )sP(g))= ordP( f )sP(g)⊗[P]

= ordP( f )sP(g)⊗ sP(h)

= ordP( f )sP(g⊗ h)= (g⊗ h; f )P .

(2) Let P ∈ S and f ≡ 1 mod m at P . Since CH 0(C)∈ RF0, h does not contribute
to the modulus, and hence, by item (b)(ii) on page 322 we get

8((g; f )P)=8(0)= 0= (g⊗ h; f )P .

(3) Let now P ∈ S and f ∈ K× be any function. We consider an auxiliary function
fP for f at P . By the definition of the local symbol, we have

8((g; f )P)= φP

(
−

∑
Q 6∈S

ordQ( fP)sQ(g)
)
=−

∑
Q 6∈S

ordQ( fP)sQ(g)⊗[P]

= −

∑
Q 6∈S

ordQ( fP)sQ(g)⊗[Q] +
∑
Q 6∈S

ordQ( fP)sQ(g)⊗ ([Q] − [P]).

We observe that we have an equality

(g⊗ h; f )P =−
∑
Q 6∈S

ordQ( fP)sQ(g)⊗[Q].

Next, notice that the flat embedding k ↪→ k(C) induces a restriction map
resη/k : C H0(C)→ C H0(C × ηC). Let h0 = resη/k([P]). We clearly have∑

Q 6∈S

ordQ( fP)sQ(g)⊗ ([P] − [Q])= (g⊗ (h0− h); f )P .

Since we assumed that the Assumption 3.3 is satisfied, we get that this last
symbol vanishes. For, sP(h− h0)= 0.

The general case is treated in a similar way. Namely, if λ : D → C is a finite
covering of smooth complete curves over k and g ∈M(ηD), then the local symbol
at a closed point P ∈ C is defined to be (g; f )P =

∑
λ(Q)=P(g; f )Q . Considering

the zero cycle h = [ηD] ∈ CH 0(C)(ηD), we can show that

8P((g; f )P)= (g⊗ h; f )P . �

From now on we fix a k-rational point P0 of C .



326 EVANGELIA GAZAKI

Corollary 3.5. The map 8 of Proposition 3.4 induces a map

8 : H(C)→ T (M,CH 0(C)0)(k),

(aP)P∈C →
∑
P∈C

a⊗ ([P] − [P0]),

which does not depend on the k-rational point P0.

Proof. If (aP)P∈C ∈ H(C), then∑
P

aP = 0 ∈M(k),

and hence ∑
P

aP ⊗[P0] = 0 ∈ T (M,CH 0(C))(k).

We conclude that if (aP)P∈C ∈ H(C) then 8((aP)P∈C) ∈ T (M,CH 0(C)0)(k) and
clearly the map does not depend on the k-rational point P0. �

Definition 3.6. Let M1, . . . ,Mr be reciprocity functors over k. We consider the
geometric K-group attached to M1, . . . ,Mr ,

K geo(k;M1, . . . ,Mr )=

(
M1

M⊗
· · ·

M⊗
Mr

)
(k)/R,

where the subgroup R is generated by the following family of elements. Let D be
a smooth complete curve over k with generic point ηD. Let gi ∈Mi (ηD). Then
each gi admits a modulus mi . Let m= sup1≤i≤r mi and S be the support of m. Let
f ∈ k(D)× be a function such that f ≡ 1 mod m. Then∑

P 6∈S

ordP( f )sP(g1)⊗ · · ·⊗ sP(gr ) ∈ R.

Notation 3.7. The elements of the geometric K-group K geo(k;M1, . . . ,Mr ) will
be denoted as {x1⊗ · · ·⊗ xr }

geo.

Remark 3.8. In the notation of [Ivorra and Rülling 2015] the group

K geo(k;M1, . . . ,Mr )

is the same as the Lax Mackey functor LT (M1, . . . ,Mr ) evaluated at Spec k
[Ivorra and Rülling 2015, Definition 3.1.2]. In general the group T(M1, . . . ,Mr )(k)
is a quotient of K geo(k;M1, . . . ,Mr ). In the next section we give some examples
where these two groups coincide.
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Proposition 3.9. Let P0 be a fixed k-rational point of C. The map

9 : K geo(k;M,CH 0(C)0)−→ H(C),

{x ⊗ ([P] − [P0])}
geo
−→ (xP ′)P ′∈C ,

with

xP ′ =


x if P ′ = P,
−x if P ′ = P0,

0 otherwise,
for P 6= P0, is well defined and does not depend on the choice of the k-rational
point P0.

Proof. We start by defining the map 9P0 :M(k)⊗CH 0(C)0(k)→ H(C) as in the
statement of the proposition. To see that 9P0 is well defined, let f ∈ k(C)×. We
need to verify that 9P0(x ⊗ div( f ))= 0 for every x ∈M(k). Let π : C→ Spec k
be the structure map. Consider the pull back

g = π?(x) ∈M(C).

Then g ∈M(ηC) has modulus m= 0 and hence for a closed point P ∈ C we have
(g, f )P = ordP( f )sP(π

?(x))= ordP( f )x . Since

9P0(x ⊗ div( f ))= (ordP( f )x)P∈C ,

we conclude that 9P0(x ⊗ div( f )) ∈ Im(. , .)C .
Next, notice that 9P0 does not depend on the base point P0. For, if Q0 is another

base point, then

9Q0({x ⊗ ([P] − [P0])}
geo)

=9Q0({x ⊗ ([P] − [Q0])}
geo)−9Q0({x ⊗ ([P0] − [Q0])}

geo).

Here 9Q0({x ⊗ ([P] − [Q0])}
geo) gives the element x at the coordinate P and −x

at the coordinate Q0, while −9Q0({x ⊗ ([P0]− [Q0])}
geo) gives −x at coordinate

P0 and x at Q0. From now on we will denote this map by 9. In order to show that
9 factors through K geo(k;M,CH 0(C)0), we consider a smooth complete curve
D with generic point ηD. Let g1 ∈M(ηD) admitting a modulus m with support
SD and g2 ∈ CH 0(C)0(ηD) having modulus m2 = 0. Let moreover f ∈ k(D)× be
a function such that f ≡ 1 mod m. We need to show that

9

( ∑
R 6∈SD

ordR( f ){sR(g1)⊗ sR(g2)}
geo
)
= 0 ∈ H(C).

Since we assumed the existence of a k-rational point P0, the group CH 0(C)0(ηD)

is generated by elements of the form [h] −m[resk(D)/k(P0)], where h is a closed
point of C × k(D) having residue field of degree m over k(D). Using the linearity
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of the symbol on the last coordinate, we may reduce to the case when g2 is of the
above form. Notice that h = Spec k(E) ↪→ C × Spec k(D), where E is a smooth
complete curve over k, and hence h induces two coverings

E

µ

��

λ
// D

C

Let SE = λ
−1(SD). For a closed point R ∈ D, we obtain an equality:

sR([h])=
∑

λ(Q)=R

e(Q/R)[µ(Q)],

where e(Q/R) is the ramification index at the point Q ∈ E lying over R ∈ D. Since
m = [k(E) : k(D)] =

∑
λ(Q)=R e(Q/R), we get

9

(∑
R 6∈SD

ordR( f ){sR(g1)⊗ sR(g2)}
geo
)

=9

( ∑
R 6∈SD

ordR( f )
{

sR(g1)⊗

( ∑
λ(Q)=R

e(Q/R)[µ(Q)] −m[P0]

)}geo)

=9

( ∑
R 6∈SD

∑
λ(Q)=R

e(Q/R) ordR( f )
{
sR(g1)⊗ ([µ(Q)] − [P0])

}geo
)

=9

(∑
Q 6∈SE

ordQ(λ
?( f ))

{
sQ(λ

?(g1))⊗ ([µ(Q)] − [P0])
}geo

)
.

Here we have used the equality sR(g1) = sQ(λ
?(g1)), valid for a closed point

Q ∈ E lying over R ∈ D, and following from [Ivorra and Rülling 2015, Propo-
sition 1.3.7(S2)] and the assumption that the base field k is algebraically closed.

We conclude that

9

( ∑
Q 6∈SE

ordQ(λ
?( f ))

{
sQ(λ

?(g1))⊗ ([µ(Q)] − [P0])
}

Q/k

)

=


∑

µ(Q)=P
ordQ(λ

?( f ))sQ(λ
?(g1)) at P 6= P0,

−
∑

P 6=P0

∑
µ(Q)=P

ordQ(λ
?( f ))sQ(λ

?(g1)) at P0.

This last computation completes the argument, after we notice that the reciprocity
of the local symbol yields an equality

−

∑
P 6=P0

∑
µ(Q)=P

ordQ(λ
?( f ))sQ(λ

?(g1))= (λ
?(g1); λ

?( f ))P0 . �
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We make the following assumption on T (M,CH 0(C)0).

Assumption 3.10. Let M be a reciprocity functor. Assume that the K-group

T (M,CH 0(C)0)(k)

coincides with the geometric K-group K geo(k;M,CH 0(C)0).

Theorem 3.11. Let M be a reciprocity functor such that the group

T (M,CH 0(C)0)(k)

satisfies both Assumptions 3.3 and 3.10. Then we have an isomorphism

H(C)' T (M,CH 0(C)0)(k).

Proof. By Proposition 3.9 we obtain a homomorphism

9 : T (M,CH 0(C)0)(k)→ H(C).

It is almost a tautology to check that 9 is the inverse of 8. Namely,

89(x ⊗ ([P] − [P0]))=8((xP ′)P ′)=
∑

P ′
xP ′ ⊗[P ′] = x ⊗[P] − x ⊗[P0],

and

98((xP)P)=9

(∑
P∈C

xP ⊗ ([P] − [P0])

)
= (xP)P .

Notice that for the last equality, we used the fact that (xP)P∈C ∈ ker
(∑

P∈C

)
, and

hence at coordinate P0 we have xP0 =−
∑

P 6=P0
xP . �

4. Examples

In this section we give some examples of reciprocity functors M such that the
K-group of reciprocity functors T (M,CH 0(C)0) satisfies Assumptions 3.3 and
3.10.

Homotopy invariant Nisnevich sheaves with transfers. We consider the category
HINis of homotopy invariant Nisnevich sheaves with transfers over a perfect field F .
Let F1, . . . ,Fr ∈ HINis. Then each Fi induces a reciprocity functor F̂ i ∈ RF1 (see
[Ivorra and Rülling 2015, Example 2.3]). The associated K-group of reciprocity
functors T (F̂1, . . . , F̂r ) is also in RF1. We claim that T (T (F̂1, . . . , F̂r ),CH 0(C)0)
satisfies both assumptions of Theorem 3.11. The claim follows by the comparison
of the K-group T (T (F̂1, . . . , F̂r ),CH 0(C)0)(k) with the Somekawa type K-group
K (k;F1 . . . ,Fr ,CH 0(C)0) defined by B. Kahn and T. Yamazaki [2013, Defini-
tion 5.1].
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Remark 4.1. If M1, . . . ,Mr are reciprocity functors with r ≥ 3, then F. Ivorra
and K. Rülling in Corollary 4.2.5. of [Ivorra and Rülling 2015] prove that there is
a functorial map

T (M1, . . . ,Mr )→ T (T (M1, . . . ,Mr−1),Mr ),

which is surjective as a map of Nisnevich sheaves. It is not clear whether this map
is always an isomorphism which would imply that T is associative and we would
call it a product. In the case Fi ∈HINis, for every i ∈ {1, . . . , r}, associativity holds.
In fact, in this case there is an isomorphism of reciprocity functors

T (F̂1, . . . , F̂r )'

(
F1
⊗
HINis

· · ·

⊗
HINis

. . .Fr

)
,

where F1
⊗

HINis
· · ·
⊗

HINis
Fr is the product of homotopy invariant Nisnevich sheaves

with transfers. (see [Kahn and Yamazaki 2013, Section 2.10] for the definition of
the product and [Ivorra and Rülling 2015, Theorem 5.1.8] for the isomorphism).

Notation 4.2. By abuse of notation from now on we will write T (F1, . . . ,Fr ) for
the K-group of reciprocity functors associated to F̂1, . . . , F̂r .

Remark 4.3. Let NST be the category of Nisnevich sheaves with transfers. We
note here that there is a left adjoint to the inclusion functor NST→ HINis which
is denoted by hNis

0 (see [Kahn and Yamazaki 2013, Section 2]). If U is a smooth
curve over F , then there is a Nisnevich sheaf with transfers L(U ), where

L(U )(V )= Cor(V,U )

is the group of finite correspondences for V smooth over F , i.e., the free abelian
group on the set of closed integral subschemes of V × U which are finite and
surjective over some irreducible component of V . Then the corresponding homo-
topy invariant Nisnevich sheaf with transfers hNis

0 (U ) := hNis
0 (L(U )) is the sheaf

associated to the presheaf of relative Picard groups

V → Pic(U × V, D× V ),

where U is the smooth compactification of U , D = U \U and V runs through
smooth F-schemes. When U is projective we have an isomorphism

hNis
0 (U )' CH 0(U )

(see [Kahn and Yamazaki 2013, Lemma 11.2]). In particular, CH 0(C) is homotopy
invariant Nisnevich sheaf with transfers.

Let F ∈ HINis. If we are given a section g ∈ F(U ) for some open dense U ⊂ C ,
then g induces a map of Nisnevich sheaves with transfers ϕ : hNis

0 (U )→ F such
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that
ϕ(U ) : hNis

0 (U )(U )→ F(U ),

[1] → g,

where [1] ∈ hNis
0 (U )(U ) is the class of the diagonal. The existence of the map ϕ

follows by adjunction, since we have an obvious morphism L(U )→ F in NST.

Lemma 4.4. Let F1, . . . ,Fr ∈ HINis be homotopy invariant sheaves with transfers.
Then the K-group of reciprocity functors T (T (F1, . . . ,Fr ),CH 0(C)0) satisfies the
assumptions of Theorem 3.11.

Proof. By Remark 4.1 we get an isomorphism

T
(
T (F1, . . . ,Fr ),CH 0(C)0

)
(k)' T

(
F1, . . . ,Fr ,CH 0(C)0

)
(k).

Moreover, by Theorem 5.1.8. of [Ivorra and Rülling 2015] we get that the groups
K geo(k;F1, . . . ,Fr ,CH 0(C)0) and T(F1, . . . ,Fr ,CH0(C)0)(k) are equal and they
coincide with the Somekawa type K-group K (k;F1, . . . ,Fr ,CH 0(C)0). We con-
clude that Assumption 3.10 holds.

Regarding the Assumption 3.3, let gi ∈ Fi (ηC) and h ∈ CH 0(C)0(ηC) such that
sP(h) = 0 for some closed point P ∈ C . Let moreover f ∈ k(C)×. We need to
verify that (g1⊗· · ·⊗gr⊗h; f )P = 0. If gi ∈Fi,C,P , for every i ∈ {1, . . . , r}, then

(g1⊗ · · ·⊗ gr ⊗ h; f )P = ordP( f )sP(g1)⊗ · · ·⊗ sP(gr )⊗ sP(h)= 0.

Assume P is in the support of gi for some i ∈ {1, . . . , r}.
We first treat the case when Fi is curve-like (see [Kahn and Yamazaki 2013,

Definition 11.1]), for i = 1, . . . , r . For such Fi it suffices to consider elements
gi ∈ Fi (ηC) with disjoint supports [Kahn and Yamazaki 2013, Proposition 11.11].
In this case the claim follows by the explicit computation of the local symbol [Kahn
and Yamazaki 2013, Lemma 8.5, Proposition 11.6]. Namely, if P ∈ supp(gi ), then
the local symbol at P is given by the formula

(g1⊗ · · ·⊗ gr ⊗ h; f )P = sP(g1)⊗ . . . ∂P(gi , f )⊗ · · ·⊗ sP(gr )⊗ sP(h)= 0,

where ∂P(gi , f ) is the symbol at P defined in [Kahn and Yamazaki 2013, Sec-
tion 4.1].

Now assume that Fi is general, for i = 1, . . . , r . Since gi ∈ Fi (ηC) and

Fi (ηC)' lim
−→

Fi (U ),

there is an open dense subset Ui ⊂ C such that gi ∈ F(Ui ), for i = 1, . . . , r . By
Remark 4.3 we get that the sections gi induce morphisms in HINis, ϕi :hNis

0 (Ui )→F .
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In particular, we get a homomorphism

ϕ = ϕ1⊗ · · ·⊗ϕr ⊗ 1 : K
(
k; hNis

0 (U1), . . . , hNis
0 (Ur ),CH 0(C)0

)
→ K (k;F1, . . . ,Fr ,CH 0(C)0),

with the property

(g1⊗ · · ·⊗ gr ⊗ h; f )P = ϕ(([11]⊗ · · ·⊗ [1r ]⊗ h; f )P).

Notice that the latter element vanishes, because hNis
0 (Ui ) is curve-like, for i=1, . . . ,r

[Kahn and Yamazaki 2013, Lemma 11.2(c)] and hence

([11]⊗ · · ·⊗ [1r ]⊗ h; f )P = 0. �

Corollary 4.5. Let F1, . . . ,Fr ∈HINis. Let M= T (F1, . . . ,Fr ) and let (C) be the
local symbol complex associated to M corresponding to the curve C. Then there
is a canonical isomorphism

H(C )' T (F1, . . . ,Fr ,CH 0(C)0)(k).

In particular, if G1, . . . ,Gr are semiabelian varieties over k, then

H(C)' T (G1, . . . ,Gr ,CH 0(C)0)(k)' K (k;G1, . . . ,Gr ,CH 0(C)0),

where K (k;G1, . . . ,Gr ,CH 0(C)0) is the usual Somekawa K-group attached to
semiabelian varieties [Somekawa 1990, Definition 1.2].

The Ga-case. In this subsection we consider reciprocity functors

M1, . . . ,Mr , r ≥ 0,

and set M0 = Ga . We consider the K-group of reciprocity functors

T (Ga,M1, . . . ,Mr ).

Lemma 4.6. The K-group T (T (Ga,M1, . . . ,Mr ),CH 0(C)0) satisfies Assumption
3.3.

Proof. We have a functorial surjection

T (Ga,M1, . . . ,Mr ,CH 0(C)0)(k)� T (T (Ga,M1, . . . ,Mr ),CH 0(C)0)(k).

The first group vanishes by the main result of [Rülling and Yamazaki 2014, Theo-
rem 1.1]. Therefore, the second group vanishes as well. In particular, Assumption 3.3
is satisfied. �

Lemma 4.7. The K-group T (T (Ga,M1, . . . ,Mr ),CH 0(C)0) satisfies Assump-
tion 3.10.
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Proof. To prove the lemma, it suffices to show that

K geo(k; T (Ga,M1, . . . ,Mr ),CH 0(C)0)

vanishes.

Claim. There is a well defined local symbol

T (Ga,M1, . . . ,Mr )(ηC)⊗CH 0(C)0(ηC)⊗ k(C)×

→ K geo(k; T (Ga,M1, . . . ,Mr ),CH 0(C)0),

satisfying the unique properties (1)–(3) of page 321.

To have a well defined local symbol following [Serre 1959], we need for every
closed point P ∈ C the natural map

h : T (Ga,M1, . . . ,Mr )(OC,P)⊗CH 0(C)0(OC,P)

→ T (Ga,M1, . . . ,Mr )(ηC)⊗CH 0(C)0(ηC)

to be injective. For, if g1 ∈ T (Ga,M1, . . . ,Mr )(ηC), g2 ∈CH 0(C)0(ηC), then we
say that g1⊗ g2 is regular, if g1⊗ g2 = h(g̃1⊗ g̃2), for some

g̃1⊗ g̃2 ∈ T (Ga,M1, . . . ,Mr )(OC,P)⊗CH 0(C)0(OC,P).

For such g1 ⊗ g2 we can define (g1 ⊗ g2; f )P = ordP( f )sP(g̃1)⊗ sP(g̃2). For
nonregular g1⊗ g2 we define the local symbol using an auxiliary function fP for
f at P as usual (see page 321). The symbol (. ; .)P is well defined, since there
is a unique lifting g̃1⊗ g̃2 and the unique properties (1)–(3) of page 321 are satis-
fied by the very definition of the group K geo(k; T (Ga,M1, . . . ,Mr ),CH 0(C)0).
Therefore to prove the claim, it suffices to show the injectivity of h.

Note that we have an equality

CH 0(C)0(OC,P) := CH 0(C × k(Spec(OC,P)))
0
= CH 0(C)0(ηC).

The map T (Ga,M1, . . . ,Mr )(OC,P)→ T (Ga,M1, . . . ,Mr )(ηC) is injective by
the injectivity condition of reciprocity functors. Next, T (Ga,M1, . . . ,Mr ) be-
comes a reciprocity functor of either Q or Fp-vector spaces, depending on whether
char F is 0 or p > 0. Setting κ =Q or Z/p depending on the case we have

T (Ga,M1, . . . ,Mr )(OC,P)⊗Z CH 0(C)0(OC,P)

= T (Ga,M1, . . . ,Mr )(OC,P)⊗κ (κ ⊗Z CH 0(C)0(OC,P)).

Since the κ-module κ ⊗Z CH 0(C)0(OC,P) is flat, the claim follows.
To prove the lemma, we imitate the proof given in [Rülling and Yamazaki 2014]

for the vanishing of T (Ga,M1, . . . ,Mr ,CH 0(C)0)(k). Let {(x0, . . . , xr ), ζ }
geo

be a generator of K geo(k; T (Ga,M1, . . . ,Mr ),CH 0(C)0). Since k is algebraically
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closed, we may assume ζ = [P0] − [P1], for some closed points P0, P1 ∈ C . Then
we can show that

{(x0, . . . , xr ), ζ }
geo
=

∑
P∈C

(
(x0g⊗resk(C)/k(x1) · · ·⊗resk(C)/k(xr ))⊗ηC ; f

)
P = 0,

where f ∈ k(C)× is a function such that ordP0( f ) = 1 and ordP1( f ) = −1 and
g ∈ k(C)× is obtained using the exact sequence

�1
k(C)/k −→

⊕
P∈C

�1
k(C)/k

�1
C,P

∑
ResP
−→ k −→ 0.

For more details on this local symbol computation see Section 3 in [Rülling and
Yamazaki 2014]. In particular, we refer to 3.2 and 3.4 there for the choice of the
functions f, g ∈ k(C)×. �

Corollary 4.8. Let M=T (Ga,M1, . . . ,Mr ), where M1, . . . ,Mr are reciprocity
functors. For any smooth complete curve C over k, we have H(C)= 0. In particu-
lar, if char F = 0, the complex

�n+1
k(C)

ResP
−→

⊕
P∈C

�n
k

∑
P
−→�n

k

is exact.

Proof. When char F = 0, Ivorra and Rülling [2015, Theorem 5.4.7] showed an
isomorphism of reciprocity functors θ :�n

' T (Ga,G×n). Moreover, the complex
(C) factors through �n+1

k(C). �

5. The nonalgebraically closed case

In order to prove Theorem 3.11, we made the assumption that the curve C is over
an algebraically closed field k. The reason this assumption was necessary is that
for a general reciprocity functor M the local symbol at a closed point P ∈ C does
not have a local description, but rather depends on the other closed points. Namely,
if P is in the support of the modulus m corresponding to a section g ∈M(ηC), then
we have an equality

(g; f )P =−
∑
Q 6∈S

ordQ( fP)TrQ/k(sQ(g)),

where fP is an auxiliary function for f at P . If for some reciprocity functor M
we have a local description (g; f )P = TrP/k(∂P(g; f ))), where ∂P(g; f ) ∈M(P),
for every P ∈ C , then we can obtain a complex (C)′(

M
M⊗

Gm

)
(ηC)

∂C
−→

⊕
P∈C

M(P)
∑

P TrP/k
−→ M(k).
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For such a reciprocity functor M, assuming the existence of a k-rational point
P0 ∈ C(k), we can have a generalization of Theorem 3.11 for the complex (C)′

by imposing the following two stronger conditions on M. Namely, we make the
following assumptions.

Assumption 5.1. Let M be a reciprocity functor for which we have a local de-
scription of the symbol (g; f )P = TrP/k(∂P(g; f )). Let λ : D → C be a finite
morphism. Assume that for every h ∈ CH 0(C)(ηD) and every closed point P ∈ C
we have an equality

(g⊗ h; f )P = TrP/k(∂P(g, f )⊗ sP(h)).

Assumption 5.2. We assume that for every finite extension L/k we have an equal-
ity

K geo(L;M,CH 0(C)0)' T (M,CH 0(C)0)(L).

Notation 5.3. If E/L is a finite extension and x ∈M(k), we will denote

xE = resE/L(x).

Theorem 5.4. Let M be a reciprocity functor that satisfies Assumptions 5.1 and
5.2. Then we have an isomorphism

8′ : H(C′)
'
−→ T (M,CH 0(C)0)(k),

(aP)P∈C →
∑
P∈C

TrP/k(aP ⊗ ([P] − P0,k(P))).

Proof. We start by considering the map

8′ :

(⊕
P∈C

M(P)
)/

Im ∂C → T (M,CH 0(C))(k),

(aP)P∈C →
∑
P∈C

TrP/k(aP ⊗[P]).

The map 8′ is well defined because of Assumption 5.1. Restricting to H(C′), we
obtain the map of the proposition. Moreover, we can consider the map

9 ′ : T (M,CH 0(C)0)(k)→ H(C′)

T rL/k(x ⊗ ([Q] − [L(Q) : L][P0,L ]))→ (xP ′)P ′∈C ,

with xP = TrL(Q)/k(P)(x), xP0 =−TrL(Q)/k(x) and xP ′ = 0 otherwise. Here L/k
is a finite extension, x ∈M(L), Q is a closed point of C × L having residue field
L(Q) that projects to P ∈ C under the map C × L→ C with P 6= P0. We denote
by k(P) the residue field of P . The map 9 ′ will be well defined (using the same
argument as in Proposition 3.9), as long as we check the following:
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(1) If k ⊂ L ⊂ E is a tower of finite extensions and we have elements x ∈M(L),
y ∈ CH 0(C)0(E), then 9 ′(TrL/k(x ⊗TrE/L(y)))=9 ′(TrE/k(xE ⊗ y)).

(2) 9 ′(TrL/k(TrE/L(x)⊗ y)) = 9 ′(TrE/k(x ⊗ yE)) for any x ∈M(E) and y ∈
CH 0(C)0(L).

For (1) we can reduce to the case when y = [Q] − [E(Q) : E]P0,E , for some
closed point Q of C × E with residue field E(Q). Let Q′ be the projection of
Q in C × L and P the projection of Q′ in C . Notice that we have an equality
TrE/L([Q])= [E(Q) : L(Q′)][Q′]. We compute

9 ′
(
TrE/k(xE ⊗ ([Q] − [E(Q) : E][P0,E ]))

)
=

{
TrE(Q)/k(P)(x) at P,
−TrE(Q)/k(x) at P0,

9 ′
(
TrL/k(x ⊗TrE/L([Q] − [E(Q) : E][P0,E ]))

)
=9 ′

(
TrL/k(x ⊗[E(Q) : L(Q′)]([Q′] − [L(Q′) : L][P0,L ]))

){
[E(Q) : L(Q′)]TrL(Q′)/k(P)(x) at P,
−[E(Q) : L(Q′)]TrL(Q′)/k(x) at P0.

The claim then follows in view of the equality

TrE(Q)/k(P)(x)= TrL(Q′)/k(P) TrE(Q)/L(Q′)(x)= [E(Q) : L(Q′)]TrL(Q′)/k(P)(x).

For (2) we can again reduce to the case when y = [Q]− [L(Q) : L][P0,L ] for some
closed point Q of C × L with residue field L(Q). Notice that we have an equality

[Q]E =
∑

Q′→Q

e(Q′/Q)[Q′],

where the sum extends over all closed points Q′ of C × E that project to Q. We
compute:

9 ′(TrL/k(TrE/L(x)⊗ y))

=

{
TrL(Q)/k(P)(TrE/L(x)L(Q)) at P,

−TrL(Q)/k(TrE/L(x)L(Q)) at P0,

=

{
TrL(Q)/k(P)(

∑
Q′→Q e(Q′/Q)TrE(Q′)/L(Q)(xE(Q′))) at P,

−TrL(Q)/k(
∑

Q′→Q e(Q′/Q)TrE(Q′)/L(Q)(xE(Q′))) at P0,

=

{∑
Q′→Q e(Q′/Q)TrE(Q′)/k(P)(xE(Q′)) at P,

−
∑

Q′→Q e(Q′/Q)TrE(Q′)/k(xE(Q′)) at P0.

The equality TrE/L(x)L(Q) =
∑

Q′→Q e(Q′/Q)TrE(Q′)/L(Q)(xE(Q′)) follows from
Remark 1.3.3, Property (MF1) of [Ivorra and Rülling 2015] if we set

ϕ : Spec E→ Spec L and ψ : Spec L(Q)→ Spec L .
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On the other hand we have

9 ′(TrE/k(x ⊗ yE))=9
′

( ∑
Q′→Q

e(Q′/Q)
)

TrE/k(x ⊗ ([Q′] − [L(Q) : L][P0,E ]))

=

{∑
Q′→Q e(Q′/Q))TrE(Q′)/k(P)(xE(Q′)) at P,

−
∑

Q′→Q e(Q′/Q))TrE(Q′)/k(xE(Q′)) at P0.

Next we need to show that the maps8′, 9 ′ are each other’s inverses. It is immediate
that the composition 9 ′8′ is the identity map. For the other composition, we
consider an element x⊗ ([Q]−[L(Q) : L][P0,L ]) ∈ T (M,CH 0(C)0)(L). If L(Q)
is the residue field of Q, then Q induces an L(Q)-rational point Q̃ of C × L(Q).
Then we have an equality TrL(Q)/L([Q̃])= [Q]. By the projection formula we get
an equality

x ⊗ ([Q] − [L(Q) : L][P0,L ])= TrL(Q)/L(xL(Q)⊗ ([Q̃] − [P0,L(Q)])),

we are therefore reduced to the case L(Q)= L . Then we have

8′9 ′
(
TrL/k(x ⊗ ([Q] − [P0,L ]))

)
= TrP/k(TrL/P(x)⊗ ([P] − [P0,k(P)]))

= TrP/k TrL/P(x ⊗ resL/P([P] − [P0,k(P)]))

= TrL/k(x ⊗[Q] − [P0,L ]).

This completes the proof of the theorem. �

Remark 5.5. We note here that for the algebraically closed field case if instead of
the Assumption 3.3, we had made the stronger Assumption 5.1, the proof of the
Proposition 3.4 would have become simpler. The only reason we used Assump-
tion 3.3 is that in general the problem of computing the symbol (g; f )P locally is
rather hard and is known only in very few cases, namely for homotopy invariant
Nisnevich sheaves with transfers, as the next example indicates.

Example 5.6. Let k ∈ EF be any perfect field. Let F1, . . . ,Fr be homotopy invari-
ant Nisnevich sheaves with transfers. Then as mentioned in the previous section,
the main theorem of [Kahn and Yamazaki 2013] gives an isomorphism

T (F1, . . . ,Fr )(L)' K geo(L;F1, . . . ,Fr )' K (L;F1, . . . ,Fr ),

where K (L;F1, . . . ,Fr ) is the Somekawa type K-group [Kahn and Yamazaki
2013, Definition 5.1] and L/k is any finite extension. In particular, let C be a
smooth, complete and geometrically connected curve over k and P ∈ C be a closed
point. As in the proof of Lemma 4.4, we can reduce to the case when Fi is curve-
like, for i = 1, . . . , r . To describe the local symbol, it therefore suffices to consider
sections gi ∈ Fi (ηC) with disjoint supports. In this case, if P is in the support of
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gi for some i ∈ {1, . . . , r} and f ∈ k(C)× is a function, then we have the following
explicit local description of (g1⊗ · · ·⊗ gr ; f )P .

(g1⊗ · · ·⊗ gr ; f )P = TrP/k(sP(g1)⊗ · · ·⊗ ∂P(gi , f )⊗ · · ·⊗ sP(gr )).

Moreover, CH 0(C)0 is itself a homotopy invariant Nisnevich sheaf with trans-
fers. Namely, CH 0(C)0 ∈ RF0 and hence the above formula implies that the
Assumption 5.1 is satisfied.
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