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DAHA and iterated torus knots

IVAN CHEREDNIK

IVAN DANILENKO

The theory of DAHA-Jones polynomials is extended from torus knots to their arbitrary
iterations (for any reduced root systems and weights), which includes the polyno-
miality, duality and other properties of the DAHA superpolynomials. Presumably
they coincide with the reduced stable Khovanov–Rozansky polynomials in the case
of nonnegative coefficients. The new theory matches well the classical theory of
algebraic knots and (unibranch) plane curve singularities; the Puiseux expansion
naturally emerges. The corresponding DAHA superpolynomials are expected to
coincide with the reduced ones in the Oblomkov–Shende–Rasmussen conjecture upon
its generalization to arbitrary dominant weights. For instance, the DAHA uncolored
superpolynomials at aD 0 , q D 1 are conjectured to provide the Betti numbers of
the Jacobian factors (compactified Jacobians) of the corresponding singularities.

14H50, 17B45, 20C08, 57M25, 17B22; 20F36, 33D52, 30F10, 55N10

0 Introduction

The theory of DAHA-Jones polynomials of torus knots [12; 22; 13] is fully extended
in this paper to arbitrary iterated knots for any reduced root systems and dominant
weights, which includes the polynomiality, duality and other properties of the DAHA
superpolynomials. We conjecture the coincidence of the latter with the stable reduced
Khovanov–Rozansky polynomials [27; 28; 26; 37] for pseudoalgebraic knots, including
all algebraic knots.

A similar connection is also expected with the physics superpolynomials associated
with the BPS states (see eg [15; 1; 16]) and those related to the Hilbert schemes of
plane curve singularities and rational DAHA; see [33; 23; 22] and references therein.
We note that using rational DAHA here is restricted only to the torus knots (and adding
colors is generally an open problem).

The new theory matches well the classical theory of algebraic knots and unibranch
plane curve singularities, though we see no a priori reasons for this. The Newton
pairs in the theory of Puiseux expansion naturally emerge in our approach; see eg [17].
For instance, the iterations that are trivial topologically result in interesting algebraic
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symmetries of the DAHA superpolynomials, for instance, in uniform formulas for the
torus knots in the form T .r;mrC s/ for any m> 0.

We expect that our superpolynomials add t to the Oblomkov–Shende conjecture [34;
30] and add weights to [33, Conjecture 2] for algebraic knots; see [30, Section 1.5]. The
reduced ORS conjecture connects the Poincaré polynomial PKhR of the triply graded
reduced Khovanov–Rozansky homology of an algebraic link with Palg describing the
cohomology of the nested Hilbert scheme of the corresponding plane curve singularity
under the weight filtration. We conjecture them to coincide with the uncolored DAHA
superpolynomial PDAHA .

The coincidence with PKhR is expected for any pseudoalgebraic knots (see above
and Conjecture 2.4). The reduction of PDAHA to the HOMFLYPT polynomials is
conjectured for any iterated knots and weights (we prove it for sl2 and checked in all
the examples). The link PDAHA � PKhR is a challenge (our examples are mainly for
the Khovanov polynomials).

Finding PKhR is an involved task; one of the reasons is that the skein relations generally
cannot be extended from the HOMFLYPT polynomials to the HOMFLYPT homology.
The polynomial Palg is very sophisticated too. For instance, its portion of minimal
a–degree requires knowing the so called perverse filtration in the cohomology of the
Jacobian factors. Even the Betti numbers of the latter are known only in few cases.
See [36, Theorem 22, Conjecture 23] concerning the torus knots and those for Puiseux
exponents .4; 2u; v/.

By contrast, PDAHA can be calculated in an entirely formal way without any (theoretical)
limitations; we expect that this construction will eventually include arbitrary iterated
links. Thus, the main obstacle with stating parts (ii) and (iii) of Conjecture 2.4 below
for arbitrary weights is the absence of PKhR and Palg in such a generality. Concerning
PDAHA � Palg , the connection of DAHA with the K–theory of the Hilbert schemes of
C2 [41] and the affine Springer fibers [45; 49] can be mentioned; the Jacobian factors
of isolated plane curve singularities are certain affine Springer fibers [29].

In the examples we calculated, the t –coefficients of the DAHA superpolynomials
evaluated at a D 0; q D 1 coincide with the Betti numbers (when known) of the
corresponding Jacobian factors (compactified Jacobians), which are the ranks of the
corresponding cohomology groups. Their sum, the Euler number, can be calculated
via the HOMFLYPT polynomial; see [34, Section 7] and [30].

We provide conjectural Betti numbers in the case of Puiseux exponents .6; 8; 9/ and
.6; 9; 10/ and quite a few examples beyond the technique used in [36]. In the case of
.6; 8; 9/, we calculate formal DAHA counterparts of such Betti numbers for 2!1 and
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!2 . Also, we do this for several uncolored nonalgebraic iterated knots; for instance,
we extend the family .4; 6; v � 7/ from [36] to pseudoalgebraic v D 3; 5.

In all considered examples (not only for the pseudoalgebraic iterated knots), our
superpolynomials reduce to the corresponding HOMFLYPT polynomials under t 7! q ,
a 7! �a for arbitrary dominant weights and any iterated knots. They match well the
(uncolored) Khovanov polynomials (for sl2 ) in the sense of [12, Conjecture 3.7] for all
pseudoalgebraic knots we considered; recall that the latter are defined as those with
nonnegative coefficients of (uncolored) PDAHA . It is possible that such a connection
can be extended to any iterated knots; see Section 4.1.

We note that our paper was triggered by paper [40], though it is restricted to A1 and
we do not quite understand its approach. The Newton pairs and other features of our
construction do not appear in [40]. Also, the polynomials Jn there have significant
q; t –denominators (even in the uncolored case); the polynomiality of DAHA-Jones
polynomials is the key in our theory. The J2 –polynomials for Cab.˙5; 2/T .3; 2/

from [40, Section 5.2] are very different from our ones in these cases (and we do not
understand how they were obtained); see (4-3) below. The first part of [40] is devoted
to the skein modules, which continues [5]; this direction is of obvious importance.

1 DAHA and Macdonald polynomials

1.1 Affine root systems

Let RD f˛g � Rn be a root system of type An; : : : ;G2 with respect to a euclidean
form .z; z0/ on Rn 3 z; z0 , W the Weyl group generated by the reflections s˛ , RC the
set of positive roots corresponding to fixed simple roots ˛1; : : : ; ˛n , and R� D�RC .
The form is normalized by the condition .˛; ˛/ D 2 for short roots. The weight
lattice is P D

Ln
iD1 Z!i , where f!ig are fundamental weights: .!i ; ˛

_
j /D ıij for

the coroots ˛_ D 2˛=.˛; ˛/: The root lattice is Q D
Ln

iD1 Z˛i . Replacing Z by
Z˙ D fm 2 Z;˙m� 0g, we obtain P˙;Q˙ . See eg [7] or [10].

Setting �˛ WD .˛; ˛/=2, the vectors z̨ D Œ˛; �˛j � 2Rn �R�RnC1 for ˛ 2R; j 2 Z
form the twisted affine root system zR�R (z 2Rn are identified with Œz; 0�). We add
˛0 WD Œ�#; 1� to the simple roots for the maximal short root # 2RC . The corresponding
set zRC of positive roots is RC[fŒ˛; �˛j �; ˛ 2R; j > 0g.

The set of the indices of the images of ˛0 by all automorphisms of the affine Dynkin dia-
gram will be denoted by O (O D f0g for E8;F4;G2 ). Let O 0 WD fr 2O; r ¤ 0g. The
elements !r for r 2O 0 are minuscule weights, defined by the inequalities .!r ; ˛

_/� 1

for all ˛ 2RC . We set !0 D 0 for the sake of uniformity.
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Affine Weyl groups Given z̨ D Œ˛; �˛j � 2 zR and b 2 P , let

(1-1) sz̨.zz/D zz� .z; ˛
_/z̨; b0.zz/D Œz; � � .z; b/�

for zz D Œz; �� 2 RnC1 . The affine Weyl group �W D hsz̨ , z̨ 2 zRCi is the semidirect
product W nQ of its subgroups W D hs˛; ˛ 2RCi and Q, where ˛ is identified with

s˛sŒ˛;�˛� D sŒ�˛;�˛�s˛ for ˛ 2R:

The extended Weyl group �W is W nP , where the corresponding action is

(1-2) .wb/.Œz; ��/D Œw.z/; � � .z; b/� for w 2W; b 2 P:

It is isomorphic to �W n… for … WD P=Q. The latter group consists of �0 D id and
the images �r of minuscule !r in P=Q.

The group … is naturally identified with the subgroup of �W of the elements of the
length zero; the length is defined as

l. yw/D j�. yw/j for �. yw/ WD zRC\ yw�1.� zRC/:

One has !r D �r ur for r 2 O 0 , where ur is the element u 2W of minimal length
such that u.!r / 2 P� .

Setting ywD �r zw 2 �W for �r 2… and zw 2 �W , l. yw/ coincides with the length of any
reduced decomposition of zw in terms of the simple reflections si for 0� i � n:

1.2 Definition of DAHA

We follow [13; 12; 10]. Let m be the least natural number such that .P;P /D .1=m/Z.
Thus mD j…j with the following exceptions: mD 2 for D2k , and mD 1 for B2k and
Ck :

The double affine Hecke algebra, DAHA, depends on the parameters q and t� .� 2f�˛g/

and will be defined over the ring Zq;t WD ZŒq˙1=m; t˙1=2
� � formed by polynomials in

terms of q˙1=m and ft1=2
� g. Note that the coefficients of the Macdonald polynomials

will belong to Q.q; t�/.

For z̨ D Œ˛; �˛j � 2 zR; 0� i � n, we set

tz̨ D t˛ D t�˛ D qk�
˛ ; qz̨ D q�˛ ; ti D t˛i

; qi D q˛i
:

Also, using here (and below) sht and lng instead of � , we set

�k WD
1

2

X
˛>0

k˛˛ D ksht�shtC klng�lng; �� D
1

2

X
�˛D�

˛ D
X

�iD�;i>0

!i :
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For pairwise commutative X1; : : : ;Xn ,

(1-3) Xzb WD

nY
iD1

X
li

i qj if zb D Œb; j �; yw.Xzb/DX
yw.zb/

;

where b D

nX
iD1

li!i 2 P; j 2
1

m
Z; yw 2 �W :

For instance, X0 WDX˛0
D qX�1

#
.

Recall that !r D �r ur for r 2O 0 (see above). We will use that ��1
r is ��.i/ , where �

is the standard involution of the nonaffine Dynkin diagram, induced by ˛i 7! �w0.˛i/.
Generally, �.b/D�w0.b/D b� , where w0 is the longest element in W . Finally, we
set mij D 2; 3; 4; 6 when the number of links between ˛i and j̨ in the affine Dynkin
diagram is 0; 1; 2; 3, respectively.

Definition 1.1 The double affine Hecke algebra HH is generated over Zq;t by the
elements fTi j 0 � i � ng, pairwise commutative fXb j b 2 Pg satisfying (1-3), and
the group …, where the following relations are imposed:

(o) .Ti � t
1=2
i /.Ti C t

�1=2
i /D 0 for 0� i � n.

(i) TiTj Ti � � � D Tj TiTj � � � with mij factors on each side.

(ii) �r Ti�
�1
r D Tj if �r .˛i/D j̨ .

(iii) TiXb DXbX�1
˛i

T �1
i if .b; ˛_i /D 1; for 0� i � n.

(iv) TiXb DXbTi if .b; ˛_i /D 0 for 0� i � n.

(v) �r Xb�
�1
r DX�r .b/ DXu�1

r .b/q
.!�.r /;b/ for r 2O 0 .

Given zw 2 �W and r 2O , the product

(1-4) T�r zw WD �r Til
� � �Ti1

; where zw D sil
� � � si1

for l D l. zw/;

does not depend on the choice of the reduced decomposition. Moreover,

(1-5) TyvT yw D Tyv yw whenever l.yv yw/D l.yv/C l. yw/ for yv; yw 2 �W :

In particular, we arrive at the pairwise commutative elements

(1-6) Yb WD

nY
iD1

Y
li

i ; if b D

nX
iD1

li!i 2 P; where Yi WD T!i
; b 2 P:

When acting in the polynomial representation V (see below), they are called difference
Dunkl operators. Their orbit sums (symmetrizations)

P
w2W Yw.b/ then become

the Macdonald operators and their generalizations upon acting on symmetric Lau-
rent polynomials.
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1.3 The automorphisms

The following maps can be (uniquely) extended to automorphisms of HH , where
q1=.2m/ must be added to Zq;t (see [10, (3.2.10–15)]):

�CW Xb 7!Xb; Ti 7! Ti .i > 0/; Yr 7!Xr Yr q�.!r ;!r /=2;(1-7)

�CW T0 7! q�1X#T �1
0
; �r 7! q�.!r ;!r /=2Xr�r .r 2O 0/;

��W Yb 7! Yb; Ti 7! Ti .i � 0/; Xr 7! Yr Xr q.!r ;!r /=2;(1-8)

��.X#/D qT0X�1
#

T �1
s#
I � WD �C�

�1
� �C D �

�1
� �C�

�1
� ;

�.Xb/D Y �1
b ; �.Yb/D T �1

w0
X�1

b� Tw0
; �.Ti/D Ti .i > 0/:(1-9)

These automorphisms fix t� , q and their fractional powers, as well as the anti-involution

(1-10) 'W Xb 7! Y �1
b ; Yb 7!X�1

b ; Ti 7! Ti .1� i � n/:

We will also need the involution

(1-11) �W Ti 7! T �1
i ; Xb 7!X�1

b ; �r 7! �r .0� i � n/;

which “conjugates” t and q , namely t
1=.2m/
� 7! t

�1=.2m/
� and q1=.2m/ 7! q�1=.2m/ . As

above, b 2P and r 2O 0 . The involution � extends the Kazhdan–Lusztig involution in
the affine Hecke theory; see [10, (3.2.19–22)]. Note that

'�˙' D �� D ��
�1
˙ ��1; ��˙�D �

�1
˙ :

Let us list the matrices corresponding to the automorphisms and anti-automorphisms
above upon the natural projection onto GL2.Z/, corresponding to t1=.2m/

� D1Dq1=.2m/ .
The matrix

�
˛


ˇ
ı

�
will represent the map

Xb 7!X ˛
b Y




b
; Yb 7!X

ˇ

b
Y ıb

for b 2 P . One has

�C 7!

�
1 1

0 1

�
; �� 7!

�
1 0

1 1

�
; � 7!

�
0 1

�1 0

�
; ' 7!

�
0 �1

�1 0

�
; � 7!

�
�1 0

0 1

�
:

Projective GL2 We define the projective GL^2 .Z/ as the group generated by �˙ and
� subject to the relations �C��1

� �C D �
�1
� �C�

�1
� ; �2 D 1 and ��˙�D ��1

˙
: The span

of �˙ is the projective PSL^2 .Z/ (due to Steinberg), which is isomorphic to the braid
group B3 .
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1.4 Macdonald polynomials

Following [10], we use the PBW theorem to express any H 2 HH in the formP
a;w;b ca;w;bXaTwYb for w 2W and a; b 2 P (this presentation is unique). Then

we substitute as follows:

(1-12) f gevW Xa 7! q�.�k ;a/; Yb 7! q.�k ;b/; Ti 7! t
1=2
i :

Polynomial representation The functional HH 3 H 7! fH gev , called coinvariant,
acts via the projection H 7!H+ WDH.1/ of HH onto the polynomial representation
V , which is the HH –module induced from the one-dimensional character Ti.1/ D

t�1=2
i D Yi.1/ for 1� i � n and T0.1/D t�1=2

0
. Recall that t0 D tsht ; see [10; 12; 13]

here and below.

In detail, the polynomial representation V is isomorphic to Zq;t ŒXb � as a vector space,
and the action of Ti (0� i � n) there is given by the Demazure–Lusztig operators:

(1-13) Ti D t
1=2
i si C .t

1=2
i � t

�1=2
i /.X˛i

� 1/�1.si � 1/ for 0� i � n:

The elements Xb become the multiplication operators and �r (r 2 O 0 ) act via the
general formula yw.Xb/DX yw.b/ for yw 2 �W . Note that �� and � naturally act in the
polynomial representation. See formula [13, (1.37)]. For the latter,

(1-14) �.f /D f ?; where X?
b DX�b; .q

�/? D q�� ; .tv/? D t�v for � 2Q:

Concerning the action of �� , see eg formula [13, (1.37)]. Also,

(1-15) f'.H /gev D fH gev; f�.H /gev D fH g
?
ev:

Macdonald polynomials The Macdonald polynomials Pb.X / for b 2 PC (they are
due to Kadell for the classical root systems) are uniquely defined as follows. For c 2P ,
let cC be a unique element such that cC 2W .c/\PC . Given b 2 PC and assuming
that bC ¤ cC 2 b�QC ,

(1-16) Pb �

X
a2W .b/

Xa 2

M
c

Q.q; t�/Xc and CT.PbXc��.X I q; t//D 0;

where

�.X I q; t/ WD
Y
˛2RC

1Y
jD0

.1�X˛q
j
˛/.1�X�1

˛ q
jC1
˛ /

.1�X˛t˛q
j
˛/.1�X�1

˛ t˛q
jC1
˛ /

:

Here, CT is the constant term; � is considered a Laurent series of Xb with the
coefficients expanded in terms of positive powers of q . The coefficients of Pb belong
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to the field Q.q; t�/. One has

(1-17) Pb.X
�1/D Pb�.X /D P?

b .X /; Pb.q
��k /D Pb.q

�k /D .Pb.q
��k //?;

where

.Pb.q
��k //? D q�.�k ;b/

Y
˛>0

.˛_;b/�1Y
jD0

�
1� q

j
˛ t˛X˛.q

�k /

1� q
j
˛X˛.q�k /

�
:

Recall that �.b/ D b� D �w0.b/ for b 2 P and see formula [10, (3.3.23)]. We set
Pıb WD Pb=Pb.q

��k / for b 2 PC ; this is the so called spherical normalization.

DAHA provides an important alternative (operator) approach to P –polynomials;
namely, they satisfy the (defining) relations

(1-18) Lf .Pb/D f .q
��k�b/Pb; where b 2 PC; Lf WD f .Xa 7! Ya/;

for any symmetric (W–invariant) polynomial f 2CŒXa; a 2 P �W .

2 DAHA-Jones theory

2.1 Iterated torus knots

The torus knots T .r; s/ are defined for any integers assuming that gcd.r; s/D 1. One
has the symmetries T .r; s/D T .s; r/D T .�r;�s/, where we use “D” for the ambient
isotopy equivalence. Also T .r; s/D 
 if jrj� 1 or jsj� 1 for the unknot, denoted by 

here and below. See eg [38; 17] or the Knot Atlas for the details and the corresponding
theory of the invariants.

The iterated torus knots, denoted in this paper by T .Er ; Es/, will be associated with two
sequences of integers of any signs:

(2-1) Er D fr1; : : : r`g; Es D fs1; : : : s`g such that gcd.ri ; si/D 1:

We will denote by ` the length of Er and Es . The pairs fri ; sig will become characteristic
or Newton pairs for algebraic knots. We will use this name, but generally consider
arbitrary iterated knots in this paper.

These are combinatorial data. The (topological) definition of iterated torus knots
requires one more sequence:

(2-2) a1 D s1; ai D ai�1ri�1ri C si .i D 2; : : : ;m/:

See eg [17] and [36]. Then, in terms of the cabling defined below,

(2-3) T .Er ; Es/ WD Cab.Ea; Er/.
/D .Cab.a`; r`/ � � �Cab.a2; r2//.T .a1; r1//:

Algebraic & Geometric Topology, Volume 16 (2016)
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Note that the first iteration (application of Cab) is for fa1; r1g (not for the last pair!).
Recall that 
 is the unknot and knots are considered up to ambient isotopy (we use
“D” for it).

Cabling The cabling Cab.a; b/.K/ of any oriented knot K in (oriented) S3 is
defined as follows; see eg [32; 17] and references therein. We consider a small
2–dimensional torus around K and put there the torus knot T .a; b/ in the direc-
tion of K , which is Cab.a; b/.K/ (up to ambient isotopy). We will sometimes set
Cab.Ea; Er/D Cab.Ea; Er/.
/.

This procedure depends on the order of a; b and orientation of K . We choose the latter
in the standard way (compatible with almost all sources, including the Mathematica
package “KnotTheory”); the parameter a gives the number of turns around K . This
construction also depends on the framing of the cable knots; we take the natural one,
associated with the parallel copy of the torus where a given cable knot sits (its parallel
copy has zero linking number with this knot).

By construction, Cab.a; 0/.K/D 
 and Cab.a; 1/.K/DK for any knot K and a¤ 0.
Accordingly, we have the following reduction cases:

(2-4) When ri D 0 (i < `),

T .Er ; Es/D T .friC1; : : : ; r`g; fsiC1; : : : ; s`g/ and T .Er ; Es/D 
 for i D `.

(2-5) When ri D 1, si D 0,

T .Er ; Es/D T .fr1; : : : ; ri�1; riC1; : : : ; r`g; fs1; : : : ; si�1; siC1; : : : ; s`g/:

(2-6) When ri D 1, si ¤ 0,

T .Er ; Es/D T .fr1; : : : ; ri�1; riC1; : : : ; r`g; f: : : ; si�1; s
0
iC1; siC2; : : : g/;

where s0
iC1
D siC1C siriC1 if i < ` (no s0

`C1
for i D `).

Let us comment on the last relation; see (2-2). Since ri D 1, one has

ai D ai�1ri�1C si ; aiC1 D airiC1C siC1

D ai�1ri�1riC1C .siC1C siriC1/:

The pairs fri ; aig are sometimes called topological (cable); the isotopy equivalence of
algebraic links generally can be seen only at the level of r; a–parameters (not at the
level of the Newton or Puiseux pairs).

Also, T .r; s/D T .s; r/, which results in the transposition property:

(2-7) T .Er ; Es/D T .fs1; r2; : : : ; r`g; fr1; s2; : : : ; s`g/:

Algebraic & Geometric Topology, Volume 16 (2016)
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The counterparts of these properties hold for the DAHA-Jones polynomials, though
due to entirely algebraic reasons.

Switching from K to its mirror image, denoted by K? , one has

(2-8) Cab.a; b/.K?/D .Cab.�a; b/.K//? for any a; b with gcd.a; b/D 1;

Cab.�Ea;Er/D .Cab.Ea;Er//?;

T .Er;�Es/D .T .Er;Es//?:

Changing the orientation, denoted by “�”, at the i th step, we obtain that for any
1� i � `,

(2-9) �Cab.Ea;Er/D Cab.f: : : ; ai�1;�ai ; aiC1; : : :g; f: : : ; ri�1;�ri ; riC1; : : :g/;

˙T .Er;Es/D T .f: : : ; ri�1;�ri ; riC1; : : :g; f: : : ; si�1;�si ; siC1; : : :g/:

We note that the Jones and HOMFLYPT polynomials for K? are obtained from those
for K by the formal conjugation of the parameters, namely q 7! q�1 and a 7! a�1 .
This will hold for the DAHA-Jones polynomials and DAHA superpolynomials (the
conjugation of t will be added to that of q and a). The orientation does not influence
our construction.

2.2 Algebraic knots

There exists a deep connection of the iterated torus knots for strictly positive ri and si
with the germs of isolated plane curve singularities. Its origin is the Newton’s successive
approximations for y in terms of x satisfying a polynomial equation f .x;y/D 0 in a
neighborhood of 0D .x D 0;y D 0/. The main claim is that the knot T .Er ; Es/ for the
characteristic pairs fri ; sig with ri ; si > 0 is the link of the germ of the singularity

(2-10) y D xs1=r1.c1Cxs2=.r1r2/.c2C � � �Cxs`=.r1r2���r`/// at 0;

which is the intersection of the corresponding plane curve f .x;y/D 0 with a small 3–
dimensional sphere in C2 around 0. We will always assume that this germ is unibranch.

The inequality s1< r1 is commonly imposed here (otherwise x and y can be switched).
Formula (2-10) is the celebrated Newton–Puiseux expansion, though Puiseux performed
the multiplication here,

y D b1xm1=r1 C b2xm2=.r1r2/C b3xm3=.r1r2r3/C � � � ;

for m1 D s1 and mi D siC rimi�1 , where fri ;mig are called the Puiseux pairs (which
we will not use).
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We will denote the germ of the curve in (2-10) by CEr;Es . If it has more than one branch
(near 0), then its complete topological description requires knowing the sequences
fEr ; Esg for all components together with the pairwise linking numbers. See eg [31] and
[17, page 49]. All algebraic knots can be obtained in such a way; the positivity of ri
and si is necessary for T .Er ; Es/ to be an algebraic link.

Jacobian factors One can associate with a unibranch CEr;Es the Jacobian factor J.CEr;Es/.
Up to a homeomorphism, it can be introduced as the canonical compactification of the
generalized Jacobian of an integral rational planar curve with CEr;Es as its only singularity
[29]; there is a purely local definition as well. Its dimension is the ı–invariant of the
singularity CEr;Es; also called its arithmetic genus.

The Jacobian factors are in the focus of many studies; see eg [4; 18, Theorem 1; 46;
36; 29]. The latter paper, where the connection with the affine Springer fibers was
established, provides a certain link to the theory of DAHA modules [45; 49], though
we cannot relate this to our using DAHA. An important connection of J.CEr;Es/ and the
rational DAHA was established in [33; 23] (see references therein), which must be
mentioned, but this is not connected with our approach or that from [12; 13] so far.

Calculating the Euler number e.J.CEr;Es//, the topological Euler characteristic of J.CEr;Es/,
and the corresponding Betti numbers in terms of Er and Es is a challenging problem. For
torus knots T .r; s/, one has e.J.Cr;s// D .1=rC s/

�
rCs
r

�
due to [4]. This formula is

related to the perfect modules of rational DAHA; see eg [21].

The Euler numbers of J.CEr;Es/ were calculated in [36, Main theorem] for the following
triples of Puiseux characteristic exponents:

(2-11) .4; 2u; v/; .6; 8; v/ and .6; 10; v/ for odd u; v > 0;

where 4 < 2u < v , 8 < v and 10 < v , respectively. Here, ı Ddim J.CEr;Es/ is
.r� 1/.s� 1/=2 for T .r; s/ and 2uC .v�1/=2�1 for the series .4; 2u; v/. Generally,
ı equals the cardinality jN n�j, where � is the valuation semigroup associated with
CEr;Es ; see [36] and [50]. The Euler numbers of the Jacobian factors (any isolated plane
curve singularities) can be also calculated now via the HOMFLYPT polynomials of the
corresponding links (see below) due to [34; 30].

Concerning the Betti numbers for the torus knots and the series .4; 2u; v/, the odd
(co)homology of J.CEr;Es/ vanishes, and the formulas for the Betti numbers h.2k/ D

rk.H 2k.J.CEr;Es/// are known for some values of k (those sufficiently close to 0 or ı ),
where 0� k � ı . Not much is known/expected beyond these two series. Paper [36]
contains several results and conjectures for the Betti numbers of Jacobian factors; for
instance, there are quite a few formulas there for T .r; s/ with min.r; s/� 4.
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What DAHA provides According to Conjecture 2.4, the DAHA superpolynomial
HfEr;Esg (defined in Theorem 2.1) at aD 0, qD 1 in the uncolored case is

P
ı
kD0

h.2k/tk

for any unibranch CEr;Es , which matches the formulas from [36]. This includes/implies
the van Straten–Warmt conjecture, which claims that all odd Betti numbers of J.CEr;Es/
vanish since the DAHA superpolynomials contain only integral powers of t . In the
opposite direction, such an interpretation of HfEr;Esg.�I q D 1; t; aD 0/ would apply its
positivity. The whole (uncolored) HfEr;Esg describes the geometry of Hilbert schemes of
CEr;Es due to [33, Conjecture 2].

We conjecture that the coefficients of the whole HfEr;Esg are positive for any rectangle
Young diagrams and algebraic knots; let us mention [6] in this respect. If such a
positivity holds for one box, the corresponding knots will be called pseudoalgebraic;
then HfEr;Esg is expected to coincide with the uncolored stable reduced Khovanov–
Rozansky polynomial of T .Er ; Es/, producing (by definition) the Khovanov–Rozansky
polynomials for slN aD tN

p
q=t for sufficiently large N . The substitution aD�1

here is expected to result in the Heegaard–Floer homology. This is stated in the DAHA
parameters q; t; a; see parts (ii) and (iii) of Conjecture 2.4. We restrict ourselves
there to the uncolored case, because this is needed in [33] and in the definition of the
Khovanov–Rozansky triply graded homology. However, see [47] and other papers on
the categorification (via quantum groups).

2.3 DAHA-Jones polynomials

The following theorems are mainly an extension of [13, Theorem 1.2] on DAHA-Jones
polynomials from torus knots to arbitrary iterated torus knots.

Torus knots T .r; s/ are naturally represented by 
r;s 2 GL2.Z/ with the first column
.r; s/tr (tr is the transposition) for r; s 2 Z assuming that gcd.r; s/ D 1. Then let
y
r;s 2 GL^2 .Z/ be any pullback of 
r;s .

Note that .r; s/ can be obviously lifted to 
 of determinant 1 and, accordingly, to y

from the subgroup PSL^2 .Z/ generated by f�˙g, ie without using �. This is actually
sufficient for the construction of the DAHA-Jones polynomials below.

For a polynomial F in terms of fractional powers of q and t� , the tilde-normalization
zF will be the result of the division of F by the lowest q; t� –monomial, assuming that

it is well defined. We put q�t� for a monomial factor (possibly fractional) in terms of
q and t� .

Theorem 2.1 Let R be a reduced irreducible root system. Recall that H 7!H+ WD

H.1/, where the action of H 2 HH in V is used. Given two sequences Er ; Es of length
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` as in (2-1), we lift .ri ; si/tr to 
i and then to y
i 2 GL^2 .Z/ as above. For a weight
b 2 PC , the DAHA-Jones polynomial is

(2-12) JDR
Er;Es
.bI q; t/D JDEr;Es.bI q; t/

WD
˚
y
1

�
� � �
�
y
`�1

��
y
`.Pb/=Pb.q

��k /
�
+
�
+
�
� � �
�	

ev:

It does not depend on the particular choice of the lifts 
i 2 GL2.Z/ and y
i 2 GL^2 .Z/
for 1� i � ` and is indeed a polynomial in terms of q and t� . Assuming that ri ; si > 0

for all i , ie that the knot T .Er ; Es/ is algebraic, the tilde-normalization zJDEr;Es.bI q; t/ is
well defined and is a polynomial in terms of q and t� with constant term 1.

Proof The proofs of this and the next theorem almost exactly follow those in [13]
(for torus knots). We will provide here only the justification of the polynomial-
ity. If JDR

Er;Es.bI q; t/ for b 2 PC is not a polynomial in terms of q and t� , then
Pıb WD Pb=Pb.q

��k / has a pole at � D 0, where � D .1� qj tr
shtt

s
lng/ for certain

j > 0; r; s � 0, r C s > 0. We can assume that � is a maximal such binomial,
ie that there is no singularity here at .1� qjvtrv

sht t sv
lng /=� D 0 for any Z 3 v > 1.

Let us localize and complete the ring of coefficients of HH and the polynomial rep-
resentation V , which is Zq;t D ZŒq˙1=.2m/; t

˙1=2
� �, by this � , ie with respect to the

ideal .1� qj tr
shtt

s
lng/; the notations will be Z.�/

q;t , HH .�/ and V .�/. Note that we added
q˙1=.2m/ to Zq;t . We will use the evaluation pairing, defined as

fE;Fgev DE.Y �1/.F.X //.q��k /; E;F 2 V .�/:

See [11, Theorem 11.8] and [13, Theorem 1.2]. We set RAD�;`DfF 2V .�/ j fF;Vgev�

�`Z.�/
q;tg for ` 2 ZC: Switching from V to the whole HH , we define

(2-13) RAD�;` WD fH 2 HH .�/
j fHHH HHgev 2 �

`Z.�/
q;tg for ` 2 ZC:

Equivalently, RAD�;` D fH 2 HH .�/
jH.V .�//�Rad�;`g; since Rad�;` D fF 2 V .�/ j

fHH.F /gev � �
`Z.�/

q;tg; see [11, Lemma 11.3].

Here, q is not a root of unity. Therefore, any Y –invariant submodule of V is
invariant with respect to the natural action of �� in V . For instance, ��.Pb/ D

q�.b;b/=2�.b;�k/Pb , assuming that Pb for b 2 PC is well defined. We conclude that
 and �� preserve RAD�;p for any p 2 ZC (and generic q ). The same holds for �;
see (1-11). Thus, the whole GL^2 .Z/ preserves each RAD�;p .

Let zPb WD �
lPıb 2 V

.�/ for minimal such l 2N . Then zPb.q
��k / 2 �lZ.�/

q;t due to the
normalization of Pıb . Since zPb is an eigenfunction of fLf g from (1-18), one has that
zPb 2Rad�;l ; see [11, Lemmas 11.4–5].
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This implies that y
 . zPb/2RAD�;l for any 
 2 PSL2.Z/. The projection zP 0D y
 . zPb/+

D y
 . zPb/.1/ then belongs to Rad�;l . Hence, y
 0. zP 0/ 2 RAD�;l for any 
 0 2 PSL2.Z/
and we can continue. One automatically obtains that f zP 00gev is divisible by �l for
zP 00 WD y
 0. zP 0/+ and for any further such polynomials obtained by this procedure

for 
 00; 
 000; and so on.

We conclude that JDEr;Es.bI q; t/ has actually no singularity at � D 0, which is a contra-
diction sufficient to claim polynomiality of JDEr;Es.bI q; t/ for any b 2PC , Er and Es . We
mention that the nonsymmetric Macdonald polynomials are used in the corresponding
reasoning from [13], which are actually more convenient here than Pb .

Theorem 2.2 (i) The polynomials JDEr;Es.bI q; t/ coincide up to q�t� for the pairs
from 2.1–2.1, ie for fEr ; Esg with isotopic T .Er ; Es/. Also, (2-7) corresponds to

(2-14) JDEr;Es.bI q; t/D JDfs1;r2;:::;r`g;fr1;s2;:::;s`g.bI q; t/;

and the following DAHA counterparts of (2-8) and (2-9) hold:

(2-15) JDEr;�Es.bI q; t/D .JDEr;Es.bI q; t//
? for ? from (1-14);

JDEr;Es D JDf:::;ri�1;�ri ;riC1;:::g;f:::;si�1;�si ;siC1;:::g for 1� i � `:

(ii) Let us assume that, for b; c 2 PC and certain w 2W with w ¤ id,

(2-16) q.bC�k�w.�k/�w.c/;˛/ D 1D q.b�w.c/;˛
_/

˛ t
.�wsht;˛

_/

sht t
.�wlng;˛

_/

lng

for any ˛ 2RC , where we set �w� WD w.��/� �� . Then

(2-17) JDEr;Es.bI q; t/D JDEr;Es.cI q; t/ for such q; ft�g

and for any Er and Es . Also, for b D
Pn

iD1 bi!i ,

(2-18) JDEr;Es
�
bI q D 1; t

�
D

nY
iD1

JDEr;Es.!i I q D 1; t/bi for any Er and Es :

Justifying the symmetries from part (i) is essentially parallel to those in [13, Theo-
rem 1.2]. Let us comment on 2.1. Essentially, one needs to check here that the torus
knot T .mrC s; r/ results in the same DAHA-Jones polynomial as the “2–cable” corre-
sponding to the Newton pairs f1;mg; fr; sg. Topologically, T .mrC s; r/ is isotopic to
Cab.mrC s; r/T .m; 1/, since T .m; 1/ is the unknot. Algebraically, such a coincidence
is an interesting DAHA calculation.

Extending the connection conjectures from [12], we expect that JDEr;Es.bI q; t� 7! q�/

coincide up to q� with the reduced quantum group (WRT) invariants for the corre-
sponding T .Er ; Es/ and any b 2 PC . The quantum group is associated with the root
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system zR; see [12]. The shift operator was used there to deduce this coincidence from
[43] in the case of An and torus knots; quite a few confirmations were provided for
other root systems (including special ones).

Using the shift operator for the iterated knots is almost exactly the same as for the torus
knots. The QG invariants of iterated knots are less studied than those for the torus
knots, though the Rosso–Jones formula can be potentially used for them and any root
systems. In the case of A1 , we will prove (i) using the formulas from [38; 32].

2.4 DAHA superpolynomials

Following [12; 22; 13], Theorems 2.1 and 2.2 can be extended to the DAHA super-
polynomials, which includes the stabilization of JDAn.bI q; t/ with respect to n. This
stabilization was announced in [12]; its proof was published in [22]. Both approaches
use [41] and can be extended to arbitrary iterated knots; the DAHA duality conjecture
proposed in [12] was proven in [22].

We mainly omit the justifications in this paper; with few reservations, they are similar
to those in [22; 13] (for torus knots). The focus of this paper is on the connections
with the Khovanov–Rozansky theory and the geometry of (germs of) unibranch plane
curve singularities.

The sequences Er and Es will be as above (` is the length), as well as the iterated
knots T .Er ; Es/. We will also use the DAHA-Jones polynomials �JDEr;Es and (later) the
Jacobian factors J.CEr;Es/ of CEr;Es , which are the germs of unibranch isolated plane curve
singularities; see Section 2.2.

Theorem 2.3 We switch to the root system An for slnC1 , setting t D tshtD qk . Let us
consider PC 3 b D

Pn
iD1 bi!i as a (dominant) weight for any Am (for slmC1 ) with

m� n� 1, where we set !n D 0 upon the restriction to An�1 .
(i) Stabilization Given T .Er ; Es/, there exists HEr;Es.bI q; t; a/, a polynomial from

ZŒq; t˙1; a�, satisfying the relations

(2-19) HEr;Es.bI q; t; aD�tmC1/D˙q�t�JDAm

Er;Es
.bI q; t/ for any m� n� 1;

and normalized as follows. The polynomial H.aD 0/ is assumed minimal, ie
not divisible by q; t or any prime number; the coefficient of the minimal power
of t in H.q D 0; aD 0/ is selected positive.

(ii) Symmetries The corresponding normalization of JD–polynomials, denoted by�JD, extends the tilde-normalization for algebraic knots from Theorem 2.1. For
sufficiently large m (for all m� n� 1 if ri ; si > 0),

(2-20) HEr;Es.bI q; t; aD�tmC1/D �JD
Am

Er;Es .bI q; t/:
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The symmetries from part (i) of Theorem 2.2 hold for HEr;Es , except for (2-15);
the latter holds for a? D a�1 and up to a�q�t� .

(iii) Color exchange Imposing (2-16), we consider w as an element of SmC1 (the
Weyl group for Am ) for every m� n, naturally acting in the corresponding P .
Then for any Er and Es ,

(2-21) HEr;Es.bI q; t; a/DHEr;Es.cI q; t; a/ for such q; t:

In particular, let wD si D .i; iC1/ with i < n and bD c� .kC .c; ˛i//˛i for a
dominant c . Then the inequalities ci=2��k � ciCminfci˙1>0g for k 2�ZC
imply (2-16).

(iv) Specialization and dega Making q D 1, one has

(2-22) HEr;Es.bI q D 1; t; a/D

nY
iD1

HEr;Es.!i I q D 1; t; a/bi for b D

nX
iD1

bi!i :

Assuming that jr1j > js1j and ri ¤ 0 for j > 1, dega HEr;Es.bI q; t; a/ (the a–
degree) is no greater than .maxf1; js1jgjr2 � � � r`j�1/ times ord.�b/, the number
of boxes in the Young diagram �b associated with b 2 PC .

(v) Superduality [25; 12; 22] Up to a power of q and t ,

(2-23) HEr;Es.�I q; t; a/D q�t�HEr;Es.�
tr
I t�1; q�1; a/;

where we switch from (arbitrary) dominant weights b to the corresponding
Young diagrams �D �b , and �tr is the transposition of �.

Concerning the stabilization and duality, we mainly follow here [22], switching from
P� to the modified Macdonald polynomials. Since the projective action of PSL.2;Z/
is compatible with such a passage (see [22; 41]), the transition to the cables of torus
knots is relatively direct (with modest deviations for nonalgebraic knots). Note that the
DAHA of type glnC1 and that for slnC1 (of type An ) result in coinciding DAHA-Jones
polynomials up to q�t� , which is not too difficult to justify. The compatibility of
DAHA and the Macdonald polynomials of types glnC1 and slnC1 is used here.

Color exchange See [13] for a systematic consideration of the color exchange in
(2-21). In terms of the Young diagrams it is as follows. We associate with c DPn

iD1 ci!i in part (iii) the Young diagram

�c D fm1 D c1C � � �C cn;m2 D c1C � � �C cn�1; : : : ;mn D cn; 0; 0; : : :g:

Then, we switch to �0c D fm
0
i Dmi�k.i �1/g, apply w 2W to �0c , and finally obtain

(2-24) �b D fm
0
w.i/C k.i � 1/g D fmw.i/C k.i �w.i//g:
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Here, w transforms the rows of �, and we set

wfm1;m2; : : : ;mng D fmw.1/;mw.2/; : : : ;mw.n/g:

Given k < 0 (it can be fractional), �b must be a Young diagram; this condition
determines which w can be used.

Toward C_C The second part of [12] is devoted to the DAHA-Jones polynomials
for the root system C_C1 , which prepared the extension of the DAHA-Jones theory to
all C_Cn . Furthermore, we expect here a relatively smooth switch to arbitrary iterated
knots. There is an interesting application of DAHA-Jones polynomials for C_C1 to
the superpolynomials of type A for knots T .2mC 1; 2/ (ie any An ). We see relations
of this kind for certain iterated knots, say Cab.2mC 1; 2/T .3; 2/, but we do not know
how far this can go; cf [16].

The a–degree Due to (2-22), it suffices to check the equality for the fundamental
weights only. We expect that, for algebraic knots, dega HEr;Es.bI q; t; a/ from part (iv)
equals .s1r2 � � � r` � 1/ord.�b/ (there is no such coincidence in general). This equality
is likely to hold for the HOMFLYPT polynomials of algebraic knots (the inequality
from part (iv) holds for all iterated knots), which would formally result in such an
equality for H assuming part (i) of Conjecture 2.4 below.

2.5 Connection conjecture

Let us briefly discuss the HOMFLYPT and Khovanov–Rozansky polynomials. The
stable Khovanov–Rozansky homology is the slN homology from [27; 28] in the range
of N where the isomorphism in [37, Theorem 1] holds; see also [26]. Thus, they
can be recovered from the triply graded HOMFLYPT homology. The cabling formula
for the quantum group invariants can be found in [32, Main theorem]; it provides the
formulas for the HOMFLYPT polynomials of torus iterated knots. See also [3; 2] and
[30] for the HOMFLYPT skein relations.

We need to restrict part (ii) of the conjecture below to the uncolored case, since the
Khovanov–Rozansky triply graded homology requires this. The corresponding reduced
Poincaré polynomial, the so called stable Khovanov–Rozansky polynomial, is denoted
by KhRstab.q; t; a/ in what will follow. The passage to the stable Khovanov–Rozansky
polynomials for slN , denoted by KhRN , is a 7! tN

p
q=t . Equivalently, ast 7! qN

st
in the standard parameters from the conjecture below. We always consider them
under the tilde-normalization; the notation will be eKhRN . Note the relation to the
Heegaard–Floer homology for N D 0.
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We mention that categorification theory can generally deal with arbitrary weights, but
this is not sufficiently understood in such a generality. See eg [26; 48; 39; 47] and
references therein. Also, our construction is reduced (the normalization is by 1 at 
 ,
necessary for the polynomiality of DAHA-Jones polynomials), which creates additional
difficulties for the categorification.

The polynomials KhRstab are expected to coincide with the (reduced) physics super-
polynomials based on the BPS states [15; 1; 19; 20] (their theory is not mathematically
rigorous) and those obtained in terms of rational DAHA [23; 22] for torus knots. The
latter are known only in the uncolored case so far; the case of symmetric powers of the
fundamental representation is in progress, see [20].

We note that using the Macdonald polynomials instead of Schur functions in the
construction of the so called knot operators was suggested in [1], which triggered [12].
These operators naturally appear in the approach to the Jones and WRT invariants of
torus knots via the Verlinde algebras. This method was actually justified mathematically
only for the root systems A and D . It requires roots of unity q and the formula for
the Verlinde S –operator, which becomes very involved in the Macdonald setting (even
for A1 ). Also, the final output must be uniform in terms of q , which cannot be
really explained in this approach; this seems the main reason why only the simplest
superpolynomials were discussed in [1]. These problems were resolved (actually
bypassed) in [12] for any reduced root systems and dominant weights.

Conjecture 2.4 (Connection conjecture) Let HEr;Es.bI q; t; a/st denote HEr;Es.bI q; t; a/
expressed in terms of the standard parameters (in the Khovanov–Rozansky theory; see
[12] and [33, Section 1]):

(2-25)
t D q2

st; q D .qsttst/
2; aD a2

sttst;

q2
st D t; tst D

p
q=t ; a2

st D a
p

t=q:

(i) We conjecture that for any Er and Es as above (possibly negative),

(2-26) HEr;Es.bI q; t 7! q; a 7! �a/D AHOMEr;Es.�bI q; a/;

where the latter is the tilde-normalization of the (reduced) HOMFLYPT poly-
nomial; b is an arbitrary dominant weight represented by the Young diagram
�b . The authors conjecture that the a–degrees of these polynomials are equal to
.s1r2 � � � r` � 1/ ord.�b/ provided the positivity of si and ri , and that s1 < r1 .

(ii) For uncolored pseudoalgebraic knots (those with positive coefficients of uncol-
ored DAHA superpolynomials), one has

(2-27) HEr;Es.�I q; t; a/st D eKhRstab.qst; tst; ast/; where �D !1:
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We denote by eKhRstab the (reduced) KhRstab divided by the smallest power of ast

and by q�stt
�
st such that eKhRstab.ast D 0/ 2 ZCŒqst; tst� with the constant term 1.

(iii) Following Section 2.2, let CEr;Es be the (unibranch) germ at 0 of the plain curve
singularity corresponding to fri ; si > 0g and h.k/ D rk.H k.J.CEr;Es/// the Betti
numbers of the Jacobian factor J.CEr;Es/. Then [33, Conjecture 2] and claim
(ii) above result in the coincidence of the tilde-normalization of reduced Palg

there with HEr;Es.�I q; t; a/st ; see formula (4-24) below for some details. We also
conjecture that

(2-28) HEr;Es.�I q D 1; t; aD 0/D

2ıX
iD0

h.i/t i=2 for ı D dim J.CEr;Es/;

which implies that hodd D 0 (the van Straten–Warmt conjecture).

We hope that we will be able to justify part (i) in the Connection conjecture following
[12, Proposition 2.3], where we used [43] (for torus knots), and Proposition 4.2 below,
which states that

(2-29) H.m!1I q; q;�q2/D AHOM .m!1I q; q
2/D �JD

A1
.m!1I q; q/:

The latter is the reduced tilde-normalized Jones polynomial for any iterated knot T .Er ; Es/.
Using [38; 32], this approach can be generally extended to any root systems.

Concerning part (ii), it is generally difficult to calculate KhRnC1 except for n D 1

(the celebrated Khovanov polynomials), especially for cables; KhRstab are of a more
algebraic nature, but not too much simpler. Even if KhRstab is known, the problem
of recovering all individual KhRnC1 from it is quite a challenge. This is generally
provided by the theory of differentials @nC1 from [26; 37]. The corresponding homology
associated with @nC1 gives KhRnC1 for any n� 1.

These differentials are involved, but their certain algebraic simplification, suggested in
[37; 15] and developed further in [12], works surprisingly well for sufficiently small
knots. The assumption in [12] is that the actual @nC1 are “as surjective as possible”
beginning with aD 0. See [12, Conjecture 2.7; Section 3.6]; the “smallest” torus knot
when KhR2 cannot be obtained this way is T .12; 7/. The output of this reduction
procedure will be denoted by DAHA0KhRnC1 .

For example, if H (in the DAHA-parameters) contains qi.tj am C tj�n�1amC1 C

tj�2n�2amC2/, where qi t iam was not involved in the reductions for smaller dega ,
then qi tj�2n�2amC2 will go to DAHA0KhRnC1 from this triple (subject to possible
further reductions). However if the actual (topological) @nC1 is not onto when acting
from the space associated with qi tj�n�1amC1 to that for qi tj am , then qi tj am is the
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right term to pick for KhRnC1 . Thus, there can be topological corrections, which makes
the above recovery algorithm insufficient. Nevertheless, even if these corrections are
present, one can expect that eKhR2�DAHA0KhR2 is a linear combination of qi

stt
j
st .1Ctst/

(the case of @2 D 0), qi
stt

j
st .1� t2

st/ and so on with nonnegative coefficients. If this is
the case, then such a positivity can be considered a confirmation of part (ii), which
always holds in the examples of pseudoalgebraic knots we considered.

We extend this procedure to arbitrary iterated knots changing all “�1” by tnC1=a

in H.�I q; t; a/ followed by the reduction as above. Practically, one deletes in H
all pairs ˙t iqj am.tnC1C a/ and t iqj am.t2nC2 � a2/ beginning with mD 0, then
switches to the standard parameters and substitutes �1 7! 1=tst . We will also use
DAHACKhR, where �1 is replaced by a=tnC1 before applying the reduction procedure.
In all (uncolored) examples we considered, one of these two procedures gives correct
eKhRnC1 for stable n, or else results in the corrections as above for any n. Presumably
DAHACKhR must be used here when the a–leading term of H.�I q; t; a/ is positive,
but the evidence is limited so far.

3 Numerical confirmations

We will consider examples (mainly numerical) confirming the Connection conjecture.
We selected only really necessary, relatively simple and instructional ones. They are
expected to contain a lot of geometric-topological information (including the Betti
numbers of Jacobian factors), and are important confirmations of our Connection
conjecture. We do not discuss torus knots here; see [12; 13].

3.1 Simplest algebraic iterations

.1/ ErD f3; 2g; EsD f2; 1g; T D Cab.13; 2/T .3; 2/I

HEr;Es.�I q; t; a/D 1C qt C q2t C q3t C q2t2
C q3t2

C 2q4t2
C q3t3

C q4t3
C 2q5t3

C q4t4
C q5t4

C 2q6t4
C q5t5

C q6t5
C q7t5

C q6t6
C q7t6

C q7t7
C q8t8

C a3
�
q6
C q7t C q8t2

�
C a2

�
q3
C q4

C q5
C q4t C 2q5t C 2q6t C q5t2

C 2q6t2
C 2q7t2

C q6t3
C 2q7t3

C q8t3
C q7t4

C q8t4
C q8t5

�
C a

�
qC q2

C q3
C q2t C 2q3t C 3q4t C q5t C q3t2

C 2q4t2
C 4q5t2

C q6t2
C q4t3

C 2q5t3
C 4q6t3

C q7t3
C q5t4

C 2q6t4

C 3q7t4
C q6t5

C 2q7t5
C q8t5

C q7t6
C q8t6

C q8t7
�
:
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Betti numbers We will systematically provide the values of the DAHA superpolyno-
mials at aD 0; q D 1; the corresponding Betti numbers (conjecturally coinciding with
their t –coefficients) are known only in 2 cases from the eight uncolored algebraic knots
we consider. We will also give the formula for such a DAHA-Betti polynomial for 2!1

and Tf3;2g;f2;1gDCab.13; 2/T .3; 2/, which is the square of H.qD 1; t; aD 0/ in (3-1),
that for !2 , and calculate the DAHA-Betti polynomials for nonalgebraic knots. As for
the latter, the coefficients in (3-11) and (3-12) are clear predecessors of the Betti numbers
for Cab.13; 2/T .3; 2/, the first algebraic knot in the family Cab.2mC1; 2/T .3; 2/ for
m 2 Z.

For Er D f3; 2g; Es D f2; 1g, the DAHA-Betti polynomial equals

(3-1) H.q D 1; t; aD 0/D 1C 3t C 4t2
C 4t3

C 4t4
C 3t5

C 2t6
C t7
C t8;

which gives exactly the first line of Betti numbers from the table before [36, Con-
jecture 23]; the corresponding Puiseux exponents are .4; 6; 7/. The next example
gives the second line in this table, for the exponents .4; 6; 9/; see formula (3-2) below.
The corresponding two CEr;Es are represented by the local rings RDCŒŒz4; z6C z7;9��;
ı D 8; 9. Note that the arithmetic genus ı always coincides with the t –degree of the
Betti polynomial (in the examples below). Any other H.q D 1; t; a D 0/ provided
below are beyond known (or conjectured) formulas for the Betti numbers of J.CEr;Es/
(as far as we know).

HOMFLYPT polynomial It coincides with the corresponding DAHA-generated tilde-
normalized HOMFLYPT polynomial:

H.q; t 7! q; a 7! �a/

D1Cq2
Cq3
C2q4

Cq5
C3q6

Cq7
C3q8

Cq9
C3q10

Cq11
C2q12

Cq13
Cq14

Cq16

� a3
�
q6
C q8

C q10
�

C a2
�
q3
C q4

C 2q5
C 2q6

C 3q7
C 2q8

C 3q9
C 2q10

C 2q11
C q12

C q13
�

� a
�
qC q2

C 2q3
C 2q4

C 4q5
C 3q6

C 5q7
C 3q8

C 5q9

C 3q10
C 4q11

C 2q12
C 2q13

C q14
C q15

�
:

Up to q� , this polynomial is equal to the one considered in [34, Section 7] upon its
division by a16 and the substitution z D q� q�1 . We need to change a2 and q2 there
by our a and q , ie switch from the standard parameters to ours.

All superpolynomials we obtained (we provide here only some), including nonalge-
braic iterated knots, satisfy the HOMFLYPT part of the Connection conjecture. The
HOMFLYPT formulas will be omitted below. We used software by S Artamonov for
calculating colored HOMFLYPT polynomials, connected with papers [3; 2].
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Figure 1: Cables .11; 2/; .13; 2/; .15; 2/ of T .3; 2/ , Cab.19; 3/T .3; 2/ and
Cab.25; 2/T .4; 3/ .

Figure 1 contains the braid for the knot Cab.13; 2/T .3; 2/ and further iterated knots
we will consider below. These presentations are used to calculate the HOMFLYPT
polynomials and Khovanov polynomials.

Khovanov–Rozansky polynomials We provide the corresponding DAHA-Khovanov
polynomials for all examples below in the standard parameters; for instance, q and t

in the next two formulas are qst and tst from the conjecture. If the algorithm from [12]
results in DAHA0Kh WD DAHA0KhR2 matching the Khovanov polynomial (for sl2 ),
then this is an indication that DAHA0KhRnC1 can match eKhRnC1 for all n.

For this and the next knot, we will provide DAHA0KhR3 , but will omit them in all
other examples (they were calculated for any n); eKhR�3 are unknown for the knots
we consider here.

.1/ DAHA0Kh.Cab.13; 2/T .3; 2//D 1C q4t2
C q6t3

C q6t4
C q10t5

C q8t6

C q12t7
C 2q12t8

C 2q14t9
C q16t10

C 2q18t11
C 2q20t12

C q22t13;

DAHA0KhR3.Cab.13; 2/T .3; 2//D 1C q4t2
C q8t3

C q6t4
C q8t4

C q10t5

C q12t5
C q8t6

C q10t6
C 2q14t7

C q16t7
C 2q12t8

C q14t8
C q18t8

C 2q16t9
C 2q18t9

C 2q16t10
C q22t10

C 3q20t11
C q22t11

C 2q20t12

C q24t12
C q26t12

C 3q24t13
C q24t14

C q28t14
C 2q28t15

C q32t16:
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This knot, the next one, and the last two knots (6 and 7 below) have their DAHA-
Khovanov polynomials DAHA0Kh .n D 2/ coinciding with the actual Khovanov
polynomials (under the tilde-normalization).

Hf3;2g;f2 ;3g switch from Cab.13; 2/ to the “next” Cab.15; 2/.

.2/ ErD f3; 2g; EsD f2; 3g; T D Cab.15; 2/T .3; 2/I

HEr;Es.�I q; t; a/D 1C qt C q2t C q3t C q2t2
C q3t2

C 2q4t2
C q3t3

C q4t3

C 2q5t3
C q4t4

C q5t4
C 2q6t4

C q5t5
C q6t5

C 2q7t5

C q6t6
C q7t6

C q8t6
C q7t7

C q8t7
C q8t8

C q9t9

C a3
�
q6
C q7t C q8t2

C q9t3
�

C a2
�
q3
C q4

C q5
C q4t C 2q5t C 2q6t C q5t2

C 2q6t2
C 2q7t2

C q6t3

C 2q7t3
C 2q8t3

C q7t4
C 2q8t4

C q9t4
C q8t5

C q9t5
C q9t6

�
Ca

�
qCq2

Cq3
Cq2tC2q3tC3q4tCq5tCq3t2

C2q4t2
C4q5t2

Cq6t2
Cq4t3

C 2q5t3
C 4q6t3

C q7t3
C q5t4

C 2q6t4
C 4q7t4

C q8t4
C q6t5

C 2q7t5

C 3q8t5
C q7t6

C 2q8t6
C q9t6

C q8t7
C q9t7

C q9t8
�
:

Betti numbers

(3-2) H.q D 1; t; aD 0/D 1C 3t C 4t2
C 4t3

C 4t4
C 4t5

C 3t6
C 2t7

C t8
C t9:

Khovanov–Rozansky polynomials

.2/ DAHA0Kh.Cab.15; 2/T .3; 2//D 1C q4t2
C q6t3

C q6t4

C q10t5
C q8t6

C q12t7
C 2q12t8

C 2q14t9
C q18t11

C q20t12;

DAHA0KhR3.Cab.15; 2/T .3; 2//D 1C q4t2
C q8t3

C q6t4
C q8t4

C q10t5
C q12t5

C q8t6
C q10t6

C 2q14t7
C q16t7

C 2q12t8
C q14t8

C q18t8

C 2q16t9
C 2q18t9

C q16t10
C q22t10

C 2q20t11
C q22t11

C q24t12
C q26t12:

3.2 Degree 5 and beyond

The a–degree was 3 in the previous examples; let us consider two examples of un-
colored DAHA superpolynomials of degree 5 (which is s1r2� 1 in these cases) and
then some further examples of DAHA-Betti polynomials, which are beyond known
or conjectured formulas. We note that DAHA0KhR do not coincide with the reduced
(tilde-normalized) Khovanov polynomials �Kh in these two examples, but the structure
of the difference matches our conjecture.

.3/ ErD f3; 3g; EsD f2; 1g; T D Cab.19; 3/T .3; 2/I
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HEr;Es.�I q; t; a/D 1CqtCq2tCq3tCq4tCq5tCq2t2
Cq3t2

C2q4t2
C2q5t2

C3q6t2

C2q7t2
Cq8t2

Cq3t3
Cq4t3

C2q5t3
C3q6t3

C4q7t3
C4q8t3

C4q9t3
Cq10t3

Cq4t4

Cq5t4
C2q6t4

C3q7t4
C5q8t4

C5q9t4
C6q10t4

C4q11t4
Cq12t4

Cq5t5
Cq6t5

C2q7t5
C3q8t5

C5q9t5
C6q10t5

C7q11t5
C6q12t5

C3q13t5
Cq6t6

Cq7t6
C2q8t6

C3q9t6
C5q10t6

C6q11t6
C8q12t6

C7q13t6
C3q14t6

Cq15t6
Cq7t7

Cq8t7
C2q9t7

C3q10t7
C5q11t7

C6q12t7
C8q13t7

C8q14t7
C3q15t7

Cq8t8
Cq9t8

C2q10t8

C3q11t8
C5q12t8

C6q13t8
C8q14t8

C7q15t8
C3q16t8

Cq9t9
Cq10t9

C2q11t9

C3q12t9
C5q13t9

C6q14t9
C8q15t9

C6q16t9
Cq17t9

Cq10t10
Cq11t10

C2q12t10

C3q13t10
C5q14t10

C6q15t10
C7q16t10

C4q17t10
Cq11t11

Cq12t11
C2q13t11

C3q14t11
C5q15t11

C6q16t11
C6q17t11

Cq18t11
Cq12t12

Cq13t12
C2q14t12

C3q15t12
C5q16t12

C5q17t12
C4q18t12

Cq13t13
Cq14t13

C2q15t13
C3q16t13

C5q17t13
C4q18t13

Cq19t13
Cq14t14

Cq15t14
C2q16t14

C3q17t14
C4q18t14

C2q19t14
Cq15t15

Cq16t15
C2q17t15

C3q18t15
C3q19t15

Cq16t16
Cq17t16

C2q18t16
C2q19t16

Cq20t16
Cq17t17

Cq18t17
C2q19t17

Cq20t17
Cq18t18

Cq19t18
Cq20t18

Cq19t19
Cq20t19

Cq20t20
Cq21t21

Ca5
�
q15
Cq16tCq17tCq17t2

Cq18t2
Cq19t2

Cq18t3
Cq19t3

Cq19t4
Cq20t4

Cq20t5
Cq21t6

�
Ca4

�
q10
Cq11

Cq12
Cq13

Cq14
Cq11tC2q12tC3q13tC3q14tC3q15tCq16tCq12t2

C2q13t2
C4q14t2

C5q15t2
C5q16t2

C3q17t2
Cq18t2

Cq13t3
C2q14t3

C4q15t3

C6q16t3
C6q17t3

C3q18t3
Cq19t3

Cq14t4
C2q15t4

C4q16t4
C6q17t4

C6q18t4

C3q19t4
Cq15t5

C2q16t5
C4q17t5

C6q18t5
C5q19t5

Cq20t5
Cq16t6

C2q17t6

C4q18t6
C5q19t6

C3q20t6
Cq17t7

C2q18t7
C4q19t7

C3q20t7
Cq21t7

Cq18t8

C2q19t8
C3q20t8

Cq21t8
Cq19t9

C2q20t9
Cq21t9

Cq20t10
Cq21t10

Cq21t11
�

Ca3
�
q6
Cq7
C2q8

C2q9
C2q10

Cq11
Cq12

Cq7tC2q8tC4q9tC6q10tC7q11t

C4q13tC2q14tCq8t2
C2q9t2

C5q10t2
C8q11t2

C12q12t2
C12q13t2

C10q14t2

C5q15t2
C2q16t2

Cq9t3
C2q10t3

C5q11t3
C9q12t3

C14q13t3
C17q14t3

C15q15t3
C9q16t3

C3q17t3
Cq18t3

Cq10t4
C2q11t4

C5q12t4
C9q13t4

C15q14t4

C19q15t4
C18q16t4

C10q17t4
C3q18t4

Cq11t5
C2q12t5

C5q13t5
C9q14t5

C15q15t5
C20q16t5

C18q17t5
C9q18t5

C2q19t5
Cq12t6

C2q13t6
C5q14t6

C9q15t6
C15q16t6

C19q17t6
C15q18t6

C5q19t6
Cq13t7

C2q14t7
C5q15t7

C9q16t7
C15q17t7

C17q18t7
C10q19t7

C2q20t7
Cq14t8

C2q15t8
C5q16t8

C9q17t8
C14q18t8

C12q19t8
C4q20t8

Cq15t9
C2q16t9

C5q17t9
C9q18t9

C12q19t9
C6q20t9

Cq21t9
Cq16t10

C2q17t10
C5q18t10

C8q19t10
C7q20t10

Cq21t10
Cq17t11

C2q18t11
C5q19t11

C6q20t11
C2q21t11

Cq18t12
C2q19t12

C4q20t12
C2q21t12

Cq19t13
C2q20t13

C2q21t13
Cq20t14

Cq21t14
Cq21t15

�
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Ca2
�
q3
Cq4
C2q5

C2q6
C2q7

Cq8
Cq9
Cq4tC2q5tC4q6tC6q7tC8q8tC7q9tC6q10t

C3q11tCq12tCq5t2
C2q6t2

C5q7t2
C8q8t2

C13q9t2
C15q10t2

C15q11t2
C10q12t2

C5q13t2
Cq14t2

Cq6t3
C2q7t3

C5q8t3
C9q9t3

C15q10t3
C20q11t3

C24q12t3
C19q13t3

C11q14t3
C4q15t3

Cq16t3
Cq7t4

C2q8t4
C5q9t4

C9q10t4
C16q11t4

C22q12t4
C29q13t4

C27q14t4
C16q15t4

C6q16t4
Cq17t4

Cq8t5
C2q9t5

C5q10t5
C9q11t5

C16q12t5
C23q13t5

C31q14t5
C30q15t5

C19q16t5
C6q17t5

Cq18t5
Cq9t6

C2q10t6
C5q11t6

C9q12t6
C16q13t6

C23q14t6
C32q15t6

C30q16t6
C16q17t6

C4q18t6
Cq10t7

C2q11t7
C5q12t7

C9q13t7

C16q14t7
C23q15t7

C31q16t7
C27q17t7

C11q18t7
Cq19t7

Cq11t8
C2q12t8

C5q13t8

C9q14t8
C16q15t8

C23q16t8
C29q17t8

C19q18t8
C5q19t8

Cq12t9
C2q13t9

C5q14t9

C9q15t9
C16q16t9

C22q17t9
C24q18t9

C10q19t9
Cq20t9

Cq13t10
C2q14t10

C5q15t10

C9q16t10
C16q17t10

C20q18t10
C15q19t10

C3q20t10
Cq14t11

C2q15t11
C5q16t11

C9q17t11
C15q18t11

C15q19t11
C6q20t11

Cq15t12
C2q16t12

C5q17t12
C9q18t12

C13q19t12

C7q20t12
Cq21t12

Cq16t13
C2q17t13

C5q18t13
C8q19t13

C8q20t13
Cq21t13

Cq17t14

C2q18t14
C5q19t14

C6q20t14
C2q21t14

Cq18t15
C2q19t15

C4q20t15
C2q21t15

Cq19t16

C2q20t16
C2q21t16

Cq20t17
Cq21t17

Cq21t18
�

Ca
�
qCq2

Cq3
Cq4
Cq5
Cq2tC2q3tC3q4tC4q5tC5q6tC4q7tC2q8tCq9tCq3t2

C2q4t2

C4q5t2
C6q6t2

C9q7t2
C10q8t2

C9q9t2
C5q10t2

C2q11t2
Cq4t3

C2q5t3
C4q6t3

C7q7t3

C11q8t3
C14q9t3

C16q10t3
C13q11t3

C6q12t3
C2q13t3

Cq5t4
C2q6t4

C4q7t4
C7q8t4

C12q9t4
C16q10t4

C20q11t4
C20q12t4

C13q13t4
C4q14t4

Cq15t4
Cq6t5

C2q7t5
C4q8t5

C7q9t5
C12q10t5

C17q11t5
C22q12t5

C24q13t5
C17q14t5

C7q15t5
Cq16t5

Cq7t6
C2q8t6

C4q9t6
C7q10t6

C12q11t6
C17q12t6

C23q13t6
C26q14t6

C18q15t6
C7q16t6

Cq17t6
Cq8t7

C2q9t7
C4q10t7

C7q11t7
C12q12t7

C17q13t7
C23q14t7

C26q15t7
C17q16t7

C4q17t7

Cq9t8
C2q10t8

C4q11t8
C7q12t8

C12q13t8
C17q14t8

C23q15t8
C24q16t8

C13q17t8

C2q18t8
Cq10t9

C2q11t9
C4q12t9

C7q13t9
C12q14t9

C17q15t9
C22q16t9

C20q17t9

C6q18t9
Cq11t10

C2q12t10
C4q13t10

C7q14t10
C12q15t10

C17q16t10
C20q17t10

C13q18t10

C2q19t10
Cq12t11

C2q13t11
C4q14t11

C7q15t11
C12q16t11

C16q17t11
C16q18t11

C5q19t11

Cq13t12
C2q14t12

C4q15t12
C7q16t12

C12q17t12
C14q18t12

C9q19t12
Cq20t12

Cq14t13

C2q15t13
C4q16t13

C7q17t13
C11q18t13

C10q19t13
C2q20t13

Cq15t14
C2q16t14

C4q17t14

C7q18t14
C9q19t14

C4q20t14
Cq16t15

C2q17t15
C4q18t15

C6q19t15
C5q20t15

Cq17t16

C2q18t16
C4q19t16

C4q20t16
Cq21t16

Cq18t17
C2q19t17

C3q20t17
Cq21t17

Cq19t18

C2q20t18
Cq21t18

Cq20t19
Cq21t19

Cq21t20
�
:

We note that examples involving torus knots and cables different from T .2mC 1; 2/,
Cab.2m C 1; 2/. � / are important, since the knots/cables of types .�; 2/ and their
invariants are generally very special.
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Betti numbers (Conjecturally)

(3-3) H.q D 1; t; aD 0/D 1C 5t C 12t2
C 20t3

C 28t4
C 34t5

C 37t6

C 37t7
C 36t8

C 33t9
C 29t10

C 25t11
C 21t12

C 17t13
C 13t14

C 10t15
C 7t16

C 5t17
C 3t18

C 2t19
C t20

C t21:

The germ CEr;Es is given here by the local ring RD CŒŒz6; z9C z10�� with the Puiseux
exponents .6; 9; 10/, the valuation semigroup � generated by 6; 9; 19 and ıDjNn�jD
21, which matches the top t –degree in the DAHA-Betti polynomial from (3-3). Thus,
the Euler number of J.CEr;Es/ is 365 (the value in (3-3) at t D 1), which follows from
[34; 30], and we predict that the Betti numbers of J.CEr;Es/ are the coefficients of this
polynomial. This example is from the table after [36, Theorem 13] with some cases
where the approach there is not applicable (including counting the Euler number).

Khovanov polynomial

.3/ DAHA0Kh.Cab.19; 3/T .3; 2//D 1C q4t2
C q6t3

C q6t4
C q10t5

C q8t6

C q12t7
C q10t8

C q12t8
C 2q14t9

C q12t10
C q14t10

C 2q16t11
C q18t11

C 3q16t12
C q20t12

C 2q18t13
C 2q20t13

C 2q18t14
C q22t14

C 4q22t15

C q20t16
C 2q22t16

C q24t16
C q26t16

C 4q24t17
C 3q24t18

C q28t18

C 3q26t19
C 2q28t19

C q26t20
C q28t20

C 2q30t20
C 4q30t21

C 2q30t22

C 2q32t22
C 3q32t23

C q32t24
C q36t24

C 2q36t25
C q34t26

C q36t26
C 2q38t26

C q36t27
C q38t27

C q40t27
C q40t29

C q42t30:

This one is now different from the actual Khovanov polynomial:�Kh�DAHA0KhD q34t23.1C 2t � t3/C q36t22.1� t2/

C q40t27.1� t2/C q42t28.1� t2/:

There is no coincidence, but the t –degree corrections involve only top terms and all
are in the expected direction. As it was discussed after the Connection conjecture, if
the difference �Kh�DAHA0Kh is a sum of the terms qi tj .1C t/ and qi tj .1� t2/ with
positive coefficients, then this is a confirmation of part (ii). Here and below (where
Khovanov polynomials are discussed), q and t are actually qst and tst . This is what
can be expected, taking into consideration the nature of the procedure from [12] (and
the example of T .12; 7/ there).

Hf4;2g;f3;1g The next example will be of the same dega D 5. Recall that dega �

.s1r2� 1/ in the uncolored case with 2 iterations; conjecturally the coincidence holds
here for algebraic knots. Generally, .s1r2� 1/ must be multiplied by ord.�b/.
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.4/ ErD f4; 2g; EsD f3; 1g; T D Cab.25; 2/T .4; 3/I

HEr;Es.�I q; t; a/D 1CqtCq2tCq3tCq4tCq5tCq2t2
Cq3t2

C2q4t2
C2q5t2

C3q6t2
Cq7t2

Cq8t2
Cq3t3

Cq4t3
C2q5t3

C3q6t3
C4q7t3

C3q8t3
C3q9t3

Cq4t4
Cq5t4

C2q6t4
C3q7t4

C5q8t4
C4q9t4

C5q10t4
Cq11t4

Cq5t5
Cq6t5

C2q7t5
C3q8t5

C5q9t5
C5q10t5

C6q11t5

Cq12t5
Cq6t6

Cq7t6
C2q8t6

C3q9t6
C5q10t6

C5q11t6
C7q12t6

Cq13t6
Cq7t7

Cq8t7

C2q9t7
C3q10t7

C5q11t7
C5q12t7

C6q13t7
Cq14t7

Cq8t8
Cq9t8

C2q10t8
C3q11t8

C5q12t8
C5q13t8

C5q14t8
Cq9t9

Cq10t9
C2q11t9

C3q12t9
C5q13t9

C4q14t9
C3q15t9

Cq10t10
Cq11t10

C2q12t10
C3q13t10

C5q14t10
C3q15t10

Cq16t10
Cq11t11

Cq12t11

C2q13t11
C3q14t11

C4q15t11
Cq16t11

Cq12t12
Cq13t12

C2q14t12
C3q15t12

C3q16t12

Cq13t13
Cq14t13

C2q15t13
C2q16t13

Cq17t13
Cq14t14

Cq15t14
C2q16t14

Cq17t14

Cq15t15
Cq16t15

Cq17t15
Cq16t16

Cq17t16
Cq17t17

Cq18t18

Ca5
�
q15
Cq16tCq17t2

Cq18t3
�

Ca4
�
q10
Cq11

Cq12
Cq13

Cq14
Cq11tC2q12tC2q13tC2q14tC2q15tCq12t2

C2q13t2

C3q14t2
C3q15t2

C2q16t2
Cq13t3

C2q14t3
C3q15t3

C3q16t3
C2q17t3

Cq14t4

C2q15t4
C3q16t4

C2q17t4
Cq18t4

Cq15t5
C2q16t5

C2q17t5
Cq18t5

Cq16t6

C2q17t6
Cq18t6

Cq17t7
Cq18t7

Cq18t8
�

Ca3
�
q6
Cq7
C2q8

C2q9
C2q10

Cq11
Cq12

Cq7tC2q8tC4q9tC5q10tC6q11tC4q12t

C3q13tCq14tCq8t2
C2q9t2

C5q10t2
C7q11t2

C10q12t2
C7q13t2

C5q14t2
Cq15t2

Cq9t3

C2q10t3
C5q11t3

C8q12t3
C12q13t3

C9q14t3
C6q15t3

Cq16t3
Cq10t4

C2q11t4
C5q12t4

C8q13t4
C13q14t4

C9q15t4
C5q16t4

Cq17t4
Cq11t5

C2q12t5
C5q13t5

C8q14t5
C12q15t5

C7q16t5
C3q17t5

Cq12t6
C2q13t6

C5q14t6
C8q15t6

C10q16t6
C4q17t6

Cq18t6
Cq13t7

C2q14t7
C5q15t7

C7q16t7
C6q17t7

Cq18t7
Cq14t8

C2q15t8
C5q16t8

C5q17t8
C2q18t8

Cq15t9
C2q16t9

C4q17t9
C2q18t9

Cq16t10
C2q17t10

C2q18t10
Cq17t11

Cq18t11
Cq18t12

�
Ca2

�
q3
Cq4
C2q5

C2q6
C2q7

Cq8
Cq9
Cq4tC2q5tC4q6tC6q7tC7q8tC6q9tC5q10t

C2q11tCq12tCq5t2
C2q6t2

C5q7t2
C8q8t2

C12q9t2
C12q10t2

C11q11t2
C5q12t2

C2q13t2
Cq6t3

C2q7t3
C5q8t3

C9q9t3
C14q10t3

C17q11t3
C17q12t3

C8q13t3
C3q14t3

Cq7t4
C2q8t4

C5q9t4
C9q10t4

C15q11t4
C19q12t4

C20q13t4
C9q14t4

C3q15t4
Cq8t5

C2q9t5
C5q10t5

C9q11t5
C15q12t5

C20q13t5
C20q14t5

C8q15t5
C2q16t5

Cq9t6
C2q10t6

C5q11t6
C9q12t6

C15q13t6
C19q14t6

C17q15t6
C5q16t6

Cq17t6
Cq10t7

C2q11t7
C5q12t7

C9q13t7
C15q14t7

C17q15t7
C11q16t7

C2q17t7
Cq11t8

C2q12t8
C5q13t8

C9q14t8

C14q15t8
C12q16t8

C5q17t8
Cq12t9

C2q13t9
C5q14t9

C9q15t9
C12q16t9

C6q17t9
Cq18t9

Cq13t10
C2q14t10

C5q15t10
C8q16t10

C7q17t10
Cq18t10

Cq14t11
C2q15t11

C5q16t11

C6q17t11
C2q18t11

Cq15t12
C2q16t12

C4q17t12
C2q18t12

Cq16t13
C2q17t13

C2q18t13

Cq17t14
Cq18t14

Cq18t15
�
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Ca
�
qCq2

Cq3
Cq4
Cq5
Cq2tC2q3tC3q4tC4q5tC5q6tC3q7tC2q8tCq9tCq3t2

C2q4t2

C4q5t2
C6q6t2

C9q7t2
C8q8t2

C7q9t2
C3q10t2

Cq11t2
Cq4t3

C2q5t3
C4q6t3

C7q7t3

C11q8t3
C12q9t3

C13q10t3
C7q11t3

C2q12t3
Cq5t4

C2q6t4
C4q7t4

C7q8t4
C12q9t4

C14q10t4
C17q11t4

C10q12t4
C3q13t4

Cq6t5
C2q7t5

C4q8t5
C7q9t5

C12q10t5
C15q11t5

C19q12t5
C11q13t5

C3q14t5
Cq7t6

C2q8t6
C4q9t6

C7q10t6
C12q11t6

C15q12t6
C19q13t6

C10q14t6
C2q15t6

Cq8t7
C2q9t7

C4q10t7
C7q11t7

C12q12t7
C15q13t7

C17q14t7
C7q15t7

Cq16t7
Cq9t8

C2q10t8
C4q11t8

C7q12t8
C12q13t8

C14q14t8
C13q15t8

C3q16t8
Cq10t9

C2q11t9
C4q12t9

C7q13t9
C12q14t9

C12q15t9
C7q16t9

Cq17t9
Cq11t10

C2q12t10

C4q13t10
C7q14t10

C11q15t10
C8q16t10

C2q17t10
Cq12t11

C2q13t11
C4q14t11

C7q15t11

C9q16t11
C3q17t11

Cq13t12
C2q14t12

C4q15t12
C6q16t12

C5q17t12
Cq14t13

C2q15t13

C4q16t13
C4q17t13

Cq18t13
Cq15t14

C2q16t14
C3q17t14

Cq18t14
Cq16t15

C2q17t15
Cq18t15

Cq17t16
Cq18t16

Cq18t17
�
:

Betti numbers (Conjecturally)

(3-4) H.q D 1; t; aD 0/D 1C 5t C 11t2
C 17t3

C 22t4
C 24t5

C 25t6

C 24t7
C 22t8

C 19t9
C 16t10

C 12t11
C 10t12

C 7t13
C 5t14

C 3t15
C 2t16

C t17
C t18:

The corresponding (germ of the) curve is given by the ring RDCŒŒz6; z8C z9�� in this
case, with the Puiseux exponents .6; 8; 9/ and the valuation semigroup � generated by
6; 8; 25. Accordingly, ı D jN n�j D 18 in the considered case, which matches the top
t –degree in (3-4).

Furthermore, H.qD1; tD1; aD0/D227, which does coincide with the specialization
at v D 9 of the general formula for the Euler number e.J.CEr;Es//D 229=2C 25v=2 in
the case of the Puiseux exponents .6; 8; v/. This formula is from [36, Main theorem];
its proof was technically involved and was not extended to the Betti numbers. We
conjecture that they are the t –coefficients in (3-4) in this case (v D 9).

Khovanov polynomial

.4/ DAHA0Kh.Cab.25; 2/T .4; 3//D 1C q4t2
C q6t3

C q6t4
C q10t5

C q8t6

C q12t7
C q10t8

C q12t8
C 2q14t9

C q12t10
C q14t10

C 2q16t11
C q18t11

C 3q16t12
C q20t12

C 2q18t13
C 2q20t13

C q18t14
C q20t14

C q22t14

C 4q22t15
C q20t16

C q22t16
C q24t16

C q26t16
C 2q24t17

C q26t17

C 2q24t18
C q28t18

C 2q26t19
C q28t19

C 2q28t20
C q30t20

C 3q30t21

C q32t22
C q34t23

C q32t24
C q36t24

C q34t25
C q36t26

C q38t27:
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This one is different from the corresponding Khovanov polynomial as well as in the
previous example. Namely,�Kh�DAHA0KhD q32t22.1� t2/Cq34t23.1� t2/Cq36t24.1� t2/Cq38t25.1� t2/:

Once again, the t –degrees increase from �Kh to DAHA0Kh; also, the number of q; t –
monomials is the same in both, but this seems accidental. In spite of the nonzero
difference, this confirms Conjecture 2.4.

Further Betti numbers First of all, our DAHA-Betti polynomials (as far as we
calculated them) fully match the table before [36, Conjecture 23]. For instance, the
coefficients of Hf5;2g;f2;1g.q D 1; t; aD 0/ for Cab.21; 2/T .5; 2/ constitute the line
there for the Puiseux exponents .4; 10; 11/. Without posting the (known) formulas for
the superpolynomials, let us provide below only the DAHA-Betti polynomials, which
conjecturally give the corresponding Betti numbers.

Hf4;2g;f3;1g In this example, the knot, the ring of the singularity, the valuation
semigroup and the arithmetic genus are as follows:

T D Cab.20; 3/T .3; 2/; RD C ŒŒt6; t9
C t11��; � D h6; 9; 20i; ı D 22:

The counterpart of the DAHA-Betti polynomial (3-3) reads

(3-5) H.q D 1; t; aD 0/D 1C 5t C 12t2
C 20t3

C 28t4
C 35t5

C 39t6
C 40t7

C 39t8
C 37t9

C 33t10
C 29t11

C 25t12
C 21t13

C 17t14

C 13t15
C 10t16

C 7t17
C 5t18

C 3t19
C 2t20

C t21
C t22:

The arithmetic genus of CD Cf3;3g;f2;2g equals ıD 22 and e.J.C//D 423 in this case;
the Puiseux exponents are .6; 9; 11/, and dega =5.

Hf5;2g;f3;2g The Puiseux exponents are .6; 15; 17/, and dega D 5. One has

T D Cab.32; 3/T .5; 2/; RDCŒŒz6; z15
C z17��; � D h6; 15; 32i; ı D 37;

and the DAHA-Betti polynomial is

(3-6) H.q D 1; t; aD 0/D 1C 5t C 15t2
C 32t3

C 55t4
C 81t5

C 108t6

C 134t7
C 157t8

C 175t9
C 186t10

C 192t11
C 192t12

C 189t13

C 181t14
C 172t15

C 159t16
C 147t17

C 132t18
C 120t19

C 105t20

C 93t21
C 79t22

C 68t23
C 56t24

C 47t25
C 37t26

C 30t27
C 23t28

C 18t29
C 13t30

C 10t31
C 7t32

C 5t33
C 3t34

C 2t35
C t36

C t37:

The Euler number of J.Cf5;2g;f3;2g/ is 3031.
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Hf3;4g;f2 ;1g In this case, degaD7 and the Puiseux exponents are .8; 12; 13/. One has

T D Cab.25; 4/T .3; 2/; RDCŒŒz8; z12
C z13��; � D h8; 12; 25i; ı D 40;

and the DAHA-Betti polynomial is

(3-7) H.q D 1; t; aD 0/D 1C 7t C 24t2
C 56t3

C 104t4
C 165t5

C 232t6

C 297t7
C 355t8

C 402t9
C 435t10

C 454t11
C 461t12

C 456t13

C 442t14
C 420t15

C 394t16
C 362t17

C 330t18
C 295t19

C 262t20
C 229t21

C 199t22
C 168t23

C 143t24
C 118t25

C 97t26
C 78t27

C 63t28
C 48t29

C 38t30
C 28t31

C 21t32

C 15t33
C 11t34

C 7t35
C 5t36

C 3t37
C 2t38

C t39
C t40:

The Euler number of J.Cf3;4g;f2;1g/ is 7229. The latter follows from [34; 30]; the
Betti numbers are conjectured.

Double iteration: Er D f3; 2 ; 2g; Es D f2 ; 1; 1g The corresponding knot is T D
Cab.53; 2/Cab.13; 2/T .3; 2/ and dega D 7. In this case,

RDCŒŒz8; z12
C z14

C z15��; � D h8; 12; 26; 53i; ı D 42;

and the DAHA-Betti polynomial is

(3-8) H.q D 1; t; aD 0/D 1C 7t C 24t2
C 56t3

C 104t4
C 166t5

C 236t6
C 306t7

C 370t8
C 424t9

C 465t10
C 492t11

C 507t12

C 510t13
C 504t14

C 488t15
C 466t16

C 437t17
C 406t18

C 370t19

C 335t20
C 298t21

C 264t22
C 230t23

C 199t24
C 168t25

C 143t26

C 118t27
C 97t28

C 78t29
C 63t30

C 48t31
C 38t32

C 28t33

C 21t34
C 15t35

C 11t36
C 7t37

C 5t38
C 3t39

C 2t40
C t41

C t42:

The Euler number of J.Cf3;2;2g;f2;1;1g/ is 8512. This case is listed in [36] (right before
Section 4) as an example beyond the technique there.

We omit the complete DAHA superpolynomials and the DAHA-Khovanov polynomials
in this and the previous examples (they are all known). Quite a few interesting relations
for the (conjectural) Betti numbers can be seen from these and other examples of the
DAHA-Betti polynomials. For instance, we note that b2 of J.C/ coincides with the
multiplicity of the corresponding singularity minus 1 (Rego) and therefore exactly with
dega D s1r2 � � � r` of the DAHA-superpolynomial (s1 < r1 ).
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3.3 The case of two boxes

We will now consider the iterated knot from the first example with the weight 2!1 . We
calculated the one for !2 too; it is superdual to the one we provide and will be omitted.
Also, we will omit the corresponding DAHA-Khovanov polynomial (calculated using
the algorithm from [12]), since the Khovanov polynomials are uncolored.

.5/ ErD f3; 2g; EsD f2; 1g; T D Cab.13; 2/T .3; 2/I

HEr;Es.��I q; t; a/D 1Ct16q32
Ct15q31

Ct14q31
Ct13q31

Ct15q30
C2t14q30

C2t13q30

C2t12q30
Ct14q29

C3t13q29
C4t12q29

C3t11q29
Ct14q28

C2t13q28
C5t12q28

C6t11q28

C4t10q28
Ct13q27

C3t12q27
C7t11q27

C8t10q27
C4t9q27

Ct13q26
C2t12q26

C5t11q26

C10t10q26
C9t9q26

C2t8q26
Ct12q25

C3t11q25
C7t10q25

C12t9q25
C7t8q25

Ct7q25

Ct12q24
C2t11q24

C5t10q24
C10t9q24

C14t8q24
C4t7q24

Ct11q23
C3t10q23

C7t9q23

C12t8q23
C11t7q23

Ct6q23
Ct11q22

C2t10q22
C5t9q22

C10t8q22
C13t7q22

C6t6q22

Ct10q21
C3t9q21

C7t8q21
C12t7q21

C10t6q21
Ct5q21

Ct10q20
C2t9q20

C5t8q20

C10t7q20
C13t6q20

C3t5q20
Ct9q19

C3t8q19
C7t7q19

C11t6q19
C9t5q19

Ct9q18

C2t8q18
C5t7q18

C10t6q18
C11t5q18

C2t4q18
Ct8q17

C3t7q17
C7t6q17

C10t5q17

C4t4q17
Ct8q16

C2t7q16
C5t6q16

C9t5q16
C8t4q16

Ct7q15
C3t6q15

C7t5q15
C8t4q15

C2t3q15
Ct7q14

C2t6q14
C5t5q14

C8t4q14
C3t3q14

Ct6q13
C3t5q13

C6t4q13
C5t3q13

Ct6q12
C2t5q12

C5t4q12
C6t3q12

Ct2q12
Ct5q11

C3t4q11
C5t3q11

Ct2q11
Ct5q10

C2t4q10
C4t3q10

C3t2q10
Ct4q9

C3t3q9
C3t2q9

Ct4q8
C2t3q8

C3t2q8
Ct3q7

C2t2q7

Ctq7
Ct3q6

C2t2q6
Ctq6

Ct2q5
Ctq5

Ct2q4
Ctq4

Ctq3
Ctq2

Ca6
�
t4q35

Ct3q34
Ct3q33

Ct2q33
Ct2q32

Ct2q31
Ctq30

Ctq29
Cq27

�
Ca5

�
t7q35

Ct6q35
Ct5q35

Ct7q34
C2t6q34

C2t5q34
Ct4q34

C2t6q33
C4t5q33

C4t4q33

Ct3q33
Ct6q32

C4t5q32
C5t4q32

C3t3q32
C2t5q31

C5t4q31
C5t3q31

Ct2q31
Ct5q30

C4t4q30
C6t3q30

C3t2q30
C2t4q29

C6t3q29
C5t2q29

Ct4q28
C4t3q28

C5t2q28
Ctq28

C2t3q27
C5t2q27

C3tq27
Ct3q26

C4t2q26
C3tq26

C2t2q25
C3tq25

Cq25
Ct2q24

C3tq24

Cq24
C2tq23

Cq23
Ctq22

Cq22
Cq21

Cq20
�

Ca4
�
t9q35

Ct8q35
Ct7q35

Ct10q34
C2t9q34

C4t8q34
C3t7q34

C2t6q34
C2t9q33

C5t8q33

C8t7q33
C6t6q33

C3t5q33
Ct9q32

C5t8q32
C11t7q32

C13t6q32
C8t5q32

C2t4q32

C2t8q31
C9t7q31

C16t6q31
C15t5q31

C6t4q31
Ct3q31

Ct8q30
C5t7q30

C16t6q30

C21t5q30
C14t4q30

C3t3q30
C2t7q29

C9t6q29
C22t5q29

C20t4q29
C8t3q29

Ct7q28

C5t6q28
C16t5q28

C25t4q28
C14t3q28

C2t2q28
C2t6q27

C9t5q27
C21t4q27

C20t3q27

C5t2q27
Ct6q26

C5t5q26
C16t4q26

C22t3q26
C10t2q26

C2t5q25
C9t4q25

C20t3q25

C13t2q25
C2tq25

Ct5q24
C5t4q24

C15t3q24
C17t2q24

C4tq24
C2t4q23

C9t3q23
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C15t2q23
C6tq23

Ct4q22
C5t3q22

C13t2q22
C8tq22

Cq22
C2t3q21

C8t2q21
C9tq21

Cq21
Ct3q20

C5t2q20
C8tq20

C2q20
C2t2q19

C6tq19
C2q19

Ct2q18
C4tq18

C3q18

C5t2q20
C8tq20

C2q20
C2t2q19

C2tq17
C2q17

Ctq16
C2q16

Cq15
Cq14

�
Ca3

�
t10q35

Ct12q34
C2t11q34

C3t10q34
C3t9q34

Ct8q34
Ct12q33

C3t11q33
C6t10q33

C8t9q33
C6t8q33

C2t7q33
C2t11q32

C8t10q32
C14t9q32

C16t8q32
C10t7q32

C3t6q32

Ct11q31
C5t10q31

C15t9q31
C25t8q31

C22t7q31
C11t6q31

C2t5q31
C2t10q30

C10t9q30

C26t8q30
C36t7q30

C26t6q30
C9t5q30

Ct4q30
Ct10q29

C5t9q29
C18t8q29

C39t7q29

C42t6q29
C21t5q29

C4t4q29
C2t9q28

C10t8q28
C29t7q28

C50t6q28
C39t5q28

C12t4q28

Ct3q28
Ct9q27

C5t8q27
C18t7q27

C43t6q27
C52t5q27

C25t4q27
C4t3q27

C2t8q26

C10t7q26
C29t6q26

C53t5q26
C41t4q26

C10t3q26
Ct8q25

C5t7q25
C18t6q25

C43t5q25

C50t4q25
C20t3q25

Ct2q25
C2t7q24

C10t6q24
C29t5q24

C50t4q24
C32t3q24

C5t2q24

Ct7q23
C5t6q23

C18t5q23
C41t4q23

C39t3q23
C10t2q23

C2t6q22
C10t5q22

C28t4q22

C41t3q22
C18t2q22

Ctq22
Ct6q21

C5t5q21
C18t4q21

C36t3q21
C24t2q21

C3tq21

C2t5q20
C10t4q20

C26t3q20
C27t2q20

C6tq20
Ct5q19

C5t4q19
C17t3q19

C26t2q19

C9tq19
C2t4q18

C10t3q18
C21t2q18

C12tq18
Cq18

Ct4q17
C5t3q17

C15t2q17
C13tq17

Cq17
C2t3q16

C9t2q16
C12tq16

C2q16
Ct3q15

C5t2q15
C10tq15

C3q15
C2t2q14

C7tq14

C3q14
Ct2q13

C4tq13
C3q13

C2tq12
C3q12

Ctq11
C2q11

Cq10
Cq9

�
Ca2

�
t13q34

Ct12q34
Ct11q34

Ct14q33
C2t13q33

C4t12q33
C4t11q33

C3t10q33
C2t13q32

C5t12q32
C10t11q32

C10t10q32
C6t9q32

Ct8q32
Ct13q31

C5t12q31
C12t11q31

C20t10q31

C18t9q31
C8t8q31

Ct7q31
C2t12q30

C9t11q30
C21t10q30

C32t9q30
C24t8q30

C9t7q30

Ct6q30
Ct12q29

C5t11q29
C17t10q29

C35t9q29
C45t8q29

C25t7q29
C7t6q29

C2t11q28

C9t10q28
C27t9q28

C49t8q28
C49t7q28

C20t6q28
C3t5q28

Ct11q27
C5t10q27

C17t9q27

C42t8q27
C62t7q27

C44t6q27
C11t5q27

Ct4q27
C2t10q26

C9t9q26
C27t8q26

C57t7q26

C63t6q26
C28t5q26

C3t4q26
Ct10q25

C5t9q25
C17t8q25

C42t7q25
C70t6q25

C48t5q25

C11t4q25
C2t9q24

C9t8q24
C27t7q24

C56t6q24
C66t5q24

C24t4q24
C2t3q24

Ct9q23

C5t8q23
C17t7q23

C42t6q23
C67t5q23

C42t4q23
C6t3q23

C2t8q22
C9t7q22

C27t6q22

C55t5q22
C54t4q22

C15t3q22
Ct8q21

C5t7q21
C17t6q21

C41t5q21
C60t4q21

C26t3q21

C2t2q21
C2t7q20

C9t6q20
C27t5q20

C50t4q20
C38t3q20

C5t2q20
Ct7q19

C5t6q19

C17t5q19
C39t4q19

C43t3q19
C12t2q19

C2t6q18
C9t5q18

C26t4q18
C41t3q18

C18t2q18

Ctq18
Ct6q17

C5t5q17
C17t4q17

C34t3q17
C25t2q17

C2tq17
C2t5q16

C9t4q16
C24t3q16

C25t2q16
C5tq16

Ct5q15
C5t4q15

C16t3q15
C25t2q15

C8tq15
C2t4q14

C9t3q14
C19t2q14

C10tq14
Ct4q13

C5t3q13
C14t2q13

C11tq13
Cq13

C2t3q12
C8t2q12

C11tq12
Cq12

Ct3q11

C5t2q11
C9tq11

C2q11
C2t2q10

C6tq10
C2q10

Ct2q9
C4tq9

C3q9
C2tq8

C2q8
Ctq7

C2q7
Cq6
Cq5

�
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Ca
�
t15q33

Ct14q33
Ct13q33

Ct15q32
C2t14q32

C3t13q32
C3t12q32

Ct11q32
C2t14q31

C5t13q31
C8t12q31

C7t11q31
C2t10q31

Ct14q30
C4t13q30

C9t12q30
C14t11q30

C11t10q30
C3t9q30

C2t13q29
C7t12q29

C16t11q29
C22t10q29

C15t9q29
C3t8q29

Ct13q28
C4t12q28

C12t11q28
C24t10q28

C29t9q28
C14t8q28

C2t7q28
C2t12q27

C7t11q27
C19t10q27

C34t9q27
C32t8q27

C11t7q27
Ct6q27

Ct12q26
C4t11q26

C12t10q26
C28t9q26

C42t8q26
C27t7q26

C5t6q26
C2t11q25

C7t10q25
C19t9q25

C38t8q25
C43t7q25

C17t6q25
Ct5q25

Ct11q24
C4t10q24

C12t9q24
C28t8q24

C46t7q24

C34t6q24
C6t5q24

C2t10q23
C7t9q23

C19t8q23
C38t7q23

C46t6q23
C17t5q23

Ct4q23

Ct10q22
C4t9q22

C12t8q22
C28t7q22

C45t6q22
C31t5q22

C4t4q22
C2t9q21

C7t8q21

C19t7q21
C37t6q21

C42t5q21
C11t4q21

Ct9q20
C4t8q20

C12t7q20
C28t6q20

C42t5q20

C21t4q20
Ct3q20

C2t8q19
C7t7q19

C19t6q19
C35t5q19

C32t4q19
C5t3q19

Ct8q18

C4t7q18
C12t6q18

C27t5q18
C35t4q18

C11t3q18
C2t7q17

C7t6q17
C19t5q17

C31t4q17

C18t3q17
Ct2q17

Ct7q16
C4t6q16

C12t5q16
C25t4q16

C23t3q16
C3t2q16

C2t6q15

C7t5q15
C18t4q15

C24t3q15
C7t2q15

Ct6q14
C4t5q14

C12t4q14
C21t3q14

C10t2q14

C2t5q13
C7t4q13

C16t3q13
C13t2q13

Ctq13
Ct5q12

C4t4q12
C11t3q12

C14t2q12

C2tq12
C2t4q11

C7t3q11
C12t2q11

C3tq11
Ct4q10

C4t3q10
C9t2q10

C5tq10
C2t3q9

C6t2q9
C6tq9

Ct3q8
C4t2q8

C5tq8
C2t2q7

C4tq7
Cq7
Ct2q6

C3tq6
Cq6
C2tq5

Cq5
Ctq4

Cq4
Cq3
Cq2

�
:

Betti numbers (Presumably)

(3-9) H.q D 1; t; aD 0/D 1C 6t C 17t2
C 32t3

C 48t4
C 62t5

C 70t6
C 70t7

C 64t8
C 54t9

C 41t10
C 28t11

C 18t12

C 10t13
C 5t14

C 2t15
C t16

D .1C 3t C 4t2
C 4t3

C 4t4
C 3t5

C 2t6
C t7
C t8/2:

We put here (and below) “presumably”, since at the moment it is not clear which Betti
numbers this polynomial calculates (even conjecturally). The last relation is a particular
case of part (iv) of Theorem 2.3 (the specialization at q D 1). The full specialization
formula in this case reads as follows:

Hf3;2g;f2;1g.2!1I q D 1; t; a/D
�
1C 3aC 3a2

C a3
C 3t C 7at C 5a2t

C a3t C 4t2
C 8at2

C 5a2t2
C a3t2

C 4t3
C 8at3

C 4a2t3
C 4t4

C 6at4
C 2a2t4

C 3t5
C 4at5

C a2t5
C 2t6

C 2at6
C t7
C at7

C t8
�2

DHf3;2g;f2;1g.!1I q D 1; t; a/2:
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Hf3;2g;f2 ;1g.!2/ The superpolynomial for the same iterated knot and the weight !2

is connected with the one for 2!1 by the superduality, so we will not list it. However,
let us provide its value at aD 0; q D 1 (presumably a sequence of Betti numbers):

(3-10) Hf3;2g;f2;1g.!2I q D 1; t; aD 0/

D1C3tC7t2
C11t3

C18t4
C23t5

C29t6
C31t7

C36t8
C35t9

C37t10

C 34t11
C 34t12

C 31t13
C 31t14

C 25t15
C 25t16

C 21t17

C 19t18
C 15t19

C 15t20
C 10t21

C 10t22
C 7t23

C 6t24

C 4t25
C 4t26

C 2t27
C 2t28

C t29
C t30

C t32:

A geometric meaning of formulas (3-9) and (3-10) in terms of certain Betti numbers
remains to be found. Generally, we expect that a variant of the construction from [30;
14] can be used here.

3.4 Pseudoalgebraic knots

This section is a theoretical challenge. It indicates that some nonalgebraic iterated
knots are similar to the algebraic ones, especially the pseudoalgebraic, defined above
as those with positive uncolored DAHA superpolynomials. This class conjecturally
includes all algebraic knots and their mirror images.

The two knots below possess such a positivity and all other DAHA properties of
algebraic knots; for instance, the existence of the tilde-normalization from Theorem 2.1
for any AN holds, as does the strict equality for dega in (2-20). We give below some
other examples of pseudoalgebraic knots that do not have these two features; see (4-1)
and (4-7).

In spite of the presence of negative si there, we think that the coefficients of the
DAHA-Betti polynomials in (3-11) and (3-12) can be expected to be Betti numbers of
Jacobian factors for certain (germs of) curves. Hopefully partial normalizations of CEr;Es
will emerge here, however this is unknown at the moment.

.6/ ErD f3; 2g; EsD f2;�3g; T D Cab.9; 2/T .3; 2/I

HEr;Es.�I q; t; a/D1Ca3q6
CqtCq2tCq3tCq2t2

Cq3t2
C2q4t2

Cq3t3
Cq4t3

Cq5t3

C q4t4
C q5t4

C q5t5
C q6t6

C a2
�
q3
C q4

C q5
C q4t C 2q5t C q6t C q5t2

C q6t2
C q6t3

�
C a

�
qC q2

C q3
C q2t C 2q3t C 3q4t C q5t C q3t2

C 2q4t2

C 3q5t2
C q4t3

C 2q5t3
C q6t3

C q5t4
C q6t4

C q6t5
�
:
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Betti numbers (Presumably)

(3-11) H.q D 1; t; aD 0/D 1C 3t C 4t2
C 3t3

C 2t4
C t5
C t6:

This sequence of coefficients and the one in the next example do not come from
algebraic knots. However they fit the table of Betti numbers from [36] for the Puiseux
exponents .4; 6; v/. The first two entries there (our examples .1/ and .2/) are for
.4; 6; 7/ and .4; 6; 9/, respectively; the knots from .6/ and .7/ formally correspond to
nonalgebraic .4; 6; 3/ and .4; 6; 5/, respectively.

Khovanov polynomial

.6/ DAHA0Kh.Cab.9; 2/T .3; 2//D 1C q4t2
C q6t3

C q6t4
C q10t5

C q8t6
C q12t7

C 2q12t8
C 2q14t9

C q18t11
C q20t12:

This polynomial, as well as the next DAHA0Kh, coincide with the corresponding
(reduced) Khovanov polynomials. This confirms the Connection conjecture(ii) and
also demonstrates that the differentials that are necessary to extract the Khovanov
polynomials from the stable ones satisfy assumptions (2.13) from [12, Section 3.6].

Hf3;2g;f2 ;�1g This knot is pseudoalgebraic but nonalgebraic as well. In a sense, it is
the greatest nonalgebraic, since Cab.13; 2/T .3; 2/ from .1/ above is the first algebraic
one in this series.

.7/ ErD f3; 2g; EsD f2;�1g; T D Cab.11; 2/T .3; 2/I

HEr;Es.�I q; t; a/D 1CqtCq2tCq3tCq2t2
Cq3t2

C2q4t2
Cq3t3

Cq4t3
C2q5t3

Cq4t4

Cq5t4
Cq6t4

Cq5t5
Cq6t5

Cq6t6
Cq7t7

Ca3
�
q6
Cq7t

�
Ca2

�
q3
Cq4
Cq5
Cq4tC2q5tC2q6tCq5t2

C2q6t2
Cq7t2

Cq6t3
Cq7t3

Cq7t4
�

Ca
�
qCq2

Cq3
Cq2tC2q3tC3q4tCq5tCq3t2

C2q4t2
C4q5t2

Cq6t2
Cq4t3

C2q5t3
C3q6t3

Cq5t4
C2q6t4

Cq7t4
Cq6t5

Cq7t5
Cq7t6

�
:

Betti numbers (Presumably)

(3-12) H.q D 1; t; aD 0/D 1C 3t C 4t2
C 4t3

C 3t4
C 2t5

C t6
C t7:

The general formula is not very difficult to calculate because qD 1 is the trivial central
charge (when there are significant simplifications):

(3-13) Hf3;2g;f2;2n�15g.q D 1; t; aD 0/D 1C 3t C 4.t2
C � � �C tn�4/

C 3tn�3
C 2tn�2

C tn�1
C tn

for Cab.2n� 3; 2/T .3; 2/, n� 6.
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Khovanov polynomial

.7/ DAHA0Kh.Cab.11; 2/T .3; 2//D 1Cq4t2
Cq6t3

Cq6t4
Cq10t5

Cq8t6
Cq12t7

C 2q12t8
C 2q14t9

C q16t10
C 2q18t11

C q20t12:

This polynomial and the previous one coincide with the corresponding Khovanov
polynomials (under the tilde-normalization); recall that we use the standard parameters
in all formulas involving Khovanov polynomials. Thus, q; t above are actually qst; tst .

4 Further aspects

4.1 Nonalgebraic knots

Continuing the previous section, let us discuss nonalgebraic knots that are not pseudoal-
gebraic. Though the first knot we will consider is pseudoalgebraic, it has some features
that are not expected in algebraic knots. For instance, the corresponding dega is strictly
smaller than .js1r2j � 1/D 3. The coincidence holds for the similar pseudoalgebraic
knots from .6/ and .7/ above and is conjectured to be true for all algebraic knots.

.a/ ErD f3;�2g; EsD f2; 5g; T D Cab.7; 2/T .3; 2/I

HEr;Es.�I q; t; a/D 1CqtCq2tCq3tCq2t2
Cq3t2

Cq4t2
Cq3t3

Cq4t3
Cq4t4

Cq5t5

C a2
�
q3
C q4

C q4t C q5t C q5t2
�

C a
�
qC q2

C q3
C q2t C 2q3t C 2q4t C q3t2

C 2q4t2
C q5t2

C q4t3
C q5t3

C q5t4
�
:

(4-1) H.q D 1; t; aD 0/D 1C 3t C 3t2
C 2t3

C t4
C t5;

DAHA0Kh.Cab.7; 2/T .3; 2//D 1C q4t2
C q6t3

C q6t4
C q10t5

C q8t6

C q12t7
C q12t8

C q14t9
C q18t11

C q20t12:

We see that the first formula is quite similar to (3-13). The DAHA-Khovanov poly-
nomial coincides here with the actual Khovanov one (reduced and under the tilde
normalization); recall that we use the standard parameters in the formulas for the
DAHA-Khovanov polynomials.

.b/ ErD f3;�2g; EsD f2; 7g; T D Cab.5; 2/T .3; 2/I

HEr;Es.�I q; t; a/D 1� 1
t
a3q5

C qt C q2t C q2t2
C q3t2

C q3t3
C q4t4

C a2
�
q3
� q5
�

1
t
q4
C q4t

�
C a

�
qC q2

� q4
C q2t C 2q3t C q3t2

C q4t2
C q4t3

�
:
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(4-2) H.q D 1; t; aD 0/D 1C 2t C 2t2
C t3
C t4;

DAHA0Kh.Cab.5; 2/T .3; 2//D 1C q4t2
C q6t3

C q6t4
C q10t5

C q10t6

C q12t7
C q12t8

C q14t9
C q18t11

C q20t12:

The knot Cab.5; 2/T .3; 2/ is the first with nonpositive HEr;Es.�I q; t; a/ in the considered
family. The actual Khovanov polynomials coincide with DAHA0Kh.

The corresponding DAHA-Jones polynomial for A1 is

(4-3) �JD
A1

f3;�2g;f2;7g.!1I q; t/DH.q; t; aD�t2/

D 1C qt C q2t � qt2
C q3t2

C q4t2

� q2t3
� q3t3

� q4t3
� q5t4

C q5t5:

Its value at t D q is the (reduced) Jones polynomial zJ D 1Cq2�q7�q9Cq10 (for our
q and under the tilde normalization); the (reduced) one produced by the KnotTheory
package is q4C q6� q11� q13C q14 .

We note that (4-3) has little to do with the polynomial obtained in [40, Section 5.2],
(for the same knot). We cannot comment on this and the general approach used in [40].
The latter stimulated our paper, but the construction there remains unclear to us.

.c/ ErD f3;�2g; EsD f2; 9g; T D Cab.3; 2/T .3; 2/I

HEr;Es.�I q; t; a/D 1� q2
C qt C q2t � q3t C q2t2

C q3t3

C a3
�
�

1
t2 q4
�

1
t
q5
�
C a2

�
q3
� q4
� q5
�

1
t2 q3
�

1
t
q3
�

1
t
2q4

�
C a

�
qC q2

� 2q3
� q4
�

1
t
q2
�

1
t
q3
C q2t C q3t � q4t C q3t2

�
:

(4-4) H.q D 1; t; aD 0/D t C t2
C t3;

DAHA0Kh.Cab.3; 2/T .3; 2//D 1C q4t2
C q4t3

C q6t3
C 2q6t4

C q10t5

C q10t6
C q12t7

C q12t8
C q14t9

C q18t11
C q20t12:

Here, �Kh�DAHA0KhD q20t12.1� t2/, which matches our expectations.

.d/ ErD f3;�2g; EsD f2; 11g; T D Cab.1; 2/T .3; 2/I

HEr;Es.�I q; t; a/D�qC t � 2q2t C qt2
� q3t2

C q2t3

C a3
�
�q5
�

1
t2 q3
�

1
t
q4
�

C a2
�
�2q3

� 2q4
�

1
t2 q2
�

1
t
q2
�

1
t
2q3
� q4t � q5t

�
C a

�
�3q2

� q3
�

1
t
q� 1

t
q2
C qt � 3q3t � q4t C q2t2

� q4t2
�
:
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(4-5) H.q D 1; t; aD 0/D�1� t C t3;�Kh.Cab.1; 2/T .3; 2//D DAHA0Kh.Cab.1; 2/T .3; 2//

D 1CtCq2t2
Cq4t2

Cq4t3
Cq6t3

C2q6t4
Cq10t5

Cq10t6
Cq12t7

Cq12t8
Cq14t9

Cq18t11
Cq20t12:

.e/ ErD f3;�2g; EsD f2; 13g; T D Cab.�1; 2/T .3; 2/I

HEr;Es.�I q; t; a/D 1C 2qt � t2
C qt2

C 2q2t2
� qt3

C q3t3

C a3
�
q4
C

1
t2 q2
C

1
t
q3
C q5t

�
C a2

�
2q2
C 2q3

C
1
t2 qC 1

t
qC 1

t
2q2
C q2t C 2q3t C 2q4t C q4t2

C q5t2
�

C a
�
3qC q2

C
1
t
1C 1

t
qC qt C 4q2t C q3t � qt2

C q2t2
C 3q3t2

C q4t2
C q4t3

�
:

Note that we have H.q D 0; t; a D 0/ D 1C a=t for m < 0 in the family of knots
Cab.2mC 1; 2/T .3; 2/; it was 1 or t before.

(4-6) H.q D 1; t; aD 0/D 1C 2t C 2t2;�Kh.Cab.�1; 2/T .3; 2//D DAHACKh.Cab.�1; 2/T .3; 2//

D 1C q2t C q4t C q4t2
C q6t3

C q8t3
C q8t4

C q10t4
C 2q10t5

C q14t6
C q14t7

C q16t8

C q16t9
C q18t10

C q22t12
C q24t13:

Note the use of the procedure DAHACKh here and in the next example (which starts
with the substitution �1 7! a=t2 in DAHA parameters).

.f/ ErD f3;�2g; EsD f2; 15g; T D Cab.�3; 2/T .3; 2/I

HEr;Es.�I q; t; a/D 1C 2qt C qt2
C 2q2t2

� qt3
C q2t3

C 2q3t3
C q4t4

C a3
�
q4
C

1
t2 q2
C

1
t
q3
C q5t C q6t2

�
C a2

�
2q2
C 2q3

C
1
t2 qC 1

t
qC 1

t
2q2
C q2t C 2q3t C 2q4t

C q3t2
C 2q4t2

C 2q5t2
C q5t3

C q6t3
�

C a
�
3qC q2

C
1
t
1C 1

t
qC qt C 4q2t C q3t C 2q2t2

C 4q3t2
C q4t2

C q3t3
C 3q4t3

C q5t3
C q5t4

�
:

(4-7) H.q D 1; t; aD 0/D 1C 2t C 3t2
C 2t3

C t4;

DAHACKh.Cab.�3; 2/T .3; 2//D 1C q2t C q8t C q4t2
C q6t3

C q8t4

C q10t5
C q12t6

C q14t6
C q12t7

C 2q14t7
C q18t8

C q18t9
C q20t10

C q20t11
C q22t12

C q26t14
C q28t15:
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Here, �Kh�DAHACKhD q12.t5� t7/. Note the use of DAHAC here and that there is
only one negative term in H.�I q; t; a/, namely �qt3 . Using the procedure DAHA0Kh
would result in the extra term �q8.t � t3/ in this difference, where �1 does not agree
with the (topological) @2 .

.g/ ErD f3;�2g; EsD f2; 17g; T D Cab.�5; 2/T .3; 2/I

HEr;Es.�I q; t; a/D 1C 2qt C qt2
C 2q2t2

C q2t3
C 2q3t3

C q3t4
C 2q4t4

C q5t5

C a3
�
q4
C

1
t2 q2
C

1
t
q3
C q5t C q6t2

C q7t3
�

C a2
�
2q2
C 2q3

C
1
t2 qC 1

t
qC 1

t
2q2
C q2t C 2q3t C 2q4t C q3t2

C 2q4t2
C 2q5t2

C q4t3
C 2q5t3

C 2q6t3
C q6t4

C q7t4
�

Ca
�
3qCq2

C
1
t
1C 1

t
qCqtC4q2tCq3tC2q2t2

C4q3t2
Cq4t2

Cq2t3

C 2q3t3
C 4q4t3

C q5t3
C q4t4

C 3q5t4
C q6t4

C q6t5
�
:

(4-8) H.q D 1; t; aD 0/D 1C 2t C 3t2
C 3t3

C 3t4
C t5;

DAHA0Kh.Cab.�5; 2/T .3; 2//D 1C q2t C q4t2
C q6t3

C q8t4
C q10t5

Cq12t6
Cq12t7

Cq14t7
Cq16t8

Cq18t8

Cq16t9
C2q18t9

Cq22t10
Cq22t11

Cq24t12

Cq24t13
Cq26t14

Cq30t16
Cq32t17:

One has that �Kh�DAHA0KhD q12.t5� t7/Cq16.t7� t9/, matching our expectations,
though this is obviously not in “top” t –degrees.

This knot is pseudoalgebraic, as well as all further knots in the considered family.
However, they are quite different numerically from the patterns in (3-11) and (3-12). For
example, the polynomial H.qD1; t; aD0/ becomes 1C2tC3t2C3t3C4t4C3t5Ct6

for Cab.�7; 2/T .3; 2/. Generally,

(4-9) Hf3;�2g;f2;2nC7g.q D 1; t; aD 0/D 1C 2t C 3t2
C 3t3

C 4.t4
C � � �C tn�2/C 3tn�1

C tn

for Cab.�2nC5; 2/T .3; 2/, n� 5. Let us provide a pseudoalgebraic knot of type (4)
(for T .4; 3/).

.h/ ErD f4;�2g; EsD f3; 7g; T D Cab.17; 2/T .4; 3/I

HEr;Es.�I q; t; a/D 1CqtCq2tCq3tCq4tCq5tCq2t2
Cq3t2

C2q4t2
C2q5t2

C3q6t2
Cq7t2

Cq8t2
Cq3t3

Cq4t3
C2q5t3

C3q6t3
C4q7t3

C3q8t3
C2q9t3

Cq4t4
Cq5t4

C2q6t4

C3q7t4
C5q8t4

C4q9t4
C3q10t4

Cq5t5
Cq6t5

C2q7t5
C3q8t5

C5q9t5
C4q10t5

C2q11t5
Cq6t6

Cq7t6
C2q8t6

C3q9t6
C5q10t6

C3q11t6
Cq12t6

Cq7t7
Cq8t7

C2q9t7
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C3q10t7
C4q11t7

Cq12t7
Cq8t8

Cq9t8
C2q10t8

C3q11t8
C3q12t8

Cq9t9
Cq10t9

C2q11t9
C2q12t9

Cq13t9
Cq10t10

Cq11t10
C2q12t10

Cq13t10
Cq11t11

Cq12t11

Cq13t11
Cq12t12

Cq13t12
Cq13t13

Cq14t14

Ca4
�
q10
Cq11

Cq12
Cq11tC2q12tCq13tCq12t2

C2q13t2
Cq14t2

Cq13t3
Cq14t3

Cq14t4
�

Ca3
�
q6
Cq7
C2q8

C2q9
C2q10

Cq11
Cq7tC2q8tC4q9tC5q10tC5q11tC2q12tCq8t2

C2q9t2
C5q10t2

C7q11t2
C7q12t2

C2q13t2
Cq9t3

C2q10t3
C5q11t3

C7q12t3
C5q13t3

Cq14t3
Cq10t4

C2q11t4
C5q12t4

C5q13t4
C2q14t4

Cq11t5
C2q12t5

C4q13t5
C2q14t5

Cq12t6
C2q13t6

C2q14t6
Cq13t7

Cq14t7
Cq14t8

�
Ca2

�
q3
Cq4
C2q5

C2q6
C2q7

Cq8
Cq9
Cq4tC2q5tC4q6tC6q7tC7q8tC6q9tC4q10t

Cq11tCq5t2
C2q6t2

C5q7t2
C8q8t2

C12q9t2
C11q10t2

C7q11t2
Cq12t2

Cq6t3
C2q7t3

C5q8t3
C9q9t3

C14q10t3
C14q11t3

C7q12t3
Cq13t3

Cq7t4
C2q8t4

C5q9t4
C9q10t4

C14q11t4

C11q12t4
C4q13t4

Cq8t5
C2q9t5

C5q10t5
C9q11t5

C12q12t5
C6q13t5

Cq14t5
Cq9t6

C2q10t6
C5q11t6

C8q12t6
C7q13t6

Cq14t6
Cq10t7

C2q11t7
C5q12t7

C6q13t7
C2q14t7

Cq11t8
C2q12t8

C4q13t8
C2q14t8

Cq12t9
C2q13t9

C2q14t9
Cq13t10

Cq14t10
Cq14t11

�
Ca
�
qCq2

Cq3
Cq4
Cq5
Cq2tC2q3tC3q4tC4q5tC5q6tC3q7tC2q8tCq9tCq3t2

C2q4t2

C4q5t2
C6q6t2

C9q7t2
C8q8t2

C6q9t2
C2q10t2

Cq4t3
C2q5t3

C4q6t3
C7q7t3

C11q8t3

C12q9t3
C10q10t3

C3q11t3
Cq5t4

C2q6t4
C4q7t4

C7q8t4
C12q9t4

C13q10t4
C10q11t4

C2q12t4
Cq6t5

C2q7t5
C4q8t5

C7q9t5
C12q10t5

C12q11t5
C6q12t5

Cq13t5
Cq7t6

C2q8t6

C4q9t6
C7q10t6

C11q11t6
C8q12t6

C2q13t6
Cq8t7

C2q9t7
C4q10t7

C7q11t7
C9q12t7

C3q13t7
Cq9t8

C2q10t8
C4q11t8

C6q12t8
C5q13t8

Cq10t9
C2q11t9

C4q12t9
C4q13t9

Cq14t9
Cq11t10

C2q12t10
C3q13t10

Cq14t10
Cq12t11

C2q13t11
Cq14t11

Cq13t12

Cq14t12
Cq14t13

�
:

The corresponding Khovanov polynomial equals

DAHA0Kh.Cab.17; 2/T .4; 3//D 1C q4t2
C q6t3

C q6t4
C q10t5

C q8t6
C q12t7

C q10t8
C q12t8

C 2q14t9
C q12t10

C q14t10
C 2q16t11

C q18t11
C 3q16t12

C q20t12
C 2q18t13

C 2q20t13
C q18t14

C q20t14
C q22t14

C 4q22t15

C q20t16
C q22t16

C q24t16
C q26t16

C 2q24t17
C q26t17

C q24t18
C q28t18

C q30t20
C q26t19

C q28t19
C q28t20

C 2q30t21
C q32t22

C q36t24
C q34t25:

Here, �Kh�DAHA0KhD q34.t23� t25/, which agrees with part (ii) of Conjecture 2.4.
The corresponding (reduced and tilde-normalized) HOMFLYPT polynomial coincides
with H.�I q; q;�a/, as well as in all examples we considered (not only those posted
in the paper).
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The last example will be a non-pseudoalgebraic knot with a relatively involved relation
between DAHA0Kh and �Kh.

.i/ ErD f4;�2g; EsD f3; 17g; T D Cab.7; 2/T .4; 3/I

HEr;Es.�I q; t; a/D�q2
�2q3t�q4t�q3t2

�4q4t2
�q5t2

�2q4t3
�6q5t3

�q6t3
Ct4
�q4t4

�4q5t4
�7q6t4

�q7t4
Cqt5

Cq2t5
Cq3t5

Cq4t5
�q5t5

�5q6t5
�7q7t5

�q8t5
Cq2t6

Cq3t6

C2q4t6
Cq5t6

�q6t6
�4q7t6

�6q8t6
�q9t6

Cq3t7
Cq4t7

C2q5t7
Cq6t7

�q7t7
�2q8t7

�4q9t7
�q10t7

Cq4t8
Cq5t8

Cq6t8
�q9t8

�2q10t8
Cq5t9

Cq6t9
�q11t9

Cq6t10
Cq7t11

Ca5
�
�q11

�
1

t3 q8
�

1

t2 q9
�

1
t
q10
�q12t�q13t2

�q14t3
�

Ca4
�
�q7
�3q8

�3q9
�2q10

�
1

t3 q6
�

1

t3 q7
�

1

t2 q6
�

1

t2 2q7
�

1

t2 2q8
�

1
t
2q7
�

1
t
3q8
�

1
t
2q9

�2q8t�3q9t�3q10t�2q11t�q8t2
�2q9t2

�3q10t2
�3q11t2

�2q12t2
�q9t3

�2q10t3

�3q11t3
�3q12t3

�2q13t3
�q11t4

�2q12t4
�2q13t4

�q14t4
�q13t5

�q14t5
�

Ca3
�
�q5
�7q6

�8q7
�6q8

�q9
�

1

t3 q5
�

1

t2 q4
�

1

t2 2q5
�

1

t2 3q6
�

1

t2 q7
�

1
t
3q5
�

1
t
5q6
�

1
t
5q7

�
1
t
q8
�3q6t�11q7t�9q8t�6q9t�q10t�q6t2

�6q7t2
�13q8t2

�9q9t2
�6q10t2

�q11t2

�3q7t3
�8q8t3

�13q9t3
�9q10t3

�6q11t3
�q12t3

Cq6t4
�3q8t4

�6q9t4
�11q10t4

�8q11t4
�5q12t4

�q13t4
Cq7t5

�q9t5
�3q10t5

�7q11t5
�5q12t5

�3q13t5
�q11t6

�3q12t6
�2q13t6

�q14t6
�q13t7

�
Ca2

�
�3q4

�10q5
�7q6

�3q7
�

1

t2 q3
�

1

t2 q4
�

1

t2 q5
�

1
t
q3
�

1
t
4q4
�

1
t
4q5
�

1
t
2q6
�q4t�8q5t

�16q6t�9q7t�3q8t�3q5t2
�14q6t2

�20q7t2
�9q8t2

�3q9t2
�q5t3

�8q6t3
�19q7t3

�21q8t3
�9q9t3

�3q10t3
Cq3t4

Cq4t4
C2q5t4

�q6t4
�11q7t4

�19q8t4
�20q9t4

�9q10t4

�3q11t4
Cq4t5

C2q5t5
C3q6t5

�q7t5
�8q8t5

�14q9t5
�16q10t5

�7q11t5
�2q12t5

Cq5t6

C2q6t6
C2q7t6

�q8t6
�3q9t6

�8q10t6
�10q11t6

�4q12t6
�q13t6

Cq6t7
Cq7t7

�q10t7

�3q11t7
�4q12t7

�q13t7
Cq7t8

�q12t8
�q13t8

�
Ca
�
�3q3

�4q4
�2q5

�
1
t
q2
�

1
t
q3
�

1
t
q4
�q3t�7q4t�8q5t�3q6t�3q4t2

�13q5t2
�10q6t2

�3q7t2
�q4t3

�7q5t3
�18q6t3

�11q7t3
�3q8t3

Cqt4
Cq2t4

Cq3t4
Cq4t4

�2q5t4
�12q6t4

�20q7t4
�11q8t4

�3q9t4
Cq2t5

C2q3t5
C3q4t5

C3q5t5
�2q6t5

�12q7t5
�18q8t5

�10q9t5

�3q10t5
Cq3t6

C2q4t6
C4q5t6

C3q6t6
�2q7t6

�7q8t6
�13q9t6

�8q10t6
�2q11t6

Cq4t7

C2q5t7
C3q6t7

Cq7t7
�q8t7

�3q9t7
�7q10t7

�4q11t7
�q12t7

Cq5t8
C2q6t8

Cq7t8

�q10t8
�3q11t8

�q12t8
Cq6t9

Cq7t9
�q12t9

Cq7t10
�
:

In this example, applying the DAHA0 reduction procedure goes essentially as follows.
Starting with mD 0, one cancels consecutively the pairs in the form

˙qxty.am
C amC1=t2/ and qxty.am

� amC2=t4/
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in the superpolynomial Hf4;�2g;f3;17g . The output is

�q4
C a4

�
�q11

�
1
t2 q8
�

1
t2 q9
�

1
t
q9
�

1
t
2q10

�
� q5t C t2

C qt3
C q2t3

C q3t3

C q4t3
C q5t3

C q4t4
C q5t4

C 2q6t4
C q7t5

C a3
�
�q10

�
1
t2 q6
�

1
t2 2q7

�
1
t
2q8
�

1
t
q9
� q9t2

� q10t2
� q11t3

�
C a2

�
�

1
t2 q6
�

1
t
q7
� q6t � q8t2

C q5t3
C q6t3

C q7t3
C q7t4

C q8t4
�

C a
�
�q5
�

1
t
q4
� q6t C qt2

C q2t3
C q3t3

C 2q4t3
C 2q5t3

C q6t3
C q5t4

C 2q6t4
C 4q7t4

C q8t5
�
:

Then we substitute a 7! q4
sttst , q 7! .qsttst/

2 and t 7! q2
st then divide by the smallest

power of qst , and, finally, replace �1 7! 1=tst . Recall that q and t mean actually qst

and tst , respectively, in all formulas for KhR–polynomials. Finally,

DAHA0Kh.Cab.7; 2/T .4; 3//D 1C q32t22
C q36t24

C q34t25
C q4.t2

C t7/

C q6.t3
C t4
C t8/C q8.t6

C t9/C q10.t5
C t8
C t10/C q14.2t9

C t10
C t12/

C q12.t7
C t8
C t10

C t13/C q20.t12
C 2t13

C t14/C q16.2t11
C 2t12

C t14
C t15/

C q18.t11
C 2t13

C 2t16/C q22.t14
C 4t15

C 2t18/C q24.t16
C t17

C t19
C t20/

C q26.t16
C t17

C t21/C q28.t18
C t21

C t22/C q30.t20
C 2t23/:

One has

�Kh.Cab.7; 2/T .4; 3//�DAHA0KhD q12t11.1� t2/

�
�
1C2q6t3

C2q10t5
Cq14t8

C2q18t10
Cq22t12

C.1Ct/.q4tCq12t6
Cq16t8/

�
;

where the positivity of the coefficients matches our expectations (based on our assump-
tions concerning @2 ) and holds for all (uncolored) nonalgebraic knots we calculated so
far, where DAHA0Kh is taken if the a–leading term in H.�I q; t; a/ is negative (in our
examples, the q; t –monomials there are all positive or all negative) and DAHACKh
otherwise. We hesitate to conjecture this in general.

4.2 The case of A1

We are going to prove part (i) of the Connection conjecture in the A1 case, ie the equality

(4-10) H.b!1I q; q;�q2/D AHOM .b!1I q; q
2/D �JD

A1
.b!1I q; q/; b 2 ZC:

We need the simplest case of the theory of the difference shift operators; see [9,
Theorem 2.4] and [12].
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For t˛ D q
k�˛
˛ , let k D fk� D 0; 1g. Generally, we define

(4-11) Xk D

Y
˛2RC

k˛�1Y
jD0

�
.qj
˛X˛/

1=2
� .qj

˛X˛/
�1=2

�
:

Recall that q˛ D q�˛ , where �˛ WD .˛; ˛/=2.

We put H DH .k/ for elements H from the double affine Hecke algebra HH.k/ with
the structural parameters q and t� D qk�

� , as well as their images in the corresponding
polynomial representation, denoted by V.k/ . Accordingly, � .k/

˙
will be automorphisms

of HH.k/ .

We set ı D .fk� D 0g/. Then the operator H ı is obtained from H by replacing every
Yb (b 2 P ) by the difference operators b�1 , and Tw (w 2W ) by w . One has

(4-12) �ıC.Yb/D q�.b;b/=2XbYb; �
ı
�.Xb/D q.b;b/=2YbXb for b 2 P:

Lemma 4.1 Let H be an algebraic expression with complex coefficients in terms of
the standard W–symmetrizations of monomials with respect to fXbg and those with
respect to fYbg. The restriction of the corresponding operator to the subspace .V.k//W

of W–invariant elements in V.k/ will be denoted by H .k/
sym . Then

H .k/
sym D X�1

k H ısymXk ; .�
.k/
˙
.H .k///sym D X�1

k .�ı˙.H
ı//symXk :

Let us formally set for �; �0 2Cn ,

X� D qx� ; x� D .�;x/; X�C�0 DX�X�0 ; x2
D .x;x/D

nX
iD1

.x; !i/.x; ˛
_
i /:

We will treat �ı˙ and any elements 
 2 SL.2;Z/ as automorphisms of the linear span
of X�qMx2=2 for all � 2Cn and M from a sufficiently general subset of C (see the
inequalities for M;N;M 0 below). Given �, only c� for certain c 2C will be actually
needed in (4-13) and (4-14).

This linear span will be denoted by zV . The action of �W in V is naturally extended to zV
through its action on fx�g; qMx2=2 are W–invariant and satisfy the standard difference
equations for P � �W .
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The main formulas we need are as follows:

(4-13) �ı.X�q�Mx2=2/D
q�

2=.2M /

M 1=2
X�=M qCx2=.2M /;

.�ıC/
N .X�q�Mx2=2/DX�q.N�M /x2=2;

.�ı�/
N .X�q�Mx2=2/D ..�ı/�1.�ıC/

�N �ı/.X�e�Mx2=2/

D
1

.1�MN /1=2
q

�2N
2.1�MN /X�=.1�MN /q

�x2 M
2.1�MN / :

Here, N 2 Z and the parameters M are sufficiently general complex numbers; for in-
stance, MN ¤1 in the last formula. We also assume that .MM 0/1=2 DM 1=2.M 0/1=2

for M;M 0 2C .

These formulas can be readily extended to the following free action of the whole
SL.2;Z/ on X�qzx2=2 ,

(4-14) 
 ı.X�qzx2=2/D
1

.czC d/1=2
q�

�2c
2.czCd/X �

czCd
q

azCb
czCd

x2=2

for 
 D
�

a b
c d

�
2 SL.2;Z/, � 2Cn , and for generic z 2C .

DAHA-Jones polynomials We will now switch to the A1 case. Let ˛ D ˛1 , s D s1

and ! D !1 ; then ˛ D ˛1 D 2! and � D ! . The extended affine Weyl group is�W D hs; !i. The weights b! (b 2 Z) will be denoted simply by b .

The double affine Hecke algebra HH is generated by invertible elements Y D Y! ,
T D T1 , and X D X! , subject to the quadratic relation .T � t1=2/.T C t�1=2/D 0

and the cross relations

(4-15) TXT DX�1; T �1Y T �1
D Y �1; Y �1X�1YXT 2q1=2

D 1:

The field of definition will be Q.q1=4; t1=2/. Here, q˙1=4 is needed for the automor-
phisms �˙ :

(4-16) �C.X /DX; �C.T /D T; �C.Y /D q�1=4XY;

��.Y /D Y; ��.T / D T; ��.X /D q1=4YX:

We will prove the Connection conjecture for the nonreduced version of the DAHA-Jones
polynomials. Namely, we modify (2-12) as

(4-17) JD]
Er;Es
.bI q; t/ WD

˚
y
1

�
� � �
�
y
`�1

�
.y
`.P

.k/

b
//+

�
+
�
� � �
�	.k/

;

for t WD qk and 
 D 
r;s lifted to y
 2 PSL^2 .Z/, where we show explicitly the depen-
dence of the P –polynomial on the parameter k and also use .k/ for the corresponding
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coinvariant. Generally, the nonreduced DAHA-Jones polynomials are inconvenient
because of their nontrivial q; t –denominators. However, they become q–polynomials
as t D q and simplify the considerations.

4.3 Jones polynomials

We are going to use the relation for the colored Jones polynomials of the cable
Cab.a; r/K with that of the initial knot K . See [32; 44] and references therein. Note
that t in [44] is our q1=4 , and Cab.r; s/ there is our Cab.a; r/ (in this order!).

Assuming here and below that the j –summation has step 1, one has

(4-18) J ]Cab.a;r/K .bI q/D q�arb.bC2/=4

b=2X
jD�b=2

qaj.j rC1/J ]
K
.2rj I q/:

This formula gives a recursive definition of the Jones polynomials of iterated knots;
the unknot is normalized as

(4-19) J ]


.bI q/D .q.bC1/=2

� q�.bC1/=2/=.q1=2
� q�1=2/:

Proposition 4.2 For any (possibly negative) fr; sg from Theorem 2.1,

(4-20) JD]
fr1;:::;r`g;fs1;:::;s`g

.bI q; t 7! q/

D q�a`r`b.bC2/=4J ]
T .fr1;:::;r`g;fs1;:::;s`g/

.bI q 7! q�1/;

where T .fr1; : : : ; r`g; fs1; : : : ; s`g/ D Cab.Ea; Er/ D .Cab.a`; r`/ � � �Cab.a1; r1//.
/,
and ai are recursively defined by relations aiC1 D ririC1ai C siC1 for 1 � i � `� 1

and the initial condition a1 D s1 .

Proof As above, we formally set X� D q�x for � 2C , which extends Xb DXb!1
D

X b for b in Z (identified with the lattice P D Z!1 ). The free action of SL.2;Z/ on
X�qMx2

from (4-13) will be used for 
 D
�

r
s
?
?

�
. We need the formula

(4-21) 
 ı
�
X�.


ı/�1.X�/
�
D q�rs�2=4�s��=2Xr�C�;

which results in


 ı.P
.1/

b
.
 ı/�1.X �X�1//D 
 ı

� b=2X
jD�b=2

X 2j .
 ı/�1.X �X�1/

�

D

b=2X
jD�b=2

q�.rjC1/sj X 2rjC1
�

b=2X
jD�b=2

q�.rj�1/sj X 2rj�1

Algebraic & Geometric Topology, Volume 16 (2016)



888 Ivan Cherednik and Ivan Danilenko

D

b=2X
jD�b=2

q�.rjC1/sj X 2rjC1
�

b=2X
jD�b=2

q�.rjC1/sj X�2rj�1

D

b=2X
jD�b=2

q�.rjC1/sj .X �X�1/P
.1/
2rj
;

and then implies the relation

(4-22) .y

.1/

`
P
.1/

b
.y

.1/

`
/�1/+ D .X�1

1 y

ı
` X1P

.1/

b
X�1

1 .y
 ı` /
�1X1/+

D

b=2X
jD�b=2

q�.r`jC1/s`j P
.1/
2r`j

for X1 DX �X�1 . Thus, we can switch from k D 1 to the case of k D 0, where the
free action of PSL.2;Z/ can be used.

Using the latter relation we can proceed by induction as follows:

JD]
T .fr1;:::;r`g;fs1;:::;s`g/

.bI q; t 7! q/

D
˚
y

.1/
1

�
� � �
�
y

.1/

`�1

�
y

.1/

`
P
.1/

b
.y

.1/

`
/�1

�
+ .y


.1/

`�1
/�1

�
+
�
� � �
�
.y

.1/
1
/�1

	.1/
D

b=2X
jD�b=2

q�.r`jC1/s`j
˚
y

.1/
1

�
� � �
�
y

.1/

`�1
P
.1/
2r`j

.y

.1/

`�1
/�1

�
+
�
� � �
�
.y

.1/
1
/�1

	.1/
D

b=2X
jD�b=2

q�.r`jC1/s`j JD]
T .fr1;:::;r`�1g;fs1;:::;s`�1g/

.2r`j I q; t 7! q/

D

b=2X
jD�b=2

q�.r`jC1/s`j�a`�1r`�1.2r`j/.2r`jC2/=4

�J ]
T .fr1;:::;r`�1g;fs1;:::;s`�1g/

.2r`j I q 7! q�1/

D

b=2X
jD�b=2

q�.r`jC1/.s`Ca`�1r`r`�1/jJ ]
T .fr1;:::;r`�1g;fs1;:::;s`�1g/

.2r`j I q 7! q�1/

D

b=2X
jD�b=2

q�.r`jC1/a`jJ ]
T .fr1;:::;r`�1g;fs1;:::;s`�1g/

.2r`j I q 7! q�1/

D q�a`r`b.bC2/=4J ]
T .fr1;:::;r`g;fs1;:::;s`g/

.bI q 7! q�1/:

Algebraic & Geometric Topology, Volume 16 (2016)



DAHA and iterated torus knots 889

Finally,

(4-23) JD]


.bI q; t 7! q/D

q.bC1/=2� q�.bC1/=2

q1=2� q�1=2
D J ]



.bI q 7! q�1/;

which completes the proof.

4.4 Concluding remarks

Concerning part (iii) of the Connection conjecture, adding colors (arbitrary Young
diagrams �) to [33, Conjecture 1.2] is a natural challenge. This would provide a
t –extension of [30, Theorem 1.2]. Then, our construction (which is for arbitrary colors)
will be employed at full potential; we hope to extend it from iterated torus knots (the
setup of this paper) to iterated links.

The switch to the curves C� from [30, Section 1.3] supported on C DCEr;Es and associated
with Young diagrams � is natural here. This approach was initiated in [14] (via the so
called resolved conifold). Using (the germs of) such curves can be hopefully combined
with considering the weight filtration in the cohomology of the corresponding nested
Hilbert schemes and Jacobian factors.

On the other hand, DAHA uniformly manages arbitrary root systems and weights via
the Macdonald polynomials; changing the curves CEr;Es for incorporating the colors does
not seem really necessary from this perspective. Instead, the spaces BunG.CEr;Es/ of
G–bundles over CEr;Es for the simple Lie group G associated with the root system R

can be expected. This is related to the interpretation of the Jacobian factors as Springer
fibers due to [29]; CEr;Es would then become spectral curves.

See also [8, Corollary 2.3] (and Theorem 4.10), where this connection was established
for torsion free sheaves over arbitrary (possibly singular) coverings of P1 or elliptic
curves E , assuming the semistability (stability for E ) of their direct images, the
sheaves over P1 or E . The connection with Baker functions and the “group” � –
function was established there (Proposition 2.4), which makes this construction a
variant of the Hitchin system for factorizable Lie group schemes over E or P1 . These
schemes are associated with arbitrary (nonunitary) classical r –matrices; see [8] and
[10, Section 1.7].

This approach potentially leads to certain cell decompositions of Jacobian factors,
different from those in [36] and defined via the Kac–Moody groups. The latter act
as Hecke transformations in the fibers of the coverings above; the output, but not the
procedure, is entirely local (only the germ C is really necessary).
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Khovanov–Rozansky homology On the topological side, the skein relations, the key
in [30, Theorem 1.2], are missing (by now) upon the switch from the HOMFLYPT
polynomials to their homology from [27; 28; 26; 48; 39] (generalizing the Khovanov
homology for the Jones polynomials). Adding colors (dominant weights) here is
generally a difficult problem, though the categorification theory (based on Quantum
Groups) provides tools for this.

In contrast to the Khovanov polynomials .nD 2/, not many formulas for Khovanov–
Rozansky polynomials KhRstab are known. Let us mention some recent progress here
(by Oblomkov and Rozansky) based on further development of the theory of matrix
factorization. This may provide much better tools for finding the KhR–polynomials (at
least for torus knots and in the uncolored case).

Recall that Khovanov–Rozansky polynomials are defined as the Poincaré polynomials of
the corresponding triply graded homology. They exist for any links; such an universality
is one of the reasons why their theory is so complicated. For us, the Khovanov–
Rozansky and Khovanov polynomials are the only way so far to interpret geometrically
(topologically) the DAHA superpolynomials of arbitrary iterated torus knots. They are
generally nonalgebraic and their connection with the algebraic geometry is not clear at
the moment, though there is some partial progress with finding the geometric meaning
of pseudoalgebraic knots.

As the examples of Section 4.1 indicate, it is possible that part (ii) of Conjecture 2.4 can
be extended to any (uncolored) non-pseudoalgebraic knots using a special procedure of
replacing the negative terms in the DAHA superpolynomials by certain positive ones.
Such knots are defined exactly as those with some negative terms. Algebraically this
procedure seems somewhat artificial, but it worked for all non-pseudoalgebraic knots
we considered upon the reduction from superpolynomials to the Khovanov polynomials
(where we can compare our polynomials vs. the topological ones). However, the
evidence is insufficient so far.

Betti numbers The examples above confirm our conjecture that the DAHA super-
polynomials split the Euler numbers of the Jacobian factors (compactified Jacobians)
of unibranch plane curve singularities into the corresponding Betti numbers. Recall
that this is under the substitution a 7! 0 and q 7! 1 in DAHA superpolynomials. See
(2-22) concerning q D 1, the case of trivial central charge.

Such a specialization is the simplest demonstration of the power of adding “t ” to the
theory, the refinement; our conjecture on Betti numbers is presumably related to the
expected connection of our superpolynomials to Palg , which is a reduced modification
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of that from [33, Conjecture 2]:

(4-24) Palg D

�qst

ast

�� 1� q2
st

1C a2
sttst

X
l;m�0

q2l
st a2m

st tm2

st w.CŒl�lCm�

Er;Es
/:

Here, � is the Milnor number (� D 2ı in the unibranch case) and w is the weight
filtration in the compactly supported cohomology of the corresponding scheme; its
existence was justified by Deligne. See the Overview and [33, Section 4]. The parameter
tst is associated to it; tm2

st there is a necessary normalization.

The spectral sequence E1 in terms of the weight filtration on the compactly supported
cohomology over Q, which converges to the whole cohomology and degenerates at
E2 (for smooth not necessarily compact manifolds), can potentially connect (4-24)
with the Betti numbers. Here, one needs to know that the odd cohomology of the
Jacobian factors vanish for unibranch plane curve singularities (the van Straten–Warmt
conjecture) and that the corresponding mixed Hodge filtration is pure (a conjecture).
We thank V Shende for the explanations; see [33] (though the Betti numbers are not
explicitly discussed there).

Generally, not too much is known concerning the Betti numbers of the general Jacobian
factors, though they were calculated for many torus knots and those for the series
.4; 2u; v/ of Puiseux exponents, where 4 < 2u < v for both u and v odd. See [36]
and above. Actually there is not even a general conjectural formula for them in the
case of arbitrary torus knots, which can be potentially produced in our approach (to be
considered elsewhere).

We checked quite a few examples (beyond those posted above), including torus knots.
For instance, our DAHA-Betti polynomial for T .12; 7/ is

H12;7.�I q D 1; t; aD 0/D 1C 6t C 19t2
C 41t3

C 70t4
C 102t5

C 133t6
C 159t7

C 178t8
C 190t9

C 194t10
C 193t11

C 184t12
C 174t13

C 159t14
C 145t15

C 127t16
C 112t17

C 95t18
C 81t19

C 66t20
C 55t21

C 43t22
C 35t23

C 26t24
C 20t25

C 14t26
C 11t27

C 7t28
C 5t29

C 3t30
C 2t31

C t32
C t33:

Its coefficients match those given before [36, Theorem 21]. We will omit the corre-
sponding DAHA superpolynomial; note that it can be also obtained by E Gorsky’s
construction (via rational DAHA).

Semigroups and semimodules Apart from the torus knots, we established the coin-
cidence of the DAHA-Betti numbers with the actual ones for many entries in the table
before [36, Conjecture 23]. The examples in this table are more involved that those
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for torus knots, since not all modules � over the valuation semigroup � contribute to
the cell decompositions of J.CEr;Es/ from [36]. See Definition 8 of admissible modules
there, as well as Theorem 13 (we use his notation). Let us provide an example,
which demonstrates how surprising our conjectural connection with DAHA is and the
challenges that we face.

The set of Puiseux exponents .4; 2u; v/ D .4; 14; 17/ corresponds to the Newton’s
pairs fr1 D 7; s1 D 2g and fr2 D 2; s2 D 3g. They encode the planar singularity

CEr;Es W y D xs1=r1.cCxs2=.r1r2//D x2=7.cCx3=14/ with RDCŒŒz4; z14
C z17��:

Recall that the latter is the local ring of this singularity, and its topological link is
Cab.31; 2/T .7; 2/.

The semigroup is � D h4; 14; 31i (41 is the last missing valuation for this C ); ı D 21

and e.J.CEr;Es//D194. The total number of semimodules � (which is relatively simple to
calculate) is 222. Thus, not all contribute to the cell decomposition; 28 are not present.
Their list is involved combinatorially, as well as the calculation of the dimensions of
the cells corresponding to admissible � (though there are explicit formulas for the
dimensions and the admissibility). It is not impossible that semimodules � have some
connection to the DAHA-procedure. However DAHA also produces the correct number
of missing (nonadmissible) ones, which seems more surprising (at the moment).

The corresponding 
 –matrices, needed in the construction of the DAHA superpoly-
nomial, are 
7;2 D �

3
C�

2
� and 
2;3 D ���C�� . Note the order of 2; 3 in the last 
 .

Its Betti-reduction Hf7;2g;f2;3g.�I q D 1; t; aD 0/ matches the corresponding entry in
[36]. It reads

1C 3t C 6t2
C 10t3

C 13t4
C 15t5

C 16t6
C 16t7

C 16t8
C 16t9

C 15t10

C 14t11
C 12t12

C 10t13
C 8t14

C 7t15
C 5t16

C 4t17
C 3t18

C 2t19
C t20

C t21:

For the sake of completeness, let us provide the whole DAHA superpolynomial. Its
a–degree is s1r2� 1D 3;

Er D f7; 2g; Es D f2; 3g; T D Cab.31; 2/T .7; 2/I

Hf7;2g;f2;3g.�I q; t; a/D 1CqtCq2tCq3tCq2t2
Cq3t2

C2q4t2
Cq5t2

Cq6t2
Cq3t3

Cq4t3

C2q5t3
C2q6t3

C2q7t3
Cq8t3

Cq9t3
Cq4t4

Cq5t4
C2q6t4

C2q7t4
C3q8t4

C2q9t4

C2q10t4
Cq5t5

Cq6t5
C2q7t5

C2q8t5
C3q9t5

C3q10t5
C3q11t5

Cq6t6
Cq7t6

C2q8t6

C2q9t6
C3q10t6

C3q11t6
C4q12t6

Cq7t7
Cq8t7

C2q9t7
C2q10t7

C3q11t7
C3q12t7

C4q13t7
Cq8t8

Cq9t8
C2q10t8

C2q11t8
C3q12t8

C3q13t8
C4q14t8

Cq9t9
Cq10t9

C2q11t9
C2q12t9

C3q13t9
C3q14t9

C4q15t9
Cq10t10

Cq11t10
C2q12t10

C2q13t10
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C3q14t10
C3q15t10

C3q16t10
Cq11t11

Cq12t11
C2q13t11

C2q14t11
C3q15t11

C3q16t11

C2q17t11
Cq12t12

Cq13t12
C2q14t12

C2q15t12
C3q16t12

C2q17t12
Cq18t12

Cq13t13

Cq14t13
C2q15t13

C2q16t13
C3q17t13

Cq18t13
Cq14t14

Cq15t14
C2q16t14

C2q17t14

C2q18t14
Cq15t15

Cq16t15
C2q17t15

C2q18t15
Cq19t15

Cq16t16
Cq17t16

C2q18t16
Cq19t16

Cq17t17
Cq18t17

C2q19t17
Cq18t18

Cq19t18
Cq20t18

Cq19t19
Cq20t19

Cq20t20
Cq21t21

Ca3
�
q6
Cq7tCq8tCq9tCq8t2

Cq9t2
C2q10t2

Cq11t2
Cq12t2

Cq9t3
Cq10t3

C2q11t3

C2q12t3
C2q13t3

Cq10t4
Cq11t4

C2q12t4
C2q13t4

C3q14t4
Cq11t5

Cq12t5
C2q13t5

C2q14t5
C3q15t5

Cq12t6
Cq13t6

C2q14t6
C2q15t6

C3q16t6
Cq13t7

Cq14t7
C2q15t7

C2q16t7
C3q17t7

Cq14t8
Cq15t8

C2q16t8
C2q17t8

C2q18t8
Cq15t9

Cq16t9
C2q17t9

C2q18t9
Cq19t9

Cq16t10
Cq17t10

C2q18t10
Cq19t10

Cq17t11
Cq18t11

C2q19t11

Cq18t12
Cq19t12

Cq20t12
Cq19t13

Cq20t13
Cq20t14

Cq21t15
�

Ca2
�
q3
Cq4
Cq5
Cq4tC2q5tC3q6tC2q7tCq8tCq5t2

C2q6t2
C4q7t2

C4q8t2
C4q9t2

C2q10t2
Cq11t2

Cq6t3
C2q7t3

C4q8t3
C5q9t3

C6q10t3
C5q11t3

C3q12t3
Cq7t4

C2q8t4

C4q9t4
C5q10t4

C7q11t4
C7q12t4

C5q13t4
Cq8t5

C2q9t5
C4q10t5

C5q11t5
C7q12t5

C8q13t5
C6q14t5

Cq9t6
C2q10t6

C4q11t6
C5q12t6

C7q13t6
C8q14t6

C6q15t6
Cq10t7

C2q11t7
C4q12t7

C5q13t7
C7q14t7

C8q15t7
C6q16t7

Cq11t8
C2q12t8

C4q13t8
C5q14t8

C7q15t8
C8q16t8

C5q17t8
Cq12t9

C2q13t9
C4q14t9

C5q15t9
C7q16t9

C7q17t9
C3q18t9

Cq13t10
C2q14t10

C4q15t10
C5q16t10

C7q17t10
C5q18t10

Cq19t10
Cq14t11

C2q15t11

C4q16t11
C5q17t11

C6q18t11
C2q19t11

Cq15t12
C2q16t12

C4q17t12
C5q18t12

C4q19t12

Cq16t13
C2q17t13

C4q18t13
C4q19t13

Cq20t13
Cq17t14

C2q18t14
C4q19t14

C2q20t14

Cq18t15
C2q19t15

C3q20t15
Cq19t16

C2q20t16
Cq21t16

Cq20t17
Cq21t17

Cq21t18
�

Ca
�
qCq2

Cq3
Cq2tC2q3tC3q4tC2q5tCq6tCq3t2

C2q4t2
C4q5t2

C4q6t2
C4q7t2

C2q8t2
Cq9t2

Cq4t3
C2q5t3

C4q6t3
C5q7t3

C6q8t3
C5q9t3

C4q10t3
Cq11t3

Cq5t4

C2q6t4
C4q7t4

C5q8t4
C7q9t4

C7q10t4
C7q11t4

C2q12t4
Cq6t5

C2q7t5
C4q8t5

C5q9t5

C7q10t5
C8q11t5

C9q12t5
C3q13t5

Cq7t6
C2q8t6

C4q9t6
C5q10t6

C7q11t6
C8q12t6

C10q13t6
C3q14t6

Cq8t7
C2q9t7

C4q10t7
C5q11t7

C7q12t7
C8q13t7

C10q14t7
C3q15t7

Cq9t8
C2q10t8

C4q11t8
C5q12t8

C7q13t8
C8q14t8

C10q15t8
C3q16t8

Cq10t9
C2q11t9

C4q12t9
C5q13t9

C7q14t9
C8q15t9

C9q16t9
C2q17t9

Cq11t10
C2q12t10

C4q13t10

C5q14t10
C7q15t10

C8q16t10
C7q17t10

Cq18t10
Cq12t11

C2q13t11
C4q14t11

C5q15t11

C7q16t11
C7q17t11

C4q18t11
Cq13t12

C2q14t12
C4q15t12

C5q16t12
C7q17t12

C5q18t12

Cq19t12
Cq14t13

C2q15t13
C4q16t13

C5q17t13
C6q18t13

C2q19t13
Cq15t14

C2q16t14

C4q17t14
C5q18t14

C4q19t14
Cq16t15

C2q17t15
C4q18t15

C4q19t15
Cq20t15

Cq17t16

C2q18t16
C4q19t16

C2q20t16
Cq18t17

C2q19t17
C3q20t17

Cq19t18
C2q20t18

Cq21t18

Cq20t19
Cq21t19

Cq21t20
�
:
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Versal deformations Last, but not least, we refer the reader to [24] for some rela-
tively recent developments concerning the Hilbert schemes of (locally) plane curves,
including their role in the theory of the Gopakumar–Vafa BPS invariants (see [35]) and
various generalizations.

This paper is helpful to put our construction into perspective and to link it to the versal
deformations of plane curve singularities, at least in the case of usual (nonnested)
Hilbert schemes of curves. We do not touch this important direction here. However,
let us mention that the theory of adjacent singularities of the pairs fR;V g for finite-
dimensional irreducible representations V of the simple Lie groups G for (arbitrary)
root systems R is expected to be related to the theory of the DAHA superpolynomials.

When tst D 1, and for the minimal possible degree of ast , the sum in (4-24) essentially
reduces to the following summation:

(4-25)
X
n�0

qnC1�ı
st e.CŒn�/D

X
0�i�ı

nC.i/
� qst

.1� qst/2

�iC1�ı
; C D CEr;Es;

for the Euler numbers of Hilbert schemes CŒn� of n points on C of arithmetic genus ı
(subschemes in C of length n, to be more exact). See [35; 24]. Importantly, nC.i/2ZC
due to [18] and [42], because these numbers are the multiplicities of C in the closures of
the strata in the space of its versal deformation, stratified with respect to the geometric
genus of the deformation curves.

In our notations, tstD 1 corresponds to qD t , and we can therefore use our
p

q instead
of qst here upon aD 0. Hopefully, [33, Conjecture 2] and our construction lead to a
similar deformation interpretation of the generalization of the right-hand side of (4-25)
to the nested Hilbert-schemes (which adds the parameter ast ) under the weight filtration
(associated with tst ) and for arbitrary Young diagrams.
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