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The number of strings on essential tangle decompositions
of a knot can be unbounded

JOÃO MIGUEL NOGUEIRA

We construct an infinite collection of knots with the property that any knot in this
family has n–string essential tangle decompositions for arbitrarily high n .

57M25, 57N10

1 Introduction

An n–string tangle .B; T / is a ball B together with collection of n disjoint arcs T
properly embedded in B , for n 2N . We say that .B; T / is essential if n is 1 and its
arc is knotted,1 or if n is bigger than 1 and there is no properly embedded disk in B

disjoint from T and separating the components of T in B . Otherwise, we say that the
tangle is inessential. (See Figure 1 for examples.)

Figure 1: Examples of essential tangles (left and middle), and an inessential
tangle (right)

Let K be a knot in S3 and S a 2–sphere in general position with K . Each ball
bounded by S in S3 intersects K in the same number n of arcs. So these balls
together with the arcs of intersection with K are n–string tangles. In this case, we
say that S defines a n–string tangle decomposition of K , and if both tangles are
essential we say that the tangle decomposition of K defined by S is essential. A knot
is composite if and only if it has a 1–string essential tangle decomposition; otherwise

1An arc of T is unknotted if it cobounds a disk embedded in B together with an arc in @B ; otherwise,
it is said to be knotted.
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the knot is prime. Note also that S defines an essential tangle decomposition for K if
and only if the intersection of S with the exterior of K , E.K/,2 is an essential surface
in E.K/; see Definition 3.

A tangle decomposition of a knot is natural and has been relevant for knot theory and
its applications. The concept of a “tangle” was first used in the work of Conway [3],
where he defines and classifies (2–string) rational tangles and uses it as an instrument
to list knots. The concept of an essential tangle was first used in [8], where Kirby
and Lickorish prove that any knot is concordant to a prime knot. They actually define
prime tangle, that is an essential tangle with no local knots.3 Another example is the
work of Lickorish in [9], where he proves, for instance, that if a knot has a 2–string
prime tangle decomposition, then the knot is prime. Tangles are also used in applied
mathematics to study the DNA topology. The paper [2] by Buck surveys the subject
concisely and also explains how tangles are useful to the study of the topological
properties of DNA, an application pioneered by Ernst and Sumners in [5].

This paper addresses the question of if the number of strings on essential tangle
decompositions of a fixed knot is bounded. There are results showing some evidence
for this to be true. For instance, knots with no closed essential surfaces (see Culler,
Gordon, Luecke and Shalen [4]), tunnel number one knots (see Gordon and Reid [6])
and free genus-one knots (see Matsuda and Ozawa [10]) have no essential tangle
decompositions. There also are knots with a unique essential tangle decomposition; see
Ozama [12]. Furthermore, in Proposition 2.1 of [11], Mizuma and Tsutsumi proved
that, for a given knot, the number of strings in essential tangle decompositions, without
parallel strings,4 is bounded. The proof of this result allows a more general statement.
That is, the number of strings that are not parallel to other strings in an essential tangle
decomposition of a fixed knot is bounded. So, from this flow of results and intuition on
essential tangle decompositions, the following theorem and its corollary are surprising.

Theorem 1 There is an infinite collection of prime knots such that, for all n� 2, each
knot has a n–string essential tangle decomposition.

Corollary 2 There is an infinite collection of knots such that, for all n� 1, each knot
has a n–string essential tangle decomposition.

2We denote by E.K/ the exterior of a knot K , that is, S3 � int N.K/ , where N.K/ is a regular
neighborhood of K .

3A tangle .B; T / has no local knots if any 2–sphere intersecting T transversely in two points bounds
a ball in B meeting T in an unknotted arc.

4Two strings of a tangle in a ball B are parallel if there is an embedded disk in B cobounded by these
strings and two arcs in @B .
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Essential surfaces are very important in the study of 3–manifold topology. And as
observed above, to each n–string essential tangle decomposition of a knot corresponds
a meridional essential surface in the exterior of the knot, with 2n boundary compo-
nents. Therefore, from the results in this paper, there are knots with meridional planar
essential surfaces in their exteriors with all possible numbers of boundary components.
Furthermore, from Lemma 1.2 in Bleiler [1], the double cover of S3 along these knots
contains genus-g closed incompressible surfaces, meeting the fixed point set of the
covering action in 2.gC 1/ points, and separating the double cover in irreducible and
@–irreducible components, for all g � 1.

The reference used for standard definitions and results of knot theory is Rolfsen’s book
[13], and throughout this paper we work in the piecewise-linear category.

In Section 2, we show the existence of handlebody-knots (see Definition 4) with
incompressible planar surfaces in their exteriors with b boundary components for all
b�2. In Section 3, we use these handlebody-knots to prove Theorem 1 and its corollary.
The main techniques used are standard in 3–manifold topology. Throughout the paper,
the number of connected components of a topological space X is denoted by jX j.

2 Meridional incompressible planar surfaces
in handlebody-knots complements

To prove Theorem 1, we use the correspondence between n–string essential tangle
decompositions of a knot and meridional planar essential surfaces in the knot exterior.
We start by defining these surfaces.

Definition 3 A planar surface is a surface obtained from a 2–sphere by removing the
interior of a finite number of disks.

Let H be a handlebody embedded in S3 .

A surface P properly embedded in E.H /DS3� int H is meridional if each boundary
component of P bounds a disk in H .

An embedded disk D in E.H / is a compressing disk for P if D\P D @D and @D
does not bound a disk in P . We say that P is incompressible if there is no compressing
disk for P in E.H /.

An embedded disk D in E.H / is a boundary compressing disk for P if @D\P D ˛ ,
with ˛ a connected arc not cutting a disk from P , and @D�˛ D ˇ a connected arc
in @H . We say that P is boundary incompressible if there is no boundary compressing
disk for P in E.H /.

The surface P is essential if it is incompressible and boundary incompressible.
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In this section, we present handlebody-knots whose exteriors contain meridional incom-
pressible planar surfaces with n boundary components for any n� 2. This embedding
will later be used in the proof of Theorem 1. We consider next the definition of
handlebody-knot.

Definition 4 A handlebody-knot of genus g in S3 is an embedded handlebody of
genus g in S3 . A spine 
 of a handlebody-knot � is an embedded graph in S3 with �
as a regular neighborhood.

Let � be the genus-two handlebody-knot 41 from the list of [7], with spine 
 , as in
Figure 2. Consider also a collection of distinct knots Ci , for i 2N , and C some other
nontrivial knot. We work with 
 as if defined by two vertices, two loops e1 and e2

(one for each vertex), and an edge e between the two vertices.

e

e2

e1

Figure 2: The spine 
 of the handlebody-knot � , with labels of the two
loops e1 and e2 , and of the edge e

Consider two disjoint closed arcs a1 and a2 in e , as in Figure 3 (left). In this figure
we also have represented an embedded 2–sphere S2 in S3 that intersects 
 in e at
two points, p1 and p2 , and separates the arcs a1 and a2 . Denote the ball bounded
by S2 containing a single component of e by B2;1 and the other by B2;2 . Denote
by l1 and l2 the components of B2;2 \ 
 that contain e1 and e2 , respectively, and
note that lj intersects S2 at pj , for j D 1; 2.

We perform an unusual connected sum operation between 
 and the knots C and Ci

along the arcs a1 and a2 . That is, we take a ball in S3 intersecting 
 in a1 , and a ball
in S3 intersecting Ci at a single unknotted arc. A connected sum operation is obtained
by removing both balls and gluing their boundaries through a homeomorphism in a way
that the boundary points of a1 are mapped to the boundary points of the chosen arc
in Ci . A similar operation is obtained from the arc a2 and C . From these operations
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S2

a1

p1

B2;1

p2

a2

Ci

S2

p1

B2;1

p2

C

l1

l2

A1

Figure 3: The arcs a1 and a2 in 
 and the sphere S2 (left); the spines 
i of
the handlebody-knots �i and the annulus A1 (right). Note that Ci and C

label the pattern of the respective knots.

we get the handlebody-knots as represented schematically in Figure 3 (right), which
we denote by �i with a respective spine 
i . For each handlebody-knot �i we consider
the swallow-follow torus Xi defined by the connected sum of C with Ci . A minimal
JSJ–decomposition for the complement of �i is defined by the torus Xi , cutting from
E.�i/ the exterior of Ci #C , and a JSJ–decomposition of E.Ci #C /. Also, the torus Xi

cuts from E.�i/ the only component obtained from the JSJ–decomposition containing
the boundary of E.�i/. Hence, from the unicity of minimal JSJ–decomposition of
compact 3–manifolds, for any other minimal JSJ–decomposition of E.�i/, the torus
cutting the component with the boundary of E.�i/ is isotopic to Xi . Consequently,
if �i is ambient isotopic to �j for i ¤ j , the torus Xi is isotopic to Xj , which means
that E.Ci #C / is ambient isotopic to E.Cj #C /. This is a contradiction with the torus
Ci # C and Cj # C being distinct. Then, the handlebody-knots �i are not ambient
isotopic.

Both loops e1 and e2 cobound an embedded annulus in B2;2 , parallel to the component
of e in B2;2 each encircles, with interior disjoint from 
i and intersecting S2 in the
other boundary component. Consider such an annulus with a boundary component
in e1 , denoted A1 , as it is illustrated in Figure 3 (right). We proceed with an isotopy
of 
i along A1 , taking l1 passing through S2 , and we obtain 
i as in Figure 4 (left).
We refer to this isotopy as an annulus isotopy of 
i . After this isotopy we denote S2

by S3 , considering its relative position with �i , and the respective balls it bounds
by B3;1 and B3;2 . We assume that l1 intersects S3 at p1 . Note that all intersections
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Ci

S3

l1

B3;1

p1

C

Ci

S4

B4;1

p1
l1

C

Figure 4: The spine 
i after one (left), and two (right), annulus isotopies,
and the spheres S3 and S4

of 
i and S3 are in the arc of e between p1 and p2 . Again, we consider an embedded
annulus A2 in B3;1 , cobounded by e1 and its intersection with S3 , parallel to the com-
ponent of e\B3;1 disjoint from e1 and in the direction of the local knot Ci , following
its pattern. By an annulus isotopy of 
i along A2 taking l1 passing through S3 , we
obtain 
i as in Figure 4 (right). After this isotopy, we denote S3 by S4 , considering
its relative position with �i , and the respective balls it bounds by B4;1 and B4;2 . The
ball B4;1 intersects 
i in two parallel arcs, and we still assume that l1 \ S4 is p1 .
Note again that all intersections of 
i and S4 are in the arc of e between p1 and p2 .

For a canonical position, we isotope e1 along the component of e \B4;2 , disjoint
from e1 and e2 , encircling l2 ; see Figure 5 (left). We can now continue the previous
process. Consider again an annulus A3 in B4;2 , cobounded by e1 and its intersection
with S4 , parallel to the components of e \B4;2 other than l1 , and in the opposite
direction of the local knot C . By an annulus isotopy of 
i along A3 , taking l1 passing
through S4 , we obtain 
i as in Figure 5 (right). After this isotopy, we denote S4

by S5 , considering its relative position with �i , and we denote the balls it bounds
by B5;1 and B5;2 . Again, l1 intersects S5 at p1 , and all intersections of S5 with 
i

are in the arc of e between p1 and p2 . For the next step, proceed with an annulus
isotopy along an annulus A4 in B5;1 cobounded by e1 , parallel to the components of
e\B5;1 disjoint from e1 , in the direction of the local knot Ci , following its pattern.

After 2.k � 1/ (for k D 1; 2; : : :) annulus isotopies as the ones explained above, we
get 
i as in Figure 6 (left). From S2 , we obtain S2k and the balls it bounds, B2k;1

and B2k;2 . The ball B2k;1 intersects 
i in k parallel arcs with the pattern of Ci , and
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Ci

S4

B4;1

p1

C

l1

Ci

S5

B5;1

l1

p1

C

Figure 5: The spine 
i of Figure 4 (left) in a canonical position (left), and 
i

after another annulus isotopy (right)

the ball B2k;2 intersects 
i in k � 2 parallel arcs with the pattern of C , another arc
with the pattern of C encircled by l2 , and l1 that encircles all these other components.

After 2k � 1 (for k D 1; 2; : : :) annulus isotopies, we obtain 
i as in Figure 6 (right).
From S2 , we obtain S2kC1 and the balls it bounds, B2kC1;1 and B2kC1;2 . The ball
B2kC1;1 intersects 
i in k parallel arcs with the pattern of Ci and l1 encircling these
arcs, and the ball B2kC1;2 intersects 
i in k � 1 parallel arcs with the pattern of C ,
together with another arc with the pattern of C and l2 which encircles this arc.

Ci

S2k

B2k;1

p1

C

l1

Ci

S2kC1

B2kC1;1

l1
p1

C

Figure 6: The spine 
i after an even number (left), and an odd number (right),
of annulus isotopies, and the corresponding spheres S2k and S2kC1 , k 2N
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Note after each isotopy we assume that lj intersects Sn , for nD 2; 3; : : : , in pj and
that all points of Sn\ 
i are in the arc between p1 and p2 in e .

We denote S3 � int�i by E.�i/, and S3 � 
i by E.
i/. Let Qn , for nD 2; 3; : : : ,
be the intersection of Sn with E.�i/ in S3 .

Lemma 5 The surface Qn is incompressible in E.�i/.

Proof As �i is a regular neighborhood of 
i , if Qn is compressible in E.�i/, then Sn

is compressible in E.
i/. Hence it suffices to prove that Sn is incompressible in E.
i/.

Case 1 Suppose n is even. Then Sn is as in Figure 6 (left).

(i) In this case, the ball Bn;1 intersects 
i in a collection of k D n=2 parallel knotted
arcs. Then .Bn;1;Bn;1 \ 
i/ is an essential tangle. In fact, suppose there is a com-
pressing disk D for Sn in Bn;1 � .Bn;1 \ 
i/. Then D separates the arcs Bn;1 \ 
i

into two collections. Let s1 and s2 be two arcs in Bn;1 which are separated by D .
As s1 and s2 are parallel, there is a disk E with boundary s1[ s2 and two arcs, ˛1

and ˛2 , in Sn , each with one end in s1 and the other in s2 . Consider D and E in
general position and suppose that jD \Ej is minimal. If D intersects E in simple
closed curves or in arcs with both ends in ˛1 or both in ˛2 , we can reduce jD\Ej

by an innermost arc type of argument, which is a contradiction. Therefore, all arcs of
D\E have one end in ˛1 and the other end in ˛2 . Hence both s1 and s2 are parallel
to outermost arcs of D \E in D , which implies that s1 and s2 are parallel to Sn .
This is a contradiction because the arcs s1 and s2 are knotted by construction.

(ii) If n� 4, then the ball Bn;2 intersects 
i in l1 and l2 , and when nD 4, also in an
arc encircled by both l1 and l2 . In this case, if there is a compressing disk for Sn in
Bn;2� .Bn;2\ 
i/ it separates a component l1 or l2 from the other components. This
implies that e1 or e2 bound a disk in the complement of 
i , which is a contradiction
with �i being a knotted handlebody-knot. Otherwise, suppose that n> 4. Thus Bn;2

intersects 
i in .n=2/� 2 parallel arcs with the pattern of C , another arc with the
pattern of C encircled by l2 , and the component l1 that encircles the arc encircled
by l1 and the .n=2/� 2 parallel arcs. With exception to l1 and l2 , all other arcs are
parallel as properly embedded arcs in Bn;2 . Thus if a compressing disk for Sn in
Bn;2� .Bn;2\
i/ separates these arcs, following an argument as in Case 1(i) we have
a contradiction with these arcs being knotted. Therefore, a compressing disk for Sn in
Bn;2�.Bn;2\
i/ separates a single component l1 or l2 from all the other components,
or it separates both components l1 and l2 from the other parallel arcs. As e1 bounds a
disk disjoint from l2 , in both cases e1 bounds a disk in the complement of 
i , which
is a contradiction with �i being a knotted handlebody-knot.
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Case 2 Suppose now that n is odd. Then Sn is as in Figure 6 (right).

(i) The ball Bn;1 intersects 
i in a collection of .n� 1/=2 parallel arcs and l1 which
encircles these arcs. If there is a compressing disk D of Sn in Bn;1� .Bn;1\ 
i/

separating the parallel arcs, following an argument as in Case 1(i) we have a contradic-
tion with these arcs being knotted. If D separates the component l1 from the other
components, following an argument as in Case 1(ii) we have a contradiction with �i

being a knotted handlebody-knot.

(ii) If nD3, the ball Bn;2 intersects 
i in an arc with pattern C and l2 which encircles
the arc. If there is a compressing disk for Sn in Bn;2� .Bn;2\ 
i/ in this case, then it
separates the component l2 from the arc with pattern C . From the same argument used
in Case 1(ii), we have a contradiction with �i being a knotted handlebody-knot. If
n> 3, then the ball Bn;2 intersects 
i in .n�1/=2 parallel arcs and l2 which encircles
one of the previous arcs. Without considering l2 , if a compressing disk for Sn in
Bn;2�.Bn;2\
i/ separates the parallel arcs, then following an argument as in Case 1(i)
we have a contradiction with the arcs being knotted. If Sn has a compressing disk in
Bn;2�.Bn;2\
i/, then this disk isolates the component l2 from the other components,
and following the argument as in Case 1(ii) we have a contradiction with �i being a
knotted handlebody-knot.

The surface Qn is boundary compressible in E.�i/ as there are boundary compressing
disks over the regular neighborhoods of l1 and l2 . However, our construction of the
handlebody-knots �i could have been made in such a way that the surfaces Qn are
incompressible and boundary incompressible in their complements. For that purpose,
we could do a connected sum of 
i with two knots along two arcs in e1 and e2 . After
this operation, there won’t be boundary compressing disks of Qn over the regular
neighborhoods of l1 and l2 in E.�i/. And as these are the only possible boundary
compressing disks, because all other components 
i � 
i \Sn correspond to knotted
arcs in their respective balls, after these connected sums the surfaces Qn would also
be boundary incompressible in the complement of the handlebody-knots. But for the
purpose of this paper, we will use the handlebody-knots �i .

3 Knots with essential tangle decompositions
with an arbitrarily high number of strings

In this section, we use the handlebody-knots �i to construct infinitely many examples
of knots with essential tangle decompositions for all numbers of strings.

Let N1 and N2 be torus knots in the boundary of the solid tori T1 and T2 (that we
assume to be in different copies of S3 ). Consider a regular neighborhood Bi of an arc
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of Ni intersecting Ti at a ball, for i D 1; 2. We isotope Bi and Bi \Ni away from
the interior of Ti such that Bi intersects Ti at a disk, for i D 1; 2. We proceed with a
connected sum of N1 and N2 by removing the interior of B1 and attaching the exterior
of B2 in such a way that the disks B1\T1 and B2\T2 are identified. Hence the knot
N1 # N2 , denoted by K , is in the boundary of a genus-two handlebody H , obtained
by gluing T1 and T2 along a disk in their boundaries. We denote the identification
disk of T1 and T2 in H by D . In Figure 7, we have the example of this connected
sum with two trefoils, that we will use as reference for the remainder of the paper.

T1

D

T2

Figure 7: The handlebody H with the connected sum of two trefoil knots

Consider disks D1 and D2 parallel to D in H , such that the cylinder C1;2 cut by
D1[D2 from H intersects K in two parallel arcs, each with one end in D1 and the
other in D2 . We also keep denoting by T1 and T2 the solid tori cut from H by D1

and D2 , respectively; see Figure 8. Let s be a spine of H that intersects C1;2 in a
single arc. We denote by di the point Di \ s , and by ti the intersection of s with Ti ,
for i D 1; 2.

T1

D1 D D2
s

d1 d2

T2

Figure 8: The handlebody H and the spine s with the connected sum of two
trefoil knots

We now embed the knot K in �i as follows. Consider an embedding hi of H in S3

taking H homeomorphically to �i , such that hi.s/ D 
i , hi.dj / D pj , hi.tj / D lj
and also that hi.Tj /DLj , for j D 1; 2.

Proof of Theorem 1 Denote by Ki the knots hi.K/, i 2 N , for a fixed knot K .
To prove that the handlebody-knots �i are distinct, let Xi be the torus cutting from
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E.Ki/ the exterior of Ci # C . The component cut by Xi from E.Ki/ containing the
boundary torus is the same for every knot Ki . Hence, from the unicity of minimal
JSJ–decomposition of compact 3–manifolds, if two knots Ki and Kj are ambient
isotopic, the tori Xi and Xj are also ambient isotopic, contradicting Ci #C and Cj #C

being distinct. Thus the knots Ki define a collection of distinct knots.

To prove the statement of the theorem, we will show that the spheres Sn , for n � 2,
define n–string essential tangle decomposition for the knots Ki , and that these knots
are prime.

We start by proving that Sn defines an n–string essential tangle decomposition of Ki .
Let E.Ki/ be the exterior of Ki in S3 ; that is, E.Ki/ D S3 � int N.Ki/. Let Pn

be the intersection of Sn with E.Ki/ for a fixed n. To prove that Sn defines an
essential tangle decomposition for Ki , we need to prove that Pn is essential in E.Ki/,
ie that Pn is incompressible and boundary incompressible.

First, we observe that Pn is boundary incompressible. In fact, as the strings of K\Bn;i

in Bn;i are knotted for iD1; 2, there is no boundary compressing disk for Pn in E.Ki/.

Now we prove that Pn is incompressible in E.Ki/. Let �j , for j D 1; : : : ; n, be
the disks of intersection between �i and Sn with �1 DL1\Sn and �n DL2\Sn .
Denote by Cj ;jC1 the cylinder cut by �j [�jC1 from �i . Denote also by @�Cj ;jC1

the annulus Cj ;jC1 \ @�i ; that is, @�Cj ;jC1 D @Cj ;jC1 � .�j [�jC1/. Note that
Cj ;jC1\K is a collection of two arcs parallel to @�Cj ;jC1 , each with one end in �j

and the other in �jC1 . We also let @�L1 and @�L2 denote @L1��1 and @L2��n .
Furthermore, we denote by sj the string component of the tangle decomposition of Ki

defined by Sn , in Lj , for j D 1; 2. Note that sj is parallel to @�Lj . We isotope sj

into @�Lj and denote the annulus @�Lj \E.Ki/ by ƒj .

Suppose that Pn is compressible in E.Ki/ with D a compressing disk, properly
embedded in Bn;1 or Bn;2 , in general position with �i . If D is disjoint from �i ,
we have a contradiction with Lemma 5. In this way, we assume that D intersects �i

and that jD \ @�i j is minimal over all isotopy classes of compressing disks of Pn

in E.Ki/.

In particular, assume that D intersects an annulus @�Cj ;jC1 . If D\
Sn�1

jD1 @
�Cj ;jC1

contains a simple closed curve or an arc with both ends in the same disk of �i \Sn ,
by considering an outermost one between such curves and arcs in @�Cj ;jC1 , and by
cutting and pasting along the disk it bounds or cobounds, we get a contradiction with
the minimality of jD \ @�i j. Thus D \

Sn�1
jD1@

�Cj ;jC1 is a collection of arcs with
ends in distinct disks of �i \Sn . Consider an outermost arc of D\

Sn�1
jD1@

�Cj ;jC1

in D , say a, and without loss of generality, suppose it belongs to @�Cj ;jC1 . The arc a
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is parallel to a string of the tangle defined by Sn that is in Cj ;jC1 , which contradicts
the fact that all strings of the tangle decomposition of Ki defined by Sn are knotted.
Consequently, we can assume that D\

Sn�1
jD1@

�Cj ;jC1 is empty.

Then we are assuming that D intersects @�i at @�L1 or @�L2 , or more precisely, at
ƒ1 or ƒ2 . We denote by aj and a0j the arcs of @ƒj parallel to sj in @�Lj , and by
bj and b0j the arcs cut by @aj and @a0j , respectively, in the boundary of @�Lj . The
boundary components of ƒj are aj [ bj and a0j [ b0j . Note that, as D\ sj is empty,
the disk D is disjoint from aj and a0j . Note also that aj[bj is a torus knot in the torus
@�Lj [ .Sn�Lj \Sn/, denoted T 0j . If D intersects ƒj in inessential simple closed
curves or arcs with both ends in bj or both ends in b0j , then by cutting and pasting
along a disk cut by such curve or arc, we have a contradiction with the minimality
of jD \ @�i j. If D intersects ƒj in an essential simple closed curve, then aj [ bj

is parallel to a simple closed curve in D , which contradicts aj [ bj being knotted.
Consequently, D intersects ƒj in a collection of arcs, each with one end in bj and the
other in b0j . Let O be an outermost disk in D cut by the arcs of D\ƒj . Then O is a
disk in a solid torus bounded by T 0j and intersects the torus knot aj [ bj in T 0j at a
single point. As we are working in S3 , either O is parallel to T 0j or it is a meridian to
a solid torus bounded by Tj . In either case, O intersects any torus knot in T 0j at least
in two points, which contradicts O intersecting aj [ bj once.

Therefore, we have that Pn is essential in the complement of Ki , which ends the proof
that Sn defines an n–string essential tangle decomposition of Ki .

Now we prove that the knots Ki are prime. From Theorem 1 of [1], if a knot has a
2–string prime tangle decomposition, that is, if the tangles are essential and with no
local knots, then the knot is prime. We have that the knot Ki has a 2–string essential
tangle decomposition defined by S2 . So to prove that it is prime, we just need to
show that the tangle decomposition defined by S2 has no local knots. The ball B2;1

intersects Ki in two parallel arcs. Hence if there is a 2–sphere intersecting only one
of the arcs at a single component, this component has to be unknotted. The ball B2;2

intersects 
i in l1 and l2 ; thus it intersects Ki at two strings each with the pattern of a
torus knot. Note that even though the pattern of the knot C is in l2 , it does not affect the
topological type of the string in L2 . Suppose the tangle in B2;2 contains a local knot.
That is, there is a ball Q intersecting only one of the strings, and at a knotted arc. As the
torus knots are prime, this knotted arc contains the whole pattern of the string; that is,
the intersections of Q and B2;2 with this string are topologically the same. Therefore,
as the strings in B2;2 are parallel to the boundary of L1 and L2 , and Q intersects only
one of them, we have that Q contains either e1 or e2 , or we can isotope e1 and e2 in
such a way that Q contains either e1 or e2 . But then, either e1 or e2 bound a disk
in the complement of 
i and, as in Case 1(ii) from the proof of Lemma 5, we have
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a contradiction with �i being a knotted handlebody-knot. Consequently, the tangle
decomposition defined by S2 contains no local knots, and the knots Ki are prime.

Corollary 2 is now an immediate consequence.

Proof of Corollary 2 In Theorem 1, we proved that the spheres Sn , for n� 2, define
an n–string essential tangle decomposition for the knots Ki . Hence, considering the
knots Ki connected sum with some other knot, we have infinitely many knots with
n–string essential tangle decompositions for all n 2 N , as in the statement of this
corollary.
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