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Quasi-unital 1–categories

YONATAN HARPAZ

Inspired by Lurie’s theory of quasi-unital algebras we prove an analogous result for
1–categories. By constructing a suitable model category of non-unital complete
Segal spaces, we show that the unital structure of an 1–category can be uniquely
recovered from the underlying non-unital structure once suitable candidates for units
have been identified. The main result of this paper can be used to produce a proof of
the 1–dimensional cobordism hypothesis, as described in a forthcoming paper of the
author.

55U35, 55U40

Introduction

The notion of units in higher category theory carries considerably more structure than
the corresponding discrete notion. Informally speaking, given an 1–category C we
are provided not only with a unit morphism IC W C ! C for every object C 2 C , but
also with the precise way in which these are units, ie with explicit homotopies of the
form ID ıf ' f and f ı IC ' f for every morphism f W C !D . Furthermore, we
are provided with higher homotopies exhibiting the inner coherence of the above data
as well as its compatibility with composition of morphisms (along with all of its higher
structure).

This bundle of information is encoded differently in different models for the theory of
1–categories. In this paper we will take up the point of view developed by Rezk in
his foundational paper [15]. In [15], Rezk constructs a model for the theory of 1–
categories in the form of complete Segal spaces, which are simplicial spaces satisfying
certain conditions. Such a simplicial space X determines an 1–category C which can
be described informally as follows:

(1) The space of 0–simplices of X corresponds to the objects of C .

(2) The space of 1–simplices of X corresponds to the morphisms of C , where
the target and source of a given morphism are provided by the face maps
d0; d1W X1!X0 .
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(3) The space of 2–simplices of X encodes the composition in C . In particular, we
can think of a triangle � 2X2 as encoding a homotopy from d0.�/ ı d2.�/ to
d1.�/.

(4) The space of 3–simplices of X provides us with associativity homotopies.
Similarly, the spaces of n–simplices of X for n > 3 provide us with higher
coherence homotopies for the associativity structure.

In this setting it is natural to ask what the structure maps ��W Xn!Xm for the various
�W Œm�! Œn� encode. This can be described as follows. The higher face maps give
information which is analogous to the source and target maps encoded by the face maps
Œ0�! Œ1�, ie they tells us to which objects, morphisms, etc a specific piece of structure
applies to. The degeneracy maps, on the other hand, have a different interpretation;
they encode the unital structure of C .

The 0th degeneracy map s0W X0!X1 tells us for each object what its identity morphism
is. Similarly, the two degeneracy maps s0; s1W X1!X2 provide us with homotopies
of the form ID ıf ' f and f ı IC ' f for each morphism f W C !D . The higher
degeneracy maps can be interpreted as exhibiting the coherence of the unital structure
with the composition and associativity structure.

The fact that the unital structure is encoded in the collection of degeneracies shows
that it contains a somewhat intricate web of data. However, it also tells us what we
need to do in order to forget it: we should simply consider X without the degeneracy
maps, ie consider only the underlying semi-simplicial space.

A first motivation for forgetting this data comes from situations in which there are no
natural choices for this vast unital structure. Such a case occurs, for example, when
one is attempting to construct various cobordism 1–categories. Suppose that we want
to describe the 1–category whose objects are closed n–manifolds and morphisms
are cobordisms between them. Since cobordisms have their own automorphisms we
can’t simply take them as a set, but rather as the space classifying the corresponding
topological automorphism groupoid. Gluing of cobordisms induces a weak composition
operation on these classifying spaces.

As explained by Lurie [12, Section 2.2], this composition structure naturally leads to
a semi-simplicial space semiCobn satisfying the Segal condition. Such objects are
referred to there as semi-Segal spaces. In order to promote semiCobn to a full simplicial
space, one needs to understand the behavior of units in these cobordism categories.

Now given an n–manifold M there will certainly be an equivalence class of cobordisms
M ! M which are candidates for being the “identity”; all cobordisms which are

Algebraic & Geometric Topology, Volume 15 (2015)



Quasi-unital 1–categories 2305

diffeomorphic to M � I . However it is a bit unnatural to choose any specific one of
them. Note that even if we choose a specific identity cobordism M � I we will still
have to arbitrarily choose diffeomorphisms of the form ŒM � I �qM W ŠW for each
cobordism W out of M as well as many other coherence homotopies.

These choice problems can be overcome in various ways, some more ad hoc than others,
and in the end a unital structure can be obtained. In other words, semiCobn can be
promoted to a Segal space Cobn . However, there is great convenience in not having to
make these choices. As claimed (but not proved) in [12], this unital structure is actually
uniquely determined once we verify that suitable candidates for units exist.

Exploring this issue further, we see that an obvious necessary condition for a semi-
Segal space to come from a Segal space is that each object admit an endomorphism
which is neutral with respect to composition (up to homotopy). Following Lurie [13,
Section 5.4.3], we will call such morphisms quasi-units. Informally, one is led to
consider the following questions:

(1) Given a non-unital 1–category xC in which every object admits a quasi-unit,
can xC be promoted to an 1–category C?

(2) If such a C exists, is it essentially unique?

(3) Given two 1–categories C;D with underlying non-unital 1–categories xC; xD ,
can the functor category CD be reconstructed from a suitable functor category
xC xD ?

In this paper we give a positive answer to the above questions. More precisely, we will
construct a monoidal model category Comps which is a quasi-unital analogue of Rezk’s
complete Segal space model category Comp. We will then show that the forgetful
functor Comp! Comps fits into a Quillen equivalence between Comp and Comps .
Furthermore, we will show that this Quillen equivalence preserves suitable symmetric
monoidal structures. This will yield an affirmative answer to all three questions above.

Before outlining our construction, let us explain our motivation for considering this
question. As explained in [12], a result of this kind can be used to facilitate the
construction of the cobordism categories. However, the relationship between such
questions and the cobordism hypothesis goes beyond this mere added efficiency. In
particular, one can actually use the result above in order to prove the nD 1 case of the
cobordism hypothesis (in the setting of 1–categories). This application is described
in Harpaz [4].

Let us now describe our approach to constructing Comps . As explained above, when
we encode the structure of an 1–category in a simplicial space, what we need to do in
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order to remove the unital structure is to remove the degeneracy maps. This leads to
the notion of a semi-Segal space, which is defined formally in Section 1.4. The data of
a semi-Segal space X describes a non-unital 1–category with space of objects X0 .

The next step is to understand what it means for a morphism f 2X1 such that d0.f /D

d1.f / to be a quasi-unit, ie to be neutral with respect to composition. This is defined
formally in Section 1.4. We shall say that a semi-Segal space is quasi-unital if it
admits quasi-units for every object. One can then phrase question .1/ above in terms
of quasi-unital semi-Segal spaces. However, in order to get any intelligent answer
one should work not only with such semi-Segal spaces themselves, but also with a
correct notion of mappings between them. In particular, questions .1/ and .2/ should
be considered together for an entire suitable 1–category of quasi-unital semi-Segal
spaces.

A first discouraging observation is that maps of semi-Segal spaces need not in general
send quasi-units to quasi-units. This statement should be interpreted as follows: the
structure of units is not a mere condition. Indeed, if this were the case one would expect
the forget-the-units functor to be fully faithful. Instead, we see that if X;Y are two
Segal spaces with underlying semi-Segal spaces xX ; xY , then a map xf W xX ! xY has a
chance of coming from a map f W X ! Y only if it sends quasi-units to quasi-units.
Hence we conclude that the collection of quasi-units should be marked as part of the
data. The main result of this paper says that this is in fact all one needs to specify; all
the additional unital structure is then essentially uniquely determined.

Our second observation is that instead of marking the quasi-units, one can mark the
slightly larger collection of invertible morphisms. These are the morphisms with which
composition induces weak equivalences on mapping spaces. A simple lemma (which
we prove in Section 1.5) says that a map of semi-Segal spaces sends quasi-units to
quasi-units if and only if it sends invertible edges to invertible edges. Furthermore, the
condition that an object admit a quasi-unit is equivalent to the condition that this object
admit an invertible morphism out of it.

From this point of view we see that marking the invertible edges is essentially the same
as marking the quasi-units. Furthermore, this alternative is much more convenient in
practice. This is due to the fact that invertibility is a considerably more robust notion;
for example, one does not need to check that a morphism has equal source and target
before considering its invertibility. Furthermore, a morphism will stay invertible if we
“deform it a little bit”, ie the space of invertible 1–simplices is a union of connected
components of X1 .

Now in order to prove a result such as the one we are interested in here, one might
like a convenient model category in which one can consider semi-simplicial spaces for
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which certain 1–simplices have been marked. This naturally leads to the category of
marked semi-simplicial spaces in which we will work from Section 1.7 onward.

In [15], Rezk constructs two successive left Bousfield localizations of the Reedy model
structure on the category of S�op

of simplicial spaces. Our strategy in this paper will be
to mimic Rezk’s constructions in the category S�

op
s

C of marked semi-simplicial spaces.
We will start in Section 1.7 where we will establish the existence of a (monoidal) model
structure on S�

op
s

C which is analogous to the Reedy model structure on the category
S�op

. We will refer to this structure as the marked model structure. We will then
construct a Quillen adjunction (which is not an equivalence)

S�op FC // S�
op
s

C
RKC
oo

between the Reedy model structure on S�op
and the marked model structure on S�

op
s

C .
This Quillen adjunction will be the basis of comparison between the model category
Comps that will be constructed in this paper and the model category Comp of complete
Segal spaces.

We will continue our strategy in Section 2 where we will localize the marked model
structure in order to obtain the semi-Segal model category Segs . This model structure
is analogous to the Segal model structure of [15]. The fibrant objects of Segs will be
called marked semi-Segal spaces. We will then say that a marked semi-Segal space
is quasi-unital if each object admits an invertible edge out of it and if all invertible
edges are marked. This will formalize the intuition described above regarding how to
describe quasi-unital 1–categories. We will denote by QsS� Segfib

s the full simplicial
subcategory spanned by quasi-unital marked semi-Segal spaces.

Following the footsteps of Rezk we observe that QsS itself is still not a model for
the correct 1–category of quasi-unital 1–categories. As in the analogous case of
Segal spaces, the problem is that equivalences in QsS are far too strict. To obtain the
correct notion one needs to localize the1–category associated to QsS with respect to a
certain natural family of Dwyer–Kan equivalences which will be studied in Section 2.2.
We will consider this 1–localization (see Section 1.2) of QsS as the 1–category of
(small) quasi-unital 1–categories.

In order to obtain a model category that models this 1–category we will construct in
Section 3 a final left Bousfield localization of Segs , which we denote by Comps . The
fibrant objects of Comps will be referred to as complete marked semi-Segal spaces.
The purpose of Section 3 is to prove the following (see Theorems 3.1.3 and 3.2.1):
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Theorem 0.0.1 (1) The underlying 1–category of Comps (see Section 1.2) is
equivalent to the 1–category of quasi-unital 1–categories (in the above sense).

(2) The adjunction FC ` RKC above descends to a (suitably monoidal) Quillen
equivalence between Comp and Comps . Passing to underlying 1–categories
we obtain the desired equivalence between quasi-unital and unital 1–categories.

Theorem 0.0.1 will then give us the desired positive answers to all three questions
appearing above.

Relation to other work

The theory developed here is closely related and much inspired by the theory of
quasi-unital algebras introduced by Lurie in [13, §5.4.3]. There he considers non-unital
algebra objects in a general monoidal1–category D . Enforcing an existence condition
for quasi-units and an appropriate unitality condition for morphisms one obtains the
1–category of quasi-unital algebra objects in D . He then proves:

Theorem 0.0.2 (Lurie [13]) The forgetful functor from the 1–category of algebra
objects in D to the 1–category of quasi-unital algebra objects in D is an equivalence
of 1–categories.

Note that if D is the monoidal 1–category of spaces (with the Cartesian product)
then algebra objects in D can be identified with pointed 1–categories with one object.
Similarly, quasi-unital algebra objects in D can be considered as pointed quasi-unital
1–categories with one object. Hence we see that there is a strong link between the
main result of this paper and Theorem 0.0.2. However, even when restricting attention
to quasi-unital 1–categories with one object, our result is not a particular case of
Theorem 0.0.2. This is due to the fact that the mapping space between quasi-unital
1–categories with one object does not coincide, in general, with the corresponding
space of pointed maps.

In the context of strict n–categories the notion of quasi-units has enjoyed a fair amount
of interest as well. In [10], Kock defines the notion of a fair n–category, which in
our terms can be called a strict quasi-unital n-category. For nD 2 and for a variation
of the n D 3 case Kock and Joyal have shown that a (non-strict) unital structure
can be uniquely recovered (see [9]). In [8] Kock and Joyal further show that every
simply connected homotopy 3–type can be modeled by a fair 3–groupoid (see [8]).
The main difference between their work and the present paper is that we address
the (manifestly non-strict) case of quasi-unital 1–categories (or .1; 1/–categories,
as opposed to .n; n/–categories). Furthermore, our results are framed in terms of a
complete equivalence between the notions of unital and quasi-unital 1–categories.
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1 Preliminaries and overview

Let � denote the simplex category, ie the category whose objects are the finite ordered
sets Œn�D f0; : : : ; ng and whose morphisms are non-decreasing maps. Let S D Set�

op

denote the category of simplicial sets. The category S can be endowed with the Kan
model structure, making it a model for the homotopy theory of spaces. When working
with the Kan model structure we will often refer to objects in S as spaces. We will say
that two maps f;gW K!L in S are homotopic (denoted f � g ) if they induce the
same map in the homotopy category associated to the Kan model structure. A point in
a space K will mean a 0–simplex and a path in K will mean a 1–simplex.

The category S can also be endowed with the Joyal model structure, making it a model
for the homotopy theory of 1–categories. We will refer to Joyal-fibrant simplicial sets
as 1–categories.

A simplicial category is a category enriched in S . The category CatS of small simplicial
categories carries a model structure in which the weak equivalences are the Dwyer–Kan
equivalences (see [1]). This model category admits a Quillen equivalence

S
C // CatS
N
oo

to the Joyal model category, where N is the simplicial nerve functor (see [11, Theo-
rem 2.2.5.1]). In particular, CatS is an equivalent model for the homotopy theory of
1–categories.

1.1 Symmetric monoidal and simplicial model categories

In this paper we will work a lot with symmetric monoidal simplicial model categories.
Let us briefly review the relevant definitions.

Definition 1.1.1 Let M be a category and ˝WM�M!M a symmetric monoidal
product. We say that ˝ is closed if there exists an internal mapping functor Mop�M!
M, typically denoted by .X;Y / 7!Y X , together with natural maps �X ;Y W Y X ˝X!

Y which induce isomorphisms

Hom.Z;Y X /
'
! Hom.Z˝X;Y /

for every X;Y;Z . These isomorphisms are sometimes referred to as the exponential
law.

Algebraic & Geometric Topology, Volume 15 (2015)



2310 Yonatan Harpaz

Remark 1.1.2 If M is presentable and ˝ is a symmetric monoidal product then ˝
is closed if and only if it preserves colimits separately in each variable. This follows
from the adjoint functor theorem.

Definition 1.1.3 Let .C;˝/ and .D;�/ be two symmetric monoidal categories, and

C
L // D
R
oo

an adjunction. Let

˛X ;Y W R.X /˝R.Y /!R.X � Y /; u W 1C!R.1D/

be a lax structure on R and

ˇZ;W W L.Z˝W /! L.Z/�L.W /; vW L.1C/! 1D

a colax structure on L. We will say that the lax-colax pair .˛X ;Y ;u/; .ˇZ;W ; v/ is
compatible with the adjunction if the diagrams

Z˝W //

��

R.L.Z//˝R.L.W //

˛L.Z/;L.W /

��
R.L.Z˝W //

R.ˇZ;W /
// R.L.Z/�L.W //

L.R.X /˝R.Y //

ˇR.X/;R.Y /

��

L.˛X;Y / // L.R.X � Y //

��
L.R.X //�L.R.Y // // X � Y

commute (where the unnamed maps are given by the unit/counit of the adjunction
L a R). An adjunction together with a compatible lax-colax pair is called a lax-
monoidal adjunction. We will say that a lax-monoidal adjunction is strongly monoidal
if L is monoidal, ie if ˇZ;W and v are natural isomorphisms. We refer the reader
to [17] for more details.

Remark 1.1.4 Let LaR be an adjunction. Then for any lax structure .˛X ;Y ;u/ on R
there is a unique colax structure .ˇZ;W ; v/ on L such that the pair .˛X ;Y ;u/; .ˇZ;W ; v/

is compatible with the adjunction. Similarly, any colax structure on L can be extended
to a unique compatible lax-colax pair.

Definition 1.1.5 Let M be a model category with a closed symmetric monoidal
product ˝ such that the unit of ˝ is cofibrant. We say that M is compatible with ˝
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if for every pair of cofibrations f W X 0!X;gW Y 0! Y the induced map

hW ŒX 0˝Y �qX 0˝Y 0 ŒX ˝Y 0�!X ˝Y

is a cofibration, and is further a trivial cofibration if at least one of f;g is trivial. This
condition is commonly referred to as the pushout-product axiom. In this case we say
that M is a symmetric monoidal model category.

Remark 1.1.6 The definition above can be extended to the case where the unit of ˝
is not necessarily cofibrant (see [7, Definition 4.2.6]). However, since in our case the
units will always be cofibrant it will simplify matters for us to assume this from now
on.

Example 1.1.7 The Kan model structure on S is compatible with the Cartesian
monoidal structure.

Definition 1.1.8 Let .M;˝/; .N ;�/ be two symmetric monoidal model categories.
A lax-monoidal Quillen adjunction L aR between M and N is a Quillen adjunction
equipped with a lax-colax structure compatible with the adjunction (see Definition 1.1.3).
We note that there is no compatibility requirement between the lax-colax pair and the
model structure. We will say that a lax-monoidal Quillen adjunction is strongly monoidal
if L is monoidal, ie if the structure maps of the colax structure are isomorphisms. We
will say that a lax-monoidal adjunction is weakly monoidal if the structure maps of the
colax structure are weak equivalences.

Definition 1.1.9 Let M be a symmetric monoidal model category. A simplicial
structure on M is a strongly monoidal Quillen adjunction

S
L //M;
R

oo

where S is endowed with the Kan model structure. In this case we say that M is a
symmetric monoidal simplicial model category. M then acquires a natural enrichment
over S given by

MapM.X;Y /
def
D R.Y X /

and one has natural isomorphisms

MapS.K;MapM.X;Y //ŠMapM.L.K/;Y
X /ŠMapM.L.K/˝X;Y /

for K 2 Sop;X 2Mop and Y 2M. When there is no room for confusion we will
usually abuse notation and denote L.K/ simply by K .
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Remark 1.1.10 A simplicial structure can be defined also for M which does not
possess a symmetric monoidal structure but instead carries an action of S which satisfies
analogous conditions to those of Definition 1.1.5.

1.2 Underlying 1–categories and 1–localizations

Though working mostly with model categories, we will always consider them as strict
incarnations of their underlying 1–categories. To give a precise definition let us
follow the approach of [5] via a universal property. We begin by recalling the notion of
1–localization (see [5]).

Definition 1.2.1 Let f W C! D be a map of 1–categories (ie fibrant objects in the
Joyal model structure; see Section 1) and let W be a collection of morphisms (edges)
in C . We will say that the map f exhibits D as the 1–localization of C with respect
W if for every 1–category E the restriction map

f �W Fun.D; E/! Fun.C; E/

is fully faithful, and its essential image is spanned by those functors gW C! E which
send every morphism in W to an equivalence. In this case the 1–category D is
essentially determined by this condition and will often be denoted simply by CŒW�1�.

Now when W is a set the 1–localization CŒW�1� always exists (as a locally small
1–category). Furthermore, if M is a model category with a collection of weak
equivalences W then it can be shown that M1

def
DMŒW�1� exists as a locally small

1–category without requiring that W is a set. We will refer to M1 as the underlying
1–category of M.

The1–category M1 can be explicitly constructed in various ways. By taking the Rezk
nerve of M with respect to W one can construct a simplicial space which is a model
for M1 in the model category of complete Segal spaces (see [15]). Alternatively, one
can construct the Dwyer–Kan simplicial localization of M with respect to W (see [3])
to obtain a simplicial category which is a model for M1 via the (derived) simplicial
nerve functor (see [5, Proposition 2.2.1]). Thirdly, and most relevant to us, is the last
option, which exists when M carries the structure of a simplicial model category. In
this case, the full simplicial subcategory Mfc �M spanned by the fibrant-cofibrant
objects is a model for M1 (see [2]). Note that in this case Mfc will be a fibrant
simplicial category, and so we can write directly N .Mfc/'M1 .

A particularly common case of 1–localization is the following (see [11, Definition
5.2.7.2]).
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Definition 1.2.2 Let C be an 1–category and W a collection of morphisms in C . We
will say that a map of 1–categories f W C!D exhibits D as a left 1–localization of
C with respect to W if the following conditions are satisfied:

(1) The map f admits a fully faithful right adjoint.

(2) A morphism ˛ is in W if and only if f .˛/ is an equivalence.

It is not hard to verify that any left 1–localization is in particular an 1–localization
in the sense above (see [11, Warning 5.2.7.3]). Note that if f W C! D is a left 1–
localization with respect to some W then this W is completely determined by condition
.2/ above. One may hence simply say that f is a left1–localization (without referring
to W ) whenever f has a fully faithful right adjoint. The most common source of left
1–localizations is the following.

Lemma 1.2.3 Let M be a model category and let M be a left Bousfield localization of
M. Let W be the collection of weak equivalences of M. Then the natural left Quillen
functor M!M (given by the identity) induces a left 1–localization M1!M1
with respect to the image of W in M1 .

Proof According to [5] the Quillen adjunction Id WM aM induces an adjunction
M1 aM1 in the 1–categorical sense. Furthermore, by computing derived mapping
spaces using cosimplicial resolutions of the source one may easily verify that the right
Quillen functor IdWM!M induces a weak equivalence on derived mapping spaces,
ie that the induced functor

Id1WM1!M1

is fully faithful. Finally, property .2/ of Definition 1.2.2 is satisfied since model
categories are saturated as relative categories.

1.3 Semi-simplicial spaces and the Reedy model structure

Let �s�� denote the subcategory consisting only of injective maps. A semi-simplicial
set is a functor �op

s ! Set. Similarly, a semi-simplicial spaces is a functor �op
s ! S .

The category of semi-simplicial spaces will be denoted by S�
op
s .

We will denote by �n the standard n–simplex considered as a semi-simplicial set (it
is given by the functor �op

s ! Set represented by Œn�). When we want to refer to the
standard simplex as a simplicial set we will denote it as j�nj 2 S . This notation is
consistent with our notation for the geometric realization functor which we consider as
the functor

j � jW S�
op
s ! S

given by the coend jX j D
R �s X� � j�

�j.
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For a subset I � Œn� we will denote by �I � �n the semi-simplicial subset corre-
sponding to the sub-simplex spanned by I . We will denote by

(1-1) Spn
D�f0;1gq�f1g �

f1;2g
q�f2g � � �q�fn�1g �fn�1;ng

��n

the spine of �n, ie the semi-simplicial subset consisting of all the vertices and all the
edges between consecutive vertices.

We will occasionally abuse notation and consider �n as a semi-simplicial space as
well (levelwise discrete). Orthogonally, we will sometimes consider a space K 2 S as
a semi-simplicial space which is concentrated in degree zero, ie as the semi-simplicial
space given by K0 DK and Kn D∅ for n> 0.

The category S�
op
s carries the Reedy model structure with respect to the Kan model

structure on S and the obvious Reedy structure on �s . Since �s is a Reedy category
in which all non-trivial morphisms are increasing, the Reedy model structure coincides
with the injective model structure. This is a particularly nice situation because we have
a concrete description for all three classes of maps. In particular, the weak equivalences
and cofibrations are defined levelwise, and fibrations are defined in terms of matching
objects. We refer the reader to [6, Section 15] for more details.

Consider the adjunction

S�
op
s

LK // S�op
;

F
oo

where F is the forgetful functor (or the pullback along the inclusion �s ,!�) and
LK is the left Kan extension functor. Given a simplicial space Z we shall denote by
Core.Z/� F.Z/ the minimal semi-simplicial subspace of F.Z/ containing all the
non-degenerate simplices. Now recall the standard (non-Cartesian) symmetric monoidal
product X;Y 7!X ˝Y on S�

op
s defined, as in [16, Section 3], by the formula

X ˝Y
def
D Core.LK.X /�LK.Y //:

The unit of ˝ is �0 .

Remark 1.3.1 One can obtain an explicit description of the space of k –simplices in
X ˝Y as follows: let P

n;m
k

denote the set of injective order-preserving maps

�W Œk�! Œn�� Œm�

such that pŒn� ı �W Œk�! Œn� and pŒm� ı � W Œk�! Œm� are surjective (such maps are
sometimes called shuffles). Then one has

.X ˝Y /k D
a

n;m�k

P
n;m
k
�Xn �Ym:
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In particular, the set of k –simplices of �n˝�m can be identified with the set of all
injective order-preserving maps Œk�! Œn�� Œm�.

Remark 1.3.2 The natural transformations Core.�/!F.�/ and LK.F.�//!� may
be combined to produce a natural map

LK.X ˝Y /D LK.Core.LK.X /�LK.Y ///
'
! LK.X /�LK.Y /

which is in fact an isomorphism (to see this it is enough to verify the case X D�n;Y D

�m by a direct computation). Combined with the identity map LK.�0/! LK.�0/

we see that LK carries the structure of a monoidal functor. This implies, in particular,
that the geometric realization functor j � jW S�

op
s ! S is monoidal as well.

The symmetric monoidal product ˝ is closed and the corresponding internal mapping
object can be described explicitly as follows: if X;Y are two semi-simplicial spaces
then the mapping object Y X is given by

.Y X /n DMap.�n
˝X;Y /:

The Reedy model structure on S�
op
s is compatible with ˝. This can be easily verified

using the explicit formula in Remark 1.3.1. Furthermore, S�
op
s admits a natural

simplicial structure (see Definition 1.1.9) given by the adjunction

S
L // S�

op
s

R
oo

where L.K/ is given by K concentrated in degree 0 and R.X /DX0 . In particular,
the Reedy model category S�

op
s is a symmetric monoidal simplicial model category

with respect to ˝.

1.4 Semi-Segal spaces and quasi-units

Definition 1.4.1 Let X be a semi-simplicial space. Let Œn�; Œm� 2�s be two objects
and consider the commutative (pushout) diagram

Œ0�
0 //

n

��

Œm�

gn;m

��
Œn�

fn;m

// ŒnCm�
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where fn;m.i/ D i and gn;m.i/ D i C n. We will say that X satisfies the Segal
condition if for each Œn�; Œm� as above the induced commutative diagram

XmCn

g�n;m //

f �n;m

��

Xm

0�

��
Xn

n� // X0

is homotopy Cartesian. We will say that X is a semi-Segal space if it is Reedy fibrant
and satisfies the Segal condition. Note that in that case the above square will induce a
homotopy equivalence

XmCn 'Xm �X0
Xn:

Remark 1.4.2 A simple induction argument shows that if X is a semi-Segal space
then the natural map

Xn DMap.�n;X /!Map.Spn;X /'X1 �X0
X1 �X0

� � � �X0
X1

is a weak equivalence (where Spn
��n is the nth spine, see Equation (1-1)). For X

Reedy fibrant the above property is equivalent to the Segal condition.

Example 1.4.3 Let D be a small non-unital simplicial category in which the mapping
spaces are Kan simplicial sets. We can associate with D a semi-Segal space via a
non-unital analogue of the nerve construction as follows. For each n, let Cs.Œn�/ denote
the non-unital category whose objects are the numbers 0; : : : ; n and whose mapping
spaces are

MapCs.Œn�/.i; j /D

�
∅ if i � j ;

� if i < j:

As Cs.Œn�/ depends functorially on Œn� 2�s we can get a semi-simplicial space N.D/
by setting

N.D/n DMapCatS .C
s.Œn�/;D/:

Note that N.D/ will generally not be Reedy fibrant, but after applying the Reedy
fibrant replacement functor (which is a levelwise equivalence) one indeed obtains a
semi-Segal space.

We think of a general semi-Segal space as encoding a relaxed version of Example 1.4.3,
ie a non-unital 1–category. This can be described as follows. The objects of this
non-unital 1–category are the points of X0 . Given two points x;y 2X0 we define
the mapping space between them by

MapX .x;y/D fxg �X0
X1 �X0

fyg;
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ie as the fiber of the (Kan) fibration

X1

.d1;d0/
�! X0 �X0

over the point .x;y/. The space X2 of triangles then induces a “weak composition”
operation on these mapping spaces, which can be described as follows. Given three
points x;y; z 2X0 , let us denote

Comp.x;y; z/D
˚
� 2X2

ˇ̌
� j�f0g D x; � j�f1g D y; � j�f2g D z

	
:

The three restriction maps � 7! � j�fi;jg yield a diagram of the form:

Comp.x;y; z/
 

((

'

tt
MapX .x;y/�MapX .y; z/ MapX .x; z/

Since X is a semi-Segal space it follows that ' is a trivial Kan fibration. One can then
construct a candidate for the composition of f 2MapX .x;y/ and g 2MapX .y; z/ by
choosing a triangle � 2 Comp.x;y; z/ lying above .f;g/ and considering � j�f0;2g as
the composition g ıf . It should be noted that the choice of � (and hence of g ıf ) is
not unique. However, since ' is a trivial Kan fibration the space of choices for � is
contractible. In this sense the operation of composition is essentially well-defined. In a
similar way one can use the Segal condition in dimension 3 in order to show that this
weak composition is associative up to coherent homotopy, in a suitable sense. We will
refer the reader to [15] for a more detailed description in the unital case.

Remark 1.4.4 As in the unital case, a semi-Segal space carries more information than
the non-unital 1–categorical structure on X0 described above. One aspect of this
is that X0 itself is not a set, but a space, and the homotopy type of this space is not
determined by the non-unital 1–categorical structure. In the unital case (as well as
the quasi-unital case, as we will see in Section 3) this issue can be resolved via the
notion of completeness.

Example 1.4.5 Let Z be a Kan simplicial set. Applying the 0th coskeleton functor
one obtains a semi-simplicial space

X D cosk0.Z/

which is given by XnDMap.sk0.�
n/;Z/DZnC1 . It is then easy to verify that X is a

semi-Segal space. This semi-Segal space encodes a trivial non-unital structure in which
all the mapping spaces are contractible. However, it can admit arbitrary homotopy
types for the space of objects X0 (see Remark 1.4.4).
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Definition 1.4.6 Let X be a semi-Segal space. We define its non-unital homotopy
category Ho.X / to be the non-unital category whose objects are the points of X0 and
whose morphism sets are given by

HomHo.X /.x;y/
def
D �0.MapX .x;y//:

The weak composition described above induces an honest composition in Ho.X / which
can be described as follows. A component Œh� 2 �0.MapX .x; z// is the composition of
Œf � 2 �0.MapX .x;y// and Œg� 2 �0.MapX .y; z// if and only if there exists a triangle
� 2X2 such that � j�f0;1g D f; � j�f1;2g D g and � j�f0;2g D h. The Segal condition in
dimension 3 ensures that the composition on Ho.X / is associative. However, Ho.X /
is not unital in general.

Our first goal when dealing with semi-Segal spaces is to understand when a morphism
f W x! y is neutral with respect to composition. For this we need to extract in some
way the action of f on mapping spaces.

Definition 1.4.7 Let x;y; z 2 X0 be points and f W x! y a morphism in X (ie a
point f 2MapX .x;y/). Consider the space

C R
f;z D

˚
� 2X2

ˇ̌
� j�f1;2g D f; � j�f0g D z

	
� Comp.x;y; z/

together with the two restriction maps:

(1-2) C R
f;z

 

%%

'

yy
MapX .z;x/ MapX .z;y/

By the Segal condition we see that ' is a weak equivalence. We then define a homotopy
class

Œf �� 2 HomHo.S/.MapX .z;x/;MapX .z;y//

by setting Œf ��
def
DŒ � ı Œ'��1 . This can be considered as the homotopy class of the

almost-defined map f� obtained by composition with f . Similarly, one can define a
homotopy class

Œf ��W HomHo.S/.MapX .y; z/;MapX .x; z//

describing the homotopy class of pre-composition with f .

Warning 1.4.8 The notations Œf �� and Œf �� are a bit abusive, as they implicitly
depend on the point z 2X0 . We hope that this will not result in any confusion.
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Remark 1.4.9 Given a point z 2X0 the definition above yields a functor of non-unital
categories Rz W Ho.X /! Ho.S/ given by

Rz.x/DMapX .z;x/; Rz.Œf �/D Œf ��:

Similarly, we can construct a functor Rz W Ho.X /op! Ho.S/ by setting

Rz.x/DMapX .x; z/; Rz.Œf �/D Œf ��:

Warning 1.4.10 The functors described in Remark 1.4.9 can be considered as the
representable and corepresentable functors of X after descending to the (non-unital)
homotopy category. However, they are not the representable and corepresentable
functors of Ho.X / itself as they take values in Ho.S/ and not in Set. Note that in
the non-unital setting there is no Yoneda lemma, and so the associations z 7!Rz and
z 7!Rz can lose information in general.

The above construction can be used to determine when a morphism is neutral with
respect to composition:

Definition 1.4.11 Let x 2X0 be an object and f W x! x a morphism in X . We will
say that f is a quasi-unit if for each z 2X0 the homotopy classes

Œf �� 2 HomHo.S/.MapX .z;x/;MapX .z;x//;

Œf �� 2 HomHo.S/.MapX .x; z/;MapX .x; z//

of Definition 1.4.7 are both the identity in Ho.S/.

Definition 1.4.12 Let X be a semi-Segal space. We will say that X is quasi-unital
if every object x 2X0 admits a quasi-unit qW x! x . We will informally say that X

models a quasi-unital 1–category.

Warning 1.4.13 Even if X and Y are quasi-unital, a general map X ! Y need not
send quasi-units to quasi-units. For example, let C be the non-unital category with
one object � 2 C and one morphism f W � ! � such that f ıf D f . Let D be the
non-unital category with one object � 2 D and two morphisms g; hW � ! � such that
gıgD gıhD hıgD g and hıhD h. Let X;Y be the non-unital nerves of C and D
(see Example 1.4.3), so that X and Y are (levelwise discrete) quasi-unital semi-Segal
spaces (where the edges corresponding to f and h are the quasi-units). Then there is
a map X ! Y which sends f to g , even though f is a quasi-unit and g is not.
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Example 1.4.14 The semi-Segal spaces semiCobn constructed in [12, Section 2.2]
(which model the underlying non-unital 1–category of the nth cobordism category)
are easily seen to be quasi-unital. Informally speaking, any trivial cobordism from an
n–manifold M to itself corresponds to a quasi-unit in semiCobn .

Remark 1.4.15 If X is a quasi-unital semi-Segal space then Ho.X / acquires a unique
structure of a unital category. However, this structure is not natural: given a map
f W X!Y between quasi-unital semi-Segal spaces, the induced map Ho.f /W Ho.X /!
Ho.Y / need not send identity maps to identity maps, see Warning 1.4.13.

For each x 2X0 , we will denote by X
qu
x �MapX .x;x/ the maximal subspace spanned

by the quasi-units f 2 .MapX .x;x//0 . As Œf �� and Œf �� depend only on the path
component of f in MapX .x;x/, we see that X

qu
x is a union of connected components

of MapX .x;x/.

Lemma 1.4.16 Let X be a semi-Segal space and x 2X0 a point. If X
qu
x is not empty

then it is connected.

Proof Let q1; q2W x ! x be two quasi-units. We need to show that q1; q2 are in
the same connected component of X

qu
x . Since X

qu
x is a union of components of

MapX .x;x/ it is enough to show that q1; q2 are in the same connected component of
MapX .x;x/. Now since q1 is a quasi-unit the homotopy class

Œq1�
�
W MapX .x;x/!MapX .x;x/

is the identity. Unwinding the definitions, this implies that there exists a triangle � 2X2

of the form

x
q3

  
x

q1

>>

q2 // x

for some q3W x! x which is in the same connected component in MapX .x;x/ as q2 .
Then q3 is necessarily a quasi-unit, and so the homotopy class

Œq3��W MapX .x;x/!MapX .x;x/

is the identity. This implies q1 and q2 are in the same connected component of
MapX .x;x/.

Algebraic & Geometric Topology, Volume 15 (2015)



Quasi-unital 1–categories 2321

1.5 From quasi-units to invertible edges

As explained above, a general map of quasi-unital semi-Segal spaces need not preserve
quasi-units. However, our interest in this paper is to study quasi-unital 1–categories
and only functors which respect quasi-units. With this in mind, it will be useful to
weaken the definition of quasi-units and consider the more robust notion of invertible
edges.

Definition 1.5.1 Let x;y 2X0 be two objects and f W x! y a morphism in X . We
will say that f is invertible if for every z 2X0 the homotopy classes

Œf �� 2 HomHo.S/.MapX .z;x/;MapX .z;y//;

Œf �� 2 HomHo.S/.MapX .y; z/;MapX .x; z//

of Definition 1.4.7 are isomorphisms in Ho.S/.

Remark 1.5.2 Let f W x ! y be a map and let z 2 X0 be a point. Recall the
maps '; of the diagram in Equation (1-2). Since  is a Kan fibration we see that
Œf �� D Œ � ı Œ'�

�1 is an isomorphism if and only if  is a trivial fibration. We hence
conclude the following: Œf �� is an isomorphism for every z 2X0 if and only if each
map of the form � W ƒ2

2
! X such that �.�f1;2g/ D f has a contractible space of

extensions x� W �2 ! X . A completely analogous argument shows that Œf �� is an
isomorphism for every z if and only if each map of the form � W ƒ2

0
! X such that

�.�f0;1g/D f has a contractible space of extensions x� W �2!X .

Invertible morphisms can be described informally as morphisms with which composition
(on either side) induces a weak equivalence on mapping spaces. Note that the notion
of invertibility does not presuppose the existence of identity morphisms, ie it makes
sense in the non-unital setting as well.

We will denote by X inv
1
�X1 the maximal subspace spanned by the invertible vertices

f 2 .X1/0 . Observe that since X is Reedy fibrant the two restriction maps

Map.�2;X /!Map.ƒ2
2;X /!Map.�f1;2g;X /

are fibrations. It is then an immediate corollary of Remark 1.5.2 that the subspace of
X1 spanned by those f for which Œf �� is an isomorphism (for every z 2 X0 ) is a
union of connected components. Applying the analogous argument to Œf �� we see that
X inv

1
�X1 is a union of connected components.

Given a morphism Œf � 2MapHo.X /.x;y/D �0.MapX .x;y// in the homotopy (non-
unital) category of X , we will say that Œf � is invertible if the image of Œf � in �0.X1/

belongs to �0.X
inv/.
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Definition 1.5.3 Let X be a semi-Segal space. We will say that X is a semi-Kan
space if every edge in X1 is invertible.

We frame the following lemma for future use.

Lemma 1.5.4 Let X be a semi-Segal space. The collection of invertible morphisms
in Ho.X / satisfies the following closure properties:

(1) 2-out-of-3 If two of Œf �; Œg� and Œf ıg� are invertible then the third is invertible
as well.

(2) 2-out-of-6 If Œf � ı Œg� is invertible and Œg� ı Œh� is invertible then Œf �; Œg� and
Œh� are invertible.

Proof This follows from the fact that invertible edges are created by the collection of
functors

Rz;R
z
W Ho.X /! Ho.S/

for all z 2 X0 (see Remark 1.4.9) and the class of isomorphisms in Ho.S/ satisfies
2-out-of-3 and 2-out-of-6.

Our next goal is to verify that for the purpose of studying quasi-unital 1–categories
one can replace the notion of quasi-units with that of invertible edges. We begin with
the following observation.

Lemma 1.5.5 Let X be a semi-Segal space and x 2 X0 a point. Then x admits a
quasi-unit if and only if there exists an invertible edge with source x .

Proof If x has a quasi-unit then this quasi-unit is in particular an invertible edge with
source x . On the other hand, if f W x ! y is an invertible edge then according to
Remark 1.5.2 there exists a triangle � W �2!X of the form

y

x

f
??

q // x

f
__

In light of Remark 1.4.9 we conclude that for every z 2X0 the equality

Œf �� D Œf �� ı Œq��

holds in HomHo.S/.MapX .z;x/;MapX .z;y// and the equality

Œf �� D Œq�� ı Œf ��

holds in HomHo.S/.MapX .y; z/;MapX .x; z//. Since f is invertible this implies that
q is a quasi-unit.
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This means that the existence condition for quasi-units can be phrased equivalently in
terms of invertible edges. Our next proposition verifies that the associated restrictions
on functors are equivalent as well.

Proposition 1.5.6 Let 'W X ! Y be a map between quasi-unital semi-Segal spaces.
The following are equivalent:

(1) ' sends quasi-units to quasi-units.

(2) ' sends invertible edges to invertible edges.

Proof First assume that ' sends invertible edges to invertible edges and let x 2X0

be a point. Since X is quasi-unital there exists a quasi-unit qW x ! x . Then q is
invertible, and hence according to Remark 1.5.2 there exists a triangle of the form:

x

x

q
>>

q0 // x

q
``

Arguing as in the proof of Lemma 1.5.5 we see that q0 is a quasi-unit as well. The map
' then sends this triangle to a triangle of the form

'.x/

'.x/

'.q/
<<

'.q0/ // '.x/;

'.q/
cc

where '.q/ is invertible, and hence '.q0/ is a quasi-unit by the same argument. From
Lemma 1.4.16 we get that ' maps all quasi-units of x to quasi-units of '.x/.

Now assume that ' sends quasi-units to quasi-units and let gW x! y be an invertible
edge. Since X is quasi-unital there exist quasi-units qW x! x and r W y! y . Since
g is invertible we get from Remark 1.5.2 that there exist triangles of the form:

(1-3)

y
g

��
x

f
??

q // x

x
h

��
y

g
??

r // y

Applying ' to these triangles and using the fact that '.q/; '.r/ are quasi-units
we get from Lemma 1.5.4 (2) that '.g/ is invertible. This finishes the proof of
Proposition 1.5.6.
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Lemma 1.5.5 and Proposition 1.5.6 suggest that the notion of a quasi-unital1–category
can be encoded as semi-Segal spaces in which every object admits an invertible edge
out of it. Furthermore, in order to consider only functors which respect quasi-units one
can instead study maps of semi-Segal spaces which preserve invertible edges.

At this point it is worthwhile to consider the particular case of quasi-unital semi-Kan
spaces (see Definition 1.5.3). In this case every map automatically respects invertible
edges (and hence quasi-units) and so we can study it without any additional technicality.
This analysis, which will be explained in the next subsection, will be used in subsequent
parts in order to establish the main results of this paper.

1.6 Quasi-unital semi-Kan spaces and their classifying spaces

Recall that a semi-Segal space is called a semi-Kan space if every morphism in X

is invertible. In this subsection we will study quasi-unital semi-Kan spaces via the
geometric realization functor

j � jW S�
op
s ! S

given by

jX j D

Z �

X ��n
Š diag.X /;

where diag.X / is the diagonal simplicial set of X (when X is considered as a bisim-
plicial set). When X is a quasi-unital semi-Kan space we will also refer to jX j as the
classifying space of X .

We will say that X is connected if for each x;y 2X0 the mapping space MapX .x;y/

is non-empty. Every quasi-unital semi-Kan space is a coproduct (in the category of
simplicial spaces) of connected quasi-unital semi-Kan spaces. We then observe that
the geometric realization functor commutes with coproducts (in fact with all colimits)
and sends connected quasi-unital semi-Kan spaces to connected simplicial sets. We
will consequently refer to �0.jX j/ as the set of connected components of X .

Definition 1.6.1 We will say that a map f W X ! Y of quasi-unital semi-Kan spaces
is a DK–equivalence if it induces a weak equivalence

MapX .x;y/
'
�!MapY .f0.x/; f0.y//

for each x;y 2X0 and a surjective map on connected components.

The functor j � j has a right adjoint …W S! S�
op
s given by

….Z/n DMapS.j�
n
j;Z/
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for Z 2 S . When Z is a Kan simplicial set, the semi-simplicial space ….Z/ is Reedy
fibrant, and one can easily verify that it is a quasi-unital semi-Kan space. Furthermore,
the semi-Segal space ….Z/ clearly extends to a full Segal space (given by the same
formula), which is a model for the fundamental 1–groupoid of Z . In this section
we will show that every quasi-unital semi-Kan X space is DK–equivalent to …. yjX j/,
where y� denotes the functorial Kan replacement functor (see Corollary 1.6.6 below).
In particular, every quasi-unital 1–groupoid can be promoted to a unital one, which is
given explicitly as the fundamental 1–groupoid of its classifying space. This is a first
step in proving the equivalence of quasi-unital and unital 1–categories, and will be
used in subsequent parts in order to establish the main results of this paper.

We begin with the following lemmas.

Lemma 1.6.2 Let X be a semi-Segal space. Let Tn � �
n be the simplicial subset

given by the union of all triangles �f0;i;iC1g for i D 1; : : : ;N �1. Then the restriction
map

(1-4) Xn DMap.�n;X /!Map.Tn;X /

is a trivial Kan fibration.

Proof Since X is Reedy fibrant we already know that (1-4) is a fibration, and so
it is left to prove that it is a weak equivalence. The simplicial subset Tn contains
the spine Spn

��n (see Section 1.3) and may be obtained from Spn by performing
pushouts along inclusions of the form ƒ2

1
��2 . From the Segal condition we may

then conclude that the restriction map

Map.Tn;X /!Map.Spn;X /

is a weak equivalence. Furthermore, the restriction map Xn!Map.Spn;X / is a weak
equivalence as well (see Remark 1.4.2) and so the map Xn!Map.Tn;X / is a weak
equivalence.

Lemma 1.6.3 Let X be a semi-Kan space. For 0 < i � n let S i
n � �

n be the
simplicial subset given by the union of the edge �f0;ig and the edges �fj ;jC1g for
j D 1; : : : ; n� 1. Then the restriction map

(1-5) Xn DMap.�n;X /!Map.S i
n;X /

is a trivial Kan fibration.

Proof Since X is Reedy fibrant we already know that (1-5) is a fibration, and so it is
left to prove that it is a weak equivalence. Let Tn��

n be as in Lemma 1.6.2. Then Tn
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contains S i
n and may be obtained from S i

n by performing pushouts along inclusions of
the form ƒ2

1
��2 and ƒ2

2
��2 . In light of Remark 1.5.2 we may conclude that the

restriction map
Map.Tn;X /!Map.S i

n;X /

is a weak equivalence. The desired result now follows from Lemma 1.6.2.

Given a Kan simplicial set Z and points x;y 2Z we will denote by �.Z;x;y/ the
space of paths in Z from x to y and by P .Z;x/ the space of paths in Z which start
at x .

Theorem 1.6.4 Let X be a semi-Kan space and x;y 2 X0 two points. Consider x

and y as points in yjX j via the natural inclusion X0 ,! yjX j. Then the natural map

MapX .x;y/!�. yjX j;x;y/

is a weak equivalence.

Proof We will rely on the main result of [14] which can be stated as follows:

Theorem 1.6.5 (Puppe) Let X;Y be two semi-simplicial spaces and let 'W X ! Y

be a map such that for each f W Œk�! Œn� in �s the square

Xn

'n

��

f � // Xk

'k

��
Yn

f � // Yk

is homotopy Cartesian. Then the square

X0
//

��

jX j

��
Y0

// jY j

is homotopy Cartesian as well.

Let us now prove Theorem 1.6.4. Let x 2X0 be a point and define the semi-simplicial
space P .X;x/ by

P .X;x/n D
˚
� 2XnC1

ˇ̌
� j�f0gDx

	
�XnC1:
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Fix an i D 1; : : : ; nC 1 and let S i
nC1
� �nC1 be as in Lemma 1.6.3. Let Qn �

Map.S i
nC1

;X / be the subspace of those maps f W S i
nC1
!X which send �f0g to x .

In particular, the natural map P .X;x/n ! Qn is a pullback of the restriction map
XnC1!Map.S i

nC1
;X / which is a trivial Kan fibration by Lemma 1.6.3. We hence

get that P .X;x/n!Qn is a trivial Kan fibration as well.

Now consider the map pW P .X;x/!X which sends � 2P .X;x/n to � j�f1;:::;nC1g 2

Xn . Let qnW Qn!Map.Spn;X / be the map induced by the restriction along the map
�W Spn ,! S i

nC1
which sends the vertices 0; : : : ; n of Spn to the vertices 1; : : : ; nC 1

of S i
nC1

. Then for each i D 1; : : : ; nC 1 we obtain a commutative diagram of the
form

(1-6)

P .X;x/n
' //

pn

��

Qn

qn

��

ri // P .X;x/0

p0

��
Xn

' // Map.Spn;X /
s // X0;

where ri is induced by restriction along �f0;ig � S i
nC1 and s is the restriction along

�fi�1g � Spn . In particular, the horizontal maps of the external rectangle are the
simplicial structure maps of the inclusion �fi�1g � �n . Since the right square is
homotopy Cartesian we conclude that the external rectangle is homotopy Cartesian as
well. This, in turn, implies that for every map �W Œk�! Œn� in �s the square

P .X;x/n
f � //

pn

��

P .X;x/k

pk

��
Xn

f � // Xk

is homotopy Cartesian. Hence by Puppe’s theorem the left square in the diagram

P .X;x/0 //

p0

��

jP .X;x/j

��

// P . yjX j;x/

ev1

��
X0

// jX j jX j

is a homotopy Cartesian (where ev1 is the function which associates to a path  its
value  .1/). Now note that p0 and ev1 are both fibrations. Identifying the fibers of
these fibrations we see that the desired result is equivalent to the exterior rectangle
being homotopy Cartesian, or equivalently, that the right square is homotopy Cartesian.
As P . yjX j;x/ is contractible, in order to finish the proof of Theorem 1.6.4 it will suffice
to show that the space jP .X;x/j is contractible.
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For n� 0 let TnC1��
nC1 be as in Lemma 1.6.2. Let RnC1�TnC1 be the simplicial

subset given by the union of all edges of the form �f0;ig for i D 1; : : : ; nC 1. Then
TnC1 may be obtained from RnC1 by performing pushouts along inclusions of the
form ƒ2

0
��2 . From Remark 1.5.2 we then conclude that the restriction map

Map.TnC1;X /!Map.RnC1;X /

is a trivial Kan fibration, and hence by Lemma 1.6.2 the map

XnC1!Map.RnC1;X /

is a trivial Kan fibration as well. Since the square

P .X;x/n
� � //

��

XnC1

��
.P .X;x/0/

nC1 // Map.RnC1;X /

is Cartesian we see that the map P .X;x/n! .P .X;x/0/
nC1 is a trivial Kan fibration.

This means that the natural map (see Example 1.4.5)

P .X;x/! cosk0.P .X;x/0/

is a levelwise weak equivalence. It will hence suffice to show that jcosk0.P .X;x/0/j

is contractible. This, in turn, is due to the fact that any semi-simplicial space of
the form cosk0.Z/ for Z ¤ ∅ admits a canonical semi-simplicial null-homotopy
�1˝ cosk0.Z/! cosk0.Z/.

Corollary 1.6.6 Let X be a semi-Kan space. Then the counit map X !…. yjX j/ is a
DK–equivalence.

Proof By Theorem 1.6.4 the counit map induces weak equivalences on mapping
spaces. Since the map X0!

yjX j is surjective on connected components we see that
the map f is in fact a DK–equivalence.

Corollary 1.6.7 Let f W X ! Y be a map between quasi-unital semi-Kan spaces.
Then f is a DK–equivalence if and only if the induced map f�W yjX j ! yjY j is a weak
equivalence.

Proof First note that the connected components of X as a semi-Kan space are in
bijection with the connected components of yjX j as a space. Hence Theorem 1.6.4 tells
us that f W X ! Y is a DK–equivalence if and only if it induces a bijection

�0. yjX j/! �0. yjY j/
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and for each x;y 2 yjX j the induced map

�. yjX j;x;y/!�. yjY j; f .x/; f .y//

is a weak equivalence. But this is equivalent to f�W yjX j! yjY j being a weak equivalence
and we are done.

We finish this subsection with an application which we record for future use. Recall
that in general geometric realization does not commute with Cartesian products of
semi-simplicial spaces (ie levelwise products). The following corollary shows that
in the specific case of semi-Kan spaces, geometric realization does commute with
Cartesian products.

Corollary 1.6.8 Let X;Y be two quasi-unital semi-Kan spaces. Then the natural map
jX �Y j ! jX j � jY j is a weak equivalence.

Proof First note that if X;Y are semi-Kan spaces then X �Y is a semi-Kan space
as well. Furthermore, it is clear that the natural map

�0.jX �Y j/! �0.jX j/��0.jY j/

is an isomorphism (as both sides can be identified with the set of connected components
of the semi-Kan space X �Y ).

Now let x1;x2 2X;y1;y2 2 Y be points and consider the natural map

�.jX �Y j; .x1;y1/; .x2;y2//!�.jX j � jY j; .x1;y1/; .x2;y2//:

Theorem 1.6.4 shows that this map is weakly equivalent to the isomorphism

MapX�Y ..x;y/; .x;y//
'
!MapX .x;x/�MapY .y;y/

and so is itself a weak equivalence. The desired result now follows.

1.7 Marked semi-simplicial spaces

The purpose of this paper is to generalize the analysis made in the previous section in
order to obtain our desired comparison between quasi-unital and unital 1–categories.
For this we will first need to construct the correct 1–category of quasi-unital 1–
categories. This will require some modifications to the constructions reviewed so far
in order to guarantee that we consider only functors which send invertible edges to
invertible edges.

In order to keep track of invertible edges it will be useful to work in a variant of the
category of semi-Segal spaces where the invertible edges can be somehow marked. For
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this one needs to replace the notion of a semi-simplicial space with that of a marked
semi-simplicial space. Let us open with the following basic definition.

Definition 1.7.1 A marked semi-simplicial space is a pair .X;A/, where X is a
semi-simplicial space and A�X1 is a subspace. In order to keep the notation clean
we will often denote a marked semi-simplicial space .X;A/ simply by X . Given two
marked semi-simplicial spaces .X;A/; .Y;B/ we denote by

MapC.X;Y /�Map.X;Y /

the subspace of maps which send A to B . We will refer to maps of this kind as marked
maps. We denote by S�

op
s
C the S–enriched category of marked semi-simplicial spaces

and marked maps between them.

Remark 1.7.2 The analogous notion of marked simplicial sets plays an essential role
in the theory of 1–categories as developed in [11]. Our definition above as well as
many of the associated notations follow their analogues in [11].

Definition 1.7.3 Given a semi-simplicial space X we will denote by X ] the marked
semi-simplicial space .X;X1/ in which all edges are marked. The association X 7!X ]

is right adjoint to the forgetful functor .X;A/ 7!X .

Definition 1.7.4 Given a semi-simplicial space X we will denote by X [ the marked
semi-simplicial space .X;∅/ in which no edges are marked. The association X 7!X [

is left adjoint to the forgetful functor .X;A/ 7!X .

Definition 1.7.5 Let .X;A/ be a marked semi-simplicial space. We will denote by
xA� �0.X1/ the image of the map

�0.A/! �0.X /;

ie the set of connected components of X1 which meet A. We refer to xA as the set of
marked connected components of X1 .

Definition 1.7.6 We will say that a map f W .X;A/! .Y;B/ between marked semi-
simplicial spaces is a marked equivalence if:

(1) The underlying map f W X ! Y is a levelwise equivalence.

(2) The induced map f�W xA! xB is an isomorphism of sets.
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Theorem 1.7.7 There exists a left proper combinatorial model category structure on
S�

op
s
C such that

(1) The weak equivalences are the marked equivalences.

(2) The cofibrations are the maps f W .X;A/! .Y;B/ for which the underlying
map X ! Y is a cofibration (ie levelwise injective).

(3) A map is a fibration if and only if it satisfies the right lifting property with respect
to all morphisms which are both cofibrations and weak equivalences.

Proof We will use a general existence theorem which is a slightly weaker version
of [11, Proposition A.2.6.13] (which in turn is based on work of Smith). In the following,
the term presentable is used as in [11] (which in classical terminology is often called
locally presentable).

Theorem 1.7.8 (Lurie, Smith) Let M be a presentable category. Let C;W be two
classes of morphisms in M such that:

(1) C is weakly saturated and is generated (as a weakly saturated class of morphisms)
by a set of morphisms C0 .

(2) W is perfect (see [11, Definition A.2.6.10]).

(3) W is stable under pushouts along C , ie if

X
f //

g

��

Y

g0

��
Z // W

is a pushout square such that f 2 C and g 2W then g0 2W as well.

(4) If a morphism f in M has the right lifting property with respect to every
morphism in C (or equivalently in C0 ) then f 2W .

Then there exists a left proper combinatorial model structure on M such that the weak
equivalences are W and the cofibrations are C .

Let us first prove that S�op

C is presentable. Consider the category D whose objects are
pairs .X;A; f /, where X is a semi-simplicial space, A is a space and f W A!X1 is
a map. Then D can be identified with a suitable category of presheaves (of sets), and
is hence presentable. Furthermore, there is an evident functor RW S�op

C ! D sending
.X;A/ to .X;A; �/, where �W A ,!X1 denotes the inclusion. The functor F is clearly
fully faithful, and admits a left adjoint LW D!S�op

C sending .X;A; f / to .X; Im.f //,
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where Im.f /�X1 denotes the image of f . Finally, since filtered colimits preserve
injective maps of sets we see that R preserves filtered colimits. It follows that S�op

C is
an accessible localization of D and is hence presentable.

Now let W be the class of marked equivalences and C the class of marked maps which
are levelwise injective. We need to show that the classes .W;C / meet the requirements
of Theorem 1.7.8. We start by finding a set of morphisms which generates C as a
weakly saturated class.

Let C0 be the set containing all the morphisms

(1-7)
�
j@�k

j˝ .�n/[
�
qj@�k j˝.@�n/[

�
j�k
j˝ .@�n/[

�
,! j�k

j˝ .�n/[

and all the morphisms

(1-8)
�
j@�k

j˝ .�1/]
�
qj@�k j˝.�1/[

�
j�k
j˝ .�1/[

�
,! j�k

j˝ .�1/]:

Applying the standard theory of Reedy categories to the category �s we observe that
the morphisms of type (1-7) generate in particular all maps of the form X [ ,! Y [;

where X ,! Y is a cofibration in S�s, and hence all injective maps of the form
.X;A/ ,! .Y;A/ where the marked subspace does not change. Furthermore, it is
clear that the morphisms of type (1-8) generate in particular all morphisms of the
form .X;A1/ ,! .X;A2/ where the underlying semi-simplicial space does not change.
Since any injective map is a composition of these two types of maps it follows that C0

generates C .

We now show that the pair .W;C / satisfies assumptions .2/ and .3/ of Theorem 1.7.8.
Consider the category Set with its trivial model structure (ie the weak equivalences are
the isomorphisms and all maps are fibrations and cofibrations). We endow S�

op
s �Set

with the product model structure (ie weak equivalences, fibrations and cofibrations are
defined coordinate-wise, where on the left we use the Reedy model structure). Let
W 0;C 0 be the classes of weak equivalences and cofibrations in S�

op
s �Set respectively.

Since both S�
op
s and Set are left proper combinatorial model categories it follows

that S�
op
s �Set is a left proper combinatorial model category. This means that W 0 is

stable under pushouts along C 0 and that W 0 is perfect (this is part of Smith’s theory
of combinatorial model categories, cited for example in [11, A.2.6.6]).

Now let F W S�
op
s

C ! S�
op
s �Set be the functor given by F.X;A/D .X; xA/. Then it is

clear that F preserves colimits. Since W D F�1.W 0/ and C D F�1.C 0/ we get that
W is stable under pushouts along C and that W is perfect (see [11, A.2.6.12]). It is
then left to check the last assumption of Theorem 1.7.8.
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Let f W .X;A/ ! .Y;B/ be a morphism which has the right lifting property with
respect to all maps in C0 . Since C0 contains all maps of the form�

j@�k
j˝ .�n/[

�
qj@�k j˝@.�n/[

�
j�k
j˝ .@�n/[

�
,! j�k

j˝ .�n/[

it follows that f is a levelwise equivalence. It is left to show that f induces an
isomorphism xA ! xB . Note that since f is a levelwise equivalence it induces an
isomorphism �0.X1/! �0.Y1/ and so the map xA! xB is injective. The fact that it is
surjective follows from having the right lifting property with respect to .�1/[ ,! .�1/]

which is one of the maps in C0 . This completes the proof of Theorem 1.7.7.

Definition 1.7.9 We will use the terms marked fibrations and marked cofibrations to
denote fibrations and cofibrations in the marked model structure. We will use the term
marked-fibrant semi-simplicial spaces to denote fibrant objects in the marked model
structure.

Remark 1.7.10 The forget-the-marking functor x�W S�
op
s

C ! S�
op
s is both a left and a

right Quillen functor. As mentioned above, it has a right adjoint X 7!X ] and a left
adjoint X 7!X [ . Furthermore, it is easy to verify that both the forgetful functor and
its left adjoint preserve cofibrations and weak equivalences.

Lemma 1.7.11 A marked semi-simplicial space .X;A/ is marked-fibrant if and
only if:

(1) X is Reedy fibrant.

(2) A is a union of connected components of X .

Proof Let .X;A/ be a marked-fibrant object. From Remark 1.7.10 we see that X is
Reedy fibrant. Now consider the maps�

jƒk
i j˝ .�

1/]
�
q
jƒk

i
j˝.�1/[

�
j�k
j˝ .�1/[

�
,! j�k

j˝ .�1/]

for k � 1 and 0 � i � k . By definition we see that these maps are trivial marked
cofibrations. Since .X;A/ is Reedy fibrant it satisfies the right lifting property with
respect to such maps, which in turn means that the inclusion A ,!X1 satisfies the right
lifting property with respect to the inclusion of spaces jƒk

i j ,! j�
k j for k � 1. This

means that the inclusion A ,!X1 is Kan fibration and hence a union of components
of X1 .
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In the other direction assume that X is Reedy fibrant and A � X1 is a union of
components. Consider an extension problem

.Y;B/
f //

��

.X;A/

.Z;C /

such that .Y;B/ ,! .Z;C / is a trivial marked cofibration. In this case Y ,!Z will
be a trivial Reedy cofibration and so there will exist an extension xf W Z! X in the
category of semi-simplicial spaces. We claim that xf will necessarily send C to A. In
fact, let W �Z1 be a connected component which meets C . Since .Y;B/ ,! .Z;C /

is a marked equivalence it follows that W also meets the image of B . Since A is a
union of components of X1 we get that xf sends all of W to A. This means that xf
sends C to A and we are done.

Corollary 1.7.12 A map f W X ! Y between marked-fibrant semi-simplicial spaces
is a marked equivalence if and only if it is a levelwise equivalence which induces a
weak equivalence on the corresponding spaces of marked edges.

We shall now show that S�
op
s

C can be endowed with a structure of symmetric monoidal
simplicial model category. Let .X;A/; .Y;B/ be two marked semi-simplicial spaces.
According to Remark 1.3.1 one has

.X ˝Y /1 D .X1 �Y0/q .X0 �Y1/q .X1 �Y1/:

We will extend the monoidal product ˝ to marked semi-simplicial spaces by defining
.X;A/˝.Y;B/ to be the marked semi-simplicial space .X˝Y;C /, where the marking
C is given by

C D .A�Y0/q .X0 �B/q .A�B/� .X ˝Y /1:

We shall abuse notation and denote the resulting monoidal product on S�s

C by ˝ as
well. This can be justified by noting that the product of two marked semi-simplicial
spaces with empty markings again has an empty marking. Furthermore, the unit of the
monoidal product ˝ is .�0/[ , which has an empty marking. We can hence consider the
definition above as an extension of the monoidal product ˝ from the full subcategory
of marked semi-simplicial spaces with empty markings to all of S�s

C . This can be
encoded by saying that the functor [W S�s ! S�s

C has a natural colax structure

.X ˝Y /[
Š
�!X [

˝Y [; .�0/[
Š
�! .�0/[
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making it into a monoidal functor. As explained in Remark 1.1.4, the right adjoint
x�W S�s

C ! S�s (see Remark 1.7.10) then admits a unique compatible lax structure, and
the adjunction

S�
op
s

.�/[ // S�
op
s

C
x�

oo

becomes a strongly monoidal Quillen adjunction (see Definition 1.1.8).

The monoidal product ˝ on S�s

C is again closed and the corresponding internal
mapping object is defined as follows:

Definition 1.7.13 Let X;Y be two marked semi-simplicial spaces. The marked
mapping object from X to Y is the marked semi-simplicial space .Y X ;H / given by

.Y X /n DMapC.X � .�n/[;Y /;

where the marking H is given by

H DMapC.X � .�1/];Y /�MapC.X � .�1/[;Y /D .Y X /1:

Lemma 1.7.14 The marked model structure on S�
op
s

C is compatible with the symmetric
monoidal structure ˝ (see Definition 1.1.5).

Proof Since the Reedy model structure on S�
op
s is compatible with the unmarked

version of ˝ we only need to verify the following: if X 0!X is a marked cofibration
and Y 0! Y is a trivial marked cofibration then the map

hW .X ˝Y 0/1q.X 0˝Y 0/1 .X
0
˝Y /1 �! .X ˝Y /1

induces an isomorphism on the set of marked connected components. Since this map
is already a weak equivalence it is enough to check that it is surjective on marked
components. But this is a direct consequence of the fact that the map Y 0

1
! Y1 induces

an isomorphism on the set of marked connected components.

Finally, the simplicial structure of S�
op
s can be composed with the strongly monoidal

Quillen adjunction S�s a S�s

C to obtain a simplicial structure on the model category
S�

op
s
C . To conclude, S�

op
s
C is a symmetric monoidal simplicial model category.

We finish this subsection with the following definition which we frame for future use:

Definition 1.7.15 Let W be a marked semi-simplicial space with marking M �W1 .
We will denote by fW �W the marked semi-simplicial space such thatfW n D

˚
� 2Wn j f

�� 2M; for all f W Œ1�! Œn�
	
:

In particular, all the edges of fW are marked.
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1.8 The marked right Kan extension

The Reedy model structures on simplicial and semi-simplicial spaces may be related
via a Quillen adjunction

S�op F // S�
op
s ;

RK
oo

where F is the forgetful functor and RK is the right Kan extension. The purpose
of this section is to construct an analogous Quillen adjunction between S�op

and the
marked model structure on S�op

C .

We begin by defining the marked forgetful functor

FCW S�
op

! S�
op
s
C

as follows. Given a simplicial space X we will define FC.X / to be the marked semi-
simplicial space .F.X /;D/, where D�X1 is the subspace of degenerate 1–simplices,
ie the image of s0W X0!X1 .

Remark 1.8.1 The motivation for this definition comes from the fact that when
working with simplicial spaces as models for1–categories (via Rezk’s model category
of complete Segal spaces) the degenerate edges encode the identity morphisms. On
the other hand, in the model categories of marked semi-simplicial spaces we shall
consider later in the paper, the marked edges are going to be the invertible morphisms.
Since identity morphisms are inherently invertible it is natural to mark them when
forgetting the degeneracy maps. We will later see that this construction leads to the
correct equivalence between unital and quasi-unital 1–categories.

The functor FC preserves all colimits and hence admits a right adjoint

RKCW S�
op
s
C ! S�

op
:

In order to obtain an explicit formula for RKC we will need a bit of terminology.

Definition 1.8.2 Let f W Œm�! Œn� be a map in �. We will say that an edge e 2 .�m/1
is f –degenerate if f maps both its vertices to the same element of Œn�. We will denote
by .�m/f the marked semi-simplicial space .�m;Af /, where �m is considered as
a semi-simplicial space which is levelwise discrete and Af � .�

m/1 is the set of
f –degenerate edges. Now given a marked semi-simplicial space .X;A/ we define

X f
m DMapC..�m/f ; .X;A//:

Note that we have a natural inclusion X
f
m �Xm .
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We will now construct the functor RKC as follows. For each Œn� 2 � consider the
fiber product category

Cn D�
op
s ��op �

op
Œn�=
:

The objects of Cn can be identified with maps f W Œm�! Œn� in � and a morphism from
f W Œm�! Œn� to gW Œk�! Œn� in Cn can then be described as a commutative triangle

Œk�

g   

h // Œm�

f~~
Œn�

such that h is injective. Now let .X;A/ be a marked semi-simplicial space and let
Gn WCn!S be the functor which associates to each f W Œm�! Œn� the space Gn.f /DX

f
m .

Note that for each map Œn�! Œn0� in � one has a functor FnW Cn! Cn0 and a natural
transformation F�nGn0 ! Gn . We can then define RKC.X;A/ by setting

RKC.X;A/n D lim
Cn

Gn

which is functorial in Œn� 2�.

Remark 1.8.3 The category Cn carries a Reedy structure which is induced from that
of �s . If .X;A/ is marked-fibrant then the functor f 7!X

f
m will be a Reedy fibrant

functor from Cn to S . This means that in this case the limit above will coincide with
the respective homotopy limit.

Remark 1.8.4 One has natural maps

RKC.X;A/n D lim
Cn

X f
m ! lim

Cn

Xm DRK.X /n

which assemble together to form a natural transformation

RKC.X;A/!RK.X /:

From Lemma 1.7.11 we see that when .X;A/ is marked-fibrant the map above identifies
RKC.X;A/n with a union of connected components of RK.X /n .

Evaluating at the object IdW �n!�n of Cn we obtain maps

RKC.X;A/n D lim
Cn

X f
m !X Id

n DXn
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which fit together to form a natural map of semi-simplicial spaces

(1-9) F.RKC.X;A//!X:

We then observe that composition

RKC.X;A/0
s�

!RKC.X;A/1!X1

is given by evaluating the limit limC0
X
f
m at the object of C0 corresponding to the map

sW Œ1�! Œ0�. By the definition of X
f
m it follows that the map (1-9) sends degenerate

edges to marked edges, and so induces a natural map

vX ;AW FC.RKC.X;A//! .X;A/

It is then straightforward to verify that vX ;A determines a counit map which exhibits
RKC as right adjoint to FC. The resulting adjunction

S�op FC // S�
op
s

C
RKC
oo

is easily seen to be a Quillen adjunction: since any Reedy cofibration in S�op
is a

levelwise injection it follows that FC preserves cofibrations. Furthermore, it is not
hard to check that FC maps levelwise equivalences to marked equivalences, and hence
trivial cofibrations to trivial marked cofibrations.

Now the forgetful functor F W S�op
! S�

op
s factors through FC . This means that the

Quillen adjunction

S�op F // S�
op
s

RK
oo

factors through S�
op
s

C as the composition

S�op FC // S�
op
s

C
RKC
oo

x� // S�
op
s ;

.�/]
oo

where x� denotes the forgetful functor .X;A/ 7!X .

2 Marked semi-Segal spaces

In his paper [15], Rezk constructs a left Bousfield localization of the Reedy model
structure on S�op

in which the new fibrant objects are the Segal spaces. The purpose
of this section is to construct a similar working environment for a suitable notion of a
marked semi-Segal spaces. Let us introduce the basic definitions.
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Definition 2.0.5 Let .W;M / 2 S�
op
s

C be a marked-fibrant semi-simplicial space. We
will say that .W;M / is a marked semi-Segal space if these conditions are satisfied:

(1) W is a semi-Segal space.

(2) Every marked edge is invertible, ie M �W inv
1

.

(3) M is closed under 2-out-of-3, ie if there exists a triangle � 2 W2 with two
marked edges then the third edge is marked as well.

Example 2.0.6 Let X be a semi-Segal space. We will denote by X \ the marked
semi-simplicial space whose underlying semi-simplicial space is X and whose marking
is given by X inv

1
. Then it is easy to verify that X \ is a marked semi-Segal space.

Example 2.0.7 Let X be a semi-Segal space. Then X [ is also a marked semi-Segal
space: since the space of marked edges is empty, conditions .2/ and .3/ are satisfied
vacuously.

Example 2.0.8 Let Z be a Kan simplicial set. The 0th coskeleton functor (see
Example 1.4.5) has a marked analogue coskC

0
W S! S�

op
s
C which is given by

coskC
0
.Z/D .cosk0.Z//

]

(this marked analogue is again the right adjoint to the functor X 7! X0 ). Since
cosk0.Z/ is a semi-Segal space in which all edges are invertible we get that coskC

0
.Z/

is a marked semi-Segal space.

We consider a marked semi-Segal space as encoding a non-unital 1–category in which
a certain (suitably closed) subspace of the invertible morphisms has been marked.
Given a marked semi-Segal space .W;M / we will denote by

MapC
W
.x;y/�MapW .x;y/

the subspace of marked edges from x to y , ie the fiber of the map

M !X0 �X0

over .x;y/.

Definition 2.0.9 We will say that W is a marked semi-Kan space if W is a marked
semi-Segal space in which all edges are marked. Note that in this case the underlying
semi-simplicial space of W is a semi-Kan space.
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Definition 2.0.10 We will say that a marked semi-Segal space .W;M / is quasi-unital
if the following additional conditions are satisfied:

(1) The restricted map d1W M !X0 is surjective (ie every object admits a marked
morphism out of it).

(2) Every invertible edge in W is marked.

We will denote by QsS� Segfib
s the full simplicial subcategory spanned by quasi-unital

marked semi-Segal spaces.

Remark 2.0.11 If .X;M / is a quasi-unital marked semi-Segal space then M DX inv
1

,
ie the marking coincides with the subspace of invertible edges.

As explained in Section 1.5 we can consider a quasi-unital marked semi-Segal space
as encoding a quasi-unital 1–category in which the invertible morphisms have been
marked. As a result (see Proposition 1.5.6) maps in QsS are the “unital” ones; they are
maps of the underlying semi-Segal spaces which send quasi-units to quasi-units.

As in the Segal space case, the 1–category N .QsS/ is a good starting point for
understanding the homotopy theory of quasi-unital 1–categories. However, it is still
not the correct model for it. The reason for this is that equivalences in QsS are too strict.
The correct notion will be obtained after suitably localizing N .QsS/ with respect to a
natural notion of Dwyer–Kan equivalences (see Section 2.2).

It will be useful to describe the property of being quasi-unital in terms of a suitable
right lifting property.

Definition 2.0.12 Consider the following three maps of marked semi-simplicial sets
(considered as levelwise discrete semi-simplicial spaces):

(1) The inclusion �0W �
f0g ,! .�1/] .

(2) The inclusion �1W �
f1g ,! .�1/] .

(3) The inclusion �2W .�
3;M / ,! .�3/] , where M D

˚
�f0;2g; �f1;3g

	
.

We then have the following simple observation.

Lemma 2.0.13 Let .X;M / be a marked semi-Segal space and let � be the terminal
marked semi-simplicial space (ie �n is a point for every n and the edge in �1 is
marked). Then X is quasi-unital if and only if the terminal map X !� has the right
lifting property with respect to �0; �1; �2 above.
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Proof First assume that X !� has the right lifting property with respect to �0; �1

and �2 . For �0; �1 this lifting property implies that every object x 2X0 has a marked
edge out of it. In particular, condition .1/ of Definition 2.0.10 holds. Let us now prove
that condition .2/ holds as well, ie that every invertible edge in X is marked. Let
f W x! y be an equivalence in X . In light of the above there exist marked edges of
the form gW x! z and hW w! y . Since f is invertible we can embed these edges in
a diagram of the form

x
g //

f

��

z

w
h

//

>>

y

??

This diagram can in turn be extended to a map 'W �3!X which sends �f1;2g to f ,
�f0;2g to h and �f1;3g to g . Since X !� has the right lifting property with respect
to �2 we see that ' must factor through a map .�3/]!X . In particular, f is marked.

Now assume that X is a quasi-unital marked semi-Segal space. Condition .1/ of
Definition 2.0.10 implies that X ! � has the right lifting property with respect to
�0 . To show the lifting property with respect to �1 we need to show that every object
x 2 X0 has a marked edge into it. According to the above, there exists a marked
edge f W x! y out of x . From condition .2/ of Definition 2.0.5 we know that f is
invertible, and hence there exists a triangle of the form

x
f

��
x

q
>>

f // z

for some qW x! x . From condition .3/ of Definition 2.0.5 we may now deduce that
q is a marked edge into x , and so X has the right lifting property with respect to
�1 . Finally, since X is quasi-unital we have M DX inv

1
and so by Lemma 1.5.4 this

subspace of edges satisfies the 2-out-of-6 rule. This implies that X has the right lifting
property with respect to �2 .

The remainder of this section is organized as follows. To begin, we will localize the
marked model structure on S�

op
s
C so that marked semi-Segal spaces will coincide with

the new fibrant objects. The construction of this localization as well as the verification
of its compatibility with the monoidal structure will be taken up in Section 2.1. In
particular, we will obtain a notion of internal mapping objects for marked semi-Segal
spaces.
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In Section 2.2 we will study the notions of fully faithful maps and Dwyer–Kan equiva-
lences (DK–equivalences for short) between marked semi-Segal spaces. Our suggested
model for the homotopy theory of quasi-unital 1–categories is the 1–localization
of N .QsS/ with respect to DK–equivalences. In Section 2.3 we will attempt to study
the notion of quasi-unitality from a model categorical point of view. This will allow
us to establish some useful results which will be exploited in the final section, eg we
will prove that the full subcategory QsS is closed under taking mapping objects. This
can be considered as a step towards the main theorem as well as it essentially says that
when quasi-units exist they can be chosen coherently over arbitrary families.

2.1 The marked semi-Segal model structure

The purpose of this subsection is to show that one can identify the full subcategory
of marked semi-Segal spaces with the subcategory of fibrant objects in a suitable left
Bousfield localization of the marked model category S�

op
s
C . In order to do this we will

need to identify a set of maps such that the condition of being a marked semi-Segal
space can be expressed as a locality condition with respect to these maps. To describe
this conveniently we will need a bit of terminology.

We will use the phrase marked horn inclusion to describe an inclusion of marked
semi-simplicial sets of the form

.ƒn
i ;A/� .�

n;B/

such that AD B \ .ƒn
i /1 . We will be interested in the following kind of marked horn

inclusion.

Definition 2.1.1 We will say that a marked horn inclusion

.ƒn
i ;A/� .�

n;B/

is admissible if BDA, n� 2 and in addition one of the following (mutually exclusive)
conditions is satisfied:

(1) 0< i < n and AD∅.

(2) i D 0 and AD f�f0;1gg.

(3) i D n and AD f�fn�1;ngg.

Our purpose is to show that conditions .1/ and .2/ of Definition 2.0.5 can be formulated
in terms of locality with respect to admissible marked horn inclusions. We begin with
the following technical lemma.
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Lemma 2.1.2 Let n � 2 and 0 � i; j � n. Define A D f0; : : : ; j � 1g [ fig and
B D fj ; : : : ; ng[ fig. Let

X D�A
q�fig �

B
��n

be the corresponding subcomplex of �n , and let M � X1 be the set of all edges of
the form �fi;xg � X for x 2 B;x < i and all edges of the form �fx;ig for x 2 A,
x > i . Then the marked semi-simplicial set .ƒn

i ;M / can be obtained from .X;M /

by performing pushouts along admissible marked horn inclusions.

Proof We will say that a simplex �J ��n for jJ j � 3 is spread if J contains i and
J has non-empty intersection with both A n fig and B n fig. Now define

X DX1 �X2 � � � � �Xn�1

inductively by letting Xk be the union of Xk�1 and all the spread simplices of dimen-
sion k . Note that if �J ��n is spread of dimension jJ j D k then �J \Xj is the
horn of �J which contains all the .k�1/–faces except the face opposite the vertex
i 2 J . Furthermore, if i is a maximal element of J then the second biggest element of
J is in B and so the last edge of �J is marked. Similarly if i is a minimal element
of J then the second smallest element of J is in A and so the first edge of �J is
marked. In either case the addition of �J can be performed by a pushout along an
admissible marked horn inclusion. To finish the proof note that Xn�1 D .ƒ

n
i ;M /.

Lemma 2.1.2 has the following corollary.

Corollary 2.1.3 Let .X;M / be a fibrant marked semi-simplicial space. Then:

(1) X satisfies condition .1/ of Definition 2.0.5 (ie the Segal condition) if and only
if X is local with respect to inner admissible horn inclusions.

(2) Assume that X satisfies the Segal condition. Then X satisfies condition .2/ of
Definition 2.0.5 if and only if X is local with respect to non-inner admissible
horn inclusions.

Proof Part .1/ follows from Lemma 2.1.2 with 0 < i D j < n (in which case no
marking is involved) together with a simple inductive argument. Now assume that X

satisfies the Segal condition. If X is local with respect to admissible horn inclusions
then in particular X is local with respect to the inclusions

.ƒ2
0; f�

f0;1g
g/ ,! .�2; f�f0;1gg/ and .ƒ2

2; f�
f1;2g
g/ ,! .�2; f�f1;2gg/

and so by Remark 1.5.2 every marked edge in X is invertible.
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Now assume that every marked edge is invertible. Then X is local with respect to
admissible horn inclusions of dimension 2. Assume by induction that X is local with
respect to all admissible horn inclusions of dimension k for some k � 2.

Consider the diagram of marked simplicial sets:

�f0;:::;k�1g
q�fk�1g �fk�1;kC1g

q�fkC1g .�fk;kC1g/]
//

��

�f0;:::;k�1;kC1g

q�fkC1g .�fk;kC1g/]

��

�f0;:::;k�1gq�fk�1g .�fk�1;k;kC1g; f�fk;kC1gg/ // .�kC1; f�fk;kC1gg/

From the Segal condition it follows that X is local with respect to both horizontal
maps. Furthermore, since X is local with respect to admissible horn inclusions of
dimension 2 we see that X is local with respect to the left vertical map. It follows that
X is local with respect to the right vertical map as well. Finally, applying Lemma 2.1.2
for the case j D k; i D nD kC1 we get that X is local with respect to the inclusion

�f0;:::;k�1;kC1g
q�fkC1g .�fk;kC1g/] ,! .ƒkC1

kC1
; f�fk;kC1g

g/:

It hence follows that X is local with respect to

.ƒkC1
kC1

; f�fk;kC1g
g/ ,! .�kC1; f�fk;kC1g

g/:

A similar argument establishes the case of

.ƒkC1
0

; f�f0;1gg/ ,! .�kC1; f�f0;1gg/:

Now let W 2 S�
op
s
C be a marked-fibrant object. In light of Corollary 2.1.3 we see that

W will be a semi-Segal space if and only if W is local with respect to the set S defined
as follows:

Definition 2.1.4 Let S be the set which contains

(1) all admissible marked horn inclusions,

(2) all the maps of the form

.�2;A/ ,! .�2/]

where A� .�2/1 is a set of size 2.

We are now in a position to define our desired model category. Since the marked model
structure is combinatorial and left proper, the left Bousfield localization of S�

op
s
C with

respect to S exists. In particular, there exists a (combinatorial, left proper) model
category Segs whose underlying category is S�

op
s
C such that:
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(1) Weak equivalences in Segs are maps f W X ! Y such that for every marked
semi-Segal space W the induced map

MapC.Y;W /!Map.X;W /

is a weak equivalence.

(2) Cofibrations in Segs are the cofibrations of the marked model structure (ie
levelwise injective maps).

(3) The fibrant objects in Segs are precisely the marked semi-Segal spaces.

Definition 2.1.5 We will refer to Segs as the marked semi-Segal model structure.
We will denote by MS–equivalences, MS–fibrations and MS–cofibrations the weak
equivalences, fibrations and cofibrations in Segs respectively (to avoid confusion
compare with the terminology in Definition 1.7.9). Note that the notions of an MS–
cofibration and a marked cofibration coincide.

The following kind of trivial MS–cofibration will be useful to note.

Definition 2.1.6 Let X be a marked semi-simplicial space and B � C � X1 two
subspaces. We will say that the map

.X;B/ ,! .X;C /

is a triangle remarking if .X;C / can be obtained from .X;B/ by a sequence of
pushouts along maps of the form

(2-1)
�
L˝ .�2;A/

�
qK˝.�2;A/

�
K˝ .�2/]

�
,! L˝ .�2/]

for f W K ,!L an inclusion of spaces and jAj D 2 (here we consider spaces as marked
semi-simplicial spaces which are concentrated in degree 0).

Lemma 2.1.7 Any triangle remarking is a trivial MS–cofibration.

Proof Note that the claim is clearly true if KD∅ and L is discrete. Hence the claim
is also true for maps of the form K ,!KqL0 where L0 is discrete. Orthogonally, if the
inclusion K ,!L is surjective on connected components then the map in Equation (2-1)
is a marked equivalence and so in particular an MS–equivalence. The result now follows
by factoring a general inclusion K ,!L as K ,!KqL0!L, where L0 is discrete
and the map KqL0!L is surjective on connected components.

This notion is exemplified in the following lemma.
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Lemma 2.1.8 For every i D 0; : : : ; n the map

.ƒn
i /
]
! .�n/]

is a trivial MS–cofibration.

Proof Let M � .�n/1 be the set of edges that are contained in ƒn
i . Then .�n;M /

is obtained from .ƒn
i /
] by performing a pushout along an admissible marked horn

inclusion. The desired result now follows from the fact that the map

.�n;M / ,! .�n/]

is a triangle remarking.

Corollary 2.1.9 If W is a marked semi-Segal space then fW (see Definition 1.7.15) is
a marked semi-Segal space as well. Furthermore, since all the edges in fW are marked
we see that fW is in fact a marked semi-Kan space.

Proof First of all it is clear that fW is marked-fibrant (see Lemma 1.7.11). From
Lemma 2.1.8 it follows that fW is local with respect to all admissible marked horn inclu-
sions and so by Corollary 2.1.3 fW satisfies properties .1/ and .2/ of Definition 2.0.5.
Since clearly the marked edges in fW are closed under 2-out-of-3 we get that fW is a
marked semi-Segal space.

Remark 2.1.10 If W is a quasi-unital marked semi-Segal space then fW is quasi-
unital as well. Furthermore, in this case fW contains all invertible edges of W .

Now recall that S�
op
s
C is a symmetric monoidal model category with respect to the

marked monoidal product ˝. We would like to show that this monoidality survives the
localization.

Theorem 2.1.11 The marked Segal model structure is compatible with the marked
monoidal product ˝. In particular, the localization Quillen adjunction

S�
op
s
C

Id // Segs
Id
oo

is strongly monoidal and Segs inherits the simplicial structure of S�
op
s .

Proof Arguing as in [15] Proposition 9.2, we see that it suffices to show that for every
marked semi-Segal space W the objects W .�n/[ and W .�1/] are marked semi-Segal
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spaces for every n� 0. This, in turn, can be easily reduced to checking that for every
f W Y !Z in S (see Definition 2.1.4) the inclusions�

.@�m/[˝Z
�
q.@�m/[˝Y

�
.�m/[˝Y

�
,! .�m/[˝Z;�

.�1/[˝Z
�
q.�1/[˝Y

�
.�1/]˝Y

�
,! .�1/]˝Z

are trivial MS–cofibrations. The case mD 0 above is trivial, so we can assume m� 1.

We begin by clearing up some trivial cases. Observe that for a pair of inclusions of the
form

f W .X;A/ ,! .Y;A/; gW .Z;B/ ,! .Z;C /

such that f0W X0! Y0 is surjective, the resulting map�
.Z;C /˝ .X;A/

�
q.Z;B/˝.X ;A/

�
.Z;B/˝ .Y;A/

�
�! .Z;C /˝ .Y;A/

is in fact an isomorphism (and in particular a trivial MS–cofibration). Considering the
various types of maps in S one sees that the only cases which are not covered by the
above argument are the following:

(1) The maps of the form�
.�1/]˝ .�2;A/

�
q.�1/[˝.�2;A/

�
.�1/[˝ .�2/]

�
�! .�1/]˝ .�2/] D .�1

˝�2/];
where jAj D 2.

(2) The maps of the form

.@�m/[˝ .�n;A/q.@�m/[˝.ƒn
l
;A/ .�

m/[˝ .ƒn
l ;A/ ,! .�m/[˝ .�n;A/;

where .ƒn
l
;A/ ,! .�n;A/ is an admissible marked horn inclusion.

For case .1/, note that this map induces an isomorphism on the underlying semi-
simplicial sets. Furthermore, the marking on the left-hand side contains all edges
except exactly one edge e 2 .�1˝�2/1 .

Note that each triangle in �1˝�2 has three distinct edges. Furthermore, every edge
in �1˝�2 lies in some triangle. Hence one can find a triangle which contains e such
that its other two edges are not e . This means that there exists a pushout diagram of
marked semi-simplicial sets of the form:

.�2;A/

��

// .�2/]

���
.�1/]˝ .�2;A/

�
q.�1/[˝.�2;A/

�
.�1/[˝ .�2/]

�
// .�1˝�2/]
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Since the upper horizontal row is a trivial MS–cofibration we get that the lower
horizontal map is an MS–cofibration as well.

The proof of case .2/ is considerably more technical and is taken on in Lemma 2.1.12
below.

Lemma 2.1.12 Let .ƒn
l
;A/ ,! .�n;A/ be an admissible marked horn inclusion. Then

the marked semi-simplicial set .�m/[ ˝ .�n;A/ can be obtained from the marked
semi-simplicial set

X D .@�m/[˝ .�n;A/q.@�m/[˝.ƒn
l
;A/ .�

m/[˝ .ƒn
l ;A/

by successively performing pushouts along admissible marked horn inclusions. In
particular, the inclusion

X � .�m/[˝ .�n;A/

is a trivial MS–cofibration.

Proof If mD 0 then the claim is immediate, so we can assume m> 0. In this case the
marking of .�m/[˝ .�n;A/ is the same as the marking of X , so that we don’t need
to worry about adding marked edges in the course of performing the desired pushouts.
Note that we can harmlessly assume that 0< l � n (as the case 0� l < n follows from
symmetry).

According to Remark 1.3.1 the k –simplices of �m˝�n are in one-to-one correspon-
dence with injective order-preserving maps

� D .f;g/W Œk�! Œm�� Œn�:

We will consider a k –simplex � D .f;g/ as above as an injective marked map

� W .�k ;B/ ,! .�m/[˝ .�n;A/;

where B is defined to be
˚
�fk�1;kg

	
if �.�fk�1;kg/ is marked and ∅ otherwise.

We will say that a k –simplex of �m˝�n is full if it is not contained in X . If we
describe our k –simplex by a map � D .f;g/ as above this translates to the condition
that f is surjective and that the image of g contains f0; : : : ; ng n flg (so that g is
either surjective or misses l ). Our purpose is to add all the full simplices to X in a way
that involves only pushouts along admissible horn inclusions. For this we distinguish
between two kinds of k –simplices of �m˝�n .
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Definition 2.1.13 Let
� D .f;g/W Œk�! Œm�� Œn�

be a k –simplex of �m˝�n . We will say that � is special if

(1) � is full,

(2) g�1.l/¤∅,

(3) f .min g�1.l//D f .max g�1.l � 1//.

If � is full but not special then we will say that � is regular.

Now for i D 0; : : : ;mC 1 let Xi denote the union of X and all special .i C n� 1/–
simplices of �m˝�n . We now claim the following:

(1) X0 DX .

(2) For iD0; : : : ;m the semi-simplicial set XiC1 is obtained from Xi by a sequence
of pushouts along admissible horn inclusions of dimension i C n.

(3) XmC1 D�
m˝�n .

The first claim just follows from the fact that there are no special simplices of dimension
less than n. Now XiC1 is the union of Xi and all special .iCn/–simplices. Hence in
order to prove the second claim we will need to find the right order in which to add
these special .i C n/–simplices to Xi . We will do this by sorting them according to
the following quantity.

Definition 2.1.14 Let
� D .f;g/W Œk�! Œm�� Œn�

be a full k –simplex of �m˝�n . We define the index of � to be the quantity

ind.�/D kC 1� n� jg�1.l/j:

Note that for a general full simplex the index is a number between 0 and kC 1� n.
By definition we see that for a special k –simplex the index is a number between 0

and k�n. In particular, the index of a special .iCn/–simplex is a number between 0

and i .

Now fix an i D 0; : : : ;m and for each j D 0; : : : ; i C 1 define Xi;j to be the union of
Xi and all special .i C n/–simplices � whose index is strictly less than j . We obtain
a filtration of the form

Xi DXi;0 �Xi;1 � � � � �Xi;iC1 DXiC1:
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We will show that if � is a special .i C n/–simplex of index j then the intersection

� \Xi;j

is an admissible horn of � (with respect to the marking induced from � ). This means
that Xi;jC1 can be obtained from Xi;j by performing pushouts along admissible horn
inclusions of dimension mC i , implying the second claim above. We start by noting
that if � D .f;g/ is a regular k –simplex then � is a face of the special .kC1/–simplex

� D .f ı smax g�1.l�1/;g ı smin g�1.l//;

where sr W Œk C 1� ! Œk� is the degeneracy map hitting r twice. Furthermore, we
see that ind.�/ D ind.�/. This means that Xi;j contains, in particular, all regular
.i C n� 1/–simplices whose index is < j . Since taking faces cannot increase the
index we see that an .iCn�1/–simplex � is contained in Xi;j exactly when � is not
regular of index � j .

Now let �D .f;g/ be a special .iCn/–simplex of index j and let � be the .iCn�1/–
face of � which is opposed to the vth vertex for v D 0; : : : ; i C n. Then we see
that � will be regular of index � j if and only if v D min g�1.l/, in which case
ind.�/D ind.�/D j . Since g is surjective we get that

0<min g�1.l/� i C l � i C n

and so Xi;j \ � is a right horn of � which is inner if l < n. In fact, the only case
where this right horn inclusion is not inner is when min g�1.l/D k . By the definition
of special we then have

f .k/D f .k � 1/

and so the fk � 1; kg–edge of � is mapped to a marked edge in .�m/[˝ .�n;A/.
This means that indeed the addition of � can be done by a pushout along an admissible
horn inclusion.

It is left to prove the third claim, ie that XmC1 D�
m˝�n . From the considerations

above we see that XiC1 contains all full k –simplices for k < nC i (as well as all
special .nC i/–simplices). Since all the full .mCn/–simplices are special we get that
XmC1 contains all full simplices of �m˝�n of dimension up to mCn, yielding the
desired result.

Corollary 2.1.15 Let W be a marked semi-Segal space and let X be a marked semi-
simplicial space. Then W X is a marked semi-Segal space and eW X is a marked
semi-Kan space.
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Proof The first claim follows from the fact that the fibrant objects in SegC are exactly
the marked semi-Segal spaces, and all objects are cofibrant. It is then a standard fact
about monoidal model categories that raising a fibrant object to the power of a cofibrant
object yields a fibrant object. The second claim follows from Corollary 2.1.9.

2.2 Fully faithful maps and Dwyer–Kan equivalences

The purpose of this section is to study the notion of fully faithful maps and Dwyer–Kan
equivalences in the setting of marked semi-simplicial spaces. We begin with the basic
definition.

Definition 2.2.1 Let f W .W;M /! .Z;N / be a map of semi-simplicial spaces. We
will say that f is fully faithful if the squares

Wn
//

��

Zn

��
.W0/

nC1 // .Z0/
nC1

M //

��

N

��
W0 �W

0
// Z0 �Z0

(2-2)

are homotopy Cartesian for every n� 1.

In this paper we will often encounter maps f W W !Z of marked semi-Segal spaces
which are simultaneously fully faithful and a marked fibration. This case admits a
particularly nice description. It will be convenient to employ the following terminology
(which makes sense in any simplicial category).

Definition 2.2.2 Let gW X ! Y , f W W !Z be two maps in S�
op
s
C . We will say that

f has the contractible right lifting property with respect to g if the map

(2-3) MapC.Y;W /!MapC.Y;Z/�MapC.X ;Z/ MapC.X;W /

is a trivial Kan fibration.

Remark 2.2.3 Definition 2.2.2 is equivalent to saying that f has the right lifting
property with respect to the mapsˇ̌

@�m
ˇ̌
˝Y qj@�mj˝X

ˇ̌
�m

ˇ̌
˝X ,!

ˇ̌
�m

ˇ̌
˝Y

for every m� 0.
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Remark 2.2.4 When f W W !Z is a marked fibration and gW X ! Y is a marked
cofibration then the map (2-3) is a fibration. Furthermore, in this case the fiber product
on the right-hand side coincides with the homotopy fiber product. From this observation
we see that a marked fibration f W W !Z is fully faithful if and only if it satisfies the
contractible right lifting property with respect to the maps

nC1‚ …„ ƒ
�0
q� � �q�0 ,! .�n/[

for every n� 1, and the map

�0
q�0 ,! .�1/]:

We are now ready to prove our main characterization theorem concerning fully faithful
marked fibrations.

Proposition 2.2.5 Let f W W ! Z be a map of semi-simplicial spaces. Then the
following assertions are equivalent.

(1) f is a fully faithful marked fibration.

(2) f is a marked fibration and satisfies the contractible right lifting property with
respect to the maps .@�n/[ ,! .�n/[ for every n�1 and the map @�1 ,! .�1/] .

(3) f satisfies the right lifting property with respect to every marked cofibration
gW X ,! Y such that g0W X0 ,! Y0 is a weak equivalence.

(4) f satisfies the contractible right lifting property with respect to every marked
cofibration gW X ,! Y such that g0W X0 ,! Y0 is a weak equivalence.

(5) f is a fully faithful MS–fibration.

(6) f is an MS–fibration and satisfies the contractible right lifting property with
respect to the maps @�1 ,! .�1/[ and @�1 ,! .�1/] .

Proof .1/) .2/ Invoking Remark 2.2.4 we note that the semi-simplicial set .@�n/[

can be obtained from
nC1‚ …„ ƒ

�0
q� � �q�0

by successively performing pushouts along maps of the form

.@�k/[ ,! .�k/[

for k < n. Hence the claim follows by induction on n.
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.2/) .3/ Assume f satisfies .2/ and let gW X ,! Y be a marked cofibration such
that g0 WX0! Y0 is a weak equivalence. Then one can factor g as

X
g0

!X 0
g00

! Y

such that g0 is a trivial marked cofibration and g00 induces an isomorphism g00
0
WX 0

0
!Y0 .

Since f is a marked fibration it will suffice to show that f satisfies the right lifting
property with respect to g00 . But this follows by Remark 2.2.3 from the fact that g00

can be written as a (transfinite) composition of pushouts along maps of the form�ˇ̌
�m

ˇ̌
˝ .@�n/[

�
qj@�mj˝.@�n/[

�ˇ̌
@�m

ˇ̌
˝ .�n/[

�
,!

ˇ̌
�m

ˇ̌
˝ .�n/[;�ˇ̌

�m
ˇ̌
˝ @�1

�
qj@�mj˝@�1

�ˇ̌
@�m

ˇ̌
˝ .�1/]

�
,!

ˇ̌
�m

ˇ̌
˝ .�1/]

for m� 0.

.3/) .4/ This implication follows from the fact that the family of cofibrations
gW X ! Y such that g0 WX0! Y0 is a weak equivalence is stable under replacing g

with ˇ̌
@�m

ˇ̌
˝Y qj@�mj˝X

ˇ̌
�m

ˇ̌
˝X ,!

ˇ̌
�m

ˇ̌
˝Y:

.4/) .5/ Assume that f satisfies .4/. Then it is straightforward (using Remark 2.2.4)
to deduce that f is fully faithful. To show that f is an MS–fibration it will be enough
to show that if gW X ! Y is a trivial MS–cofibration then g0W X0 ,! Y0 is a weak
equivalence. This in turn follows from the fact that if Z is a Kan simplicial set
then coskC

0
.Z/ is a marked semi-Segal space (see Example 2.0.8) which means that

MapS.Y0;Z/!MapS.X0;Z/ is a weak equivalence for every Z .

.5/) .6/ Follows from Remark 2.2.4.

.6/) .1/ First note that if f satisfies .6/ then it has the contractible right lifting
property with respect to the map

nC1‚ …„ ƒ
�0
q� � �q�0 ,! .Spn/[;

where Spn
��n is the n–spine (see Equation (1-1)). The desired result now follows

from the fact that the inclusion

.Spn/[ ,! .�n/[

is a trivial MS–cofibration and that f is an MS–fibration.
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Corollary 2.2.6 Let f W W ! Z be a fully faithful marked fibration. Let X be a
marked semi-simplicial space and gW X !Z a map. Then every lift eg0 W X0!W0 of
g0 extends to a lift zgW X !W of g .

Proposition 2.2.5 allows us, in particular, to obtain the following description of fully
faithful maps between marked semi-Segal spaces, relating them to the classical meaning
of the notion.

Corollary 2.2.7 Let f W W !Z be a map of marked semi-Segal spaces. Then f is
fully faithful if and only if for every x;y 2W0 the map f induces weak equivalences

MapW .x;y/
'
�!MapZ .f0.x/; f0.y//;(2-4)

MapC
W
.x;y/

'
�!MapC

Z
.f0.x/; f0.y//:(2-5)

Proof Factor f as W
f 0

!W 0
f 00

!Z , where f 0 is a trivial marked cofibration and f 00

is a marked fibration. Then W 0 is marked fibrant and marked equivalent to W , and
so W 0 is a marked semi-Segal space. It then follows from the general theory of left
Bousfield localizations (see [6, Proposition 3.3.16]) that f 00 is in fact an MS–fibration.
Now since f 0 is a marked equivalence we see that f is fully faithful if and only if f 00

is fully faithful. We may hence assume without loss of generality that f itself is an
MS–fibration. In particular, the maps (2-4) and (2-5) are Kan fibrations, which means
that they will be weak equivalences if and only if their fibers are contractible. The
desired result now follows from the equivalence of .1/ and .6/ of Proposition 2.2.5.

The following corollary of Proposition 2.2.5 will be useful later.

Corollary 2.2.8 Let f W X ! Y be a map of marked semi-simplicial spaces. Then
the following assertions are equivalent:

(1) For every MS–fibration pW W ! Z and every MS–cofibration gW X 0 ,! Y 0

such that g0W X
0
0
,! Y 0

0
is a weak equivalence the induced map

W Y 0
�!ZY 0

�ZX 0 W
X 0

satisfies the right lifting property with respect to f .

(2) For every MS–cofibration gW X 0 ,! Y 0 such that g0W X
0
0
,! Y 0

0
is a weak

equivalence the induced map�
X ˝Y 0

�
qX˝X 0

�
Y ˝X 0

�
�! Y ˝Y 0

is a trivial MS–cofibration.
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(3) For every MS–fibration pW W !Z the induced map

W Y
�!ZY

�ZX W X

is a fully faithful MS–fibration.

(4) f is an MS–cofibration and the maps�
X ˝ .�1/[

�
qX˝@�1

�
Y ˝ @�1

�
�!

�
Y ˝ .�1/[

�
;(2-6) �

X ˝ .�1/]
�
qX˝@�1

�
Y ˝ @�1

�
�!

�
Y ˝ .�1/]

�
(2-7)

are trivial MS–cofibrations.

Proof The equivalence .1/() .2/ follows directly from the exponential law. The
equivalence .2/ () .3/ follows from the exponential law and Proposition 2.2.5.
We will now prove that .3/ () .4/. The direction .4/ D) .3/ follows from the
exponential law and Proposition 2.2.5. Now assume f satisfies .3/. Then for every
trivial MS–fibration W !Z the induced map

W Y
�!ZY

�ZX W X

is a trivial MS–fibration. This implies that f has the left lifting property with respect
to every trivial MS–fibration and so is an MS–cofibration. The second part of .4/ then
follows from Proposition 2.2.5.

Remark 2.2.9 The class of maps f W X ! Y satisfying the equivalent conditions of
Corollary 2.2.8 is weakly saturated in view of characterization .1/ and contains all
trivial MS–cofibrations.

Remark 2.2.10 If f W X ! Y is a map whose underlying map of unmarked semi-
simplicial spaces is an isomorphism, then f satisfies condition .4/ of Corollary 2.2.8.
To see this, note that such an f is automatically an MS–cofibration. In addition,
the map (2-6) is an isomorphism and the map (2-7) is a triangle remarking (see
Definition 2.1.6).

We now turn to the notion of Dwyer–Kan equivalences. This notion will be obtained
from the notion of fully faithful maps by requiring an appropriate analogue of “essential
surjectivity”. This notion is most well-behaved for quasi-unital marked semi-Segal
spaces (see Lemma 2.2.12), but it will be convenient to have it defined in more generality.

Definition 2.2.11 Let X be a marked semi-simplicial space. Let x ' y denote the
weakest equivalence relation satisfying the following properties:

(1) If x;y are in the same connected component of X0 then x ' y .

Algebraic & Geometric Topology, Volume 15 (2015)



2356 Yonatan Harpaz

(2) If there exists a marked edge f 2 X1 such that d1.f / D x and d0.f / D y ,
then x ' y .

Lemma 2.2.12 Let .X;M / be a quasi-unital marked semi-Segal space and x;y 2X0

two points. Then x ' y if and only if there exists a marked morphism x! y .

Proof We first observe that the relation of having a marked morphism from x to
y is already an equivalence relation when X is a quasi-unital marked semi-Segal
space. It will hence suffice to prove that this relation contains the relation of being in
the same connected component. Let x;y 2 X0 be two points which lie in the same
connected component. Since X is marked fibrant, X0 is Kan and so there exists a path
 W j�1j ! X0 connecting x to y . As X is quasi-unital there exists a marked edge
q 2M from x to itself. Since X is marked-fibrant the map

d0W M �X0
fxg !X0

is a Kan fibration (where the fiber product is taken along d1 ) and so we can lift  to
a path x W j�1j !M from q to some edge f 2M �X0

fxg such that d0.f /D y . In
other words, f is a marked edge from x to y .

Definition 2.2.13 Let f W X ! Y be a map between semi-simplicial spaces. We will
say that f is a Dwyer–Kan equivalence (DK for short) if it is fully faithful and induces
a surjective map on the set of equivalence-classes of '.

We are now ready to formally define our 1–category of quasi-unital 1–categories.

Definition 2.2.14 Let DK denote the collection of edges of the 1–category N .QsS/
corresponding to DK–equivalences. We refer to the 1–localization (Definition 1.2.1)

Catqu
1

def
D N .QsS/ŒDK�1�

as the 1–category of (small) quasi-unital 1–categories.

Remark 2.2.15 Even though DK is not a set, we will see that N .QsS/ŒDK�1� is
locally small by constructing an explicit model for it in Section 3.

We will finish this subsection by showing that under a mild additional hypothesis a
marked-fibrant semi-simplicial space which is “close enough” to a quasi-unital marked
semi-Segal space is itself a quasi-unital marked semi-Segal space. This will be useful
for us when constructing completions (see Section 3.1).
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Lemma 2.2.16 Let X be a quasi-unital marked semi-Segal space, W a marked-fibrant
semi-simplicial space and f W X !W a fully faithful map such that f0W X0!W0

is surjective on connected components. Then W is a quasi-unital marked semi-Segal
space and f is a DK–equivalence.

Proof The fact that f is a DK–equivalence follows directly from the definition. Hence
it will suffice to prove that W is a quasi-unital marked semi-Segal space.

We can factor f as X
f 0

!X 0
f 00

!W such that f 0 is a trivial marked cofibration and f 00

is a marked fibration. Then X 0 is marked-fibrant and marked-equivalent to X , so that
X 0 is necessarily a quasi-unital marked semi-simplicial space and f 00 is fully faithful.
Hence we can assume without loss of generality that f itself is a marked fibration and
that f0W X0!W0 is surjective.

We start by showing that W is a marked semi-Segal space. Let f W Y !Z be a map
in S (see Definition 2.1.4). We need to show that the map

MapC.Z;W /!MapC.Y;W /

is a weak equivalence. Note that in all cases the 0th level map f0W Y0 ! Z0 is an
isomorphism. Condition .4/ of Proposition 2.2.5 then tells us that

MapC.Z;X / //

��

MapC.Z;W /

��
MapC.Y;X / // MapC.Y;W /

is homotopy Cartesian. Furthermore, all maps appearing in this diagrams are fibrations.
We wish to show that the right vertical fibration is trivial. Since X is a marked semi-
Segal space the left vertical Kan fibration is trivial. Now since Kan fibrations are trivial
if and only if all their fibers are contractible, it will be enough to show that the lower
horizontal map is surjective. In light of Corollary 2.2.6 it will be enough to show that
the map

MapS.Y0;X0/!MapS.Y0;W0/

is surjective. But this just follows from the fact that Y0 is discrete and the map X0!W0

is surjective.

We now show that W is quasi-unital. According to Lemma 2.0.13 we need to show
that the map W !� (where � is the terminal marked semi-simplicial space) has the
right lifting property with respect to the maps �0; �1; �2 . Let Di be the domain of
�i . Since the Di are levelwise discrete and the map X0!W0 is surjective we can
use Corollary 2.2.6 in order to lift any map Di !W to a map Di ! X . Since X
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is quasi-unital it satisfies the right lifting property with respect to each �i and so the
result follows.

2.3 Q-fibrations and Q–anodyne maps

In the beginning of Section 2 we saw that the property of being quasi-unital can be
expressed as a certain right lifting property (see Lemma 2.0.13). This idea leads one to
define the following relative version of quasi-unitality.

Definition 2.3.1 Let f W W ! Z be a map of marked semi-simplicial spaces. We
will say that f is a Q-fibration if it is an MS–fibration and satisfies the right lifting
property with respect to the maps �0; �1; �2 of Definition 2.0.12.

Example 2.3.2 Let W be a quasi-unital marked semi-Segal space. Then the terminal
map W !� is a Q-fibration.

The notion of Q-fibrations has a left-hand-side counterpart.

Definition 2.3.3 Let f W X ! Y be an MS–cofibration. We will say that f is Q–
anodyne if it satisfies the left lifting property with respect to all Q-fibrations.

Example 2.3.4 Since any Q-fibration is an MS–fibration we see that any trivial MS–
cofibration is Q–anodyne.

Remark 2.3.5 The maps �0; �1 and �2 are Q–anodyne. In fact, since S�
op
s
C is pre-

sentable one can identify the collection of all Q–anodyne maps with the weakly saturated
class of maps generated by �0; �1; �2 .

Remark 2.3.6 Since the class of Q–anodyne maps is weakly saturated and contains
all trivial MS–cofibrations it is also closed under certain homotopy pushouts. More
precisely, if we have a homotopy pushout square

X //

��

Z

��
Y // W

in Segs such that the left vertical map is Q–anodyne, then the right vertical map will be
Q–anodyne as well as long as the square is Reedy cofibrant, ie as long as the induced
map Y qX Z!W is an MS–cofibration.
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Remark 2.3.7 Although one cannot identify QsS with the subcategory of fibrant
objects in some localization of S�

op
s
C , one can still associate with QsS the weak factor-

ization system formed by Q-fibrations and Q–anodyne maps. Although not part of a
model category, it enables many model categorical arguments and manipulations. The
purpose of this section is to exploit this point of view to obtain results which will be
used in the next section.

Lemma 2.3.8 Let f W X ! Y be a Q–anodyne map. Then f satisfies the equivalent
conditions of Corollary 2.2.8.

Proof In view of Remark 2.2.9 it will suffice to prove that the �i satisfy condition
.4/ of Corollary 2.2.8. For �2 this is a special case of Remark 2.2.10. For �i ; i D 0; 1

we need to check that the maps�
.�1/] � @�1

�
q�fig�@�1

�
�fig � .�1/[

�
�! .�1/]˝ .�1/[;�

.�1/] � @�1
�
q�fig�@�1

�
�fig � .�1/]

�
�! .�1/]˝ .�1/]

are trivial MS–cofibrations. Now in the first map the right-hand side can be obtained
from the left-hand side by performing two pushouts along admissible horn inclusions of
dimension 2. In the second map one needs to perform in addition a triangle remarking
(see Definition 2.1.6).

Corollary 2.3.9 Let f W X ! Y be a Q–anodyne map and let pW W ! Z be a
Q-fibration. Then the induced map

f p
W W Y

!ZY
�ZX W X

is a DK–equivalence.

Proof From Lemma 2.3.8 it follows that f p is a fully faithful MS–fibration. Since f
satisfies the left lifting property with respect to p we get that the induced map of sets

.W Y /0;0DHom.Y;W /!Hom.Y;Z/�Hom.X ;Z/Hom.X;W /D .ZY
�ZX W X /0;0

is surjective. It follows that f is essentially surjective and so a DK–equivalence.

We will now apply some of the ideas collected so far in order to prove that the full
subcategory QsS� Segfib

s is closed under mapping objects. In fact, we will prove that
for any semi-simplicial space A and any quasi-unital marked semi-Segal space W the
mapping object W A is quasi-unital.

Proposition 2.3.10 Let W be a quasi-unital marked semi-Segal space and A a marked
semi-simplicial space. Then W A is quasi-unital.
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Proof Let f W X ! Y be a Q–anodyne map. To show that the terminal map W A!�

satisfies the right lifting property with respect to f is equivalent to showing that the
map f ˝AW X ˝A! Y ˝A satisfies the left lifting property with respect to W !�.

Consider the space A0 as a marked semi-simplicial space concentrated in degree 0. We
have a natural inclusion gW A0 ,!A such that g0 is an isomorphism. By Lemma 2.3.8
we get that the natural map�

X ˝A
�
qX˝A0

�
Y ˝A0

�
�! Y ˝A

is a trivial MS–cofibration. Hence it will suffice to prove that the map f ˝A0 satisfies
the left lifting property with respect to W !�, and it will suffice to do so for f D �i .

Let us start with �2 . Let A0;0 be the set of vertices of A0 . Then �2˝A0;0 satisfies
the left lifting property with respect to W !�. The same claim for �2˝A0 follows
from the fact that�

A0˝ .�
3;M /

�
qA0;0˝.�3;M /

�
A0;0˝ .�

3/]
�
,! A0˝ .�

3/]

is a marked equivalence (where M D f�f0;2g; �f1;3gg).

Let us now prove the case �i for i D 0; 1. Unwinding the definitions we need to show
that the map of spaces di W W

inv
1
!W0 satisfies the right lifting property with respect

to any map of the form ∅ ,!A0 , or, equivalently, admits a section.

Let
W aut

1 D
˚
f 2W inv

1 j d0.f /Dd1.f /
	
�W inv

1

be the subspace of self-equivalences. It will be enough to show that the map d W W aut
1
!

W0 (induced by either d0 or d1 ) admits a section. Since this claim involves only marked
edges it will be convenient to switch to the maximal semi-Kan space Z D fW �W .
In particular, we want to show that the natural map Zaut

1
!Z admits a section.

Consider the Kan replacement yjZj of the realization of Z . Let yjZjS
1

be the space
of continuous paths  W S1! yjZj and let pW yjZjS

1

! yjZj be the map p. /D  .1/.
Consider the commutative diagram:

Zaut
1

//

d

��

yjZjS
1

p

��

Z0
// yjZj

Since yjZj is a Kan simplicial set the right vertical map is a fibration. The left vertical
map is pullback of the fibration .d0; d1/W Z1!Z0 �Z0 along the diagonal Z0 ,!
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Z0 �Z0 , and is hence a fibration as well. By Theorem 1.6.4 the square is homotopy
Cartesian. Now since the right vertical map admits a section (given by choosing for
each x the constant path at x ) we get that the left vertical map admits a section as
well. This finishes the proof of Proposition 2.3.10.

Corollary 2.3.11 Let f W X ! Y be a Q–anodyne map and W a quasi-unital marked
semi-Segal space. Then the map W Y !W X admits a section.

Proof It is enough to prove that the map W Y !W X satisfies the right lifting property
with respect to every map of the form ∅ ,!A. Using the exponential law we see that
this is equivalent to saying that W !� satisfies the right lifting property with respect
to X ˝A! Y ˝A. Applying the exponential law again we reduce to proving that
W A!� satisfies the right lifting property with respect to f W X ! Y . The result now
follows from Proposition 2.3.10 as W A is quasi-unital and f is Q–anodyne.

Our final goal of this subsection is to show that the following types of maps are Q–
anodyne. Let f W Œn�! Œk� be a surjective map in � and let hW Œk�! Œn� be a section of
f . Let M � .Spk/1 be a marking on the k –spine and let fM � .�k/1 be the marking
generated from it, ie the smallest set containing M which is closed under 2-out-of-3.
Let Mf � .Spn/1 be the set of all pairs fi; i C 1g such that either f .i/D f .i C 1/ or
�ff .i/;f .iC1/g is in M and let fMf � .�

n/1 be the marking generated from it. We
wish to prove the following:

Proposition 2.3.12 In the notation above, the map

hW .�k ; fM /! .�n; fMf /

is Q–anodyne.

Proof For each i D 0; : : : ; n let Si � �
n be the 1–dimensional semi-simplicial

subset containing all the vertices and all the edges of the form �fj ;jC1g such that
f .j / D f .j C 1/ D i . Then clearly the inclusion �fh.i/g � Si is Q–anodyne. Let
S ��n be the (disjoint) union of all the Si .

Let h1; h2 be two sections of f . We will define the marked semi-simplicial subset
T .h1; h2/ � .�

n; fMf / to be the (not necessarily disjoint) union of S] � .�n; fMf /

and all edges of the form �fh1.i/;h2.iC1/g for i D 0; : : : ; n. In particular,

T .h1; h2/D

�
S [

[
i

�fh1.i/;h2.iC1/g;N

�
� .�n; fMf /;
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where N is the marking induced from fMf , ie N contains all the edges of S and the
edges �fh1.i/;h2.iC1/g for which �fi;iC1g is in M . Note that when h1 D h2 D h we
have

T .h; h/D S]q�0�f0;:::;kg

�
h.Spk/; h.M /

�
:

Now consider the commutative square:

.Spk ;M /
h //

��

.�k ;fM /

��
T .h; h/ // .�n;fMf /

Since hW �0 � f0; : : : ; kg ,! S] is Q–anodyne we get that the top horizontal row is
Q–anodyne. In light of Remark 2.3.6 it will now be enough to show that this square is
a Reedy cofibrant homotopy pushout square in the marked Segal model structure. As
Reedy cofibrancy is immediate it will be enough to show that both horizontal maps are
trivial MS–cofibrations. The top horizontal map is very easy:

Lemma 2.3.13 The inclusion �W .Spk ;M / ,! .�k ; fM / is a trivial MS–cofibration.

Proof Factor � as

.Spk ;M /
�0

,! .�k ;M /
�00

,! .�k ; fM /:

Then �0 is a pushout along the trivial MS–cofibration .Spk/[ ,! .�k/[ and �00 is a
triangle remarking (Definition 2.1.6).

To show that bottom horizontal map is a trivial MS–cofibration it will be convenient to
prove a slightly stronger lemma:

Lemma 2.3.14 For any two sections h1; h2 of f , the inclusion

T .h1; h2/� .�
m; fMf /

is a trivial MS–cofibration.

Proof We begin by arguing that it is enough to prove the lemma for just one pair of
sections h1; h2 . We say that two pairs .h1; h2/; .h

0
1
; h0

2
/ are neighbors if

nX
iD0

jh1.i/� h01.i/jC jh2.i/� h02.i/j D 1:
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It is not hard to see that the resulting neighboring graph is connected, ie that we can get
from any pair .h1; h2/ to any other pair .h0

1
; h0

2
/ by a sequence of pairs such that each

consecutive couple of pairs are neighbors. Hence it is enough to show that the property
of T .h1; h2/ ,! .�m; fMf / being a trivial MS–cofibration respects the neighborhood
relation. To see why this is true observe that if .h1; h2/ and .h0

1
; h0

2
/ are neighbors

then one can add to T .h1; h2/ a single triangle � ��m such that

R
def
D T .h1; h2/[ �

contains T .h0
1
; h0

2
/ and such that R can be obtained from either T .h1; h2/;T .h

0
1
; h0

2
/

by performing a pushout along a 2–dimensional admissible marked horn inclusion and
possibly a remarking. Hence the claim for either T .h1; h2/ or T .h0

1
; h0

2
/ is equivalent

to R ,! .�m; fMf / being a trivial MS–cofibration.

Now that we know that it is enough to prove for a single choice of .h1; h2/ let us
choose the pair hmax.i/ D max.f �1.i// and hmin.i/ D min.f �1.i//. Then we see
that T .hmax; hmin/ D .Spm;Mf / and the map .Spm;Mf / ,! .�m; fMf / is a trivial
MS–cofibration from Lemma 2.3.13.

This finishes the proof of Proposition 2.3.12.

3 Complete marked semi-Segal spaces

In this section we will further localize the model category Segs to obtain our tar-
get model category Comps . We will then show that the underlying 1–category
.Comps/1 is equivalent to the 1–category Catqu

1 of quasi-unital 1–categories (see
Definition 2.2.14). Finally, we will prove the main theorem of this paper by showing
that Comps is Quillen equivalent to Rezk’s model category Comp, and that this Quillen
equivalence preserves mapping objects.

We begin with a description of the fibrant objects in Comps , which are called complete
marked semi-Segal spaces. The notion of completeness, the construction of the comple-
tion functor and many of the related proofs are inspired by their respective analogues
in [15]. We begin with the basic definition.

Definition 3.0.15 Let .X;M / be a marked semi-Segal space. We will say that X is
complete if the following two conditions are satisfied:

(1) X is quasi-unital.

(2) The restricted maps d0W X
inv
1
! X0 and d1W X

inv
1
! X0 are both homotopy

equivalences.
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Remark 3.0.16 If W is a complete marked semi-Segal space then fW is complete as
well.

Remark 3.0.17 If W is a marked semi-Kan space then W is complete if and only if
it is homotopy-constant as a semi-simplicial space (ie levelwise equivalent to a constant
semi-simplicial space). This follows from the Segal condition and the fact that �s is
weakly contractible (see Lemma 3.2.7 below).

Let CsS� QsS denote the full simplicial subcategory spanned by complete marked
semi-Segal spaces. Our next goal is to construct a suitable left Bousfield localization
Comps of Segs such that CsS will coincide with the full subcategory of fibrant (and
cofibrant) objects in Comps .

We begin with the following characterization of complete marked semi-Segal spaces
(compare with Lemma 2.0.13).

Lemma 3.0.18 Let .X;M / be a marked semi-Segal space. Then X is complete if and
only if X is local with respect to the class of Q–anodyne maps (see Definition 2.3.3).

Proof The class of Q–anodyne maps is the weakly saturated class of maps generated
by �0; �1; �2 (see Definition 2.0.12 and Remark 2.3.5). Hence to be local with respect
to Q–anodyne maps is equivalent to being local with respect to �0; �1; �2 . Let us first
assume that X is complete. Then in particular X is quasi-unital and so M DX inv

1
. It

then follows from condition (2) of Definition 3.0.15 that .X;M / is local with respect
to �0; �1 . Furthermore, by Lemma 1.5.4 we now get that M satisfies the 2-out-of-6
property and hence .X;M / is local with respect to �2 .

Now assume that X is local with respect to �0; �1; �2 , so that d0; d1W M ! X0 are
equivalences. In light of Lemma 2.0.13 we may deduce that X is quasi-unital, and
hence in particular M DX inv

1
. This shows that X is complete.

Since Segs is combinatorial and left proper, the left Bousfield localization of Segs

with respect to the maps �0; �1; �2 exists. We will denote the resulting localization
by Comps . Then Comps is a combinatorial model category satisfying the following
properties:

(1) A map f W X!Y of marked semi-simplicial spaces is an equivalence in Comps

if and only if for every complete marked semi-Segal space W the induced map

MapC.Y;W /!MapC.X;W /

is a weak equivalence.
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(2) A map f W X ! Y of marked semi-simplicial spaces is a cofibration in Comps

if and only if it is a cofibration in Segs (ie a levelwise inclusion).

(3) A marked semi-simplicial space W is fibrant in Comps if and only if it is a
complete marked semi-Segal space.

Remark 3.0.19 Since CsS can be identified with the full simplicial subcategory of
fibrant-cofibrant objects in Comps we may conclude that the underlying 1–category
.Comps/1 is equivalent to the simplicial nerve N .CsS/.

Theorem 3.0.20 The complete model structure is compatible with the marked monoi-
dal product ˝. In particular, the localization Quillen adjunction

Seg�
op
s

C

Id // Comps
Id
oo

is strongly monoidal and Comps inherits the simplicial structure of Segs .

Proof Arguing as in [15, Proposition 9.2], we see that it will be enough to establish
the following:

Proposition 3.0.21 Let X be a marked semi-simplicial space and W a complete
marked semi-Segal space. Then W X is complete.

Proof of Proposition 3.0.21 From Proposition 2.3.10 we get that W X is quasi-unital.
In particular, the marked edges of W X are exactly the equivalences. Let us now prove
that W X satisfies condition .2/ of Definition 3.0.15.

For i D 0; 1 consider the restriction map

pi
W W .�1/]

!W .�0/
DW:

Since W is complete we get by definition that the maps

pi
0W .W

.�1/]/0!W0

are weak equivalences. By Corollary 2.3.9 we get that pi is also a DK–equivalence and
hence a marked equivalence. Using the exponential law this implies that the restriction
map

MapC.X ˝ .�1/];W / �! MapC.X ˝�fig;W /

is a weak equivalence. Applying the exponential law again we get that W X satisfies
condition .2/ of Definition 3.0.15.
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This completes the proof of Theorem 3.0.20.

Remark 3.0.22 In the above notation, since W X is complete we get that eW X is
complete as well. In particular, eW X is a homotopy-constant marked semi-simplicial
space (see Remark 3.0.17).

3.1 Completion

In this section we will prove that .Comps/1 D N .CsS/ is equivalent to the left
1–localization of N .QsS/ with respect to DK–equivalences (see Definition 1.2.2).
In particular, .Comps/1 is equivalent to the 1–category Catqu

1 of quasi-unital 1–
categories. In order to prove this we will construct a completion functor

y� W QsS! CsS

such that:

(1) The induced map of 1–categories

N . y� /W N .QsS/!N .CsS/

is left adjoint to the (fully faithful) inclusion N .CsS/ ,!N .QsS/.

(2) A map in N .QsS/ is a DK–equivalence if and only if its image under N . y� / is
an equivalence.

To construct the completion functor we proceed as in [15]. Let X be a quasi-unital
marked semi-Segal space. Consider the bi-semi-simplicial spaces

X�;�;Y�;� W �
op
s ��

op
s ! S

given by
Xn;m DMapC..�n/[˝ .�m/];X /;

Yn;m DMap..�n/]˝ .�m/];X /:

We define the marked semi-simplicial space . xX ;M / by setting

xXn D jXn;�j and M D jY1;�j � jX1;�j:

We then define the completion yX of X to be the marked-fibrant replacement of
. xX ;M /.

Theorem 3.1.1 Let X be a quasi-unital marked semi-Segal space. Then:

(1) yX is a complete marked semi-Segal space.
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(2) The natural map X ! yX is a DK–equivalence.

Proof Let n � 0 be an integer. From Proposition 2.3.12 we conclude that for each
map f W Œk�! Œm� in �s the map

f �W X�;m!X�;k

is a DK–equivalence and in particular fully faithful. Hence the induced square

Xn;m
//

f �n

��

.X0;m/
nC1

.f �
0
/nC1

��
Xn;k

// .X0;k/
nC1

is homotopy Cartesian. From Corollary 1.6.8 the natural mapˇ̌
X nC1

0;�

ˇ̌
!
ˇ̌
X0;�

ˇ̌nC1

is a weak equivalence and so Puppe’s Theorem (see Theorem 1.6.5) implies that the
square

Xn;0
//

��

.X0;0/
nC1

��

jXn;�j
//
ˇ̌
X0;�

ˇ̌nC1

is homotopy Cartesian. The same argument with Y�;� instead of X�;� shows that the
square

Y1;0
//

��

.Y0;0/
2

��

jY1;�j
//
ˇ̌
Y0;�

ˇ̌2
is homotopy Cartesian. This implies that the map X ! xX (and hence also the map
X ! yX ) is fully faithful. We now observe that the map X0!

yX0 is surjective on
connected components. Since yX is marked-fibrant we deduce from Lemma 2.2.16 that
yX is a quasi-unital marked semi-Segal space and the map X! yX is a DK–equivalence.

It is left to show that yX is complete. Since yX is quasi-unital we know that all invertible
edges in yX are marked. Hence it will suffice to show that the maps

jd0j; jd1jW
ˇ̌
Y1;�

ˇ̌
!
ˇ̌
Y0;�

ˇ̌
D xX0
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are weak equivalences. But this follows from Corollary 1.6.7 since the maps

d0; d1W Y1;�! Y0;�

are DK–equivalences of marked semi-Kan spaces.

Our goal now is to show that the completion functor exhibits N .CsS/ as the left
1–localization of N .QsS/ with respect to DK–equivalences. We start by showing
that the notions of DK–equivalence and marked equivalence coincide in CsS.

Proposition 3.1.2 Let f W X ! Y be a DK–equivalence between complete marked
semi-Segal spaces. Then f is a marked equivalence.

Proof Since f is in particular fully faithful it will be enough to show that the map
f0W X0! Y0 is a weak equivalence. Let zf W eX ! eY be the induced map between the
corresponding maximal semi-Kan subspaces. Then clearly zf is a DK–equivalence as
well. From Corollary 1.6.7 it follows that the induced mapˇ̌

zf
ˇ̌
W
ˇ̌ eX ˇ̌
!
ˇ̌eY ˇ̌

is a weak equivalence. But since X;Y are complete their corresponding maximal
semi-Kan spaces are homotopy-constant and so their realization is naturally equivalent
to their space of objects. It follows that f0 is an equivalence and we are done.

We are now ready to state the main theorem of this subsection.

Theorem 3.1.3 The induced functor N . y� /W N .QsS/!N .CsS/ exhibits N .CsS/ as
the left 1–localization of N .QsS/ with respect to DK–equivalences.

We will postpone the proof of Theorem 3.1.3 until the end of this subsection. Before
that, we will need to establish some way to spot weak equivalences in Comps . This
will be achieved using a weak notion of cylinder object.

Definition 3.1.4 Let M be a model category and X 2M and object. We will say
that a cofibration of the form

X qX
�0q�1
�! IX

exhibits IX as a weak cylinder object for X if the two maps �0; �1W X ! IX are
weak equivalences which become equal in Ho.M/. Given a weak cylinder object as
above and two maps f;gW X ! Y we will say that f;g are homotopic via IX if the
corresponding map

X qX
fqg
�! Y

factors through IX . This notion is in general stronger then f;g being equal in Ho.M/.
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Our reason for introducing this notion is that in the model category Comps we have
very natural choices for weak cylinder object, namely:

Lemma 3.1.5 Let X be a marked semi-simplicial space. Then the natural map

X qX ,!X ˝ .�1/]

exhibits X ˝ .�1/] as a weak cylinder object of X .

Proof Clearly the map in question is a cofibration. It will hence be enough to show
that the two maps �0; �1W �0! .�1/] are equal in Ho.Comps/. Let �W .�1/]!W

be a fibrant replacement of .�1/] in Comps . We need to show that �ı �0 and �ı �1 are
in the same connected component of MapC.�

0;W /DW0 . But this is clear because
the map � determines a marked edge from � ı �0 to � ı �1 and W is complete (so thatfW is homotopy-constant).

The notion of homotopy between maps which is associated to the above choice of
weak cylinder objects will be called .�1/]–homotopy. There is a corresponding notion
of a .�1/]–homotopy equivalence, which in general is stronger than being a weak
equivalence in Comps . These types of equivalence are analogous to the notion of
categorical equivalence in [15].

Proposition 3.1.6 Let pW W !Z be a DK–equivalence between quasi-unital marked
semi-Segal spaces which admits a section gW Z!W . Then f is a weak equivalence
in Comps .

Proof We can assume without loss of generality that f is a marked fibration. We
claim that g is a homotopy inverse of f . In one direction the composition f ıg is
the identity. We need to show that g ıf is equivalent to the identity Comps . For this
it will suffice to produce a .�1/]–homotopy from g ı f to the identity, or in other
words a marked edge from g ıf to the identity in W W .

Since the mapping object ZW is quasi-unital (Corollary 2.3.9) there exists a marked
edge h 2 .ZW /1 from f to itself. The edge h corresponds to a map

hW W ˝ .�1/]!Z

whose restriction to each Z˝�fig is f . Now consider the commutative square

W � @�1 //

��

W

f

��
W � .�1/]

zh

::

h // Z;
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where the top horizontal map is given by .g ı f /q Id. Since the right vertical map
is a fully faithful marked fibration and the left vertical map is a cofibration which
induces an isomorphism on the 0th level, we get from Proposition 2.2.5 that a lift
zhW W � .�1/]!W indeed exists. Then zh gives an equivalence from g ı f to the
identity in W W and we are done.

Corollary 3.1.7 Let f W X ,! Y be a Q–anodyne map and let W be a quasi-unital
marked semi-Segal space. Then the map f �W W Y !W X is an equivalence in Comps .

Proof From Corollary 2.3.9 and Corollary 2.3.11 we know that if f W X ! Y is
Q–anodyne then the map W Y!W X is a DK–equivalence which admits a section.
The desired result now follows from Proposition 3.1.6.

Proof of Theorem 3.1.3 From the second part of Theorem 3.1.1 we get that a map
f W X ! Y of quasi-unital semi-Segal spaces is a DK–equivalence if and only if
yf W yX ! yY is a DK–equivalence. In view of Proposition 3.1.2 we deduce that the

collection of maps sent by y� to equivalences are precisely the DK–equivalences. Hence
it is left to prove that N . y� / is indeed a left adjoint to the inclusion N .CsS/ ,!N .QsS/.
For this it will be enough to show that the natural map

X ! yX

is a weak equivalence in Comps . Indeed, in this case the restriction map

MapCsS.
yX ;W /!MapQsS.X;W /

will be a weak equivalence for every W 2CsS and hence we would be able to consider
X ! yX as a unit transformation (see [11, Proposition 5.2.2.8]). Now the marked
semi-simplicial space yX is the homotopy colimit of the �op

s –diagram Œm� 7! X�;m ,
where X�;0 DX . Since �s is weakly contractible it will suffice to show that for each
�W Œk�! Œn� in �s the natural map

��W X�;n DX .�n/]
!X .�k/]

DX�;k

is a weak equivalence in Comps . Now from Proposition 2.3.12 we know that the
inclusion

.�k/] ,! .�n/]

is Q–anodyne. The desired result now follows from Corollary 3.1.7.
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3.2 Proof of the main theorem

Let Comp denote Rezk’s model category of complete Segal spaces (so that the under-
lying category of Comp is the category S�op

of simplicial spaces). Recall the Quillen
adjunction

S�op FC // S�
op
s
C

RKC
oo

described in Section 1.8. The purpose of this section is to prove the following theorem,
which is the main result of this paper.

Theorem 3.2.1 The Quillen adjunction FC aRKC descends to a Quillen equivalence

(3-1) Comp
FC // Comps :
RKC
oo

Note that a priori it is not even clear that this is a Quillen adjunction. Even though
FC preserves cofibrations, to show that it preserves trivial cofibrations is equivalent
to showing that RKC maps complete marked semi-Segal spaces to complete Segal
spaces. Fortunately, this claim as well as the desired Quillen equivalence will both
follow from the following theorem.

Theorem 3.2.2 Let X be a complete marked semi-Segal space. Then the counit map

�X W FC.RKC.X //!X

is a marked equivalence.

Before we proceed to prove Theorem 3.2.2 let us derive two short corollaries of it,
which together imply that (3-1) is a Quillen equivalence. We start with the following
observation.

Corollary 3.2.3 Assume Theorem 3.2.2 and let X be a complete marked semi-Segal
space. Then RKC.X / is a complete Segal space.

Proof First since X is marked-fibrant we get that RKC.X / is Reedy fibrant. Since
FC.RKC.X //'X we get that RKC.X / satisfies the Segal condition and hence is a
Segal space. Furthermore, we get that RKC.X /inv

1
'X inv

1
and in particular the map

d0W RKC.X /inv
1 !RKC.X /0

is a weak equivalence. Since s0 is a section of d0 we get that s0 is a weak equivalence
and hence RKC.X / is a complete Segal space.
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Now Corollary 3.2.3 implies that

Comp
FC // Comps
RKC
oo

is indeed a Quillen adjunction. We then get a derived adjunction

Ho.Comp/ // Ho.Comps/oo

between the respective homotopy categories. Since every object in Comp is cofibrant
Theorem 3.2.2 tells us that the counit of the derived adjunction is a natural isomorphism.
To show that the unit map is an isomorphism it will be enough to show that FC detects
equivalences, ie that if f W X ! Y is a map of simplicial spaces such that FC.f / is a
weak equivalence in Comps , then f is an equivalence in Comp (the unit transformation
is then an equivalence by a standard argument).

Corollary 3.2.4 Assume Theorem 3.2.2. Then the functor FC detects equivalences.

Proof By definition the equivalences in Comp are detected by mapping into complete
Segal spaces. Hence the claim that FC detects equivalences will follow once we show
that every complete Segal space is in the image of RKC (up to a levelwise equivalence).

Let Y be a complete Segal space. Note that FC.Y / is then almost a complete marked
semi-Segal space in the following sense. Let F\.Y / be the marked simplicial space
which has the same underlying semi-simplicial space as FC.Y / but whose marking is
given by M D .FC.Y //inv

1
DY inv

1
. Since every degenerate edge in Y is an equivalence

in FC.Y / we have an inclusion

�W FC.Y / ,! F\.Y /

which is a levelwise equivalence by definition. Since Y is complete we get that Y inv
1

is the union of all connected components which contain degenerate edges. This means
that � is a marked equivalence. Furthermore, the completeness of Y implies the
completeness of F\.Y /, and so � can serve as a fibrant replacement of FC.Y /. The
upshot of this is that FC.Y / is marked equivalent to its fibrant replacement (and not
just weakly equivalent in Comps ).

Now let uY be the map given by the composition

Y !RKC.FC.Y //!RKC.F\.Y //:
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From the discussion above we see that we can consider uY as the derived unit in the
pre-localized Quillen adjunction

S�op FC // S�
op
s
C :

RKC
oo

This means that the composition

FC.Y /
FC.uY /
�! FC.RKC.F\.Y ///

�F\.Y /

�! F\.Y /

is a marked equivalence. Since by Theorem 3.2.2 the second map is a marked equiva-
lence, we get that FC.uY / is a marked equivalence. This means that uY is a levelwise
equivalence and hence Y is in the essential image of RKC .

Let CS def
D Compfib

� Comp be the full simplicial subcategory spanned by complete
Segal spaces. In light of Corollary 3.2.3 the functors RKC and F\ above restrict to an
adjunction

CS
F\
// CsS

RKC
oo

which is an equivalence of fibrant simplicial categories. We hence obtain the following
version of our main theorem:

Corollary 3.2.5 The forgetful functor

Cat1 'N .CS/!N .CsS/' Catqu
1

is an equivalence of 1–categories.

Now in order to prove Theorem 3.2.2 we will need a few lemmas which will help us
compute RKC.X / more easily. The outline of our strategy is inspired by the proof
of [13, Proposition 5.4.3.16].

We begin by introducing the following replacement for the category Cn .

Definition 3.2.6 For n� 0 let us denote by C0
n � Cn the full subcategory spanned by

objects of the form f W Œm�! Œn� such that f is surjective.

The following lemma seems to be well-known to experts, but we were unable to find a
short proof in the literature.

Lemma 3.2.7 The category �s is weakly contractible.
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Proof Consider the simplicial set Z which is the left Kan extension of the terminal
semi-simplicial set. Then Z has a unique non-degenerate simplex in each dimension
and the face of any non-degenerate simplex of Z is again non-degenerate. This means
that the nerve of �s can be identified with the barycentric subdivision of Z , and so it
will be enough to show that Z is weakly contractible. This, in turn, can be verified
directly: Z has trivial homology groups in each dimension and is simply connected by
virtue of van Kampen’s theorem.

Corollary 3.2.8 The category C0
n is weakly contractible.

Proof The category C0
n is isomorphic to .�op

s /
n : the isomorphism is given by sending a

surjective map f W Œm�! Œn� to the vector of linearly ordered sets .f �1.0/; : : : ; f �1.n//

considered as an object of .�op
s /

n . The result now follows from Lemma 3.2.7.

We will say that a functor f W C ! D is coinitial if for every d 2 D the nerve of
the category C �D D=d is contractible. Equivalently, if the functor f opW Cop ! Dop

is cofinal (see [11, Theorem 4.1.3.1]). We recall that restricting a diagram along a
coinitial map induces an equivalence on homotopy limits (see [11, Theorem 4.1.1.8]
for cofinal maps, or [6, Theorem 19.6.7], where the property of being coinitial is called
“homotopy left cofinal”).

Lemma 3.2.9 The inclusion C0
n ,! Cn is coinitial.

Proof We need to show that for every object X 2 Cn the category C0
n �Cn

Cn=X is
weakly contractible. Let X be the object corresponding to a morphism gW Œk�! Œn�.
The objects of the category C0

n �Cn
Cn=X can be identified with commutative diagrams

of the form

(3-2) Œk�

g   

h // Œm�

f~~
Œn�

such that f is surjective and h is injective (and g remains fixed). A morphism
C0

n�Cn
Cn=X between two diagrams as above is a morphism of diagrams in the opposite

direction which is the identity on Œk� and Œn�. Let us write

EX
i D

�
�

op
s g�1.i/D∅;

�
op
s =g�1.i/ g�1.i/¤∅:
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There is a natural functor

T W C0
n �Cn

Cn=X !

nY
iD0

EX
i

which sends the diagram (3-2) to the vector

.f �1.0/; : : : ; f �1.n// 2

nY
iD0

EX
i ;

where f �1.i/ is considered as a finite ordered set equipped with a natural injective
map from g�1.i/. The functor T admits an inverse

S W

nY
iD0

EX
i ! C0

n �Cn
Cn=X

which sends a vector .A0; : : : ;An/ of finite ordered sets to their concatenation A0 �

A1 � � � � �An , considered as an object in �s fitting naturally into a diagram of the
form (3-2). We may then conclude that T is an equivalence of categories.

Now when g�1.i/ ¤ ∅ the category EX
i has a terminal object and so is weakly

contractible. When g�1.i/ D ∅ we have EX
i D �

op
s which is weakly contractible

as well (see Lemma 3.2.7). We conclude that C0
n �Cn

Cn=X Š
Qn

iD0 E
X
i is weakly

contractible and so the proof is complete.

In view of Remark 1.8.3 we now have the following corollary:

Corollary 3.2.10 RKC.X /n ' holimC0
n
Gn .

Proof of Theorem 3.2.2 In light of Corollary 3.2.10 and Corollary 3.2.8 the proof of
Theorem 3.2.2 will be done once we show that for each n the restricted functor GnjC0

n

is homotopy-constant. Let X be a complete marked semi-Segal space and suppose we
are given a diagram

Œk�

g   

h // Œm�

f~~
Œn�

such that both f;g are surjective and h is injective. We wish to show that h induces
an equivalence

h�W X f
m

'
�!X

g

k
:
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Since g is a surjective map between simplices it admits a section sW Œn�! Œk�. One
then obtains a sequence

X f
m

h�

!X
g

k

s�

!X Id
n :

From the 2-out-of-3 rule we see that it will be enough to prove the lemma for k D n

and gD Id. Note that in this case X Id
n DXn and we can consider h as a section of f .

According to Proposition 2.3.12 we get that the map X .�m;Af /! X .�n/[ is a DK–
equivalence. By Propositions 3.0.21 and 3.1.2 this map is a levelwise equivalence.
Evaluating at level 0 we get the desired result.

3.3 Monoidality

Since both Comp and Comps are monoidal model categories, the underlying 1–
categories Comp1 and .Comps/1 inherit natural structures of symmetric monoidal
1–categories (see [11, Example 4.1.3.6]). It is then natural to ask whether the Quillen
equivalence FC a RKC can be promoted to a weakly monoidal one in the sense
of Definition 1.1.8, yielding a similar structure on the underlying adjunction of 1–
categories. Unfortunately, this is not exactly the case. However, we seem to be in a
somewhat dual situation, in which we have a lax structure on the left functor FC (as
opposed to a colax one), whose structure maps are weak equivalences (this in turn
determines no structure on RKC , and we do not know if RKC carries any colax
structure).

To avoid this technicality we will work directly with the fibrant simplicial categories CS
and CsS whose coherent nerves are equivalent Comp1 and .Comps/1 respectively.
As explained above (see Corollary 3.2.5 and the discussion preceding it), the forgetful
functor Cat1! Catqu

1 can be modeled directly by a functor of simplicial categories

F\W CS! CsS :

Now the monoidal structure on Comp is the Cartesian one, and as such is inherited by
the full subcategory CS�Comp of fibrant (-cofibrant) objects. Unfortunately, the same
statement does not hold for Comps . In particular, the tensor product of two objects in
CsS might not lie in CsS. This difficulty can be overcome as follows. Following [13,
§4.1.3] we may regard CS and CsS as simplicial colored operads whose multi-mapping
spaces are given by

Mul.X1; : : : ;Xn;Y /
def
D Map.X1˝ � � �˝Xn;Y /

(where the tensor product is computed inside Comp or Comps respectively). According
to [13, Proposition 4.1.3.10] and [13, Corollary 4.1.3.16] the 1–operads N˝.CS/ and
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N˝.CsS/ are in fact symmetric monoidal 1–categories which are equivalent to the
underlying symmetric monoidal 1–categories Comp1 and .Comps/1 respectively
(here N˝ is the operadic nerve, see [13, Definition 2.1.1.23]).

In this section we shall exhibit a lax structure on the functor F\ . Such a structure
naturally leads to a map of 1–operads

N˝.F\/W N˝.CS/!N˝.CsS/:

Furthermore, we will show that the structure maps of this lax structure are equivalences.
Since F\ itself is also an equivalence we may deduce that N˝.F\/ is an equivalence
of 1–operads, and hence in particular an equivalence of symmetric monoidal 1–
categories.

To begin with, consider the adjunction

S�
op
s

LK // S�op
;

F
oo

where F is the forgetful functor and LK is the left Kan extension functor. This adjunc-
tion carries a compatible lax-colax structure .˛X ;Y ;u/; .ˇZ;W ; v/ (see Definition 1.1.3).
The colax structure was described in Remark 1.3.2. Here we shall be mostly concerned
with the lax structure .˛X ;Y ;u/, and so it will be worth while to give an explicit
description. First observe that the map

uW �0
! F.LK.�0//

is just the unit of the adjunction. Second, the maps

˛X ;Y W F.X /˝F.Y /D Core.LK.F.X //�LK.F.Y ///! F.X �Y /

are induced by the tensor of counit maps LK.F.X /�LK.F.Y //!X �Y followed
by the natural inclusion Core.X �Y / ,! F.X �Y /.

Now let X;Y be two simplicial spaces and let M � X1;N � Y1 be the union of
components meeting degenerate edges. By definition (see Section 1.7) the marked
subspace of FC.X /˝FC.Y / may be identified with

.s�.X0/�Y0/q .X0 � s�.Y0//q .s
�.X0/� s�.X1//� .F.X /˝F.Y //1

which is mapped by ˛X ;Y onto the subspace

s�.X0/� s�.Y0/� F.X �Y /1:

Similarly, the marked subspace of F\.X /˝F\.Y / may be identified with

.M �Y0/q .X0 �N /q .M �N /� .F.X /˝F.Y //1

Algebraic & Geometric Topology, Volume 15 (2015)



2378 Yonatan Harpaz

which is mapped by ˛X ;Y onto the subspace

M �N � F.X �Y /1:

We may hence conclude that ˛X ;Y gives rise to natural maps

˛C
X ;Y
W FC.X /˝FC.Y /! FC.X ˝Y /;

˛
\
X ;Y
W F\.X /˝F\.Y /! F\.X ˝Y /:

Combined with the obvious natural maps

uCW �0
! FC.LK.�0// and u\W �0

! F\.LK.�0//

we hence obtain lax structures on FC and F\ respectively. Our goal in this section
is to prove that the structure maps ˛\ and u\ are equivalences. Since the natural
transformation FC.X /! F\.X / is a weak equivalence in Comps it will suffice to
show that the natural transformations ˛C

X ;Y
and uC are weak equivalences in Comps .

We start with the following direct corollary of Theorem 3.2.2:

Lemma 3.3.1 Let Z be an (unmarked) semi-simplicial space. Then the composition
of natural maps

Z[
! .F.LK.Z///[! FC.LK.Z//

is a weak equivalence in Comps .

Proof Let .W;M / be a complete marked semi-simplicial space. Mapping the above
composition into W yields the map

MapC.F
C.LK.Z//;W / �!MapC.Z

[;W /:

By adjunction the above map can be written as

(3-3) Map.Z;F.RKC.W /// �!Map.Z;W /;

where the map is induced by the map F.RKC.W // �!W of semi-simplicial spaces
underlying the counit map. By Theorem 3.2.2 this counit map is a marked equivalence
and so the underlying map is a levelwise equivalence. Since both F.RKC.W // and W

are Reedy fibrant we get that the map (3-3) is a weak equivalence. Since this is true for
any complete marked semi-simplicial space W we get that the map Z[�!FC.LK.Z//
is a weak equivalence in Comps as desired.

Now, applying Lemma 3.3.1 for Z D�0 we obtain that uC is a weak equivalence in
Comps . It remains to prove the following:
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Proposition 3.3.2 The natural map

˛C
X ;Y
W FC.X /˝FC.Y /! FC.X �Y /

is a weak equivalence in Comps for every pair of simplicial spaces X;Y .

Proof Note that for every n, the left Kan extension LK.�n/ is the standard n–simplex
(considered as a levelwise discrete simplicial space). Now any simplicial space is a
colimit of such LK.�n/, which is simultaneously a homotopy colimit with respect
to the Reedy model structure (and hence also with respect to the model structure of
Comp). Since FC preserves colimits and sends levelwise equivalences to marked
equivalences it will be enough to prove the claim for X D LK.�n/;Y D LK.�m/. In
particular, we need to show that the lower horizontal map in the diagram

�n˝�m //

��

FC.LK.�n˝�m//

'

��
FC.LK.�n//˝FC.LK.�m// // FC.LK.�n/�LK.�m//

is a weak equivalence (to check that this diagram commutes note that the underlying
diagram of semi-simplicial spaces is one of the compatibility diagrams of the lax
structure of F and the colax structure of LK ; see Definition 1.1.3). Now from
Lemma 3.3.1 we get that the upper horizontal map and the left vertical map are
weak equivalences (for the left vertical map one uses the fact that in a symmetric
monoidal model category the product of two weak equivalences between cofibrant
objects is again a weak equivalence). Since the right vertical map is an isomorphism
(see Remark 1.3.2) the result follows from the 2-out-of-3 property.

Remark 3.3.3 By using adjunction and the exponential law one sees that the lax
structure on FC induces a natural map

FC
�
RKC.Y /X

�
�! Y FC.X /

for every X 2 Comp;Y 2 Comps . Proposition 3.3.2 then implies that this map is a
weak equivalence whenever Y is fibrant, ie a complete marked semi-Segal space. In
particular, if Y D F\.Y 0/ for some complete Segal space Y 0 then we get a sequence
of weak equivalences

FC
�
.Y 0/X

� '
�! FC

�
.RKC.F\.Y 0///X

� '
�! F\.Y 0/F

C.X /
' F\.Y 0/F

\.X /

which induces an equivalence

F\
�
.Y 0/X

� '
�! F\.Y 0/F

\.X /:
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This equivalence can be interpreted as follows: if C;D are two 1–categories and xC; xD
their respective underlying quasi-unital 1–categories, then the quasi-unital functor
category xC xD is equivalent to the underlying quasi-unital 1–category of the functor
category CD .
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