
msp
Algebraic & Geometric Topology 15 (2015) 1717–1769

Relative divergence of finitely generated groups

HUNG CONG TRAN

We generalize the concept of divergence of finitely generated groups by introducing
the upper and lower relative divergence of a finitely generated group with respect to
a subgroup. Upper relative divergence generalizes Gersten’s notion of divergence,
and lower relative divergence generalizes a definition of Cooper and Mihalik. While
the lower divergence of Alonso, Brady, Cooper, Ferlini, Lustig, Mihalik, Shapiro
and Short can only be linear or exponential, relative lower divergence can be any
polynomial or exponential function. In this paper, we examine the relative divergence
(both upper and lower) of a group with respect to a normal subgroup or a cyclic
subgroup. We also explore relative divergence of CAT.0/ groups and relatively
hyperbolic groups with respect to various subgroups to better understand geometric
properties of these groups.

20F67; 20F65

1 Introduction

Two different notions of divergence of a finitely generated group are introduced by
Cooper and Mihalik [1] and Gersten [9]. We refer to the former’s notion as lower
divergence and Gersten’s notion as upper divergence. The lower divergence of a one-
ended group G is exponential if G is hyperbolic and linear otherwise (see [1] and
Sisto [22]). Therefore, lower divergence only detects hyperbolicity. Upper divergence
is more diverse since the upper divergence of a finitely generated group can be any
polynomial or exponential function (see Macura [16] and Sisto [22]). Upper divergence
has been studied by Macura [16], Behrstock and Charney [2], Duchin and Rafi [7],
Drut,u, Mozes and Sapir [5], Sisto [22] and others. Moreover, upper divergence is a quasi-
isometry invariant, and it is therefore a useful tool to classify finitely generated groups
up to quasi-isometry. Motivated by Gersten and Alonso, Brady, Cooper, Ferlini, Lustig,
Mihalik, Shapiro and Short’s notions, we introduce two types of relative divergence of
a finitely generated group with respect to a subgroup: upper relative divergence and
lower relative divergence.

We now introduce some notation and we will work on them for the concept of relative
divergence. Let .X; d/ be a geodesic space and A a subspace. For each positive r ,
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let dr;A be the induced length metric on the complement of the r –neighborhood of A

in X . We now define the relative divergence of the space X with respect to the
subspace A (both upper relative divergence and lower relative divergence). For each
� 2 .0; 1� and positive integer n� 2, we define two functions ın

� and �n
� from Œ0;1/

to Œ0;1� as follows.

For each r 2 Œ0;1/, let ın
�.r/D sup d�r;A.x;y/ where the supremum is taken over

all x;y which lie in @Nr .A/ such that dr;A.x;y/ <1 and d.x;y/� nr .

Similarly, let �n
� D inf d�r;A.x;y/ where the infimum is taken over all x;y which lie

in @Nr .A/ such that dr;A.x;y/ <1 and d.x;y/� nr .
x

y

r

�r

A

� nr

Figure 1: The picture illustrates the idea of upper relative divergence of a
geodesic space X with respect to a subspace A . The picture for lower relative
divergence is almost identical except the distance between x and y is greater
than or equal to nr .

The family of functions fın
�g is the upper relative divergence of the pair .X;A/, denoted

Div.X;A/, and the family of functions f�n
� g is the lower relative divergence of the

pair .X;A/, denoted by div.X;A/.

In Section 4, we show that both upper relative divergence and lower relative divergence
depend only on the quasi-isometry type of .X;A/. Therefore, we can define both
the upper and the lower relative divergence of a pair .G;H /, denoted by Div.G;H /

and div.G;H /, where G is a finitely generated group and H is a subgroup. While
upper relative divergence generalizes upper divergence introduced by Gersten [9],
lower relative divergence generalizes lower divergence defined in [1]. The relative
divergence of a pair .G;H / measures the distance distortion of the complement of the
r –neighborhood of H in the Cayley graph of G when r increases.

1.1 Upper relative divergence

The following theorem describes the upper relative divergence of a finitely generated
group with respect to a finitely generated normal subgroup.
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Theorem 1.1 Let G be a finitely generated group and H a finitely generated normal
subgroup of G . Then

Div.G=H; e/� Div.G;H /� DistHG ıDiv.G=H; e/;

where DistHG is the upper distortion of H in G and Div.G=H; e/ is a slight modifica-
tion of Div.G=H; e/. Moreover, if G=H is one-ended and H is undistorted in G , then
Div.G;H /� Div.G=H; e/.

In the above theorem, we use the well-known concept of distortion of subgroups. In
some sense, this measures the “upper bound” of the distance distortion of a subgroup
in comparison with the distance of a whole group. However, we also need the concept
of “lower bound” of the distance distortion of subgroups to better understand how a
subgroup is embedded into a whole group. Therefore, we introduce the concept of
lower distortion and we refer to the traditional concept of distortion as upper distortion
(see Section 3). The above theorem also helps us find a pair of groups .G;H /, where G

is a CAT.0/ group and H is a normal subgroup of G , such that Div.G;H / can be
any polynomial or exponential function (see Remark 5.3).

The upper divergence of a one-ended relative hyperbolic group is at least exponential
by Sisto [22]. The following theorem strengthens the result of Sisto.

Theorem 1.2 Let .G;P / be a relatively hyperbolic group and H a subgroup of G

such that 0< ze.G;H / <1, where ze.G;H / is the number of filtered ends of H in G .
We assume that H is not conjugate to an infinite index subgroup of any peripheral
subgroup. Then Div.G;H / is at least exponential.

We refer the readers to Section 2.3 for the definition of the number of filtered ends.

1.2 Lower relative divergence

As mentioned earlier, the lower divergence of a finitely generated group is either linear
or exponential. The lower relative divergence of a pair of groups, on the other hand, is
more diverse.

Theorem 1.3 Let f be any polynomial function or exponential function. There is a
pair of groups .G;H /, where G is a CAT.0/ group (ie the group that acts properly
and cocompactly on some CAT.0/ space) and H is an infinite cyclic subgroup of G ,
such that div.G;H / is f .
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We compute the lower relative divergence of a pair of groups .G;H / when H is an
infinite normal subgroup. The following theorem helps us find the upper bound of the
relative lower divergence of a pair of groups .G;H / when H is an infinite normal
subgroup of G .

Theorem 1.4 Let G be a finitely generated group and H an infinite normal subgroup
of G . Let K be any finitely generated infinite subgroup of H . Then, the relative lower
divergence div.G;H / is dominated by the lower distortion of K in G . In particular,
if H is finitely generated, then the relative lower divergence div.G;H / is dominated
by the lower distortion of H in G .

In order to measure the lower relative divergence of a finitely generated group with
respect to a normal subgroup, we use the concept of lower distortion of a subgroup
(which was mentioned earlier). Although the idea of lower distortion is implicit in
works of Gromov [12], Ol’shanskii [19] and many others, the exact concept does not
seem to be recorded in the literature. Applying the above theorem in the case of CAT.0/
groups, we can show that the relative lower divergence of a CAT.0/ group G with
respect to a normal subgroup H containing at least one infinite order element is linear
(see Theorem 7.8).

We also examine the lower relative divergence of a relatively hyperbolic group with
respect to a subgroup. While the upper relative divergence of a finitely generated
relatively hyperbolic group with respect to almost all subgroups is at least exponential
(see Theorem 1.2), its lower relative divergence can be linear (see Theorem 8.25 and
Theorem 8.35). Moreover, we also examine the lower relative divergence of a finitely
generated relatively hyperbolic group with respect to a fully relatively quasiconvex
subgroup in the following theorem.

Theorem 1.5 Let .G;P / be a relatively hyperbolic group and H an infinite fully
relatively quasiconvex subgroup of G such that 0< ze.G;H / <1, where ze.G;H / is
the number of filtered ends of H in G . Then div.G;H / is at least exponential.

In the above theorem, if we drop the condition “fully relative quasiconvexity” of the
subgroup H , the conclusion of the theorem is no longer true (see Theorem 8.35).

1.3 Lower distortion

In this paper, we also introduce lower distortion as a new invariant for pairs .G;H /

of finitely generated groups. As we mentioned earlier, upper distortion only measures
the “upper bound” of the distance distortion of a subgroup in comparison with the
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distance of a whole group and we need the “lower bound” of the distance distortion of
subgroups. We refer the readers to Definition 3.3 for the concept of lower distortion.
In general, the lower and upper distortion of a pair of groups are not the same (see
Example 3.17). We also show some properties of lower distortion as well as its relation
with upper distortion (see Theorem 3.6 and Propositions 3.9 and 3.5). Moreover, we
use one result of Ol’shanskii [19] to construct examples of pairs of groups with a large
class of lower and upper distortion functions.

Theorem 1.6 Let f W Œ0;1/ ! Œ0;1/ be a strictly increasing function such that
f .0/D 0 and f �1 is subadditive. Suppose that there is a positive integer C such that
f .n/ � C n for every positive n. Let H be a finitely generated group such that its
growth is bounded by some polynomial function. Then there is a finitely generated
group G containing H such that the upper and lower divergence of the pair .G;H /

are both equivalent to f .

1.4 Overview

In Section 2, we prepare some preliminary knowledge for the main part of the paper.
This knowledge will be used to define the concept of relative divergence and compute
relative divergence of certain pairs of groups.

In Section 3, we recall the concept of distortion of a subgroup, which we call upper
distortion and introduce the related concept of lower distortion. Together with upper
distortion, lower distortion helps us understand the connection between the geometry
of a group and the geometry of its subgroups. We also carefully investigate this new
concept although it is not the main part of this paper. Finally, we give the proof of
Theorem 1.6 and discuss an example of Gromov to show the difference between upper
and lower distortion.

In Section 4, we give precise definitions of upper and lower divergence of a pair .X;A/,
where X is a geodesic space and A is a subspace. We use these concepts to define the
upper and lower divergence of a pair .G;H /, where G is a finitely generated group
and H is a subgroup. We also investigate some key properties of relative divergence.

In Sections 5 and 6, we investigate the divergence of a finitely generated group with re-
spect to a normal subgroup or a cyclic subgroup. In Section 5, the proof of Theorems 1.1
and 1.4 are also shown.

In Section 7, we examine relative divergence of some CAT.0/ groups. We also
investigate a family of groups studied by Macura [16] to show that relative lower
divergence can be a polynomial function with arbitrary degree. In this section, readers
can find the proof of Theorem 1.3 for the case the lower divergence is polynomial.
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In Section 8, we examine the relative divergence of a relatively hyperbolic group. We
also investigate the lower relative divergence of a relatively hyperbolic group with
respect to a fully relatively quasiconvex subgroup and use this fact to show that the
lower divergence of a pair of groups can be at least exponential. In this section, we
prove Theorems 1.2 and 1.5. Moreover, readers can see the proof of Theorem 1.3 for
the case the lower divergence is exponential in this section.

Acknowledgments I would like to thank my advisor Professor Christopher Hruska
for very helpful comments and suggestions. I also thank the referee for advice that
improved the exposition of the paper.

2 Preliminaries

In this section, we discuss some preliminary background before discussing the main
part of the paper. We first construct the notions of domination and equivalence. We
review some concepts in geometric group theory: geodesic spaces, quasigeodesics,
quasi-isometry and quasi-isometric embedding, and the number of filtered ends of pairs
of groups. We also introduce the concept of quasi-isometry between two pairs of metric
spaces.

2.1 The notions of domination and equivalence

In this section, we build the notions of domination and equivalence on the set of
some certain families of functions. These notions are the tool to measure the relative
divergence of a finitely generated group with respect to a subgroup.

Definition 2.1 Let M be the collection of all functions from Œ0;1/ to Œ0;1�. Let f
and g be arbitrary elements of M. The function f is dominated by the function g ,
denoted f � g , if there are positive constants A, B , C and D such that f .x/ �
Ag.Bx/CCx for all x >D . Two functions f and g are equivalent, denoted f � g ,
if f � g and g � f . The function f is strictly dominated by the function g , denoted
f � g , if f is dominated by g and they are not equivalent.

Remark 2.2 The relations � and � are transitive. The relation � is an equivalence
relation on the set M.

Let f and g be two polynomial functions in the family M. We observe that f is
dominated by g if and only if the degree of f is less than or equal to the degree of g and
they are equivalent if and only if they have the same degree. All exponential functions
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of the form abxCc , where a> 1, b > 0, are equivalent. Therefore, a function f in M
is linear, quadratic or exponential if f is respectively equivalent to any polynomial
with degree one, two or any function of the form abxCc , where a> 1, b > 0.

Definition 2.3 Let fın
�g and fı0n� g be two families of functions of M, indexed over

� 2 .0; 1� and positive integers n� 2. The family fın
�g is dominated by the family fı0n� g,

denoted fın
�g� fı

0n
� g, if there exists a constant L2 .0; 1� and a positive integer M such

that ın
L�
� ıMn

� . The notions of strict domination and equivalence can be defined as
above.

Remark 2.4 The relations � and � are transitive. The relation � is an equivalence
relation.

If f is an element in M, we could represent f as a family fın
�g for which ın

� D f for
all � and n. Therefore, the family fın

�g is dominated by (or dominates) a function f
in M if fın

�g is dominated by (or dominates) the family fı0n� g where ı0n� D f for all �
and n. The equivalence between a family fın

�g and a function f in M can be defined
similarly. Thus a family fın

�g is linear, quadratic, exponential, etc if fın
�g is equivalent

to the function f where f is linear, quadratic, exponential, etc.

2.2 Geodesic spaces, quasigeodesics, quasi-isometry

In this section, we review the concepts of geodesic spaces, quasigeodesics, quasi-
isometry and quasi-isometric embedding, and we introduce the concept of quasi-
isometry between two pair of metric spaces. These concepts play an important role in
defining the concept of upper relative divergence and lower relative divergence of a
finitely generated group with respect to a subgroup. Most of information in this section
is cited from Ghys and de la Harpe [10].

Remark 2.5 For each path with finite length ˛ in a geodesic space X , we denote the
endpoints of ˛ by ˛C , ˛� and the length of ˛ by `.˛/. For each ray ˛ in a space X ,
we denote the initial point of ˛ by ˛C .

Definition 2.6 Let .X; d/ be a metric space.

(1) A path p in X is an .L;C /–quasigeodesic for some L� 1 and C � 0 if for
every subpath q of p the inequality `.q/�L d.qC; q�/CC holds.

(2) A path p in X is a quasigeodesic if it is .L;C /–quasigeodesic for some L� 1

and C � 0.
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(3) A path p in X is an L–quasigeodesic if it is .L;L/–quasigeodesic for some
L� 1.

(4) A path p in X is a geodesic if it is .1; 0/–quasigeodesic.

(5) Two quasigeodesics are equivalent if the Hausdorff distance between their images
is finite.

(6) The metric space X is a geodesic space if any pair of points in X can be joined
by a geodesic segment.

Definition 2.7 Let .X; dX / and .Y; dY / be two metric spaces. The map ˆ from X

to Y is a quasi-isometry if there is a constant K � 1 and a function ‰ from Y to X

such that the following holds:

dY .ˆ.x1/; ˆ.x2//�K dX .x1;x2/CK for all x1;x2 in X;(1)

dX .‰.y1/; ‰.y2//�K dY .y1;y2/CK for all y1;y2 in Y;(2)

dY .ˆ ı‰.y/;y/�K for all y in Y;(3)

dX .‰ ıˆ.x/;x/�K for all x in X:(4)

The proof of the following lemma is obvious, and we leave it to the reader.

Lemma 2.8 Let .X; dX / and .Y; dY / be two geodesic spaces and the map ˆ from X

to Y a quasi-isometry. Then there is a constant C � 1 such that the following hold.

(1) 1
C

dX .x1;x2/�1� dY .ˆ.x1/; ˆ.x2//�C dX .x1;x2/CC for all x1;x2 2X .

(2) NC .ˆ.X //D Y .

(3) If ˛ is a path connecting two points x1 and x2 in X , then there is a path ˇ con-
necting ˆ.x1/ and ˆ.x2/ in Y such that the Hausdorff distance between ˆ.˛/
and ˇ is at most C . Moreover, jˇj � C j˛jCC .

(4) If ˇ is a path connecting two points ˆ.x1/ and ˆ.x2/ for some x1;x2 2 X ,
then there is a path ˛ connecting x1 and x2 in X such that the Hausdorff
distance between ˆ.˛/ and ˇ is at most C . Moreover, j˛j � C jˇjCC .

Definition 2.9 Let .X; dX / and .Y; dY / be two geodesic spaces and the map ˆ

from X to Y a quasi-isometric embedding if

1

C
dX .x1;x2/� 1� dY .ˆ.x1/; ˆ.x2//� C dX .x1;x2/CC

for all x1;x2 in X .
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Remark 2.10 Throughout this paper, we denote .X;A/ to be a pair of metric spaces,
where X is a geodesic space and A is a subspace of X .

Definition 2.11 Two pairs of spaces .X;A/ and .Y;B/ are quasi-isometric if there
is a quasi-isometry ˆ from X to Y such that the Hausdorff distance between ˆ.A/
and B is finite.

It is not hard to prove the following proposition and we leave it to the reader.

Proposition 2.12 A quasi-isometry of pairs of metric spaces is an equivalence relation.

2.3 Filtered ends of pairs of groups

In this section, we review the concepts of the number of ends of groups and the number
of filtered ends of pairs of groups. We refer the readers to Geoghegan [8, Chapter 14]
for the proof of all the statements on these concepts. We also prove the lemma on the
existence of subgroup perpendicular ray which is defined below.

We now define the concept of the number of filtered ends of a pair of groups and we
will see that this concept generalizes the concept of the number of ends of a group.

Definition 2.13 Let G be a group with a finite generating set S and H a sub-
group of G . For each positive r we denote Cr .H / to be the complement of the
r –neighborhood of H in the Cayley graph �.G;S/. A connected component U

of Cr .H / is deep if U does not lie in the s–neighborhood of H for any posi-
tive s . Let zer .G;H / be the number of deep components of Cr .H /. We note that
zer .G;H /�zes.G;H / if r > s . The number of filtered ends of the pair .G;H /, denoted
ze.G;H /, is the supremum of the set fzer .G;H / j r > 0g.

Remark 2.14 Let G be a finitely generated group and H a subgroup.

(1) The number ze.G;H / does not depend on the choice of finite generating set S

of G and ze.G;H /D 0 if and only if H is a finite index subgroup of G .

(2) If ze.G;H /Dm<1, then there is a positive number r0 such that Cr .H / has
exactly m deep components for each r > r0 .

(3) When H is the trivial subgroup, ze.G;H / is the number of ends of G , denoted
ze.G/. A finitely generated group is one-ended if ze.G/D 1.

Theorem 2.15 [8, Proposition 14.5.9] If H is a finitely generated normal subgroup
of G then ze.G;H / equals the number of ends of G=H .
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Definition 2.16 Let G be a group with a finite generating set S and H an infinite index
subgroup of G . A geodesic ray 
 in the Cayley graph �.G;S/ is H –perpendicular
if the initial point h of 
 lies in H and dS .
 .r/;H /D r for all positive r .

The following lemma shows the existence of many H –perpendicular geodesic rays.

Lemma 2.17 Let G be a group with a finite generating set S and H an infinite index
subgroup of G . Then for each element h in H , there is an H –perpendicular geodesic
ray with the initial point h.

Proof For each positive integer n, there is a vertex gn in Cn.H /. Let kn be an
element in H and ˛n a geodesic segment connecting gn and kn such that the length
of ˛n is equal to the distance between gn and H . We define 
n D .hk�1

n /˛n , then 
n

is a geodesic segment with the initial point h and dS .
n.r/;H /D r for all positive r

less than the length of 
n . By the Arzela–Ascoli theorem, there is a geodesic ray 

with the initial point h such that dS .
 .r/;H /D r for all positive r .

3 Distortion of subgroups

In this section, we will review the concept of distortion of a subgroup, which we
call upper distortion. This concept of distortion will later help us compute relative
divergence of a large class of pairs of groups. We also introduce the concept of lower
distortion of a subgroup. This new concept is also a tool to compute relative divergence.
We investigate some key properties of lower distortion and the relation between lower
distortion and upper distortion.

First of all, we will review the concept of upper distortion.

Definition 3.1 Let G be a group with a finite generating set S and H a subgroup
of G with a finite generating set T . The upper subgroup distortion of H in G is the
function DistHG W .0;1/! .0;1/ defined by

DistHG .r/DmaxfjhjT j h 2H; jhjS � rg:

Remark 3.2 It is well known that the concept of upper distortion does not depend on
the choice of finite generating sets S and T . More precisely, the functions DistHG are
equivalent for all pairs of finite sets .S;T / generating .G;H / respectively.

The function DistHG is nondecreasing, and dominates a linear function.

A finitely generated subgroup H of G is undistorted if DistHG is linear.

We now introduce the concept of lower distortion.
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Definition 3.3 Let G be a group with a finite generating set S and H a subgroup
of G with a finite generating set T . The lower distortion of H in G is the function
distHG W .0;1/! .0;1/ defined as

distHG .r/DminfjhjT j h 2H; jhjS � rg:

We use the convention that the minimum of the empty set is 0.

Remark 3.4 Similar to the concept of upper distortion, the concept of lower distortion
also does not depend on the choice of generating sets. When H is an infinite subgroup,
the function distHG is nondecreasing and dominates a linear function.

The following proposition shows a relation between upper and lower distortion.

Proposition 3.5 Let G be a finitely generated group and H a finitely generated
subgroup of G . Then distHG � DistHG .

Proof Let S be a finite generating set of G and we assume that S contains the finite
generating set T of the subgroup H . Thus we could consider �.H;T / as a subgraph
of �.G;S/. If H is a finite subgroup then distHG is a bounded function and the proof
follows easily. Thus we assume H is an infinite subgroup.

For each r > 1, we could chose an element k in H such that jkjS � 2r . We connect
the identity element e and k by a geodesic ˛ in �.H;T /. Thus we can choose h to
be an element in ˛ such that r � jhjS � 2r . Since h is also an element of H , then
distHG .r/� jhjT � DistHG .2r/. Thus distHG � DistHG .

We now investigate some key properties of lower distortion:

Theorem 3.6 Suppose that G , H , K are all infinite finitely generated groups and
K �H �G .

(1) distKH ı distHG � distKG .

(2) distKH � distKG .

(3) distHG � distKG .

(4) If jG WH j<1, then distKG � distKH .

(5) If jH WKj<1, then distKG � distHG .

(6) If H1;H2 are two commensurable finitely generated subgroups, then distH1

G
�

distH2

G
.
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Proof We call S1 , S2 and S3 finite generating sets of G , H and K respectively.
We can assume that S3 � S2 � S1 . We now prove that

distKH ı distHG .n/� distKG .n/ for all n:

For any positive number n, choose k0 2K such that jk0jS1
�n and jk0jS3

D distKG .n/.
Since k0 2H and jk0jS1

� n, then jk0jS2
� distHG .n/. Therefore, we have jk0jS3

�

distKH .distHG .n//. Thus

distKH ı distHG .n/� distKG .n/ for all n:

Statements (2) and (3) are immediate results of (1) since the lower distortion functions
distHG and distKH are nondecreasing and at least linear.

We now prove statement (4). Since distKH � distKG , then we only need to prove
distKG � distKH . Since jG WH j<1, then there is a positive integer C such that

dS2
.h1; h2/� C dS1

.h1; h2/CC for all h1 and h2 in H :

We now prove that
distKG .n/� distKH .2C n/ for all n:

For any positive number n > 1, we choose k0 2 K such that jk0jS2
� 2C n and

jk0jS3
D distKH .2C n/. Thus

jk0jS1
�
jk0jS2

�C

C
� 2n� 1� n:

Therefore, distKG .n/� distKH .2C n/. In particular, distKG � distKH .

We now prove statement (5). Since distHG � distKG , then we only need to prove
distKG � distHG . Since jH WKj<1, then there is a positive integer C such that

dS3
.k1; k2/� C dS2

.k1; k2/CC for all k1 and k2 in K ;

and H �NC .K/ with respect to metric dS2
. We now show that

distKG .n/� C distHG .2n/CC 2
CC for all n� C :

For any positive number n greater than C , we choose h0 2H such that jh0jS1
� 2n

and jh0jS2
D distHG .2n/. Since H �NC .K/ with respect to metric dS2

, then there is
k0 2K such that dS2

.k0; h0/� C . In particular, dS1
.k0; h0/� C . Thus

jk0jS1
� jh0jS1

�C � 2n�C � n:

Thus jk0jS3
� distKG .n/.
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Also

jk0jS3
� C jk0jS2

CC � C.jh0jS2
CC /CC;

jh0jS2
D distHG .2n/:

Therefore, distKG .n/� C distHG .2n/CC 2CC . In particular, distKG � distHG .

We easily obtain (6) from (5) by observing that

jH1 W .H1\H2/j<1 and jH2 W .H1\H2/j<1:

We now explain the relationship between the lower distortion and the growth of a
finitely generated group. We will see that the growth function will be an upper bound
of the lower distortion. Before showing this fact, we need to review the concept of
growth of groups.

Definition 3.7 Let G be a group with a finite set of generators S . The growth of G ,
denoted by GrowthG , is a function f W Œ0;1/! Œ0;1/ to itself defined by letting f .r/
be the number of elements of G that lie in the ball B.e; r/ for each r � 0.

Remark 3.8 It is well known that the growth of a finitely generated group does not
depend on the choice of finite generating set (the proof is almost identical to the case
of upper distortion). More precisely, the functions GrowthG are equivalent for all
finite sets S of generators of G . Moreover, the function GrowthG is dominated by the
exponential function.

Proposition 3.9 Let G be a finitely generated group and H a finitely generated
subgroup of G . Then the lower distortion distHG is dominated by the growth function
GrowthG of G . In particular, the lower distortion distHG is dominated by the exponential
function.

Proof Let S be a finite generating set of G . We will assume that S contains the finite
generating set T of the subgroup H . Thus we could consider �.H;T / as a subgraph
of �.G;S/. If H is finite, then distHG is bounded and the proof follows easily. Thus
we assume H is an infinite subgroup.

For each r > 1, we could chose an element h in H such that jhjS � r . We connect the
identity element e and h by a geodesic ˛ in �.H;T /. Let h0 be a vertex in ˛ such that
jh0jS � r and the subpath ˛0 of ˛ connecting e and h0 must lie in the closed ball with
center e and radius 2r of �.G;S/. Thus the length of ˛0 is bounded by the number
of vertices in this ball. Therefore, jh0jT is bounded by the number of vertices of the
closed ball with center e and radius 2r in �.G;S/. Thus distHG .r/� GrowthG.2r/.
Therefore, distHG � GrowthG .
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We now find some examples of finitely generated groups and its finitely generated
subgroups to see their lower distortion. The following theorem can be deduced from
the work of Milnor (see the proof of [18, Lemma 4]). We just use the new concept of
lower distortion to interpret a part of Milnor’s work.

Theorem 3.10 Let GDha; b; c j bab�1a�1D c; acD ca; bcD cbi be the Heisenberg
group and H the cyclic group generated by c . Then distHG and DistHG are both
quadratic.

Remark 3.11 In [23], Tits investigates the growth of a finitely generated virtually
nilpotent group. We can use a part of his work to find a pair .G;H /, where G is a
finitely generated nilpotent group and H is a finitely generated subgroup, such that
distHG and DistHG can be equivalent to the same polynomial with arbitrary degree.

In [20], Osin also gives a formula to compute upper distortion of arbitrary subgroups
of nilpotent groups.

Before studying more examples about lower distortion, we need to review the concept
of length functions and a key theorem.

Definition 3.12 Let G be a group with a finite generating set S and H a subgroup
of G . The length function ` of H inside G is the function from the group H to the
set of natural numbers defined as

`.h/D jhjS for h 2H :

Remark 3.13 In some sense, the concept of length function can give us more informa-
tion than the concepts of upper and lower distortion when we investigate an embedding
of a subgroup.

Theorem 3.14 [19] Let ` be the length function of group H inside some finitely
generated group G . Then the following conditions hold.

(1) `.h/D `.h�1/ for every h 2H ; `.h/D 0 if and only if hD e .

(2) `.h1h2/� `.h1/C `.h2/ for every h1; h2 2H .

(3) There is a positive integer C such that the cardinality of the set fh 2H j

`.h/� ng does not exceed C n for every natural number n.

Conversely for every group H and every function ` from H to the set of natural
numbers satisfying (1)–(3), there exists an embedding of H into a 2–generated group G

with a finite generating set SDfg1;g2g such that the length function `1 of H inside G

is equivalent to ` (ie there exists a positive integer B such that .1=B/`.h/� `1.h/�

B`.h/).
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Definition 3.15 A function f W Œ0;1/! Œ0;1/ is subadditive if f .i C j /� f .i/C

f .j / for every positive numbers i and j .

We now apply Theorem 3.14 to show that any finitely generated group H can be a
subgroup of a finitely generated group G such that the lower distortion and the upper
distortion of H in G can be both equivalent to any element of some large class of
functions.

Theorem 3.16 Let f W Œ0;1/ ! Œ0;1/ be a strictly increasing function such that
f .0/D 0 and f �1 is subadditive. Suppose that there is a positive integer C such that
f .n/ � C n for every positive n. Let H be a finitely generated group such that its
growth is bounded by some polynomial function. Then there is a finitely generated
group G containing H such that distHG � DistHG � f .

Proof We fix some finite generating set T for H . Let A and m be a positive integers
such that the number of group elements in a ball with radius n is bounded by Anm

for every positive integer n. For each nonnegative number x , we define dxe to be the
smallest integer that is greater than or equal to x . We now define the length function
`W H !N by

`.h/D df �1.jhjT /e for every h 2H :

We will check ` satisfies conditions (1)–(3) in Theorem 3.14. Obviously, `.h/D `.h�1/

for every h 2 H and `.h/ D 0 if and only if h D e . We now check ` satisfies
condition (2). Indeed, for every h1; h2 2H ,

`.h1h2/D df
�1.jh1h2jT /e � df

�1.jh1jT Cjh2jT /e

� df �1.jh1jT /Cf
�1.jh2jT /e

� df �1.jh1jT /eC df
�1.jh2jT /e � `.h1/C `.h2/:

Finally, we need to check ` satisfies condition (3). Since for each nonnegative integer n

fh 2H j `.h/� ng D fh 2H j df �1.jhjT /e � ng

D fh 2H j f �1.jhjT /� ng

D fh 2H j jhjT � f .n/g � fh 2H j jhjT � C n
g

and the cardinality of the set fh 2H j jhjT � C ng is bounded by A.C m/n , then the
cardinality of the set fh 2H j `.h/� ng is bounded by A.C m/n .

By Theorem 3.14, the group H is a subgroup of some finitely generated group G

with a finite generating set S such that the function ` is equivalent to `1 , where
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`1.h/ D jhjS for every h 2 H . Therefore, there is a positive integer B such that
.1=B/`.h/� `1.h/� B`.h/ for every h 2H .

We now show that the upper distortion DistHG is dominated by f . For each positive
number n and any h 2H such that jhjS � n, we see that

f �1.jhjT /� `.h/� B`1.h/� Bn:

Thus jhjT � f .Bn/. Therefore, DistHG .n/� f .Bn/. In particular, the upper distortion
DistHG is dominated by f .

We finish the proof of the theorem by showing that the lower distortion distHG domi-
nates f . For each positive number n and any h 2H such that jhjS � BnCB , we
see that

f �1.jhjT /� `.h/� 1� 1
B
`1.h/� 1� n:

Thus jhjT � f .n/. Therefore, distHG .Bn C B/ � f .n/. In particular, the lower
distortion distHG dominates f .

We know show one pair of groups .G;H / such that distHG and DistHG are not equivalent.
The following example is defined by Gromov [12].

Example 3.17 Let G D ha; b; c j bab�1 D a2; cbc�1 D b2i and let H be the cyclic
subgroup generated by a. Observe that

a22n

D b2n

ab�2n

D cnbc�nacnb�1c�n:

Thus DistHG .4nC2/� 22n

for each positive number n. Therefore, the upper distortion
DistHG is superexponential. However, the lower distortion distHG is at most exponential
by Proposition 3.9. Thus two functions distHG and DistHG are not equivalent.

4 Relative divergence of geodesic spaces and finitely
generated groups

4.1 Relative upper divergence

In this section, we introduce the concept of relative upper divergence of geodesic spaces
as well as finitely generated groups. We also prove that upper relative divergence is a
quasi-isometry invariant.
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Definition 4.1 Let X be a geodesic space and A a subspace of X . Let r be any
positive number.

(1) Nr .A/D fx 2X j dX .x;A/ < rg.

(2) @Nr .A/D fx 2X j dX .x;A/D rg.

(3) Cr .A/DX �Nr .A/.

(4) Let dr;A be the induced length metric on the complement of the r –neighborhood
of A in X . If the subspace A is clear from context, we can use the notation dr

instead of using dr;A .

Definition 4.2 Let .X;A/ be a pair of metric spaces. For each � 2 .0; 1� and positive
integer n� 2, we define a function ın

� W Œ0;1/! Œ0;1� as follows.

For each r , let ın
�.r/D sup d�r .x1;x2/ where the supremum is taken over all x1;x2 2

@Nr .A/ such that dr .x1;x2/ <1 and d.x1;x2/� nr .

The family of functions fın
�g is the relative upper divergence of X with respect A,

denoted Div.X;A/.

Before defining the upper relative divergence of a finitely generated group with respect
to a subgroup, we need the following proposition.

Proposition 4.3 If two pairs of spaces .X;A/ and .Y;B/ are quasi-isometric, then
Div.X;A/� Div.Y;B/.

Before proving the above proposition, we need the following lemmas.

Lemma 4.4 Let X , Y be geodesic spaces and A a subspace of X . Let ˆ be a
quasi-isometry from X to Y . Then Div.X;A/� Div.Y; ˆ.A//.

Proof Let B Dˆ.A/. Let Div.X;A/D fın
�g and Div.Y;B/D fı0n� g. Let K be the

number provided by Lemma 2.8. Let LD 1=8K2 and M D Œ2K.2KC 1/C 1�C 1.
We will prove that ın

L�
� ı0Mn

� . More precisely, we define r0 D 3K.1CK/C 8K2=�

and we are going to show that for each r > r0

ın
L�.r/�Kı0Mn

�

�
r

2K

�
C .2K2

C 1/r:

Indeed, let x1 and x2 be arbitrary points in @Nr .A/ such that dX .x1;x2/� nr and
dr;A.x1;x2/ < 1. Thus there is a path ˛ in Cr .A/ connecting x1 and x2 . By
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Lemma 2.8, there is a path ˇ connecting ˆ.x1/, ˆ.x2/ such that the Hausdorff
distance between ˆ.˛/ and ˇ is at most K . Thus

dY .ˇ;B/� dY .ˆ.˛/;B/�K �
1

K
dX .˛;A/� 1�K �

r

K
� 1�K �

r

2K
:

Thus we could choose y1 in @Nr=2K .B/ and a geodesic ˇ1 in Cr=2K .B/ connect-
ing ˆ.x1/ and y1 such that the length of ˇ1 is bounded above by the distance be-
tween ˆ.x1/ and B . Also, dY .ˆ.x1/;B/�K dX .x1;A/CK �KrCK . Therefore,
the length of ˇ1 is at most Kr CK . Similarly, we could choose y2 in @Nr=2K .B/

and a geodesic ˇ2 in Cr=2K .B/ connecting ˆ.x2/ and y2 such that the length of ˇ2

is bounded above by Kr CK .

We define ˇ3 D ˇ1[ˇ[ˇ2 , then ˇ3 is a path in Cr=2K .B/ connecting y1 and y2 .
Thus dr=2K ;B.y1;y2/ <1.

Also

dY .y1;y2/� dY .y1; ˆ.x1//C dY .ˆ.x1/; ˆ.x2//C dY .ˆ.x2/;y2/

� .Kr CK/C .K dX .x1;x2/CK/C .Kr CK/

� 2Kr C 3KCKnr � .2KC 1/nr �M n
�

r

2K

�
:

We are now going to show that

dL�r;A.x1;x2/�Kd�.r=2K /;B.y1;y2/C .2K2
C 1/r:

Indeed, let ˇ0 be an arbitrary path in C�.r=2K /.B/ connecting y1 and y2 . We define

 D ˇ1[ˇ

0[ˇ2 ; then 
 is a path in C�.r=2K /.B/ connecting ˆ.x1/, ˆ.x2/ and the
length of 
 is bounded above by 2Kr C 2KCjˇ0j.

By Lemma 2.8, there is a path ˛0 connecting x1 and x2 in X such that the Hausdorff
distance between ˆ.˛0/ and 
 is at most K . Moreover, j˛0j �Kj
 jCK . Since

dY .ˆ.˛
0/;B/� dY .
;B/�K �

�r

2K
�K �

�r

4K
;

then
dX .˛

0;A/�
1

K
dY .ˆ.˛

0/;B/� 1�
�r

4K2
� 1�

�r

8K2
�L�r:

Thus ˛0 is a path in CL�r .A/ connecting x1 and x2 . Therefore, the distance in
CL�r .A/ between x1 and x2 is bounded above by the length of ˛0 .

Also

j˛0j �Kj
 jCK �K.2Kr C 2KCjˇ0j/CK �Kjˇ0jC .2K2
C 1/r;

and ˇ0 is an arbitrary path in C�.r=2K /.B/ connecting y1 and y2 .
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Thus
dL�r;A.x1;x2/�Kd�.r=2K /;B.y1;y2/C .2K2

C 1/r:

Therefore
ın
L�.r/�Kı0Mn

�

�
r

2K

�
C .2K2

C 1/r:

Thus ın
L�
� ı0Mn

� .

Lemma 4.5 Let X be a geodesic space. Let A and B be two subspaces such that the
Hausdorff distance between them is finite. Then Div.X;A/� Div.X;B/.

Proof We only need to prove Div.X;A/ � Div.X;B/ since the argument for the
other direction is almost identical. There is a positive number r0 such that A lies in the
r0 –neighborhood of B and B also lies in the r0 –neighborhood of A. Thus Nr .A/�

NrCr0
.B/ and Nr .B/ � NrCr0

.A/ for each positive r . Let Div.X;A/D fın
�g and

Div.X;B/D fı0n� g. We will show ın
�=4
� ı06n

� . More precisely, we are going to prove
that for each r > 4r0=� ,

ın
�=4.r/� ı

06n
�

�
r

2

�
C 4r:

Let x1 , x2 be arbitrary points in @Nr .A/ such that dX .x1;x2/�nr and dr;A.x1;x2/<

1. Thus there is a path ˛ in Cr .A/ connecting x1 and x2 . Therefore, ˛ lies in
Cr�r0

.B/. Thus ˛ also lies in Cr=2.B/ because r=2> r0 . Moreover, x1 and x2 lies
in NrCr0

.B/. Therefore, we could choose y1 , y2 in @Nr=2.B/ and two geodesics
ˇ1 , ˇ2 in Cr=2.B/ connecting x1 , y1 and x2 , y2 respectively such that the length
of ˇ1 and ˇ2 are at most r C r0 . Since the distance between x1 and x2 is bounded
above by nr , then the distance between y1 and y2 is at most nr C 2r C 2r0 . Thus
dX .y1;y2/ � .nC 4/r � 3nr � 6n.r=2/. We define ˛0 D ˇ1 [ ˛ [ˇ2 , then ˛0 is a
path in Cr=2.B/ connecting y1 and y2 . Thus dr=2;B.y1;y2/ <1.

We are now going to show that

d�r=4;A.x1;x2/� d�.r=2/;B.y1;y2/C 4r:

Indeed, let 
 be an arbitrary path in C�.r=2/.B/ connecting y1 and y2 . Then 


also lies in C�.r=2/�r0
.A/. Therefore, 
 lies in C�r=4.A/. Since ˇ1 and ˇ2 lies in

Cr=2.B/, then they also lies in Cr=2�r0
.A/. Thus ˇ1 and ˇ2 lies in C�r=4.A/. We

define 
 0 D ˇ1[ 
 [ˇ2 , then 
 0 is a path in C�r=4.A/ connecting x1 and x2 . Thus
d�r=4;A.x1;x2/� j


0j.

Also
j
 0j � jˇ1jC j
 jC jˇ2j � .r C r0/Cj
 jC .r C r0/� j
 jC 4r

and 
 is an arbitrary path in C�.r=2/.B/ connecting y1 , y2 .
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Thus
d�r=4;A.x1;x2/� d�.r=2/;B.y1;y2/C 4r:

Therefore
ın
�=4.r/� ı

06n
�

�
r

2

�
C 4r:

Thus ın
�=4
� ı06n

� .

We now finish the proof of Proposition 4.3.

Proof Let ˆ be a map from X to Y such that the Hausdorff distance between ˆ.A/
and B is finite. Then Div.X;A/�Div.Y; ˆ.A// by Lemma 4.4 and Div.Y; ˆ.A//�
Div.Y;B/ by Lemma 4.5. Thus Div.X;A/ � Div.Y;B/. Similarly, Div.Y;B/ �
Div.X;A/. Therefore, Div.X;A/� Div.Y;B/.

We are now ready to define the concept of relative upper divergence of a finitely
generated group with respect to a subgroup.

Definition 4.6 Let G be a finitely generated group and H its subgroup. We define
the relative upper divergence of G with respect to H , denoted Div.G;H / to be the
relative upper divergence of the Cayley graph �.G;S/ with respect to H for some
finite generating set S .

Remark 4.7 If H is the trivial subgroup, then ın
� D ı

2
� for all n � 2. Thus we can

ignore the parameter n in the family fın
�g and consider that Div.G; e/ is characterized

by the one-parametrized family of functions fı�g. By this way, the upper relative
divergence Div.G; e/ is the same as the upper divergence Div.G/ of the group G in
terms of Gersten [9].

4.2 Relative lower divergence

In this section, we introduce the concept of relative lower divergence of geodesic spaces
as well as finitely generated groups. Similar to upper divergence, this concept is also a
quasi-isometry invariant.

Definition 4.8 Let .X;A/ be a pair of spaces. For each � 2 .0; 1� and positive integer
n� 2, we define a function �n

� W Œ0;1/! Œ0;1� as follows.

For each positive r , if there is no pair of x1;x2 2 @Nr .A/ such that dX .x1;x2/� nr

and dr .x1;x2/ <1, we define �n
� .r/D1.
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Otherwise, we define �n
� .r/ D inf d�r .x1;x2/ where the infimum is taken over all

x1;x2 2 @Nr .A/ such that dr .x1;x2/ <1 and d.x1;x2/� nr .

The family of functions f�n
� g is the relative lower divergence of X with respect A,

denoted div.X;A/.

By using the same argument from the previous section, we have the following proposi-
tion.

Proposition 4.9 If two pairs of spaces .X;A/ and .Y;B/ are quasi-isometric, then
div.X;A/� div.Y;B/.

We now define the concept of relative lower divergence of a finitely generated group
with respect to a subgroup.

Definition 4.10 Let G be a finitely generated group and H its subgroup. We define
the relative lower divergence of G with respect to H , denoted div.G;H /, to be the
relative lower divergence of the Cayley graph �.G;S/ with respect to H for some
finite generating set S .

Before moving on to another section, we would like to discuss the concept of lower
divergence of a geodesic ray in Charney and Sultan [4], and the connection between
this concept and the concept of lower relative divergence. We first recall the concept of
lower divergence of a geodesic ray in Charney and Sultan [4].

Definition 4.11 Let 
 be a geodesic ray in a geodesic space X . For any t > r > 0,
let �
 .r; t/ denote the infimum of the lengths of all paths from 
 .t � r/ to 
 .t C r/

which lie outside the open ball of radius r about 
 .t/. Define the lower divergence
of 
 to be the growth rate of the following function:

ldiv
 .r/D inf
t>r

�
 .r; t/:

The following theorem shows the concept of lower relative divergence generalizes the
concept of lower divergence of a geodesic ray.

Theorem 4.12 Let 
 be a geodesic ray in a geodesic space X . Then

div.X; 
 /� ldiv
 :

The proof of the above theorem is similar to the proof we are going to give for
Proposition 6.6 and we leave it to the reader.
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4.3 Some properties of relative divergence of finitely generated groups

In this section, we examine some key properties of relative divergence and we compare
upper and lower relative divergence.

Theorem 4.13 Let G be a finitely generated group and H a subgroup of G . Suppose
that Div.G;H /D fın

�g and div.G;H /D f�n
� g.

(1) If H is an infinite index subgroup of G , then ın
�.r/ <1 for every r > 0.

(2) If H is infinite and 0< ze.G;H / <1, then �n
� .r/ <1 for every r > 0.

Proof Fix a finite set S of generators of G .

First, we will prove that ın
�.r/ <1 for every r > 0. We define

AD S.e; r/\ @Nr .H /:

Obviously, A is a nonempty finite set. We define

B D f.x;y/ j x 2A, y 2 @Nr .H /, dr .x;y/ <1 and dS .x;y/� nr g:

Therefore, B is also a nonempty finite set. Define M D fd�r .x;y/ j .x;y/ 2 Bg and
we will show ın

�.r/�M .

Indeed, let x , y be arbitrary points in @Nr .H / such that dr .x;y/<1 and dS .x;y/�

nr . Let h be an element in H such that dS .x;H / D dS .x; h/ D r . Therefore,
.h�1x; h�1y/ 2 B and d�r .x;y/ D d�r .h

�1x; h�1y/. Thus d�r .x;y/ � M . It
follows that ın

�.r/�M .

We now assume that 0< ze.G;H /<1 and we will prove �n
� .r/<1 for all r > 0. Let

mD ze.G;H /. For each i 2 f0; 1; 2; : : : ;mg we could choose hi in H such that the
distance between hi and hj is at least .nC 2/r whenever i ¤ j . By Lemma 2.17, for
each i 2 f0; 1; 2; : : : ;mg we could choose an H –perpendicular ray 
i with the initial
point hi . Thus there are at least two different rays 
i and 
j such that 
i\Cr .H / and

i\Cr .H / lie in the same component of Cr .H /. We define uD 
i.r/ and vD 
j .r/.
Then u, v lie in @Nr .H /, the distance dr .u; v/ <1 and dS .u; v/� nr . Thus

�n
� .r/� d�r .x;y/ <1:

Theorem 4.14 Let G be an infinite finitely generated group and H an infinite finitely
generated subgroup of G . If 0< ze.G;H / <1, then div.G;H /� Div.G;H /.
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Proof Fix a finite generating set S of G such that T D S \H generates H . We
could consider �.H;T / as a subgraph of �.G;S/. We denote Div.G;H /Dfın

�g and
div.G;H /D f�n

� g. Let mD ze.G;H / and M D 4.2mC1/. We will show �n
� � ı

Mn
� .

More precisely, we are going to prove that for each r > 2,

�n
� .r/� ı

Mn
� .r/:

For each i 2 f0; 1; 2; : : : ;mg we choose hi in H such that 4ni r � jhi jS < 4ni r C 1

and 
i to be an H –perpendicular geodesic ray with the initial point hi . Since mD

ze.G;H /, there are two different geodesics 
i and 
j (i < j ) such that 
i \Cr .H /

and 
j \ Cr .H / lie in the same component of Cr .H /. We define x D 
i.r/ and
y D 
j .r/; then x and y lie in @Nr .H / and dr .x;y/ <1. Also,

dS .x;y/� dS .x; hi/C dS .hi ; hj /C dS .hj ;y/

� r C 4n.i C j /r C 2C r � 8mnr C 4r � .M n/r;

dS .x;y/� dS .hi ; hj /� dS .hi ;x/� dS .hj ;y/

� 4nj r � 4ni r � 1� r � r � 4nr � 3r � nr:

Thus
�n
� .r/� d�r .x;y/� �

Mn
� .r/:

Therefore �n
� � ı

Mn
� .

Theorem 4.15 (Commensurability) Let G be a finitely generated group.

(1) If K �H �G and ŒH WK� <1, then

Div.G;H /� Div.G;K/ and div.G;H /� div.G;K/:

(2) If H1 and H2 are two commensurable subgroups of G , then

Div.G;H1/� Div.G;H2/ and div.G;H1/� div.G;H2/:

(3) If K �H �G and ŒG WH � <1, then

Div.G;K/� Div.H;K/ and div.G;K/� div.H;K/:

(4) For any conjugate gHg�1 of H , we have

Div.G;gHg�1/� Div.G;H / and div.G;gHg�1/� div.G;H /:

Proof The theorem follows immediately from Propositions 4.3 and 4.9.
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5 Relative divergence of finitely generated groups with
respect to their normal subgroups

In this section, we investigate the upper and lower divergence of a finitely generated
group relative to a normal subgroup.

Lemma 5.1 Let G be a group with a finite generating set S and H a normal subgroup
of G . Suppose g1H , g2H are arbitrary left cosets of H and the distance between
them is n. Then for any element g1h in g1H the distance between g1h and g2H is
also n.

Proof Obviously, the distance between g1h and g2H is at least n. Thus we only
need to show this distance is bounded above by n. Choose g1h1 in g1H and g2h2

in g2H such that the distance between them is n. Define g D g1hh�1
1

g�1
1

. Since H

is a normal subgroup, then g lies in H and g0D g.g2h2/ is an element in g2H . Also,
dS .g1h;g0/ D dS .gg1h1;gg2h2/ D dS .g1h1;g2h2/ D n. Therefore, the distance
between g1h and g2H is at most n.

Theorem 5.2 Let G be a finitely generated group and H a finitely generated normal
subgroup of G . Suppose that Div.G;H /D fın

�g and Div.G=H; e/D fı�g. Let

xın
�.r/D ı�.r/C nr

for each positive r and Div.G=H; e/D f xın
�g. Then

Div.G=H; e/� Div.G;H /� DistHG ıDiv.G=H; e/:

Moreover, if G=H is one-ended and H is undistorted in G , then Div.G;H / �

Div.G=H; e/.

Proof Let S be a finite generating set of G and assume that T DG\S generates H .
Moreover, the image xS of S under the quotient map is a finite generating set of the
quotient group G=H . We see that the Cayley graph �.G=H; xS/ is the quotient graph
of the Cayley graph �.G;S/ under the action of H .

We will first show that ın
� � DistHG ı xı

n
� . More precisely, we will show that ın

�.r/ �

2 DistHG ı xı
n
�.r/ for all positive r .

Indeed, let x , y be arbitrary points in @Nr .H / such that dr;H .x;y/ < 1 and
dS .x;y/� nr . We assume that r is an integer and x , y are vertices. Thus there is a
path in Cr .H / connecting x and y . Let xx and xy be the associated points of x and y
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respectively in �.G=H; xS/. Thus xx and xy lie in the sphere Sr .xe/ and there is a path
outside the ball Br .xe/ connecting them.

Since d�r;xe.xx; xy/ � ı�.r/, then there is a path ˛ in C�r .xe/ connecting xx , xy such
that the length of ˛ is bounded above by ı�.r/. Thus there is a path ˇ in C�r .H /

connecting x and some point y0 in @Nr .H /. Moreover, y0Dhy for some h, and ˛ , ˇ
have the same length. Thus the length of ˇ is also bounded above by ı�.r/. Thus
the distance between x and y0 is also bounded above by ı�.r/ with respect to the
metric dS . Therefore, the distance between y and y0 is bounded above by ı�.r/Cnr

with respect to the metric dS . Since y and y0 lie in the same left coset gH , then there
is a path 
 with vertices in gH connecting y and y0 . Thus the path 
 must lie in
Cr .H / by Lemma 5.1. Moreover, the path 
 can be chosen with the length bounded
above by DistHG .ı�.r/C nr/. We define ˇ0 D ˇ [ 
 then ˇ0 is a path in C�r .H /

connecting x , y and the length of ˇ0 is bounded above by DistHG .ı�.r/Cnr/Cı�.r/.
Thus

d�r;H .x;y/� DistHG .ı�.r/C nr/C ı�.r/� 2 DistHG ı xın
�.r/:

Therefore
ın
�.r/� 2 DistHG ı xın

�.r/:

Thus
ın
� � DistHG ı xın

� :

We now show ı� � ı
n
� . More precisely, we are going to show that ı�.r/� ın

�.r/ for
all positive r .

Indeed, let u and v be arbitrary points in Sr .xe/ of �.G=H; xS/ and dr;xe.u; v/ <1.
We assume that r is an integer and u, v are vertices. Choose x1 and y1 be lifting points
of u and v respectively such that dS .x1;y1/D d xS .u; v/ � 2r � nr . Obviously, x1

and y1 lie in @Nr .H /. We will show dr;H .x1;y1/ <1.

Indeed, since there is a path in Cr .xe/ connecting u and v , then there is a path ˛1 in
Cr .H / connecting two points x1 and some point y0

1
, where y0

1
D h0y1 for some h0

in H . Since y1 and y0
1

lie in the same left coset g0H , then there is a path ˛2 with
vertices in g0H connecting y1 and y0

1
. By Lemma 5.1, the path ˛2 also lies in Cr .H /.

By concatenating ˛1 and ˛2 , we have a path in Cr .H / connecting x1 and y1 . Thus
dr;H .x1;y1/ <1.

We now prove that d�r;xe.u; v/ � d�r;H .x1;y1/. Indeed, for any path 
 0 in C�r .H /

connecting x1 and y1 , there is a path x
 0 connecting u, v such that the length of x
 0 is
less than or equal to the length of 
 0 . Thus d�r;xe.u; v/ � d�r;H .x1;y1/. Therefore,
ı�.r/� ı

n
�.r/. Thus ı� � ın

� .
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If a quotient group G=H is one-ended, then ı�.r/� 2r for each r > 0. Thus

xın
�.r/D ı�.r/C nr � .nC 1/ı�.r/:

Therefore
ın
�.r/� 2 DistHG ı xın

�.r/� 2 DistHG ..nC 1/ı�.r//:

So ın
� � ı� if DistHG is dominated by a linear function.

Thus Div.G;H /� Div.G=H; e/ if G=H is one-ended and H is undistorted in G .

Remark 5.3 If GDH�K and K is a one-ended group, then Div.G;H /�Div.K; e/.
Thus we could have any desired relative upper divergence Div.G;H / by controlling
the divergence Div.K; e/. In particular, any finitely generated group H could be
embedded as a subgroup of a larger finitely generated group G such that Div.G;H /

is any polynomial function or exponential function. Indeed, we only need to choose K

to be a one-ended hyperbolic group to have the upper relative divergence Div.G;H /

as the exponential function. Similarly, we can choose a one-ended group K such that
Div.K; e/ is equivalent to a desired polynomial (for example, see [16]) and Div.G;H /

is also equivalent to this desired polynomial.

Theorem 5.4 Let G be a finitely generated group and H an infinite normal subgroup
of G . Let K be any finitely generated infinite subgroup of H . Then, div.G;H / �

distKG . In particular, if H is finitely generated, then div.G;H /� distHG .

Proof Let S be a finite generating set of G and assume that T DK\S generates K .
Thus �.K;T / is a subgraph of �.G;S/. Denote div.G;H /D f�n

� g. We will prove
that �n

� � distKG . More precisely, �n
� .r/� distKG .nr/.

For each r > 0, we assume that r is an integer. Since distKG .nr/ D minfjkjT j
jkjS � nrg, then there is an element k0 in K such that jk0jS � nr and jk0jT �

distKG .nr/. Let ˛ be a geodesic in �.K;T / connecting the identity element e and k0 .
Thus all vertices of ˛ lie in H , and the length of ˛ is bounded above by distKG .nr/.
Choose any element g in G such that dS .g;H /D r and define xDg and yDgk0 . By
Lemma 5.1, the points x and y lie in @Nr .H / and g˛ is a path in Cr .H / connecting x

and y . Moreover, dS .x;y/D jk0jS � nr . Thus

�n
� .r/� d�r .x;y/� `.g˛/� `.˛/� distKG .nr/:

Therefore �n
� � distKG .

Corollary 5.5 Let G be a finitely generated group and H an infinite normal subgroup
of G . If H contains some infinite finitely generated subgroup, then div.G;H / is
dominated by the growth of G . In particular, div.G;H / is at most exponential.
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Remark 5.6 In Corollary 5.5, it is unknown whether or not div.G;H / is dominated
by the exponential function when every finitely generated subgroup of H is finite.

In Theorem 5.4, the relative lower divergence div.G;H / can be strictly dominated by
distHG . Similarly, Div.G;H / could be strictly dominated by DistHG ıDiv.G=H; e/ in
Theorem 5.2. We now compute the relative divergence of the Heisenberg group with
respect to some cyclic subgroup to show these facts.

Before computing the relative divergence of the Heisenberg group with respect to some
cyclic subgroup, we need some results about this group.

Lemma 5.7 Let G D ha; b; c j bab�1a�1 D c; ac D ca; bc D cbi be the Heisenberg
group and H the cyclic subgroup generated by c . Then we have the following.

(1) Each element of G can be written uniquely in the form akb`cp , where k; `;p

are integers.

(2) We have

.akb`cp/aD akC1b`cpCl ;

.akb`cp/b D akb`C1cp;

.akb`cp/c D akb`cpC1:

(3) H is a normal subgroup of G , and G=H D Z2 is one-ended.

(4) If jakb`cpj �N , then jkj �N , j`j �N , jpj �N 2 .

(5) dS .a
kb`cp;H /D jkjC j`j.

Proof For facts (1), (2), (3) and (4), we refer the reader to [10, Examples 1.5 and 1.18].
We now prove fact (5).

First we observe that c commutes with every element of G . Since dS .a
kb`cp; cp/D

dS .c
pakb`; cp/D jakb`jS � jkjC j`j and cp 2H , then dS .a

kb`cp;H /� jkjC j`j.
Let cp0 be an element in H such that dS .a

kb`cp;H / D dS .a
kb`cp; cp0/. Thus

dS .a
kb`cp;H /D jc�p0akb`cpjS D ja

kb`cp�p0 jS . Let w be the shortest word such
that akb`cp�p0 �G w . Write w in the form w D ak1b`1cp1ak2b`2cp2 � � � aknb`ncpn

and jwjS D
Pn

iD1.jki jCj`i jCjpi j/. We note that the values of ki ; `i ;pi can be zero.
Thus

dS .a
kb`cp;H /D

nX
iD1

.jki jC j`i jC jpi j/:

Also, there is p00 such that w �G ak1Ck2C���Cknb`1C`2C���C`ncp00 .
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Thus akb`cp�p0 �G ak1Ck2C���Cknb`1C`2C���C`ncp00 .

By (1), it implies that k D k1C k2C � � �C kn and `D `1C `2C � � �C `n .

Then

dS .a
kb`cp;H /D

nX
iD1

.jki jC j`i jC jpi j/� jkjC j`j:

Therefore dS .a
kb`cp;H /D jkjC j`j.

Theorem 5.8 Let G D ha; b; c j bab�1a�1D c; acD ca; bcD cbi be the Heisenberg
group and H the cyclic group generated by c . Then

(1) distHG and DistHG are both quadratic;

(2) div.G;H / and Div.G;H / are both linear.

Proof The fact that distHG and DistHG are both quadratic could be seen in Theorem 3.10.
We see that ze.G;H /D e.G=H /D 1 by Theorem 2.15. Thus div.G;H /�Div.G;H /

by Theorem 4.14. Therefore, it is sufficient to show Div.G;H / is linear.

Denote Div.G;H /D fın
�g. We will show that ın

� � r . More precisely, we are going
to show that ın

�.r/� 50nr for all positive r .

Indeed, let x and y be arbitrary points in @Nr .H / such that dr .x;y/ < 1 and
dS .x;y/� nr . Assume that r is an integer and x , y are vertices. Write x D akb`cp

and y D ak0b`
0

cp0 . Thus jkjC j`j D r and jk 0jC j`0j D r by Lemma 5.7(5).

By Lemma 5.7(2) and the fact that c commutes with any element of group G , we
compute

x�1y D ak0�kb`
0�`c.p

0�p/�`.k0�k/:

Also,
jx�1yjS D dS .x;y/� nr:

Thus jk 0� kj � nr , j`0� `j � nr and j.p0�p/� `.k 0� k/j � n2r2 .

Therefore,

jp0�pj � j.p0�p/� `.k 0� k/jC j`.k 0� k/j � n2r2
C nr2

� 2n2r2:

Let `1 be a number such that ``1 � 0 and j`1j D r . Let x1 D xb`1�` ; x2 D x1ar�k

and x3 D x2b13nr�`1 . By Lemma 5.7(2), we see that x3 D ar b13nr cpC`1.r�k/ .

Since x1 D xb`1�` and j`1 � `j � r , there is a path ˛1 with edges labeled by b

connecting x and x1 such that the length of ˛1 is less than or equal to r . Similarly,
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there is a path ˛2 with edges labeled by a connecting x1 , x2 such that the length
of ˛2 is less than 2r and a path ˛3 with edges labeled by b connecting x2 , x3 such
that the length of ˛3 is less than 14nr . Let ˛D ˛1[˛2[˛3 . We see that each vertex
of ˛ is of the form x D ak1b`1cp1 where jk1j C j`1j � r . Therefore, ˛ is a path in
Cr .H / by Lemma 5.7(5) and ˛ connects x and x3 , where x3 D ar b13nr cpC`1.r�k/

and j`1j D r . Moreover, the length of ˛ is bounded above by 17nr .

By a similar argument, there is a path ˇ in Cr .H / connecting y and y3 , where
y3 D ar b13nr cp0C`0

1
.r�k0/ and j`0

1
j D r . Moreover, the length of ˇ is bounded above

by 17nr .

We now try to connect x3 and y3 by a path 
 in Cr .H / with length bounded above
by 14nr . Indeed, let p1 D pC `1.r � k/ and p0

1
D p0C `0

1
.r � k 0/. If p1 D p0

1
(ie

x3D y3 ), then we can consider 
 is a trivial path connecting x3 and y3 with length 0.
If p1 ¤ p0

1
, then we assume that p1 < p0

1
. Thus

jp01�p1j � jp
0
�pjC j`1.r � k/jC j`01.r � k 0/j � 2n2r2

C 2r2
C 2r2

� 4n2r2:

Thus 0< p0
1
�p1 � 4n2r2 .

Let t be a positive number such that t2� .p0
1
�p1/<.tC1/2 and let t1D .p

0
1
�p1/�t2 .

Then t � 2nr and t1 � .t C 1/2 � t2 � 2t C 1 � 5nr . Also, cp0
1
�p1 D ct2

ct1 D

btatb�ta�tct1 and y3 D x3cp0
1
�p1 . Thus we could connect x3 , y3 by a path 
 such

that the length of 
 is bounded above by 4t C t1 . Therefore, this length is bounded
above by 13nr . Also, the distance between x3 and H is .13nC1/r . Thus 
 must lie
in Cr .H /. Let x
 D˛[
[ˇ then x
 is a path in Cr .H / connecting x , y and the length
of x
 is bounded above by 50nr . Thus d�r .x;y/ < 50nr . Therefore, ın

�.r/� 50nr .
Thus ın

� � r .

6 Relative divergence of finitely generated groups with
respect to their cyclic subgroups

In this section, we investigate the upper and lower divergence of a finitely generated
group relative to an infinite cyclic subgroup.

Definition 6.1 Let G be a group with finite generating set S and H an infinite cyclic
subgroup of G generated by some element h in S . Let eh be the edge with the
identity vertex as the initial point and labeled by h in �.G;S/. A bi-infinite arc
˛ D

S
n2Z hneh is the axis of H .
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Suppose G is a finitely generated one-ended group and H is an infinite cyclic subgroup
of G in this section. Let h be a generator of H and assume that the finite generating
set S of G contains h. Let ˛ be the axis of H . Thus ˛ is a bi-infinite arc with all
vertices in H .

We now define the concept of divergence of a bi-infinite arc in a one-ended geodesic
space. This concept will play an important role for investigating the lower divergence
of a one-ended group G with respect to an infinite cyclic subgroup.

Definition 6.2 Let X be a one-ended geodesic space and ˇ a proper bi-infinite arc.
Let c be one point on ˇ . The divergence of .ˇ; c/, denoted div.ˇ; c/, is the function
f W .0;1/! .0;1/ defined as follows.

For each positive r , we define

f .r/D inffj
 j j 
 is a path in X �B.c; r/ with endpoints on ˇ
and on different sides of cg:

Remark 6.3 Observe that div.ˇ; c/ is a nondecreasing function.

Let ˛ be the axis of the infinite cyclic subgroup H , which is defined in Definition 6.1.
Then div.˛; hi/ D div.˛; e/ in the Cayley graph �.G;S/ for any element hi in H

and let div˛ D div.˛; e/.

For each x in �.G;S/� ˛ and u a point in ˛ such that dS .x; ˛/ D dS .x;u/, the
point u must be a vertex of �.G;S/. Thus Nr .˛/DNr .H / for each r > 1. Therefore,
@Nr .˛/D @Nr .H / and Cr .˛/D Cr .H / for each r > 1.

Definition 6.4 Let c be an arc in �.G;S/. If c0 is any subset of c , the Hull of c0

in c , denoted Hullc.c0/, is the smallest connected subspace of c containing c0 .

Lemma 6.5 Choose r > 1 and let n be a positive integer. Choose s such that
s � 3 DistHG ..nC 2/r/. Let a, b , c be three different points in ˛ such that c lies
between a, b . Assume that a, b lie outside the ball B.c; s/. Let 
 be an arc outside
B.c; s/ connecting a and b . Then there are two points x , y in 
 \ @Nr .˛/ such that
dS .x;y/� nr and the segment of 
 connecting x and y lies in Cr .˛/.

Proof First, we will show that 
 does not lie in the r –neighborhood of ˛ . Assume
by way of contradiction that 
 lies in the r –neighborhood of ˛ . For each G –vertex v
of 
 , let

cv D Hull˛.˛\B.v; r//:
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For each edge e of 
 with G –endpoints v and w , let

ce D Hull˛.cv [ cw/:

We see that the subsegment Œa; b� of ˛ is covered by the sets ce for all edges e of 
 .
In particular, c lies in some ce , where e is an edge of 
 . Therefore, c lies between
two vertices u1 and v1 of ˛ whose distance from vertices of e is at most r . Thus
the distance between u1 and v1 is less than 2r C 1. Therefore, the length of the
subsegment Œu1; v1� of ˛ is less than DistHG .2r C 1/. Thus

dS .c; 
 /� DistHG .2r C 1/C r < 2 DistHG ..nC 2/r/ < s;

which is a contradiction. Thus 
 does not lie in the r –neighborhood of ˛ .

Let M D fxi j i 2 f0; 1; 2; : : : ; ngg be the set of points of 
 that satisfies the following
conditions.

(1) We have x0 D a and xn D b .

(2) For each i 2 f1; 2; : : : ; n� 1g, the distance between xi and ˛ is r .

(3) For each i 2 f0; 1; 2; : : : ; n� 1g, the open segment .xi ;xiC1/ does not contain
any point in @Nr .˛/.

For each i 2 f1; 2; : : : ; n � 1g, let x0i be a vertex of ˛ such that dS .xi ;x
0
i/ D r .

We again assign x0
0
D a and x0n D b . For each i 2 f0; 1; 2; : : : ; n � 1g, define di

to be the subsegment of ˛ that connects x0i and x0
iC1

. Therefore, c must lie in
some di0

. Since .xi0
;xi0C1/ \ @Nr .˛/ D ¿, then either .xi0

;xi0C1/ � Nr .˛/ or
.xi0

;xi0C1/\Nr .˛/D¿.

If .xi0
;xi0C1/�Nr .˛/, we can use the same argument as above to show dS .c; 
 /< s ,

which is a contradiction. Thus .xi0
;xi0C1/\Nr .˛/D¿ or .xi0

;xi0C1/� Cr .˛/.

Since the distance between xi0
and c is at least s and the distance between x0i0

and xi0

is r , then the distance between x0i0
and c is at least s � r . Thus the length of the

segment of ˛ connecting x0i0
and c is at least s�r . Similarly, the length of the segment

of ˛ connecting x0i0C1 and c is also at least s�r . Thus the length of the segment of ˛
connecting x0i0

and x0i0C1 is also at least 2s � 2r . Therefore, this length is strictly
bounded below by

DistHG ..nC 2/r/:

Thus the distance in H between x0i0
and x0i0C1 is strictly greater than DistHG ..nC2/r/.

Therefore, the distance in G between x0i0
and x0i0C1 is at least .nC 2/r . Also, the

distances dS .x
0
i0
;xi0

/ and dS .x
0
i0C1;xi0C1/ are both r . Thus the distance between

xi0
and xi0C1 is at least nr . We let x D xi0

and y D xi0C1 .
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Proposition 6.6 Let G be a one-ended group with a finite generating set S . Let H be
an infinite cyclic subgroup generated by some element in S and ˛ the axis of H . Then

div˛ � div.G;H /� div˛ ı.3 DistHG /:

Proof Denote div.G;H /D f�n
� g.

We will first show that �n
� � div˛ ı.3 DistHG /. More precisely, we are going to show

that �n
� .r/� div˛ ı.3 DistHG /..nC 2/r/ for all numbers r > 1.

Indeed, let sD 3 DistHG ..nC2/r/. Let 
 be any arc outside the ball B.e; s/ connecting
two points u and v on ˛ such that e lies between u and v . By Lemma 6.5, there are
two points x and y in 
 \ @Nr .˛/ such that dS .x;y/ � nr and the segment of 

connecting x and y lies in Cr .˛/. By Remark 6.3, two points x and y also lie in
@Nr .H /. Then d�r .x;y/ is bounded above by the length of 
 . Therefore, �n

� .r/ is
bounded above by the length of 
 . Thus

�n
� .r/� div˛.s/:

Therefore,
�n
� .r/� div˛ ı.3 DistHG /..nC 2/r/:

We now will show that div˛ � �n
� for each n � 20. More precisely, we are going to

show that for each r > 3,
div˛.�r/� �n

� .r/C 2r:

Indeed, let x1 and y1 be arbitrary points in @Nr .H / such that dX .x1;y1/� nr and
dr .x1;y1/<1. Let ˇ be any arc in C�r .H / connecting x1 and y1 . Let x2 and y2 be
vertices in ˛ such that dS .x1; ˛/D dS .x1;x2/D r and dS .y1; ˛/D dS .y1;y2/D r .
Let ˇ1 be a geodesic connecting x1 and x2 and ˇ2 a geodesic connecting y1 and y2 .
Since the distance between x1 and y1 is bounded below by nr , the distance between x2

and y2 is bounded below by .n � 2/r . Let hi be a vertex of ˛ such that hi lies
between x2 , y2 such that x2 , y2 do not lie in the ball of center hi with radius 5r .
Let x̌ D ˇ1[ˇ[ˇ2 . Thus x̌ is a path outside the ball B.hi ; �r/ connecting the two
points x2 , y2 in ˛ and hi lies between x2 , y2 . Therefore, we could have an arc ˇ0

from x̌ connecting two points x2 and y2 . Thus div˛.�r/ is bounded above by the
length of x̌. Therefore, div˛.�r/ is bounded above by jˇjC 2r . Therefore, div˛.�r/

is bounded above by d�r .x1;y1/C 2r . Thus

div˛.�r/� �n
� .r/C 2r:

Therefore,
div˛ � �n

� :
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Theorem 6.7 Let G be a one-ended finitely generated group and H an infinite cyclic
subgroup of G . Suppose that div.G;H /Df�n

� g and Div.G; e/Dfı�g. Then �n
� � ı�ı

..3=�/DistHG /. In particular, div.G;H /� Div.G; e/ if H is an undistorted subgroup.

Proof We will show that �n
� .r/� ı� ı ..3=�/DistHG /..nC 2/r/ for all r > 1.

Indeed, let s D .3=�/DistHG ..nC 2/r/. Choose x and y in ˛ \S.e; s/ such that e

lies between x and y . Let 
 be an arbitrary arc outside B�s.e/ connecting x and y .
Since �s D 3 DistHG ..nC 2/r/, then there are two points x1 and y1 in 
 \ @Nr .˛/

such that dS .x1;y1/� nr and the segment of 
 connecting x1 and y1 lies in Cr .˛/

by Lemma 6.5. Thus the two points x1 and y1 also lie in @Nr .H / and the segment
of 
 connecting x1 and y1 also lies in Cr .H / by Remark 6.3. Thus the distance
d�r .x1;y1/ is bounded above by the length of 
 . Therefore, �n

� .r/ is also bounded
above by the length of 
 . Thus

�n
� .r/� ı�.s/:

Therefore,

�n
� .r/� ı� ı

�
3

�
DistHG

�
..nC 2/r/:

Thus �n
� � ı� ı ..3=�/DistHG /.

Remark 6.8 In Theorem 6.7, we could not replace div.G;H / by Div.G;H /. For
example, let H D Z and K be any one-ended finitely generated group such that
Div.K; e/ is superlinear. We define G D H �K . Thus G is a one-ended finitely
generated group and H is an infinite cyclic subgroup of G . Then, DistHG is linear
and Div.G;H / D Div.K; e/ is superlinear. Also the divergence Div.G; e/ is linear
(see [9, Theorem 4.1]). Thus Theorem 6.7 is no longer true if we replace div.G;H /

by Div.G;H /.

Moreover, the two functions �n
� and ı� ı ..3=�/DistHG / in Theorem 6.7 can be equiva-

lent in some cases (for example: G D Z2 and H any cyclic subgroup of G ), and �n
�

can be strictly dominated by ı� ı ..3=�/DistHG / in some other cases (see Theorem 5.8).

7 Relative divergence of CAT.0/ groups

In this section, we investigate the relative divergence of .G;H / where G is a CAT.0/
group. We use Theorem 5.2 to build CAT.0/ groups with arbitrary polynomial upper
relative divergences with respect to some subgroup (see Theorem 7.7). We also examine
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the class of groups defined by Macura [16] to obtain arbitrary polynomial lower relative
divergence (see Corollary 7.12).

We now review some concepts and some basic properties of a CAT.0/ group. We refer
the reader to Bridson and Haefliger [3] for studying more on CAT.0/ groups.

Definition 7.1 Let X be a geodesic space. A geodesic triangle � in X consists of
three points p; q; r in X and three geodesic segments Œp; q�; Œq; r �; Œr;p�. A comparison
triangle for � in E2 is a geodesic triangle x� in E2 with vertices xp; xq; xr such that
d.p; q/ D d. xp; xq/; d.q; r/ D d.xq; xr/ and d.r;p/ D d.xr ; xp/. A point xx in Œxq; xr � is
called a comparison point for x in Œq; r � if d.q;x/D d.xq; xx/. Comparison points on
Œp; q� and Œp; r � are defined in the same way.

Definition 7.2 A geodesic triangle � in a geodesic space X satisfies the CAT.0/
inequality if d.x;y/ � d.xx; xy/ for all points x and y on � and corresponding
points xx; xy on the comparison triangle x� in Euclidean space E2 .

Definition 7.3 A geodesic space X is CAT.0/ space if every triangle in X satisfies
the CAT.0/ inequality.

A group is CAT.0/ if it acts properly and cocompactly on some proper CAT.0/ space.

The proof of the following proposition can be found in [3].

Proposition 7.4 Let .X1; d1/ and .X2; d2/ be CAT.0/ spaces. Then the Cartesian
product X1 �X2 endowed with the metric d defined by d2 D d2

1
C d2

2
is a CAT.0/

space.

The following corollary is an immediate result of the above proposition.

Corollary 7.5 The direct product of two CAT.0/ groups is a CAT.0/ group.

The following theorem is a direct result from [3, Corollary III.� .4.8 and Theo-
rem III.� .4.10].

Theorem 7.6 Every finitely generated abelian subgroup of a CAT.0/ group is undis-
torted.

Theorem 7.7 Let f be any polynomial function or exponential function. There is a
pair of groups .G;H /, where G is a CAT.0/ group and H is a normal infinite cyclic
subgroup of G such that Div.G;H /� f .

Proof We will build the group G of the form G DK �Z and we choose a suitable
one-ended CAT.0/ groups K . We choose H to be the Z factor of G . Thus we observe
that Div.G;H /D Div.G=H; e/D Div.K; e/ by Theorem 5.2.
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If f is a polynomial of degree d , then we choose a subgroup K such that Div.K; e/ is
equivalent to f (see [16] for example). If f is the exponential function, we choose K

to be a surface group of genus g� 2. Since a surface group of genus g� 2 is a CAT.0/
group, then the group G is also a CAT.0/ group by Corollary 7.5. Moreover, K is a
one-ended hyperbolic group, then the upper divergence of K is exponential. Thus the
relative upper divergence Div.G;H / is also exponential.

Theorem 7.8 Let G be a CAT.0/ group and H a normal subgroup of G that contains
at least one infinite order element. Then div.G;H / is linear.

Proof By Theorem 7.6, there is an undistorted cyclic subgroup K in H . By
Theorem 5.4, we observe that div.G;H / is linear.

We now investigate relative lower divergence of a class of CAT.0/ groups introduced
by Macura in [16]. First, we will review this class of groups.

For each integer d � 2, we define

Gd D ha0; a1; : : : ; ad j a0a1 D a1a0; a
�1
i a0ai D ai�1; for 2� i � d i

and Hd to be the cyclic subgroup generated by ad .

Let Xd be the presentation complex of Gd and zXd is the universal cover of Xd . The
space zXd is a CAT.0/ square complex (see Macura [16]). Moreover, Gd is one-ended
and we could consider the 1–skeleton zX .1/

d
of zXd as the Cayley graph of Gd . Let ˛

be the axis of the infinite cyclic subgroup of Hd as in Definition 6.1. By Proposition 6.6
and Theorem 7.6, we can investigate the divergence div˛ of ˛ in zXd to understand
the lower divergence div.Gd ;Hd /. Before computing div˛ , we need to review some
results from [16].

Proposition 7.9 [16, Proposition 4.4] There is a polynomial qd , of degree d , such
that for any point O in zXd and any two points P;Q on the sphere S.O; r/ � zXd ,
there is a path 
 in zXd �B.O; r/ connecting P and Q such that the length of 
 is at
most qd .r/.

Proposition 7.10 [16, Theorem 5.3] There is a polynomial pd , of degree d , such
that the following holds. Let T be any vertex on zXd . Let 
0 be a geodesic ray which
is the infinite concatenation of edges a0 , and 
d a geodesic ray which is the infinite
concatenation of edges ad . We assume that 
0 and 
d have the same initial point T .
For each path ˇ outside the ball B.T; r/ connecting P 2 
d and Q 2 
0 , the length
of ˇ is bounded below by pd .r/.

Proposition 7.11 The divergence div˛ is polynomial of degree d .
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Proof By Proposition 7.9, there is a polynomial qd , of degree d such that the following
holds. Let r be any positive number and u, v two points in S.e; r/\˛ such that e lies
between u, v . There is a path outside B.e; r/ of length at most qd .r/ connecting u

and v . Therefore, div˛ is bounded above by qd .




˛

r

ead ad ad ad ad ad ad ad ad ad

Figure 2: The path 
 lies outside B.e; r/ with endpoints on ˛ and on
different sides of e .

We now prove that div˛ has some polynomial of degree d as a lower bound. Let pd be
the polynomial of degree d in Proposition 7.10. We will show div˛ is bounded below
by this polynomial. Indeed, for each positive r , let 
 be any path outside B.e; r/ with
endpoints on ˛ and on different sides of e (see Figure 2).

˛





1

r

a0

a0

a0

a0

a0

ad ad ad ad ad ad ad ad ad ad

Figure 3: The subsegment 
1 of 
 connecting two points of 
0 and 
d ,
where 
0 and 
d are two geodesic rays issuing from e such that they are
infinite concatenations of edges a0 and ad respectively
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We are going to show that there exists a subsegment 
1 of 
 connecting two points
of 
0 and 
d , where 
0 and 
d are two geodesic rays issuing from e such that they
are infinite concatenations of edges a0 and ad respectively (see Figure 3).

.a/

˛




r

a0 ad�1

ad

ad

.b/

˛




r

a0 ad�1

ad

ad

Figure 4: The position of the 2–cell c1 in the diagram D

.a/

˛




r

a0

a0 ad�1

ad�1

ad

ad

ad

.b/

˛




r

a0

a0 ad�1

ad�1

ad

ad

ad

Figure 5: The position of the 2–cell c2 in the diagram D

We will use the same technique as in [9] for this argument. We observe that the path 

and the subsegment of ˛ between two endpoints of 
 form a loop in zXd which may
fill in with a reduced van Kampen diagram D (see Lyndon and Schupp [15]). Since
the path 
 lies outside the ball B.e; r/, the edge a.1/

d
of ˛ with the initial point e

must lie in some 2–cell of D . By the presentation of Gd , the edge a.1/
d

must lie in
a 2–cell c1 labeled by a�1

d
a0ada�1

d�1
. There are two cases for c1 depending on its

orientation in D (see Figure 4).

We now only argue on the first case (see Figure 4(a)) and the argument of the second case
(see Figure 4(b)) is almost identical. If the edge a.2/

d
that is opposite to a.1/

d
in c1 lies

in the path 
 , it is obvious that there exist a subsegment 
1 of 
 connecting two points
of 
0 and 
d . Otherwise, a.2/

d
must lie in some 2–cell c2 labeled by a�1

d
a0ada�1

d�1

of D . Again, there are two possibilities for c2 depending on the orientation of c2 in D

(see Figure 5).
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In the second case (see Figure 5(b)), we see that the two 2–cells c1 and c2 form a
cancellable pair in D . This is impossible since the diagram D is reduced. Thus the
second possibility is ruled out. By arguing inductively, we obtain a corridor that is a
concatenation of 2–cells labeled by a�1

d
a0ada�1

d�1
such that one edge a.n/

d
labeled

by ad of the last 2–cell in the corridor must lie in the boundary of D . If a.n/
d

is an
edge of ˛ , the diagram D would not be planar topologically. Thus a.n/

d
must be an

edge of 
 (see Figure 6).

˛





1

r

a0

a0

a0

a0

a0

ad�1

ad�1

ad�1

ad�1

ad�1

ad

ad

ad

ad

ad

ad ad ad ad ad ad ad ad ad ade

Figure 6: The corridor that is a concatenation of 2–cells labeled by
a�1

d
a0ad a�1

d�1
in the diagram D

Therefore, there exists a subsegment 
1 of 
 connecting two points of 
0 and 
d .
Since the length of 
1 is bounded below by pd .r/ by Proposition 7.10, then the
length of 
 is also bounded below by pd .r/. Therefore, the divergence div˛ must be
dominated the polynomial pd .r/.

Corollary 7.12 Let Hd be a cyclic subgroup of Gd generated by ad . Then the
relative lower divergence div.Gd ;Hd / is polynomial function of degree d .

Proof This is an immediate consequence of Propositions 6.6 and 7.11.

8 Relative divergence of relatively hyperbolic groups

We now investigate the relative divergence of a relatively hyperbolic group with respect
to a subgroup.
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Definition 8.1 A geodesic metric space .X; d/ is ı–hyperbolic if every geodesic tri-
angle with vertices in X is ı–thin in the sense that each side lies in the ı–neighborhood
of the union of other sides.

A finitely generated group G is hyperbolic if the Cayley graph �.G;S/ is a hyperbolic
space for some finite set of generators S .

Definition 8.2 A subspace Y of a geodesic metric space X is quasiconvex when there
exists some k > 0 such that every geodesic in X that connects a pair of points in Y

lies inside the k –neighborhood of Y .

Suppose G is a hyperbolic group with a finite generating set S . A subgroup H of a
group G is quasiconvex if it is quasiconvex in the Cayley graph �.G;S/.

Remark 8.3 The concepts of hyperbolic groups and quasiconvex subgroups do not
depend on the choice of finite set of generators (see [10; 1]).

We now discuss a generalization of the concepts of hyperbolic groups and quasiconvex
subgroups. They are relatively hyperbolic groups and relatively quasiconvex subgroups.

Definition 8.4 Given a finitely generated group G with Cayley graph �.G;S/ which
is equipped with the path metric and a finite collection P of subgroups of G, one can
construct the coned off Cayley graph y�.G;S;P / as follows. For each left coset gP

where P 2 P , add a vertex vgP , called a peripheral vertex, to the Cayley graph
�.G;S/ and for each element x of gP , add an edge e.x;gP / of length 1/2 from x

to the vertex vgP . This results in a metric space that may not be proper (ie closed balls
need not be compact).

Remark 8.5 Throughout this section, we denote the metric in �.G;S/ by dS and
the metric in y�.G;S;P / by d .

Definition 8.6 (Relatively hyperbolic group) A finitely generated group G is hyper-
bolic relative to a finite collection P of subgroups of G if the coned off Cayley graph
is ı–hyperbolic and fine (ie for each positive number n, each edge of the coned off
Cayley graph is contained in only finitely many circuits of length n).

Each group P 2 P is a peripheral subgroup and its left cosets are peripheral left cosets
and we denote the collection of all peripheral left cosets by ….
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An element g of G is hyperbolic if g is not conjugate to any element of any peripheral
subgroups.

Lemma 8.7 (Hruska [14, Proposition 9.4]) Let G be a group with a finite generating
set S . Suppose xH and yK are arbitrary left cosets of subgroups of G . For each
constant L there is a constant L0 D L0.G;S;xH;yK/ so that in the metric space
.�.G;S/; dS / we have

NL.xH /\NL.yK/�NL0.xHx�1
\yKy�1/:

Definition 8.8 Let .G;P / be a relatively hyperbolic group. A subgroup H of G is
relatively quasiconvex if the following holds. Let S be some (any) finite generating set
for G . Then there is a constant � D �.S/ such that for each geodesic xc in y�.G;S;P /
connecting two points of H , every G –vertex of xc lies within a dS –distance � of H .

Remark 8.9 We note that the concepts of relative hyperbolicity and relative quasicon-
vexity do not depend on the choice of finite set of generators (see Osin [21]).

Definition 8.10 Let .G;P / be a relatively hyperbolic group.

(1) A relatively quasiconvex subgroup H of G is strongly relatively quasiconvex if
for each conjugate g�1Pg of any peripheral subgroup P and H \g�1Pg is a
finite subgroup of g�1Pg .

(2) A relatively quasiconvex subgroup H of G is fully relatively quasiconvex if for
each conjugate g�1Pg of any peripheral subgroup P , H \g�1Pg is a finite
subgroup or finite index subgroup of g�1Pg .

Lemma 8.11 [21, Theorem 4.13] Let .G;P / be a relatively hyperbolic group. Let H

be a subgroup of G . Then the following conditions are equivalent.

(1) H is strongly relatively quasiconvex.

(2) H is generated by a finite set T such that the natural map .H; dT /!y�.G;S;P /
is a quasi-isometric embedding.

Lemma 8.12 [21, Theorem 1.14] Let .G;P / be a relatively hyperbolic group with
a finite generating set S . Then for any hyperbolic element h 2 G of infinite order,
there exist � > 0 and c � 0 such that d.e; hn/ > �jnj � c . In particular, the cyclic sub-
group H generated by h is undistorted with respect to .G; dS / and strongly relatively
quasiconvex.

The following lemma is an immediate result of [21, Proposition 2.36].
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Lemma 8.13 Let .G;P / be a relatively hyperbolic group. Then the following condi-
tions hold.

(1) g1P1g�1
1
\ g2P2g�1

2
is finite, where P1 and P2 are two different peripheral

subgroups.

(2) gPg�1\P is finite, where P is a peripheral subgroup and g 62 P .

Theorem 8.14 (Gromov [11, Section 8.2]) Let .G;P / be a relatively hyperbolic
group and H an infinite subgroup of G . If H is not conjugate to a subgroup of any
peripheral subgroup, H contains a hyperbolic element.

Lemma 8.15 Let .G;P / be a relatively hyperbolic group and H an infinite index,
infinite normal subgroup of G . Then H contains at least one infinite-order hyperbolic
element.

Proof If H is not conjugate to a subgroup of any peripheral subgroup, H contains a
hyperbolic element by Theorem 8.14. Suppose that H is a subgroup of some conjugate
gPg�1 of some peripheral subgroup P , then H Dg�1Hg is a subgroup of P . Let g1

be an element in G �P , then H D g�1
1

Hg1 is also a subgroup of g�1
1

Pg1 . Then,
jP\g�1

1
Pg1jD1, which is contradicts Lemma 8.13. Therefore, H is not a subgroup

of any conjugate of any peripheral subgroup.

Lemma 8.16 [21, Theorem 3.26] There is a positive constant � such that the follow-
ing holds. Let �D pqr be a triangle whose sides p; q; r are geodesic in y�.G;S;P /.
Then for each G–vertex v on p , there is a G–vertex u in the union q [ r such that
dS .u; v/� � .

The following lemma is an immediate result of Lemma 8.16.

Lemma 8.17 There is a positive constant � such that the following holds. Let pqrs

be a quadrilateral whose sides p; q; r; s are geodesic in y�.G;S;P /. Then for each
G –vertex v on p , there is a G –vertex u in the union q[r[s such that dS .u; v/� 2� .

Lemma 8.18 (Drut,u and Sapir [6, Lemma A.3]) Let .G;P / be a relatively hyperbolic
group with a finite generating set S . Then there is a constant K > 1 such that the
following holds. Let p and q be paths in y�.G;S;P / such that p�D q�, pCD qC

and q is geodesic in y�.G;S;P /. Then for any vertex v 2 q , there exists a vertex w 2p

such that dS .w; v/�K log2jpj.
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Lemma 8.19 [6, Lemma 4.15] Let .G;P / be a relatively hyperbolic group with
a finite generating set S . For each A0 there is a constant A1 D A1.A0/ such that
the following holds in Cayley.G;S/. Let c be a geodesic segment whose endpoints
lie in the A0 –neighborhood of a peripheral left coset gP . Then c lies in the A1 –
neighborhood of gP .

Lemma 8.20 [6, Theorem 4.1] Suppose .G;P / is relatively hyperbolic with a finite
generating set S . For each M;M 0 <1 there is a constant �D �.M;M 0/ <1 so that
for any two peripheral cosets gP ¤ g0P 0 we have

diam.NM .gP /\NM 0.g
0P 0// < �

with respect to the metric dS .

The following concepts are introduced by Hruska (see [14, Definition 8.9]) and he
used it to describe the connection between geodesics in �.G;S/ and geodesics in
y�.G;S;P /.

Definition 8.21 Let c be a geodesic of �.G;S/, and let �;R be positive constants.
A point x 2 c is .�;R/–deep in a peripheral left coset gP (with respect to c ) if x is
not within a distance R of an endpoint of c and B.x;R/\ c lies in N�.gP /. A point
x 2 c is .�;R/–deep if x is .�;R/–deep in some peripheral left coset gP . If x is not
.�;R/–deep in any peripheral left coset gP then x is an .�;R/–transition point of c .

Lemma 8.22 [14, Lemma 8.10] Let .G;P / be relatively hyperbolic with a finite
generating set S . For each � there is a constant R D R.�/ such that the following
holds. Let c be any geodesic of �.G;S/, and let xc be a connected component of the
set of all .�;R/–deep points of c . Then there is a peripheral left coset gP such that
each x 2 xc is .�;R/–deep in gP and is not .�;R/–deep in any other peripheral left
coset.

Lemma 8.23 [14, Proposition 8.13] Let .G;P / be relatively hyperbolic with a finite
generating set S . There exist constants � , R and L such that the following holds.
Let c be any geodesic of �.G;S/ with endpoints in G , and let yc be a geodesic of
y�.G;S;P / with the same endpoints as c . Then in the metric dS , the set of G –vertices
of yc is at a Hausdorff distance at most L from the set of .�;R/–transition points of c .
Furthermore, the constants � and R satisfy the conclusion of Lemma 8.22.

Lemma 8.24 [6, Lemma 4.12] Let .G;P / be relatively hyperbolic with a finite
generating set S . Then for each � 2 Œ0; 1

2
/ there exist a number M D M.�/ > 0

such that for every geodesic q of length ` and every peripheral left coset gP with
q.0/; q.`/ 2N�`.gP / we have q\NM .gP /¤¿.
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Theorem 8.25 Let .G;P / be a relatively hyperbolic group and H an infinite index,
infinite normal subgroup of G . Then div.G;H / is linear.

Proof The proof follows from Theorem 5.4 and Lemmas 8.12 and 8.15.

Proposition 8.26 Let .G;P / be a relatively hyperbolic group and H a subgroup
of G for which H contains at least one infinite order hyperbolic element. If 0 <

ze.G;H / <1, then Div.G;H / is at least exponential.

Proof Suppose that H contains an infinite order hyperbolic element h and assume
that h is an element of the finite generating set S of G . By Lemma 8.12, there is
a positive integer L such that d.1; hn/ � .n=L/�L. Moreover, the subgroup H1

generated by h is strongly relatively quasiconvex. Thus there is a constant A> 1 such
that the set of G –vertices of any geodesic ˇ in y�.G;S;P / connecting two elements
of H1 must lie in the A–neighborhood of H1 with respect to the metric dS .

We define mD ze.G;H / and M DL.12mC 2LC 2/. Let K > 1 be the constant in
Lemma 8.18 and let � the constant in Lemma 8.17. Denote Div.G;H /D fın

�g. We
will prove that er � ıMn

� . More precisely, we define r0D 2�C.2=�/.AC2�/CLC1

and we will prove 2�r=2K � ıMn
� .r/ for each r > r0 . We assume r is an integer.

Indeed, for each i 2 f0; 1; 2; : : : ;mg we define 
i to be an H –perpendicular geodesic
ray with the initial point ki D hL.6inrCL/ . Since mDze.G;H /, there are two different
geodesics 
i and 
j (i < j ) such that 
i \Cr .H / and 
j \Cr .H / lie in the same
component of Cr .H /. We define x D 
i.r/ and y D 
j .r/; then x , y lie in @Nr .H /

and dr .x;y/ <1. Also,

dS .x;y/� dS .x; ki/C dS .ki ; e/C ds.e; kj /C dS .hj ;y/

� r CL.6inr CL/CL.6j nr CL/C r

�L.12mnr C 2L/C 2r �L.12mC 2LC 2/nr � .M n/r;

d.ki ; kj /D d.e; h6L.j�i/nr /� 6.j � i/nr �L� 12r �L� 6r:

Let ˛1 be a geodesic in y�.G;S;P / connecting ki , kj and let ˛2 a geodesic in
y�.G;S;P / connecting x , y . Let ˇ1 be a geodesic in y�.G;S;P / connecting x , ki

and ˇ2 a geodesic in y�.G;S;P / connecting y and kj . Let u be a point in ˛1 such
that d.u; ki/ > 2r and d.u; kj / > 2r . Thus there is a G–vertex v in ˇ1 [ ˛2 [ ˇ2

such that dS .u; v/� 2� .

If v lies in ˇ1 , then the distance in y�.G;S;P / between u and ki is bounded above
by r C 2� . Thus this distance is at most 2r which contradicts the choice of u. Thus v
does not lie in ˇ1 . Similarly, v does not lie in ˇ2 . Thus v must lie in ˛2 . Also, u lies
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in the A–neighborhood of the subgroup H1 with respect to the metric dS . Thus v lies
in the .AC 2�/–neighborhood of H1 with respect to the metric dS . Therefore, the
distance in �.G;S/ between v and H is bounded above by .AC 2�/.

We now prove that d�r .x;y/ � 2�r=2K . Indeed, let 
 be any path in C�r .H / con-
necting x and y . By Lemma 8.18, there exists a vertex w 2 
 such that dS .w; v/�

K log2j
 j. Since

dS .w; v/� dS .w;H /� dS .v;H /� �r �A� 2� �
�r

2
;

then
K log2j
 j �

�r

2
:

Thus j
 j � 2�r=2K . Therefore, d�r .x;y/ � 2�r=2K . Therefore, 2�r=2K � ıMn
� .r/.

Thus er � ıMn
� .

The following is a key lemma we are going to use to investigate the lower divergence
of a relatively hyperbolic group with respect to a fully relatively quasiconvex subgroup.

Lemma 8.27 Let .G;P / be relatively hyperbolic with a finite generating set S . There
exist constants � , R, � , K and A such that the following hold.

(1) A subgroup H is relatively quasiconvex if and only if there is a constant �
such that for each geodesic c in �.G;S/ joining points in H , the set of .�;R/–
transition points of c lies in the �–neighborhood of H .

(2) Let �D pqr be a triangle whose sides p; q; r are geodesic in �.G;S/. Then
for each .�;R/–transition point v on p , there is an .�;R/–transition point u in
the union q[ r such that dS .u; v/� � .

(3) Let p and q be paths in �.G;S/ such that p� D q�, pC D qC and q is
geodesic in �.G;S/. For any .�;R/–transition point v 2 q , there exists a vertex
w 2 p such that dS .w; v/�K log2jpjCK .

(4) For each peripheral left coset gP and any geodesic c with endpoints outside
NA.gP /. If `.c/ > 9 maxfdS .c

C;gP /I dS .c
�;gP /g, then the path c contains

an .�;R/–transition point w which lies in the A–neighborhood of gP .

Furthermore, the constants � and R satisfy the conclusion of Lemma 8.22.

We now give the proof for the above lemma. The reader can also find the proof of
statement (1) in [14].
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Proof Let � and R be constants in Lemma 8.23. Statements (1), (2) and (3) are
immediate results of Definition 8.8 and Lemmas 8.16, 8.18 and 8.23. We now focus on
proving statement (4).

Let

A0 DA0.
1
3
/ be the constant in Lemma 8.24;

A1 DA1.A0/ be the constant in Lemma 8.19;

A2 DA2.A1; �/ be the constant in Lemma 8.20;

ADA0CA1CA2C �C 1:

Let gP be any peripheral left coset. Let c be any geodesic with endpoints outside
NA.gP / such that `.c/ > 9 maxfdS .c

C;gP /; dS .c
�;gP /g. Let

r DmaxfdS .c
C;gP /; dS .c

�;gP /g:

Thus the length of c is greater than 9r and r >A. Since

`.c/ > 9 maxfdS .c
C;gP /; dS .c

�;gP /g;

c \NA0
.u1P / ¤ ¿ by Lemma 8.24. Let a1 and a2 be the first vertex and the last

vertex in c\NA0
.gP /. Thus the subsegment Œa1; a2� of c connecting a1 and a2 must

lie in the A1 –neighborhood of gP . Let a0
1

and a0
2

the vertices in c � Œa1; a2� such
that dS .a1; a

0
1
/ � 1 and dS .a2; a

0
2
/ � 1. We assume that a0

1
lies between cC , a1

and that a0
2

lies between c� , a2 . Obviously, a0
1

and a0
2

must lie in the .A0C 1/–
neighborhood of gP . In particular, they lie in the r –neighborhood of gP . If the
distance between cC and a1 is greater than 4r , then the distance in between cC

and a0
1

is greater than 3r . Thus the subsegment of c connecting xC and a0
1

must
intersect the A0 –neighborhood of gP which contradicts to the choice of a1 . Thus
dS .c

C; a1/ � 4r . Similarly, dS .c
�; a2/ � 4r . Also, the length of c is at least 9r .

Thus the length of Œa1; a2� is at least r . In particular, this length is bounded below
by A2 .

We now show that c contains an .�;R/–transition point w in the A–neighborhood
of gP . Indeed, if Œa1; a2� contains an .�;R/–transition point w , then w must lie in
the A1 –neighborhood of gP . In particular, w lies in the A–neighborhood of gP and
we are done.

We now consider the case that Œa1; a2� contains only .�;R/–deep points. Therefore,
Œa1; a2� lies in some �–neighborhood of some peripheral left coset g0P 0 . Thus

Œa1; a2��NA1
.gP /\N�.g

0P 0/:
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Also, the length of Œa1; a2� is at least r . Thus the length of Œa1; a2� is bounded below
by A2 . Therefore, diam.NA1

.gP / \ N�.g
0P 0// is strictly greater than A2 . Thus

gP D g0P 0 . It follows that Œa1; a2� lies in the �–neighborhood of gP . Also, the
endpoints of c both lie outside the �–neighborhood of gP . Thus we could find an
.�;R/–transition point w in c such that dS .w;gP /� �C 1. In particular, w lies in
the A–neighborhood of gP .

Theorem 8.28 Let .G;P / be a relatively hyperbolic group and H an infinite fully
relatively quasiconvex subgroup of G . If 0< ze.G;H / <1, then div.G;H / is at least
exponential.

Remark 8.29 Before giving the proof of the theorem, we would like to discuss a
large class of groups and their subgroups to which the theorem applies. More precisely,
we are going to discuss different pairs of groups .G;H /, where G is a relatively
hyperbolic group and H is an infinite fully relatively quasiconvex subgroup of G with
0< ze.G;H / <1.

Let G be the fundamental group of some hyperbolic surface and H an infinite cyclic
subgroup of G . Thus G is a hyperbolic group and H is an infinite malnormal
quasiconvex subgroup of G . In particular, G is a relatively hyperbolic group and H

is an infinite fully relatively quasiconvex subgroup. Obviously, the number of filtered
ends ze.G;H /D 2.

We now come up with other example. Let G be the fundamental group of some hyper-
bolic finite volume three manifold with cusps. Therefore, G is relatively hyperbolic
with respect to the collection of its cusp subgroups. Let H be any cusp subgroup
of G . We can see that H is an infinite fully relatively quasiconvex subgroup of G and
ze.G;H /D 1.

We now discuss the case where H is a strongly relatively quasiconvex subgroup with
finite number of filtered ends ze.G;H /. We can choose G be the fundamental group
of some hyperbolic finite volume three manifold with cusps as above. Again, G is
relatively hyperbolic with respect to the collection of its cusp subgroups. Let H be a
cyclic subgroup generated by a hyperbolic element. It is obvious that H is a strongly
relatively quasiconvex subgroup and the number of filtered ends ze.G;H /D 1

Now, we come up with a pair of groups .G;H / satisfying all conditions in Theorem 8.28
and H is neither strongly relative quasiconvex nor a subgroup of some peripheral
subgroup. Let G be the fundamental group of some hyperbolic finite volume three
manifold with more than one cusp. We can pick up any cusp subgroup P and any cyclic
subgroup K of G generated by some hyperbolic element. By Martínez-Pedroza and

Algebraic & Geometric Topology, Volume 15 (2015)



Relative divergence of finitely generated groups 1763

Sisto [17, Theorem 2], it is obvious that we can choose some finite index subgroup P1

of P and some finite index subgroup K1 of K such that the subgroup H generated
by P1 and K1 is isomorphic to their free product and H is also a fully relatively
quasiconvex subgroup. It is not hard to see that the number of filtered ends ze.G;H /D1.

Proof Let � , R, � , K and A be the constants in Lemma 8.27.

Let � be the constant such that for each geodesic c in �.G;S/ joining points in H ,
the set of .�;R/–transition points of c lies in the �–neighborhood of H .

By Lemma 8.7, we observe that the diameter of the set .N�.H /\N�.tP // is finite
whenever jtP t�1 \H j <1. Also, the number of peripheral left cosets tP , where
jt jS � �C� and P 2P , is finite. Thus the number BDmaxfdiam.N�.H /\N�.tP / j

jt jS � �C � , P 2 P and jtP t�1\H j<1g is finite. Similarly, we could choose a
finite number C such that the C –neighborhood of H contains all peripheral left
cosets tP where jt jS � �C � and jtP t�1 W .tP t�1\H /j<1.

Denote div.G;H /D f�n
� g. We will prove that er � �27n

� . More precisely, we define

r0 D
4C

�
.�CKCACBCC C 2�/

and we will prove 2�r=4K � �27n
� .r/ for each r > r0 . We assume r is an integer.

Let x and y be arbitrary points in @Nr .H / such that dS .x;y/� .27n/r and dr .x;y/<

1. (The existence of x and y is guaranteed by the condition 0 < ze.G;H / <1.)
Let x1 and y1 be points in H such that dS .x;x1/D dS .x;H /D r and dS .y;y1/D

dS .y;H /D r .

Let 
 be any path in C�r .H / connecting x and y . Let c be a geodesic in �.G;S/
connecting x and y and c1 a geodesic in �.G;S/ connecting x1 and y1 . Let ˇ1 be a
geodesic in �.G;S/ connecting x and x1 and ˇ2 a geodesic in �.G;S/ connecting y

and y1 .

By Lemma 8.27, for each .�;R/–transition point u in c1 there is an .�;R/–transition
point vu in ˇ1[ c [ˇ2 such that dS .u; vu/� 2� . We have two main cases.

Case 1 Suppose that vu lies in c for some u in c1 .

Since u lies in the �–neighborhood of H , vu lies in the .�C2�/–neighborhood of H .
By Lemma 8.27, there exists a vertex w 2 
 such that dS .w; vu/ �K log2j
 j CK .
Since w lies outside N�r .H /, the distance dS .w; vu/ is bounded below by �r���2� .
Thus K log2j
 j � �r � � � 2� �K � �r=4 by the choice of r . Thus the length of 

is bounded below by 2�r=4K .

Case 2 Suppose that vu lies in ˇ1[ˇ2 for all .�;R/–transition point u in c1 .
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We could choose u1 and u2 in c1 such that vu1
2 ˇ1 , vu2

2 ˇ2 and all points
in the geodesic c1 lies between u1 and u2 are .�;R/–deep points with respect to
some peripheral left coset gP . In particular, the two points u1 , u2 lie in the �–
neighborhood gP . Since vu1

lies in ˇ1 and the length of ˇ1 is r , the distance
between u1 and x1 is bounded above by rC2� . Thus the distance between u1 and x1

is bounded above by 2r by the choice of r . Similarly, the distance between u2 and y1

is bounded above by 2r with respect to the metric dS . By the same argument, the
distances dS .u1;x/ and dS .u2;y/ are also bounded above by 2r . Also, the distance
between x and y is at least .27n/r . Thus the distance between u1 and u2 is bounded
below by .27n�4/r . Therefore, this distance is bounded below by .23/r by the choice
of n.

Since the distance dS .H;gP /� dS .H;u1/CdS .u1;gP /� �C � , there are some h1

in H and t in G such that jt jS � �C � and gP D h1tP . Thus

diam.N�.tP /\N�.H //D diam.N�.h1tP /\N�.h1H //

D diam.N�.gP /\N�.H //:

Since u1 and u2 lie in N�.gP /\N�.H /, then

diam.N�.gP /\N�.H //� dS .u1;u2/� .23/r > 23r > r0 > B:

Thus
diam.N�.tP /\N�.H // > B:

Therefore, jtP t�1\H j D1 by the choice of B . It follows that

jtP t�1
W .tP t�1

\H /j<1

since H is a fully relatively quasiconvex subgroup. Therefore, tP �NC .H /. Thus

gP D h1tP � h1NC .H /DNC .H /:

Therefore, 
 lies outside the .�r �C /–neighborhood of gP . Thus 
 lies outside the
.�r=2/–neighborhood of gP by the choice of r .

We now show that there is an .�;R/–transition point w in c such that dS .w;gP /�A.
Since gP lies in the C –neighborhood of H and the distance between x and H is r ,
then x lies outside the .r �C /–neighborhood of gP . In particular, x lies outside the
A–neighborhood of gP . Similarly, y also lies outside the A–neighborhood of gP .
Since the distance between x and u1 is bounded above by 2r and u1 lies in the �–
neighborhood of gP , then x lies in the .2rC�/–neighborhood of gP . In particular, x

lies in the 3r –neighborhood of gP . Similarly, y also lies in the 3r –neighborhood
of gP . Since x and y lies in the 3r –neighborhood of gP and the distance between x
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and y is greater than 27r , then `.c/ > 9 maxfdS .c
C;gP /; dS .c

�;gP /g, then c con-
tains an .�;R/–transition point w in the A–neighborhood of gP by Lemma 8.27.

We now prove that the length of 
 is bounded below by 2�r=4K . Indeed, by Lemma 8.27,
there exists a vertex v 2 
 such that dS .v; w/�K log2j
 jCK Also

dS .v; w/� dS .v;gP /� dS .gP; w/�
�r

2
�A:

Thus
K log2j
 j �

�r

2
�A�K �

�r

4
:

Therefore, the length of 
 is bounded below by 2�r=4K . Thus d�r .x;y/ � 2�r=4K .
Thus 2�r=4K � �27n

� . Therefore, er � �27n
� .

Question 8.30 For the pair .G;H / as in Theorem 8.28, is the relative lower divergence
div.G;H / exactly exponential? What conditions do we need to put on the pair .G;H /

to force the lower relative divergence div.G;H / to be exactly exponential?

Corollary 8.31 Let G be a hyperbolic group and H an infinite quasiconvex subgroup
of G . If 0< ze.G;H / <1, then div.G;H / is at least exponential.

Corollary 8.32 Let .G;P / be a relatively hyperbolic group and P an infinite periph-
eral subgroup. If 0< ze.G;P / <1, then div.G;P / is at least exponential.

Corollary 8.33 Let .G;P / be a relatively hyperbolic group and H an infinite strongly
relatively quasiconvex subgroup. If 0 < ze.G;H / < 1, then div.G;H / is at least
exponential.

Remark 8.34 From the results of Corollary 8.31 and Theorem 6.7, we could extend
the result of Corollary 7.12. More precisely, there is a pair of groups .G;H /, where G

is a one-ended CAT.0/ group and H is an infinite cyclic subgroup of G such that
div.G;H / is exponential. For example, let G be the fundamental group of a hyperbolic
surface M and H the fundamental group of a closed essential curve C of M . Then G

is a one-ended CAT.0/ group and it is also hyperbolic. Since the infinite cyclic sub-
group H is also quasiconvex, then div.G;H / is at least exponential. Also, div.G;H /

is dominated by the upper divergence of G (see Theorem 6.7) and the upper divergence
of one-ended finitely presented group is at most exponential (see [22, Lemma 6.15]).
Thus div.G;H / is at most exponential. Therefore, div.G;H / is exactly exponential.

In Theorem 8.28, we could not replace the condition “fully relative quasiconvexity” of
the subgroup H by the condition “relative quasiconvexity”. Readers could look at the
following theorem as a counterexample.
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Theorem 8.35 Let G D ha1; a2; a3; b; c j Œa1; a2� Œa3; b� D e; Œb; c� D ei and H be
the cyclic subgroup of G generated by c . Let P be the subgroup generated by b

and c . Then, G is a relatively hyperbolic group with respect to the subgroup P ,
0< ze.G;H / <1, H is a relatively quasiconvex subgroup and div.G;H / is linear.

Before giving the proof of Theorem 8.35, we need to review a result in Hruska [13].

Definition 8.36 [13, Definition 5.1] A CAT.0/ 2–complex X has the isolated flats
property if there is a function ˆW RC! RC such that for every pair of distinct flat
planes F1 ¤ F2 in X and for every k � 0, the intersection Nk.F1/\Nk.F1/ of
k –neighborhoods of F1 and F2 has diameter at most ˆ.k/.

Theorem 8.37 [13, Theorem 1.6] Suppose a group G acts properly and cocompactly
by isometry on a CAT.0/ 2–complex with the isolated flats property. Then G is
hyperbolic relative to the collection of maximal virtually abelian subgroups of rank
two.

We now give the proof for Theorem 8.35.

Proof We are going to show that G acts properly and cocompactly by isometry on a
CAT.0/ 2–complex with the isolated flats property. It is obvious that

G DG1 �
<b1>D<b2>

P;

where G1Dha1; a2; a3; b1 j Œa1; a2� Œa3; b1�D ei and P Dhb2; c j Œb2; c�D ei. Let X1

be the presentation 2–complex of G1 and X2 the presentation 2–complex of P . We
build the 2–complex presentation for G by identifying the 1–cell b1 of X1 and the
1–cell b2 of X2 into one 1–cell called b . Let zX1 and zX2 be the universal covers of X1

and X2 respectively. It is well known that we can put a metric on zX1 such that zX1

becomes the 2–dimensional hyperbolic plane and G1 acts properly and cocompactly
on zX1 by isometry. Similarly, we can put a metric on zX2 such that zX2 becomes the
2–dimensional flat and P acts properly and cocompactly on zX2 by isometry. It is
obvious that the universal cover zX of X is the union of copies of zX1 and zX2 such
that a copy of zX1 intersects a copy of zX2 in a bi-infinite arc labeled by b . Thus zX
is a CAT.0/ 2–complex with the isolated flats property. Moreover, the group G acts
properly and cocompactly by isometry on zX . Therefore, G is a relatively hyperbolic
group with respect to the subgroup P by Theorem 8.37.

By examining the construction of zX , we can see that ze.G;H /D 1. Moreover, H is a
relatively quasiconvex subgroup since it is a subgroup of peripheral subgroup P . We
now show that the relative lower divergence div.G;H / is linear.
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First we show that jbnjS D jnj. Let m D jbnjS . Obviously, m � jnj. There is a
homomorphism ˆ from G to Z that maps every element in S to the generator of Z.
Since m D jbnjS , then there is a word w in S [ S�1 with the length m such that
bn �G w . Therefore

bn
�G s1s2 � � � sm; where si 2 S [S�1 :

Thus
ˆ.bn/Dˆ.s1/Cˆ.s2/C � � �Cˆ.sm/:

Since ˆ.bn/Dn and ˆ.si/D�1 or 1, then jnj�m. Thus jbnjS DmDjnj. Similarly,
jcnjS D jnj.

We now show that dS .b
mcn;H /Djmj. Denote dS .b

mcn;H /D`. Obviously, `�jmj.
There is a group homomorphism ‰ from G to Z that maps b to the generators of Z
and the remaining elements in S to 0. Suppose that dS .b

mcn;H /DdS .b
mcn; cn0/ for

some cn0 in H . Thus there is a word w0 with the length ` such that bmcn �G cn0w0 .
Therefore,

bmcn
�G cn0s01s02 � � � s

0
`; where s0i 2 S [S�1 :

Thus
‰.bm/C‰.cn/D‰.cn0/C‰.s01/C‰.s

0
2/C � � �C‰.s

0
`/:

Since ‰.bm/Dm, ‰.cn/D‰.cn0/D 0 and ‰.si/D�1, 0 or 1, then jmj � `. Thus
dS .b

mcn;H /D jmj.

Denote div.G;H /Df�n
� g. We will prove that �n

� is bounded above by a linear function.
More precisely, we will show �n

� � nr for each r > 0.

We assume r is an integer. Let xDbr and yDbr cnr . Then x and y lie in @Nr .H / and
dS .x;y/�nr . Let 
 be the path with vertices fbr ; br c; br c2; : : : ; br cnr g. Then, 
 is
a path in Cr .H / connecting x and y . Thus dr .x;y/ <1. Moreover, d�r .x;y/� nr

since the length of 
 is nr . Thus �n
� � nr . Therefore, �n

� is bounded above by a
linear function.

Theorem 8.38 Let .G;P / be a relatively hyperbolic group and H a subgroup of G

such that 0< ze.G;H / <1. We assume that H is not conjugate to any infinite-index
subgroup of any peripheral subgroup. Then Div.G;H / is at least exponential.

Proof If H is a finite subgroup, then the relative upper divergence Div.G;H / is
equivalent to the upper divergence of G by Theorem 4.15 and Remark 4.7. Also, the
upper divergence of G is at least exponential by Sisto [22]. Thus Div.G;H / is at least
exponential.
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In the case that H is conjugate to a finite index subgroup of some peripheral sub-
group, we assume that H is a finite index subgroup of some peripheral subgroup
by Theorem 4.15. Thus div.G;H / is at least exponential by Theorem 8.28. Also,
div.G;H / is dominated by Div.G;H / by Theorem 4.14. Therefore, the upper relative
divergence Div.G;H / is also at least exponential.

If H is an infinite subgroup that is not conjugate to any subgroup of any peripheral
subgroup, H contains a hyperbolic element by Theorem 8.14. Thus Div.G;H / is at
least exponential by Proposition 8.26.

Remark 8.39 In Theorem 8.38, if the group G is finitely presented, then the upper
divergence of G is exactly exponential. Therefore, the upper relative divergence
Div.G;H / is also exponential when the subgroup H is finite. However, it is still
unknown whether the upper relative divergence Div.G;H / is exactly exponential in
general, or what conditions we need to put on the pair .G;H / to make the relative
upper divergence Div.G;H / to be exactly exponential.
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