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High distance Heegaard splittings via Dehn twists

MICHAEL YOSHIZAWA

In 2001, J Hempel proved the existence of Heegaard splittings of arbitrarily high
distance by using a high power of a pseudo-Anosov map as the gluing map between
two handlebodies. We show that lower bounds on distance can also be obtained when
using a high power of a suitably chosen Dehn twist. In certain cases, we can then
determine the exact distance of the resulting splitting. These results can be seen as
a natural extension of work by A Casson and C Gordon in 1987 regarding strongly
irreducible Heegaard splittings.

57M50; 57M25

1 Introduction

Since Hempel [6] introduced the notion of the distance of a Heegaard splitting in 2001,
a number of results have linked distance with the topology of the ambient 3–manifold.
For example, work by Thompson [20] and Hempel [6] showed that if a manifold
admits a Heegaard splitting of distance greater than or equal to 3, then the manifold is
atoroidal and not Seifert fibered, hence hyperbolic by the geometrization conjecture.
Hartshorn [4] found that if a manifold admits a distance d Heegaard splitting, then the
genus g of an orientable incompressible surface must satisfy 2g � d . Scharlemann
and Tomova [16] generalized this result to show that a Heegaard splitting of genus g

and distance d such that 2g < d is the unique splitting of minimal genus for that
manifold.

Concurrently, there have been many efforts to construct examples of Heegaard splittings
of high distance. Many approaches make use of the fact that a Heegaard splitting can
be described by a homeomorphism between two handlebodies of equal genus. One of
the first major achievements was made by Hempel [6] who, adapting an argument of
Kobayashi [9], proved the existence of Heegaard splittings of arbitrarily high distance
via the use of a high power of a pseudo-Anosov map as the gluing map between two
handlebodies. However, the use of pseudo-Anosov maps meant no concrete examples
were provided.

This can be rectified by considering Heegaard splittings determined by a Dehn twist
map, rather than one that is pseudo-Anosov. Casson and Gordon [1] introduced what
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is now referred to as the Casson–Gordon rectangle condition (published by Kobayashi
in [8]) that would ensure a Heegaard splitting has distance greater than or equal to 2.
Moreover, they provided methods of generating Heegaard splittings using Dehn twists
that satisfied this condition. Two of their results can be stated as the following. Note
that in the following statements, D.H / denotes the disk set of a handlebody H and
distance refers to the distance in the curve complex of @H (these definitions and more
details appear in Section 4).

Theorem 1.1 (Casson and Gordon [1]) Suppose H is a genus g handlebody. Let 

be a simple closed curve that is distance greater than or equal to 2 from D.H /. Then
gluing H to a copy of itself via greater than or equal to 2 Dehn twists about 

determines a genus g Heegaard splitting of distance greater than or equal to 2.

Theorem 1.2 (Casson and Gordon [1]) Suppose H1 and H2 are genus g handle-
bodies with @H1 D @H2 and the distance between D.H1/ and D.H2/ is at most 1.
Let 
 be a simple closed curve that is distance greater than or equal to 2 from both
D.H1/ and D.H2/. Then gluing H1 to H2 via greater than or equal to 6 Dehn twists
about 
 determines a genus g Heegaard splitting of distance greater than or equal to 2.

More recently, Berge developed a modified rectangle condition that would guarantee
a genus 2 splitting has distance greater than or equal to 3 (this criterion is described
by Scharlemann in [15]) and constructs examples of genus 2 splittings satisfying this
condition. Hempel [6] used Dehn twists and the notion of stacks to construct Heegaard
splittings of distance greater than or equal to 3 and Evans [2] extended this result to
Heegaard splittings of distance greater than or equal to d for any d � 2. Lustig and
Moriah [12] used Dehn twists and derived train tracks to produce another class of
examples of splittings with distance greater than or equal to d . In [10], Tao Li utilized
the techniques of Lustig and Moriah to construct the first examples of high distance
Heegaard splittings that are known to be non-Haken. However, all of these results only
provided a lower bound on the distance of the constructed splittings; except for low
distances, the exact distances of the constructed Heegaard splittings were typically
unknown.

In fact, until recently there was no proof that there existed Heegaard splittings with
distance exactly d for every d 2N . This question has been settled by Ido, Jang and
Kobayashi [7] and Qiu, Zou and Guo [14]. Both (over a similar time frame) developed
examples of high distance Heegaard splittings with distance exactly d .

We provide concrete examples of Heegaard splittings with an exact known distance
using a different approach that relies exclusively on Dehn twist maps. Our results, shown
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below, can be seen as an extension of the work by Casson and Gordon (Theorems 1.1
and 1.2).

Theorem 1.3 Suppose H is a genus g handlebody. Let 
 be a simple closed curve
that is distance d from D.H / for some d � 2. Then gluing H to a copy of itself via
greater than or equal to 2d � 2 Dehn twists about 
 determines a genus g Heegaard
splitting of distance exactly 2d � 2.

Theorem 1.4 Suppose H1 and H2 are genus g handlebodies with @H1 D @H2 and
n D maxf1; d.D.H1/;D.H2//g. Let 
 be a simple closed curve that is distance d1

from D.H1/ and d2 from D.H2/ where d1 � 2, d2 � 2 and d1 C d2 � 2 > n.
Then gluing H1 to H2 via greater than or equal to nC d1C d2 Dehn twists about 

determines a genus g Heegaard splitting whose distance is at least d1C d2� 2 and at
most d1C d2 .

In Section 2 we define terms, in Section 3 we review Dehn twists and define twisting
number, in Section 4 we review diskbusting curves and results of Starr [18], and in
Section 5 we prove the main theorems.

Acknowledgements We would like to thank Martin Scharlemann for his guidance
and many helpful conversations. Special thanks also to Tsuyoshi Kobayashi and Yo’av
Rieck for their insightful observations and the math department of Nara Women’s
University for its hospitality. The author was supported in part by the NSF grants
OISE–1209236 and DMS–1005661.

2 Standard cut systems and pants decompositions

Throughout this paper, † will denote a closed orientable surface with genus g such
that g � 2.

Definition 2.1 A standard cut system of † is a collection of g essential simple closed
curves X in † such that †�X is a 2g–punctured sphere.

Definition 2.2 Let H be a genus g handlebody. A standard set of compressing disks
of H is a collection of disjoint compressing disks D �H so that @D is a standard cut
system in @H. A standard set of meridians of H is any collection of curves in @H that
bounds a standard set of compressing disks of H. (Thus a standard set of meridians
in @H is a standard cut system, but not vice versa.)
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Definition 2.3 A pants decomposition P of † is a collection of 3g � 3 essential
simple closed curves in † such that †�P is a collection of pairs of pants (ie three
punctured spheres).

Definition 2.4 A complete collection of compressing disks for a handlebody H is
a collection of disjoint compressing disks whose boundary is a pants decomposition
of @H. The boundary of such a complete collection of disks will be called a pants
decomposition of H (ie it is a pants decomposition of @H and each curve bounds a
disk in H ).

Definition 2.5 Let P be a pants decomposition of †. If P is the closure of a pair of
pants component of †�P , then

� a seam of P is an essential properly embedded arc in P that has endpoints on
distinct components of @P ,

� a wave of P is an essential properly embedded arc in P that has endpoints on
the same component of @P .

ws

P

Figure 1: In the pair of pants component P , w is a wave and s is a seam.

Definition 2.6 Let a and b be simple closed curves or arcs with fixed endpoints in †.
Then a and b admit a bigon if there is an embedded disk D in † whose boundary is
the endpoint union of a subarc of a and a subarc of b .

Definition 2.7 Two essential simple closed curves in † (or two properly embedded
arcs with fixed endpoints in an essential subsurface of †) intersect efficiently if they
do not admit a bigon.

The condition that two curves a and b intersect efficiently is equivalent to the condition
that the number of intersection points between a and b is minimal, up to (proper)
isotopy (for a proof see Farb and Margalit [3]).
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Definition 2.8 Let P be a pants decomposition of †. An embedded curve 
 is
k –seamed with respect to P if it intersects P efficiently and for each pair of pants
component P of †�P , there are at least k arcs of 
 \P representing each of the
three distinct isotopy classes of seams of P .

The notion of a 1–seamed curve was introduced by Kobayashi [9], who denoted such
curves to be of full type. Note that if a curve 
 is 1–seamed with respect to a pants
decomposition P of † then neither 
 , nor any simple closed curve disjoint from 
 ,
can contain a wave in any pants component of †�P .

Definition 2.9 Let P be a pants decomposition of †. A collection of essential simple
closed curves Y D fy1;y2; : : : ;ytg is collectively k –seamed with respect to P if Y

intersects P efficiently and for each pair of pants component P of †�P , there are at
least k arcs of

S
1�i�t yi \P representing each of the three distinct isotopy classes

of seams of P .

Lemma 2.10 Let D be a complete collection of compressing disks for H and
PD@D�@H. If 
 is an essential simple closed curve in @H that bounds a compressing
disk in H and intersects P efficiently, then 
 is either isotopic to a curve in P or 

contains at least two waves of components of @H �P .

Proof Let D �H be the disk that 
 bounds. Isotope the interior of D to intersect
D minimally. A standard innermost circle argument, exploiting the irreducibility of H,
guarantees that each component of D\D is an arc. If D\DD∅ then 
 is isotopic
to a curve in P . So suppose D\D¤∅.

Let ˛ be an outermost arc of D\D in D . Then ˛ and an arc ˇ � 
 together bound a
disk in D that is disjoint from D in its interior. As 
 intersects P efficiently, ˇ is an
essential arc in a component of †�P and is therefore a wave. Since D�D contains
at least two distinct disks cut off by outermost arcs, 
 contains at least two distinct
waves (which may be parallel).

Note that Lemma 2.10 implies that any meridian of H intersects a k –seamed curve in
at least 2k points.

3 Dehn twists and twisting number

We first reproduce a definition of a standard Dehn twist as described in [3].
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Definition 3.1 Let A be an annulus S1 � Œ0; 1� embedded in the .�; r/–plane by the
map .�; r/! .�; rC1/ and let the standard orientation of the plane induce an orientation
on A. Let T W A! A be the left twist map of A given by T .�; r/ D .� C 2�r; r/.
Similarly, let the right twist map be given by T �1.�; r/D .� � 2�r; r/.

Definition 3.2 Let y be a simple closed curve in † and N an annular neighborhood
of y . Define � to be an orientation-preserving homeomorphism from A to N . Then
the Dehn twist operator along y is the homeomorphism �y W †!† given by

�y D

�
� ıT ı��1.p/ if p 2N,
p if p 2†�N.

The homeomorphism �y is well defined up to isotopy.

Remark 3.3 In this paper, we have picked the convention that all positive powers of
the Dehn twist operator will apply a left twist.

Definition 3.4 Suppose Y D fy1;y2; : : : ;ytg is a collection of pairwise disjoint
simple closed curves in †. Let �Y W †! † denote the composition of Dehn twists
�y1
ı �y2

ı � � � ı �yt
. Since the yi are pairwise disjoint, it is easy to see that �Y is

independent of the ordering of fyig.

Definition 3.5 Suppose N � † is an annulus with a specified I–fibration in an
oriented surface †, and c is a properly embedded arc in N with fixed endpoints that
intersects each I–fiber of N efficiently. Let p be a point of intersection between c

and @N . Then denote vc to be the inwards tangent vector of c based at p . Similarly,
let vI be the inwards tangent vector based at p of the I–fiber of N that has p as an
endpoint. Then c turns left in N at p (resp. turns right in N at p ) if the orientation
determined by the pair hvI ; vci (resp. the pair hvc ; vI i) matches the corresponding
orientation of the tangent space of † at p .

c

N
vc vI

p

Figure 2: The arc c turns left in N .

Definition 3.6 Let N be an annulus and let X D fx1;x2; : : : ;xsg be a collection of
pairwise disjoint simple closed curves in †. Then N is fibered with respect to X if N

has an I–fibration such that N \X consists of I–fibers of N .
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One way to arrange for N to be fibered with respect to X is to isotope N so that the
core curve of N is transverse to X and then make the fibers of N sufficiently short.

The definition of the twisting number between two simple closed curves was first
introduced by Lustig and Moriah in [12]. To handle some additional subtleties required
for our arguments, we provide a modified definition. We first give the definition of
the twisting number for a properly embedded essential arc with fixed endpoints in an
annulus and later generalize to the twisting number between two simple closed curves.

Definition 3.7 Let X D fx1;x2; : : : ;xsg be a collection of pairwise disjoint curves
in †. Suppose N is an annulus in † that is fibered with respect to X. Let c be an
essential properly embedded arc in N with fixed endpoints disjoint from X \N that
intersects each I–fiber of N efficiently. Set m D jc\X j

jN\X j
2Q. Then c has twisting

number m (resp. twisting number .�m/) in N with respect to X if it turns left (resp.
turns right) in N at its endpoints.

In the following lemmas, it is helpful to work in the universal cover of the annulus.
Recall that A is an annulus S1 � Œ0; 1� embedded in the .�; r/–plane by the map
.�; t/! .�; tC1/. Then BD Œ0; 1��R�R2 is the universal cover of A with covering
map  W B ! A given by  .x;y/ D .2�y;x C 1/. Note that we have flipped the
factors between A and B as this allows for a natural relation between an increase
in (left) twisting in A and an increase of slope in B . The left twist map T W A! A

induces a homeomorphism zT W B! B given by zT .x;y/D .x;yCx/ (see Figure 3)
so that the following diagram commutes:

B
zT //

 
��

B

 
��

A
T // A

If N is an embedded annulus in †, we can compose  with an orientation-preserving
homeomorphism �W A!N to consider B as the universal cover of N . Choose � so
that the I–fibers of N lift to horizontal arcs in B . A properly embedded arc in N that
intersects the I–fibers of N efficiently can be isotoped relative to its endpoints so that
it lifts to a collection of straight line segments in B , each with the same slope, that
differ by a vertical translation of an integral distance. Applying the induced left twist
map zT (resp. right twist map) to a straight line segment in B then increases (resp.
decreases) the slope by 1.

Now let X D fx1;x2; : : : ;xsg be a collection of pairwise disjoint simple closed curves
on † that intersect N in I–fibers. Suppose n D jN \X j and then, after possibly
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B �R2

A�R2

zT
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�2 �1 0 1 2

�1

1
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1

2

�1

�2 �1 0 1 2

�2

�1

1
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�2 �1 0 1 2

�2

�1

1

2

Figure 3: The left twist map T on the annulus A and the induced map zT on
B D Œ0; 1��R

rechoosing � , the collection of all lifts of the arcs of N \X are exactly the horizontal
arcs in B of the form Œ0; 1�� z

n
for all z 2 Z. Then a properly embedded straight line

segment ˛ in B with endpoints disjoint from lifts of N \X and with slope m projects
to a properly embedded arc in N with twisting number a

n
with respect to X, where

a 2 Z is chosen so that jaj is the total number of intersections between ˛ and lifts of
N \X, and a and m share the same sign (see Figure 4).

With this perspective we can make the following observations.

Lemma 3.8 Let X D fx1;x2; : : : ;xsg be a collection of pairwise disjoint curves
in †. Suppose N is an annulus in † that is fibered with respect to X. Let c1 and c2

be disjoint properly embedded arcs in N with twisting numbers m1 and m2 in N

respectively with respect to X. Then jm1�m2j � 1.

Proof Let n D jN \ X j and let B D Œ0; 1� �R denote the universal cover of N

with covering map as defined previously so that the lifts of the arcs N \X is the
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c
X

N

X

zc

0

1

2

0 1

B D Œ0; 1��R

Figure 4: An arc c with twisting number 2 with respect to X lifts to arcs
with slope 2 in B D Œ0; 1��R .

set fŒ0; 1�� z
n
jz 2 Zg. Then c1 and c2 can be isotoped so that the collection of all of

their lifts, zc1 and zc2 respectively, are a collection of linear arcs in B with slopes equal
to their twisting numbers, denoted as m1 and m2 . Since c2 is disjoint from c1 , any
lift of c2 must lie in a parallelogram-shaped region R of B� zc1 . The vertical distance
between consecutive lifts of c1 in B is equal to 1, so the slope m2 of c2 must satisfy
m1� 1�m2 �m1C 1.

Lemma 3.9 Let X Dfx1;x2; : : : ;xsg be a collection of pairwise disjoint curves in †.
Suppose y is a simple closed curve in † and N is an annular neighborhood of y that
is fibered with respect to X. Let c be a properly embedded arc in N with twisting
number m with respect to X. Then �k

y .c/ has twisting number mC k in N with
respect to X.

Proof Again let n D jN \X j and let B D Œ0; 1��R be the universal cover of N

such that the set of all lifts of N \X is equal to fŒ0; 1�� z
n
j z 2 Zg. Then c can be

isotoped so that the collection of all of its lifts in B , denoted as zc , is a collection of
linear arcs in B with some slope m. Applying zT k to B sends each linear arc of zc
to a linear arc with slope mC k . Projecting a component of zT k.zc/ back down to N

yields a properly embedded arc in N that agrees with �k
y .c/ and has twisting number

mC k with respect to X.

The next goal is to define the twisting number for a simple closed curve 
 about a simple
closed curve y that 
 intersects efficiently. This is more complicated than defining
the twisting number for an arc in an annulus; given an annular neighborhood N of y ,
ambient isotopies of 
 can modify the twisting number of any component of 
 \N .
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Let X Dfx1;x2; : : : ;xsg and Y Dfy1;y2; : : : ;ytg be collections of pairwise disjoint
curves such that the components of X and Y intersect efficiently, and suppose that
N D fN1;N2; : : : ;Ntg is a collection of pairwise disjoint annuli such that each Ni is
an annular neighborhood of yi and Ni is fibered with respect to X.

Definition 3.10 If 
 is a simple closed curve that intersects X, Y , @N and each
I–fiber of N efficiently, then we will say 
 is in efficient position with respect to
.X;Y;N /.

We will also require the use of the following helpful fact (see Hass and Scott [5] for a
proof).

Lemma 3.11 Let Y1; : : : ;Yn�1 each be a collection of disjoint essential simple closed
curves in † so that each pair Yi , Yj intersects efficiently. If Yn is another collection
of disjoint essential simple closed curves, then Yn can be isotoped to intersect each
of the other sets efficiently without disturbing the efficient intersection of the others.
Moreover, as long as no component of Yn is parallel to a component of any Yi , any
two embeddings of Yn that intersect Y1; : : : ;Yn�1 efficiently are isotopic through an
isotopy which keeps all intersections efficient (though during the isotopy Yn may pass
over intersection points of Yi with Yj ).

For our purposes, Lemma 3.11 implies that as long as 
 is not parallel to a component
of X or Y , then between any two embeddings of 
 that are in efficient position
with respect to .X;Y;N /, there exists an isotopy ft (with t 2 Œ0; 1�/ such that ft .
 /

intersects X, Y and @N efficiently for all t . Moreover, after perturbing ft in N , we
can assume ft .
 / is in efficient position with respect to .X;Y;N / for all t . Then ft

induces an isotopy f N
t of † that is transverse to @N [ Y and that can restrict to

an isotopy on N. Let c1; c2; : : : ; cr denote the components of 
 \N with twisting
numbers m1;m2; : : : ;mr respectively in N . We can associate c1; c2; : : : ; cr with their
images under f N

t and then track the corresponding changes in their twisting numbers.
Using such isotopies, we want to isotope 
 to maximize

P
j jmj j.

Definition 3.12 Let 
 be a simple closed curve that is in efficient position with respect
to .X;Y;N /. Suppose there exists a triangle E in † with a side sX in X, a side sN

in @N , and a side s
 in 
 , such that VE is disjoint from N . Then the triangle E will
be called an outer triangle of N (see Figure 5).

Given an outer triangle E of N , we can perform an isotopy of 
 supported in an open
neighborhood of E that pushes s
 and all the other arcs of VE\
 into N (see Figure 6)
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s
sX

c
sN

N

E

Figure 5: E is an outer triangle of N .




cj

X

N

E




cj

X

N

Figure 6: An isotopy of 
 across an outer triangle E of N that increases jmj j

such that 
 will be in efficient position with respect to .X;Y;N / throughout the isotopy.
Note that this isotopy increases

P
j jmj j.

As j
 \X j is finite, a finite number of isotopies of 
 across outer triangles of N will
yield an embedding of 
 in efficient position with respect to .X;Y;N / that admits no
such outer triangles. We claim that for such embeddings,

P
j jmj j is maximal over all

representatives of the isotopy class of 
 that are in efficient position with respect to
.X;Y;N /.

Proposition 3.13 Suppose 
 is a simple closed curve in efficient position with respect
to .X;Y;N / and 
 is not parallel to a component of Y . Let c1; c2; : : : ; cr denote
the components of 
 \N and let mj be the twisting number of cj . Then

P
j jmj j

is maximal over all embeddings of 
 that are in efficient position with respect to
.X;Y;N / if and only if 
 admits no outer triangles of N .

Proof Note that in the case that 
 is parallel to a component of X, then 
 admits no
outer triangles (since it is disjoint from X ) and

P
j jmj j D 0 is maximal.

If 
 is an embedding in efficient position with respect to .X;Y;N / such that
P

j jmj j

is maximal, then 
 admits no outer triangles, as otherwise an isotopy across such a
triangle would increase

P
j jmj j.
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Conversely, suppose that 
 admits no outer triangles of N , but
P

j jmj j is not maximal.
Then there exists an isotopy ft of 
 that increases

P
j jmj j. Moreover, by Lemma 3.11

we can assume ft .
 / intersects X, Y and @N efficiently for all t 2 Œ0; 1�. This
implies ft induces isotopies f X

t and f N
t which are transverse to X and Y [ @N

respectively such that f X
t .
 /D f N

t .
 /D ft .
 / for all t .

Since ft increases
P

j jmj j, there exists a point p 2 
 \X such that p lies off of N ,
but f X

1
.p/ lies in N. Let t� denote the smallest value such that f X

t�
.p/ 2 @N. As

f X
t�
.p/ lies in @N , f X

t�
.p/D f N

t�
.q/ for some point q 2 
 \ @N .

Since we chose t� to be the smallest value such that f X
t�
.p/ 2 @N, there exists a

subarc s of 
 connecting p to q such that Vs is disjoint from N . Then as f X
t pushes p

along X across @N and f N
t pushes q along @N across X, s must form the side of

an outer triangle E of N, where the other two sides of E consist of a subarc of X

connecting p to f X
t�
.p/ and a subarc of @N connecting q to f N

t�
.q/. This contradicts

our assumption that 
 admitted no such outer triangles of N , and hence
P

j jmj j is
maximal.

We can now provide the definition of twisting number about a simple closed curve.

Definition 3.14 Let y be a simple closed curve that intersects X efficiently and N

be an annular neighborhood of y that is fibered with respect to X. Suppose 
 is an
essential simple closed curve that intersects y nontrivially. Then define the twisting
number of 
 in N with respect to X , denoted as tw.
;N;X /, to be the maximum
twisting number of a component of 
 \N with respect to X over all representatives
of the isotopy class of 
 that are in efficient position with respect to .X;y;N / and
admit no outer triangles of N .

We require 
 to intersect X efficiently as otherwise there would be no maximum to the
twisting number of components of 
 \N . We include the assumption that 
 does not
admit outer triangles of N as otherwise we could push any “negative twisting” of 

about y to lie outside of N and therefore tw.
;N;X / would always be nonnegative.

Suppose that N 0 is another choice of annular neighborhood of y that is fibered with
respect to X. Then there exists an isotopy gt that sends N to N 0 such that I–fibers
of N are sent to I–fibers of N 0 and X is fixed. In particular, this means for any
component c of 
 \N , g1.c/ is a component of 
 \N 0 . Moreover, if 
 is in efficient
position with respect to .X;y;N / and does not admit any outer triangles of N , then
g1.
 / is in efficient position with respect to .X;y;N 0/ and does not admit any outer
triangles of N 0 . Hence we can conclude that tw.
;N;X /D tw.
;N 0;X / and twisting
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number is independent of the choice of annular neighborhood of y . We will thus
denote the twisting number as tw.
;y;X /.

Given our definition of twisting number and Lemma 3.9, one would expect there to
be a natural relationship between tw.
;y;X / and tw.�y.
 /;y;X /. If an embedding
of 
 admits no outer triangles of N, by the following lemma we can then obtain an
embedding of �k

y .
 / via arc replacements of the components of 
 \N that, for k

sufficiently large, continues to intersect X efficiently. This result and its corollary are
integral to proving Lemma 3.18, which provides the foundation for our later results.

Lemma 3.15 We continue to define X, Y and N as before (Y is allowed to have
multiple components). Suppose 
 is a simple closed curve in efficient position with
respect to .X;Y;N / and admits no outer triangles of N. Denote the components of

 \N as c1; c2; : : : ; cr and let mj be the twisting number of cj in the component
of N that contains cj . Let k 2 Z such that either for all j , kCmj � 0 or for all j ,
kCmj � 0. Then there exists an embedding of �k

Y
.
 / in efficient position with respect

to .X;Y;N / that admits no outer triangles of N and the components of �k
Y
.
 /\N

consist of arcs fc0
1
; c0

2
; : : : ; c0r g, where c0j has twisting number mj C k with respect

to X for each j .

Proof Let 
 0D �k
Y
.
 /. By Lemma 3.9, we can obtain an embedding of 
 0 by fixing 


off of N and replacing each component cj of 
 \N with a properly embedded arc c0j
in N that has twisting number mj C k . We replace these arcs carefully so that this
embedding of 
 0 intersects Y and each I–fiber of N efficiently. As 
 intersects @N
efficiently, this embedding of 
 0 will as well. So it remains to show that this embedding
of 
 0 intersects X efficiently.

Suppose otherwise. Then there exists a component b0 of 
 0 � X that cobounds a
bigon D with a subarc of some x` 2X. As 
 intersects X efficiently, b0 cannot be
contained in the complement of N since it would then coincide with 
 . Moreover,
as the components of 
 0 \N intersects each I–fiber of N efficiently, b0 cannot be
contained in N. So b0 and @N must intersect at least once and we can consider the
two distinct components ˇ1 and ˇ2 of b0� @N which connect x` with @N and have
interiors disjoint from @N .

Suppose the interior of ˇ1 lies off of N. Then ˇ1 forms a side of an outer triangle
of N. However, as this embedding of 
 0 agrees with 
 off of N, 
 0 also does not
admit any outer triangles of N . Hence we have a contradiction and ˇ1 must instead be
contained in N . Repeating the argument with ˇ2 implies ˇ2 must also lie in N .

So both ˇ1 and ˇ2 are subarcs of components of 
 0\N . By hypothesis, k was chosen
so every component of 
 0\N has twisting number with the same sign. On the other
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hand, the arcs of @N \D must have one endpoint on x` and one endpoint on b0 , as
otherwise @N would not intersect x` or b0 efficiently. This means that ˇ1 and ˇ2

have twisting numbers of opposite sign in N (see Figure 7), a contradiction.

Hence 
 0 must have efficient intersection with X.

ˇ1 ˇ2

x`

N N

D

b0

Figure 7: In this case, ˇ1 has positive twisting number in N and ˇ2 has
negative twisting number in N .

In particular, Lemma 3.15 provides a lower bound for the twisting number of �k
y .
 /

about y with respect to X for appropriately chosen k .

Corollary 3.16 Let X, Y , N and 
 be as in Lemma 3.15. Let m1;m2; : : : ;mr be
the twisting numbers of the components of 
 \N and choose k 2 Z so that for all
j , kCmj � 0. If a component of 
 \N` has twisting number equal to m, for some
N` 2N , then tw.�k

Y
.
 /;y`;X /�mC k .

Proof Suppose c is the component of 
 \N` with twisting number equal to m in N` .
Then by Lemma 3.15, we obtain an embedding of �k

Y
.
 / that is in efficient position

with respect to .X;Y;N / by replacing c with an arc c0 in N` that has twisting number
equal to mC k . Hence mC k is a lower bound for tw.�k

Y
.
 /;y`;X /.

We now replace the arbitrary collection of pairwise disjoint curves X in † with a
pants decomposition P of †. The twisting number of 
 around a 1–seamed curve y

can then provide a lower bound on the number of seams 
 contains by the following
natural relationship.

Remark 3.17 Let P be a pants decomposition of † and y a simple closed curve that
is 1–seamed with respect to P . If 
 is a simple closed curve such that jtw.
;y;P/j>k ,
then 
 is k –seamed with respect to P .

When applied in this setting, Corollary 3.16 gives the following result.
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Lemma 3.18 Let H be a handlebody with @H D † and P a pants decomposition
for H. Let Y D fy1;y2; : : : ;ytg be a collection of pairwise disjoint curves in † such
that P and Y intersect efficiently and yi is 1–seamed with respect to P for each i .
Suppose 
 is a simple closed curve that intersects P and Y efficiently. If 
 bounds a
disk in H, then for every yi 2 Y and k � 1,

tw.�k
Y .
 /;yi ;P/� k:

Proof Let N D fN1;N2; : : : ;Ntg be a collection of pairwise disjoint annuli such
that Ni contains yi and Ni is fibered with respect to P . Isotope 
 to be in efficient
position with respect to .P;Y;N / and so it admits no outer triangles of N. Let
c1; c2; : : : ; cr be the components of 
 \N with twisting numbers m1;m2; : : : ;mr

respectively.

By Lemma 2.10, 
 is either parallel to a component of P or contains a wave of a
component of †�P . If 
 is parallel to a component of P , then for every yi 2 Y , yi

intersects 
 and 
 \Ni consists of arcs with twisting number 0. Therefore, for k � 1,
Corollary 3.16 implies tw.�k

Y
.
 /;yi ;P/� k .

So suppose 
 instead contains a wave w of a component of †�P . Then since every 1–
seamed curve must intersect w , each yi intersects w and moreover w\Ni consists of
properly embedded arcs in Ni with twisting number 0. This implies m1;m2; : : : ;mr

are all greater than or equal to �1 by Lemma 3.8. So, for k � 1, Corollary 3.16 implies
tw.�k

Y
.
 /;yi ;P/� k .

4 Heegaard splittings and Hempel distance

Definition 4.1 A collection of pairwise disjoint essential simple closed curves Z in †
is a full set of curves if †�Z is a collection of punctured spheres.

In particular, both a standard cut system and a pants decomposition of † are full.

Suppose Z is a full set of curves in †. Consider the 3–manifold obtained from †� I

by attaching 2–handles to †�f1g, one along each curve in Z . Since †�Z consists of
a collection of punctured spheres, the boundary of the 3–manifold consists of †� f0g
together with a collection of spheres. Attaching a 3–ball to each of the spheres creates
a handlebody whose boundary is †. Denote this handlebody as VZ , with @VZ D†.

Definition 4.2 A genus g Heegaard splitting of a closed 3–manifold M is a decom-
position of M into the union of two genus g handlebodies, identified along their
boundaries.
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Remark 4.3 Let Z and Z0 be two full sets of curves in †. Then VZ and VZ 0 are
handlebodies and M D VZ [† VZ 0 is a Heegaard splitting of the closed orientable
manifold M.

Given two full sets of curves Z and Z0 in † such that † � Z and † � Z0 are
homeomorphic (for example, if both Z and Z0 are standard cut systems), there exists
a surface automorphism of † that sends Z to Z0 (for more details see [3]). This
is the map that identifies the boundary of VZ to VZ 0 . Conversely, if we start with
just Z and h is a surface automorphism of †, then we can obtain a 3–manifold
with Heegaard splitting VZ [† Vh.Z/ . In this way, every surface automorphism of †
induces a Heegaard splitting of some closed 3–manifold.

Definition 4.4 The curve complex for †, denoted as C.†/, is the complex whose
vertices are isotopy classes of essential simple closed curves in † and a set of distinct
vertices fv0; v1; : : : ; vkg determines a k –simplex if they are pairwise disjoint.

Note that in this paper we only need to consider the 1–skeleton of the curve complex.

Definition 4.5 Given two collections of simple closed curves Z and Z 0 in †, the
distance between Z and Z 0 , denoted d.Z;Z 0/, is the minimal number of edges in a
path in C.†/ between a vertex in Z and a vertex in Z 0 .

Definition 4.6 Let H be a handlebody with @H D†. Then the disk complex of H ,
denoted as D.H /, is the subcomplex of C.†/ determined by all essential simple
closed curves that bound embedded disks in H. If Z is a full set of curves in †, we
will let KZ denote D.VZ /.

The following definition was first introduced by Hempel [6].

Definition 4.7 Let Z and Z0 be full sets of curves in †. Then the Hempel distance,
or distance, of the Heegaard splitting VZ [VZ 0 is equal to d.KZ ;KZ 0/.

We now introduce the useful term “diskbusting.”

Definition 4.8 Let H be a handlebody with @H D†. A collection of pairwise disjoint
essential curves Y D fy1;y2; : : : ;ytg is diskbusting on H if every meridian of H

intersects some yi 2 Y .

Observe that a simple closed curve y is diskbusting on H if and only if d.D.H /;y/�2.
On the other hand, there exist collections of curves Y such that Y is diskbusting on H

and d.D.H /;yi/D 1 for all yi 2 Y . For an example, see the collection Y2 in Figure 8.
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Definition 4.9 Let X be a standard cut system and Y D fy1;y2; : : : ;ytg a collection
of essential curves in † that intersect X efficiently. Then †�X is a 2g–punctured
sphere and Y is a collection of properly embedded essential arcs in †�X. Obtain a
planar graph �X .Y / by having each puncture of †�X correspond to a vertex and
each arc of Y in †�X represent an edge.

The graph �X .Y / is known as the Whitehead graph (for more details, see Stallings [17]).

Definition 4.10 A graph � is 2–connected if it is connected and � does not contain a
vertex whose removal would disconnect the graph (ie � does not contain a cut vertex).

The following theorems characterize diskbusting sets of curves on the surface of a
handlebody and were first proven by Starr [18]. Alternate proofs have been given by
Wu [21, Theorem 1.2], Strong [19, Theorem 3] and Luo [11, Theorem 3.1].

Theorem 4.11 (Starr [18, Theorem 1]) Let H be a handlebody with outer bound-
ary †. Suppose Y D fy1;y2; : : : ;ytg is a collection of essential simple closed curves
in †. Then Y is diskbusting on H if and only if there exists a standard set of
meridians X of H such that �X .Y / is 2–connected.

Theorem 4.12 (Starr [18, Theorem 2]) Let H be a handlebody with outer bound-
ary †. Suppose Y D fy1;y2; : : : ;ytg is a collection of essential simple closed curves
in †. Then Y is diskbusting on H if and only if there exists a pants decomposition P
of H such that Y is collectively 1–seamed with respect to P .

Note that in the proof of Theorem 4.12, Starr proved that if Y is a collection of essential
simple closed curves such that �X .Y / is 2–connected (and therefore Y is diskbusting),
then there exists a pants decomposition P of H such that X �P and Y is collectively
1–seamed with respect to P .

The following definition is a generalization of the notion of diskbusting to distance 3.
The term “nearly fills” was chosen since “almost fills” is already used by Hempel in [6]
for an alternate purpose.

Definition 4.13 Suppose Y is a finite set of disjoint essential simple closed curves in
the boundary † of a handlebody H. Then Y nearly fills H if for every meridian d of
H, the union of d and Y fills †. That is, †� .Y [ d/ is a collection of 2–cells.
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PY1

Y2

Figure 8: If P is a pants decomposition of H, then Y1 (a single curve)
and Y2 (a collection of 3 curves) are both diskbusting on H.

Proposition 4.14 Let H be a handlebody with @H D†. Then

(1) a finite collection Y of pairwise disjoint essential curves in † nearly fills H if
and only if for every essential curve 
 that is disjoint from Y , d.D.H /; 
 /� 2;

(2) a single simple closed curve y in † nearly fills H if and only if d.D.H /;y/�3.

Proof We begin with the proof of (1). Suppose Y nearly fills H. Let ˇ be an essential
curve disjoint from Y and d an arbitrary meridian of H. If ˇ is disjoint from d , then
d[Y does not fill †, which contradicts our assumption. Hence ˇ must intersect every
meridian of H and therefore d.D.H /; 
 /� 2.

Conversely, suppose Y is a collection of pairwise disjoint essential simple closed curves
with the property that any essential curve 
 disjoint from Y satisfies d.D.H /; 
 /� 2.
Let d be an arbitrary meridian of H. If d [ Y does not fill †, then there exists
some essential curve ˇ in † that lies disjoint from d and Y . Since d 2 D.H /,
d.D.H /; ˇ/ < 2 and we have a contradiction.

For the proof of (2), suppose y is a single simple closed curve that nearly fills H. By
part (1), any curve 
 disjoint from y satisfies d.D.H /; 
 /� 2. Hence the length of
any path between y to D.H / must be at least 3.

5 Main theorems

Suppose H is a handlebody with @H D† and consider the Heegaard splitting induced
by the identity map on †. The resulting 3–manifold is homeomorphic to #g.S

2�S1/

and the Heegaard splitting has distance 0, as the disk sets of the two handlebodies are
identical. Hempel [6] replaced the identity map with a high power of a pseudo-Anosov
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map to prove the existence of Heegaard splittings with arbitrarily high distance. We give
a similar result by providing a lower bound on the distance of the resulting Heegaard
splitting when the identity map is replaced with a high power of a Dehn twist map.
As shown later in Lemma 5.4, Dehn twisting about a curve 
 that is distance d from
D.H / determines a Heegaard splitting of distance at most 2d � 2. We show that for
a sufficiently high power of Dehn twists about 
 the resulting Heegaard splitting is
exactly distance 2d � 2.

We first require the following utility lemma, which is a generalization of Lemma 3.8.

Lemma 5.1 Let X Dfx1;x2; : : : ;xsg be a collection of pairwise disjoint curves in †.
Suppose y is a simple closed curve in † with annular neighborhood N that is fibered
with respect to X. Let ˛0; ˛1; : : : ; ˛n be a collection of essential simple closed curves
such that each intersects y , each is in efficient position with respect to .X;y;N /,
and j̨ and j̨C1 are disjoint for 0 � j � n� 1. Assume a component of ˛n \N

has twisting number equal to mn with respect to X. If mi is the twisting number of a
component of ˛i \N for some 0� i � n� 1, then jmn�mi j � jn� i j.

Proof Let bn be the component of ˛n\N that is assumed to have twisting number mn .
For a fixed i such that 0� i � n� 1, let mi be the twisting number of a component
of ˛i \N. Then for i < j < n, there exists some component bj of j̨ \N that is a
properly embedded arc in N since each j̨ nontrivially intersects y . Let mj denote
the twisting number of bj in N with respect to X. Then by Lemma 3.8, as bjC1

and bj are disjoint we have that jmjC1 �mj j � 1 for each j . So by the triangle
inequality, jmn�mi j � jn� i j.

We now prove an extension of a result of Casson and Gordon [1], whose result is the
following.

Theorem 5.2 (Casson and Gordon [1]) Let H be a handlebody with @H D† and 

a simple closed curve such that d.D.H /; 
 / � 2. Let P be a pants decomposition
of H (so KP DD.H /) such that 
 is 1–seamed with respect to P . Then for k � 2,
d.KP ;K�k


 .P//� 2.

The above result of Casson and Gordon can be proved by showing that Dehn twisting
at least twice about a 1–seamed curve will yield a Heegaard diagram that satisfies the
Casson–Gordon rectangle condition (see [8, Example3] for details).

Note that if d.D.H /; 
 /� 1, then there exists some meridian ˛ in H that is disjoint
from 
 , and therefore fixed by �
 . Consequently, the Heegaard splitting induced by �k
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will always have distance 0. So if we are interested in creating Heegaard splittings of
nonzero distance, we need to assume that d.D.H /; 
 / � 2. Then by Theorem 4.12,
there is a pants decomposition P of H such that 
 is 1–seamed with respect to P .

Lemma 5.3 Let H be a handlebody with @H D † and 
 a simple closed curve
such that d.D.H /; 
 / � d for d � 2. Let P be a pants decomposition of H (so
KP DD.H /) such that 
 is 1–seamed with respect to P . Then

d.KP ;K�k

 .P//�

�
k if 2� k � 2d � 2,
2d � 2 if k � 2d � 2.

Proof To simplify notation, let P 0 D �k

 .P/.

Suppose, for the sake of a contradiction, that d.KP ;KP 0/ D ` for some ` < k and
` < 2d � 2. Then there exists a sequence of simple closed curves ˛0; ˛1; : : : ; ˛` such
that consecutive curves are disjoint, ˛0 2KP and ˛` 2KP 0 .

Note that d.KP ; 
 /D d.KP 0 ; 
 / since any path in C.†/ between KP and 
 can be
sent by �k


 to a path between KP 0 and 
 (since �k

 fixes 
 ) and conversely, any path

between KP 0 and 
 can be sent to a path between KP and 
 via ��k

 . Therefore

d.KP ; 
 /� d implies that d.KP 0 ; 
 /� d .

Since ` < 2d � 2, j � d � 2 or ` � j � d � 2 for any j such that 0 � j � `.
Consequently, j̨ is a distance at most d � 2 from at least one of ˛0 or ˛` in C.†/.
As ˛0 2KP and ˛` 2KP 0 , we have that d.KP ; j̨ /� d � 2 or d.KP 0 ; j̨ /� d � 2.
Then 
 being at least distance d from both KP and KP 0 implies that j̨ must be at
least distance 2 from 
 . Hence, j̨ intersects 
 for each 0� j � `.

As ˛` is a component of KP 0 , ˛` D �k

 .ˇ/ for some ˇ 2 KP . Lemma 3.18 then

implies tw.˛`; 
;P/� k . Let N be an annular neighborhood of 
 that is fibered with
respect to P and assume ˛0; ˛1; : : : ; ˛` have all been isotoped so that they are each
in efficient position with respect to .P; 
;N /, intersect each other efficiently, and a
component of ˛`\N has twisting number greater than or equal to k in N with respect
to P . Then by Lemma 5.1, each component of ˛1\N must have a twisting number
of at least k � .`� 1/� 2 in N with respect to P . So ˛1 is 1–seamed with respect
to P (since 
 is 1–seamed) and therefore d.KP ; ˛1/� 2 by Theorem 4.12. But this
is a contradiction as d.KP ; ˛1/D 1. Hence, d.KP ;KP 0/�minfk; 2d � 2g.

One of the key arguments needed in the proof of Lemma 5.3 is confirming that, for any
sequence ˛0; ˛1; : : : ; ˛` of simple closed curves that form a path in C.†/ between KP
and K�k


 .P/ of length less than 2d � 2, each j̨ must intersect 
 . This allows us to
use Lemma 5.1 to show that the twisting numbers of each j̨ about 
 are dependent
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on k . In particular, their twisting numbers will increase as k increases. Therefore,
we would expect that for sufficiently large values of k , the shortest path between KP
and K�k


 .P/ must include a curve that is disjoint from 
 . The following lemma shows
it is not hard to construct a path of length 2d �2 between KP and K�k


 .P/ that indeed
includes such a disjoint curve.

Lemma 5.4 Let P be a pants decomposition of †. Suppose 
 is a simple closed curve
such that d.KP ; 
 /Dd for some d �1. Then for any k 2Z, d.KP ;K�k


 .P//�2d�2.

Proof For the duration of this proof, let P 0 D �k

 .P/.

If d.KP ; 
 /D 1, there exists some ˛ 2KP that is disjoint from 
 . Then �
 fixes ˛
and therefore ˛ 2KP 0 and d.KP ;KP 0/D 0.

So suppose d > 1. By definition, d.KP ; 
 /D d implies there exists a sequence of
simple closed curves ˛0; ˛1; : : : ; ˛d such that j̨ \ j̨C1D∅ for 0� j < d , ˛0 2KP
and ˛d D 
 .

As ˛d�1 is disjoint from both 
 and ˛d�2 , ˛d�1 is also disjoint from �k

 .˛d�2/. We

then have the following path in C.†/ of 2d � 2 curves between KP and KP 0 (see
Figure 9):

˛0; ˛1; : : : ; ˛d�2; ˛d�1; �
k

 .˛d�2/; : : : ; �

k

 .˛1/; �

k

 .˛0/:

Hence d.KP ;KP 0/� 2d � 2.

˛0 ˛1 ˛d�2 ˛d�1
Î

�k

 .˛d�1/




�k

 .˛d�2/ �k


 .˛1/ �k

 .˛0/

KP
K
�k

 .P/

Figure 9: Path in C.†/ between KP and KP0

Combining the above two lemmas then gives the following result.

Main Theorem 1 Let H be a handlebody with @H D† and 
 a simple closed curve
such that d.D.H /; 
 / D d for d � 2. Let P be a pants decomposition of H (so
KP D D.H /) such that 
 is 1–seamed with respect to P . Then for k � 2d � 2,
d.KP ;K�k


 .P//D 2d � 2.
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Proof By Lemma 5.3, for k � 2d � 2, d.KP ;K�k

 .P//� 2d � 2. On the other hand,

Lemma 5.4 shows that Dehn twisting about a curve 
 such that d.KP ; 
 /D d implies
that d.KP ;K�k


 .P//� 2d � 2. Hence we achieve the desired equality.

If we started with a simple closed curve 
 such that d.D.H /; 
 / D 3, the above
theorem shows that for k � 4, VP [† V�k


 .P/ is a 3–manifold that admits a Heegaard
splitting of distance exactly 4. While we lack the nice characterization of distance 3
curves that the work of Starr [18] (Theorems 4.11 and 4.12) and others provide for
diskbusting curves, some distance greater than or equal to 3 Heegaard splitting criteria
like those provided in [15; 6] can be adapted to help identify distance 3 curves. So
suppose we have identified such a curve 
 and that ˛0; ˛1; ˛2; ˛3 are simple closed
curves that form a minimum length path in C.†/ such that ˛0 2D.H / and ˛3 D 
 .
Then Main Theorem 1 shows that Dehn twisting about 
 a total of 4 times will
produce a distance 4 Heegaard splitting. However, the arguments of Lemmas 5.3
and 5.4 also show that d.D.H /; �k


 .˛0//D 4 for k � 4. So if we let ˇ D �k

 .˛0/ and

consider Dehn twisting about ˇ , we can produce a distance 6 Heegaard splitting and
also d.D.H /; �k0

ˇ
.˛0//D 6 for k 0 � 6. Repeating this process allows us to produce

Heegaard splittings of arbitrarily high distance that have a known exact distance.

Even if one was to obtain a curve with distance exactly d for any d , Main Theorem 1
will only produce Heegaard splittings of even distance. See [7; 14] for constructions of
Heegaard splittings with exactly odd distance.

As the examples from Main Theorem 1 are obtained by Dehn twisting about a single
curve, the following result of Evans implies these resulting 3–manifolds are all Haken.

Theorem 5.5 (Evans [2, Corollary 3.5]) Let H be a handlebody with @H D †

and Z a collection of pairwise disjoint simple closed curves in † that bound disks
in H. Suppose P is a pants decomposition of H (so H D VP ). If Z is not a full set
of curves, then for any nonzero k , the closed 3–manifold VP [† V�k

Z
.P/ is Haken.

The manifolds generated by Main Theorem 1 can be considered the result of ( 1
k

)-
Dehn surgery along a curve 
 in the double of a handlebody. Casson and Gordon [1]
generalized their Theorem 5.2 to the case where Dehn surgery is performed in a
manifold admitting a weakly reducible (distance less than or equal to 1) Heegaard
splitting. Their result can be restated as the following (see the appendix of Moriah and
Schultens [13] for a proof).
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Theorem 5.6 (Casson and Gordon [1]) Let H1 and H2 be handlebodies such that
@H1 D @H2 D† and d.D.H1;D.H2//� 1. Suppose 
 is a simple closed curve such
that d.D.H1; 
 //� 2 and d.D.H2; 
 //� 2. Let P1 and P2 be pants decompositions
of H1 and H2 respectively (so KP1

D D.H1/ and KP2
D D.H2/) such that 
 is

1–seamed with respect to both P1 and P2 . Then for k � 6, d.KP1
;K�k


 .P2/
/� 2.

We can extend this result of Casson and Gordon with the following lemma.

Lemma 5.7 Let H1 and H2 be handlebodies satisfying @H1 D @H2 D † and let
nDmaxf1; d.D.H1/;D.H2//g. Suppose d1; d2 are integers such that d1; d2 � 2 and
d1 C d2 � 2 > n and let 
 be a simple closed curve such that d.D.H1/; 
 // � d1

and d.D.H2/; 
 // � d2 . Let P1 and P2 be pants decompositions of H1 and H2

respectively (so KP1
D D.H1/ and KP2

D D.H2/) such that 
 is 1–seamed with
respect to both P1 and P2 . Then

d.KP1
;K

�
kCnC2

 .P2/

/�

�
k if 2� k � d1C d2� 2,
d1C d2� 2 if k � d1C d2� 2.

Proof Assume that P1 , P2 and 
 intersect efficiently. Let xnD d.D.H1/;D.H2//.
Then there exists a sequence of simple closed curves ˛0 , . . . , ˛xn such that consec-
utive curves are disjoint, ˛0 2 D.H1/ and ˛xn 2 D.H2/. Suppose N is an annular
neighborhood of 
 that is fibered with respect to P1 and P2 and ˛0 , . . . ,˛xn are all
in efficient position with respect to .P1; 
;N / and .P2; 
;N / and also intersect each
other efficiently. Let m1;m2; : : : ;mr denote the twisting numbers of the components
of ˛xn\N with respect to P1 .

Claim 1 We have maxfjm1j; : : : ; jmr jg � n.

Proof of Claim 1 As xn< d1Cd2� 2, either j � d1� 2 or xn� j � d2� 2 for all j

such that 0� j � xn. If j � d1� 2, then d. j̨ ;D.H1//� d1� 2. On the other hand,
d.
;D.H1//D d1 , so it follows that d. j̨ ; 
 /� 2. Similarly, the second case would
imply that d. j̨ ;D.H2// � d2 � 2 and therefore d. j̨ ; 
 / � 2. In either case, j̨

intersects 
 for each 0� j � xn.

Suppose, for the sake of a contradiction, that some component of ˛xn\ 
 has twisting
number m� with respect to P1 such that jm�j> n. For xn� 1, Lemma 5.1 implies the
twisting numbers of the components of ˛1\N will have absolute value strictly greater
than 1. So ˛1 would be diskbusting on H1 , which implies that d.˛1;D.H1//� 2, a
contradiction. If xnD 0, then nD 1 and jm�j> 1 would imply that ˛0 is diskbusting,
also a contradiction. Hence maxfjm1j; : : : ; jmr jg � n. This concludes the proof of
Claim 1.
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Let ˇ be an arbitrary meridian of H2 . Isotope ˇ to be in efficient position with respect
to both .P1; 
;N / and .P2; 
;N /, intersects ˛xn efficiently, and let b1; b2; : : : ; bs

denote the twisting numbers of the components of ˇ\N with respect to P1 .

Claim 2 We have maxfjb1j; : : : ; jbsjg � nC 2.

Proof of Claim 2 Lemma 2.10 implies that any curve that bounds a disk in H2

is either parallel to a component of P2 or contains a wave with respect to P2 . It
follows that any meridian of H2 that is in efficient position with respect to .P2; 
;N /

contains a component in N that has twisting number 0 with respect to P2 . Therefore,
as ˛xn and ˇ are both meridians of H2 , there exists a component of ˛xn \N and a
component of ˇ\N that are disjoint in N . So by Lemma 3.8, their twisting numbers
must differ by at most 1. Moreover, as the components of ˇ \N are all disjoint,
b1; b2; : : : ; bs must all be within 1 of each other. It then follows from Claim 1 that
maxfjb1j; : : : ; jbsjg � nC 2. This concludes the proof of Claim 2.

Claim 2 implies that the lower bound on the twisting number of any component of
ˇ\N is �.nC2/. So by Corollary 3.16, for k � 2, tw.�kCnC2


 .ˇ/; 
;P1/� k . As ˇ
was an arbitrary meridian of H2 , this implies that every element ˇ0 2 K

�
kCnC2

 .P2/

satisfies tw.ˇ0; 
;P1/� k .

Suppose, for the sake of contradiction, that �0; �1; : : : ; �t is a sequence of simple closed
curves such that consecutive curves are disjoint, �0 2KP1

and �t 2K
�

kCnC2

 .P2/

, such
that t < d1Cd2�2 and t < k . Then t < d1Cd2�2, combined with our assumption
that d.D.H1/; 
 /� d1 and d.D.H2/; 
 /� d2 , implies that �` intersects 
 for each
0 � ` � t . As �t is an element of K

�
kCnC2

 .P2/

, we have tw.�t ; 
;P1/ � k . So
Lemma 5.1 and t < k imply tw.�1; 
;P1/� 2 and therefore �1 is diskbusting on H1 ,
which is a contradiction. Hence, d.KP1

;K
�

kCnC2

 .P2/

/�minfk; d1C d2� 2g.

We can then combine the above lemma with an upper bound on the distance of the
resulting splitting to show that Dehn surgery on a sufficiently complicated curve in a
closed 3–manifold can produce a Heegaard splitting with lower and upper bounds on
its distance that differ by 2.

Main Theorem 2 Let H1 and H2 be handlebodies with @H1 D @H2 D † and let
nDmaxf1; d.D.H1/;D.H2//g. Suppose d1; d2 are integers such that d1; d2 � 2 and
d1 C d2 � 2 > n and let 
 be a simple closed curve such that d.D.H1/; 
 // D d1

and d.D.H2/; 
 // D d2 . Let P1 and P2 be pants decompositions of H1 and H2

respectively (so KP1
D D.H1/ and KP2

D D.H2/) such that 
 is 1–seamed with
respect to both P1 and P2 . Then for k � d1C d2� 2,

d1C d2� 2� d.KP1
;K

�
kCnC2

 .P2/

/� d1C d2:
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Proof The lower bound of d1Cd2�2 is provided by Lemma 5.7. As d.
;KP2
/Dd2

implies that d.
;K
�

kCnC2

 .P2/

/D d2 , we have

d.KP1
;K

�
kCnC2

 .P2/

/� d.KP1
; 
 /C d.
;K

�
kCnC2

 .P2/

/� d1C d2

by the triangle inequality.
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