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Representation theory for the Križ model

SAMIA ASHRAF

HANIYA AZAM

BARBU BERCEANU

The natural action of the symmetric group on the configuration spaces F.X; n/

induces an action on the Križ model E.X; n/ . The representation theory for this
complex is studied and a big acyclic subcomplex which is Sn –invariant is described.

55R80, 20C30; 55P62, 13A50

1 Introduction

The ordered configuration space of n points F.X; n/ of a topological space X is
defined as

F.X; n/D f.x1;x2; : : : ;xn/ 2X n
j xi ¤ xj for i ¤ j g:

For X a smooth complex projective variety, I Križ [16] constructed a rational model
E.X; n/ for F.X; n/, a simplified version of the Fulton–MacPherson model [15].

Let us recall the construction of Križ. We denote by p�i W H
�.X /! H�.X n/ and

p�ij W H
�.X 2/! H�.X n/ (for i ¤ j ) the pullbacks of the obvious projections and

by m the complex dimension of X (for cohomology groups we use rational or complex
coefficients). The model E.X; n/ is defined as follows: as an algebra E.X; n/ is
isomorphic to the exterior algebra with generators Gij ; 1� i; j � n (of degree 2m�1)
and coefficients in H�.X /˝n modulo the relations

Gji DGij ;

p�j .x/Gij D p�i .x/Gij ; i < j ; x 2H�.X /;

GikGjk DGij Gjk �Gij Gik ; i < j < k:

The differential d is given by d jH �.X /˝n D 0 and d.Gij /Dp�ij .�/, where � denotes
the class of the diagonal w˝ 1C � � �C 1˝w 2H�.X /˝H�.X / and w 2H 2m.X /

is the fundamental class.

This model is a differential bigraded algebra E.X; n/D
L

k;q Ek
q .X; n/: the lower

degree q (called the exterior degree) is given by the number of exterior generators Gij ,
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and the upper degree k is given by the total degree; the multiplication is homogeneous
and the differential has bidegree

�
C1
�1

�
:

Ek
q ˝Ek0

q0 !EkCk0

qCq0 ; d W Ek
q !EkC1

q�1

In the next definition GI�J� is a product of exterior generators

GI�J� DGi1j1
Gi2j2

� � �Giqjq
:

Definition 1.1 (Fulton and MacPherson [15], Križ [16]) The symmetric group Sn

acts on E.X; n/ by permuting the factors in H�.X n/ D H�˝n and changing the
indices of the exterior generators: for an arbitrary permutation � 2 Sn ,

�.p�1 .xh1
/ � � �p�n.xhn

/GI�J�/D p��.1/.xh1
/ � � �p��.n/.xhn

/G�.I�/�.J�/:

The action of Sn is well-defined because the set of relations is invariant under this
action.

In the next diagram the nonzero bigraded components Ek
q .X; n/ lie in the trapezoid

with vertices .0; 0/, .2mn; 0/, ..n� 1/.2m� 1/; n� 1/ and .n.2m� 1/C 1; n� 1/.
The arrows show the direction of the differentials .C1;�1/:

.n�1/.2m�1/ n.2m�1/C1 2nm

n�1 � �

�

Ek
q

: : : : : :

k D total degree

q D exterior degree

For each q in the interval Œ0; n� 1� in the horizontal graded module E�q D
L

k Ek
q

the components equally distanced from the dotted median line are isomorphic as
Sn –modules; see Proposition 2.2 in Section 2. In the same section we introduce the
combinatorial “types” of monomials of E��.X; n/: these are parameterized by forests
in which every tree contains a cohomology class of X . The type decomposition of
the bigraded components gives a direct sum of Sn submodules, each of these being
generated by a unique element; see Theorem 2.13. In the next section we describe
the Sn structure of types: explicit decomposition into irreducible representations in
many particular cases and, using the results of Lehrer and Solomon [19], we compute
the character for the general type. See Propositions 3.1, 3.2, 3.3, 3.4 and Theorem 3.11.
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Representation theory for the Križ model 59

In Section 4 we present some properties of the differential which are consequences of
its Sn –equivariance. For all smooth projective varieties, except the projective line, we
show that the differential is injective on the “left side” of the trapezoid (the component
E0

0
ŠQ contributes to the cohomology group H 0.F.X; n/IQ/ŠQ).

Proposition 1.1 The differentials in the Križ model of a smooth complex projective
variety different from CP1 are injective for any q in the interval Œ1; n� 1�:

d W Eq.2m�1/
q .X; n/�E

q.2m�1/C1
q�1

.X; n/

The top horizontal line has no contribution to the cohomology either, thus we have the
following.

Proposition 1.2 The top differentials in the Križ model are injective for any k in the
interval Œ.n� 1/.2m� 1/; n.2m� 1/C 1�:

d W Ek
n�1.X; n/�EkC1

n�2
.X; n/

In Section 5 we show that the “right side” of the trapezoid is an acyclic complex.

Proposition 1.3 All cohomology groups of the subcomplex

0!E
n.2m�1/C1
n�1

.X; n/!E
n.2m�1/C2
n�2

.X; n/! � � � !E2nm
0 .X; n/! 0

are zero.

Other (smaller) copies of this subcomplex are contained in the interior of the trapezoid
and their sum gives a large acyclic complex which is also Sn –equivariant. This
subcomplex E��.w.X; n// and the quotient E��.X; n/�E��.w.X; n// are described in
Propositions 5.5 and 5.6; the location of the subcomplex E��.w.X; n// is given in the
diagram by the interior lines with slope �1. In [6] a different acyclic subcomplex of
E��.X; n/ is described by the third author, Markl and Papadima: this is an ideal, but is
not an Sn –submodule. The subcomplex E��.w.X; n// is an Sn –subalgebra, but not
an ideal. The right side of the trapezoid, denoted by E

Top
� .X; n/ in Section 5, is an

acyclic ideal which is also an Sn –submodule, but it is quite small.

In the last section the simplest and, from the viewpoint of Proposition 1.1, the excep-
tional case of CP1 is analyzed; we recover and we complete the results of Cohen and
Taylor [11; 10] and Feichtner and Ziegler [13], computing in this case the Poincaré
polynomials in two variables:

PF.X ;n/.t; s/D
X

k;q�0

.dim H k
q /t

ksq
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Theorem 1.2 In the cohomology algebra of the configuration space F.CP1; n/ (n�4)
the nonzero bigraded components are

H q
q ŠH

qC3
qC1

for q D 0; 1; : : : ; n� 3:

Its Poincaré polynomial is

PF.CP1;n/.t; s/D .1C st3/.1C 2st/.1C 3st/ � � � .1C .n� 2/st/:

˘
˘
˘
˘
˘

˘ ˘ ˘ ˘ ˘ ˘ ˘�

� �
� �
� �
� �

�

H�� .F.CP1; n//

1
2

n�3

n�2

q

1 2 3 n k

For the irreducible Sn –modules we will use the standard notation (see Fulton and
Harris [14]): V .�/ corresponds to the partition of n, � ` n, � D .�1 � �2 � � � � �

�t � 1/, and also the stable notation (see Church and Farb [9] or the authors [2]):
V .�/n D V .n�

P
�i ; �1; �2; : : : ; �s/ for �D .�1 � �2 � � � � � �s � 1/ satisfying

the relation n�
Ps

iD1 �i � �1 .

Other extensions and applications of the results of this paper could be found by the
first and third authors in [3; 4] and the second and third authors [5].

Recently Lambrechts and Stanley [17] constructed a (quasi)model for the configuration
space of a topological space with Poincaré duality cohomology; if such a space is
formal, the model of Lambrechts and Stanley is reduced to the Križ model and this is
the case of Kähler manifolds; see Deligne, Griffiths, Morgan and Sullivan [12]. The
results of this paper could be applied to (simply connected) formal closed manifolds
(with few changes for the odd-dimensional manifolds).

Acknowledgements This research is partially supported by Higher Education Com-
mission, Pakistan.

2 Cohomology classes in the forest

We will now fix a (monomial) ordered basis for the cohomology algebra H�.X IQ/:
BD fx1 D 1� x2 � � � � � xB Dwg, where w 2H 2m.X IQ/ is the fundamental class
of X and B D

P
ˇi is the sum of Betti numbers; we choose the order � such that
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Representation theory for the Križ model 61

the sequence fdeg xigiD1;B is increasing (not necessarily strictly increasing). Using
simple computations with Diamond lemma (see Bergman [7]) one can find a monomial
basis for the Križ model: we denote by GI�J� D Gi1j1

Gi2j2
� � �Giqjq

the exterior
monomial corresponding to the sequences I� D .i1; : : : ; iq/;J� D .j1; : : : ; jq/, where
ia < ja .aD 1; 2; : : : ; q/ and j1 < j2 < � � �< jq , and by xH� D xh1

˝xh2
˝� � �˝xhn

.xha
2 B/ a scalar from H�˝n . Then

fxH�GI�J� j xha
D 1 if a 2 J�; deg xH� D k � q.2m� 1/g

is a basis of Ek
q .X; n/ and we call it the canonical (Bezrukavnikov) basis (see

Bezrukavnikov [8]).

The next result is obvious.

Proposition 2.1 The bigraded components Ek
q .X; n/ are invariant under the action

of the symmetric group and the differential d is Sn –equivariant:

d.�.xH�GI�J�//D �.d.xH�GI�J�//

This proposition and the Schur lemma give a splitting of the Križ complex into subcom-
plexes corresponding to the decomposition of E�� into isotypic components E��.V .�//,
for � an arbitrary partition of n:

.E��.X; n/; d/D
M
�`n

.E��.V .�//; d�/

The cohomology algebra H�.X IQ/ satisfies Poincaré duality; denote by B� the
Poincaré dual basis

B� D fy1
D w;y2; : : : ;yB

D 1 j if deg xi C deg yj
D 2m; then xiy

j
D ıijwg:

Proposition 2.2 For any q D 0; 1; : : : ; n � 1 and any k in the interval of integers
Œ.2m� 1/q; 2mn� q�, there is an isomorphism of Sn –modules

Ek
q .X; n/ŠE2mnC2q.m�1/�k

q .X; n/:

Proof Define the map ˆW Ek
q !E

2mnC2q.m�1/�k
q on the basis by

ˆ.xH�GI�J�/D x0H�GI�J� ;

where the factors of x0
H�
D x0

h1
˝x0

h2
˝ � � �˝x0

hn
are given by

x0ha
D

�
1.D xha

/ if ha 2 J�;

yha if ha is not in J�:
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It is easy to see that ˆ is Sn –equivariant and the sum of the total degree of xH�GI�J�

and the total degree of ˆ.xH�GI�J�/ is 2mnC 2q.m� 1/.

In [19] Lehrer and Solomon studied the representation theory of the Arnold algebra
A�.n/, the cohomology algebra of F.C; n/ (see Arnold [1]).

Definition 2.1 The Arnold algebra A�.n/ is defined by

A�.n/D
^
.Gij ; 1� i < j � n/�.Gij Gik �Gij Gjk CGikGjk/;

where the generators Gij have degree 1.

In Section 5 we will define a differential on A�.n/.

A basis of this algebra is given by monomials GI�J� D Gi1j1
Gi2j2

� � �Giqjq
, where

2�j1<j2< � � �<jq�n and 1� ia<ja for any aD1; : : : ; q . The symmetric group Sn

acts naturally on A�.n/: �:GI�J� DG�.I�/�.J�/ . To simplify the proofs, Lehrer and
Solomon associated graphs to the monomials in A�.n/: to any monomial GI�J� from
the Arnold algebra A�.n/, they associated the graph 
 with vertices f1; 2; : : : ; ng and
edges fi; j g corresponding to the factors Gij of the given monomial.

Conversely, to any simple graph 
 (ie no double edges, no loops) on the set f1; 2; : : : ; ng
one can associate an element of A�.n/: to the graph without edges we associate
1 2 A�.n/; otherwise to any edge fi; j g we consider the factor Gij and take their
product in the lexicographic order.

Remark 2.2 [19] If the graph 
 contains a cycle, the associated element in A�.n/
is zero.

Proof Start an induction on the length of the cycle with length 3:

Gij GikGjk DGij .Gij Gjk �Gij Gik/D 0

To a cycle of length l C 1 corresponds an element containing as a factor the product

Gi1i2
Gi2i3

� � �Gil ilC1
GilC1i1

DGi1i2
� � �Gil�1il

.Gi1il
Gi1ilC1

�Gi1il
Gil ilC1

/;

both terms having associated graphs with cycles of length l .

Now we extend Lehrer and Solomon’s construction to the Križ model: we add to
their construction “marks” which are elements of a (fixed) monomial basis of the
cohomology algebra H�.X IQ/.
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Definition 2.3 We associate to the monomial � D p�
1
.xh1

/ � � �p�n.xhn
/GI�J� from

the canonical basis of E��.X; n/:

(a) The Lehrer–Solomon graph 
 associated to GI�J� : vertices 1; : : : ; n and for
each factor Gij we take the edge fi; j g.

(b) To each connected component of this 
 we associate the “mark” xhi
, the

cohomology class lying on the position i , where i is the smallest index in the
given connected component.

Example 2.4 (a) Consider the monomial �0 DGI�J� DG12G23G45G46G47G89 2

A6.11/. Its associated Lehrer–Solomon graph 
 is

˘ ˘ ˘ ˘ ˘ ˘ ˘
 :
˘

˘ ˘ ˘1 2 3

4

5 6 7

8 9 10 11

(b) Consider the monomial �D xH�GI�J� 2E�
6
.X; 11/ given by

xh1
˝ 1˝ 1˝xh4

˝ 1˝ 1˝ 1˝xh8
˝ 1˝xh10

˝xh11
G12G23G45G46G47G89:

Its associated marked graph � is

˘ ˘ ˘ ˘ ˘ ˘ ˘� :
˘

˘ ˘ ˘1 2 3

4

5 6 7

8 9 10 11

xh1

xh4

xh8
xh10

xh11

Conversely, we associate to a given marked (simple) graph � an element in E��.X; n/:
if there is no edge and the marks of the vertices 1; 2; : : : ; n are xh1

; : : : ;xhn
, the

corresponding element is xh1
˝ � � �˝xhn

2E�
0

; otherwise we take the product, in the
lexicographic order, of the exterior factors Gij corresponding to the edges fi; j g and
the scalar is the product of marks xh1

˝ 1˝ � � �˝xhi
˝ � � � , where the factor xhi

is
the mark on the connected component having i as the smallest element (all the other
factors are equal to 1).

Due to the acyclicity of Lehrer–Solomon graphs (see Remark 2.2), we will consider
only marked forests (all the connected components are trees). If we restrict the
correspondence fmonomials in E��.X; n/g ! fmarked graphsg to the canonical basis
(Bezrukavnikov), we obtain only marked monotonic graphs.
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Definition 2.5 A tree with vertices f1� i1 < i2 < � � �< ip � ng is monotonic if, for
any vertex ik , the unique path from i1 to ik is strictly increasing:

i1 < ia < ib < � � �< ik

i1 ia ib ik˘ ˘ ˘ ˘: : : ˘

(choosing the root i1 , the rooted tree is monotonic). A forest with vertices f1; 2; : : : ; ng
is monotonic if all its trees are monotonic.

Example 2.6 The tree

˘ ˘ ˘3 2 5

is monotonic, but

˘ ˘ ˘3 5 2

is not.

Remark 2.7 There is one to one correspondence

fmonomials in the canonical basis of E��.X; n/g $ fmarked monotonic forestsg:

Proof Let us suppose that the graph � associated to a canonical monomial GI�J�

(j1 < j2 < � � � < jq; ia < ja for a D 1; 2; : : : ; q ) is connected; from its Euler char-
acteristic we find that card.I� [ J�/D qC 1. If � is not monotonic, there is a path
i1� � � �� j �k �h such that .i1 �/j < k , k > h, and this corresponds to a forbidden
product GjkGhk in GI�J� . Conversely, to any monotonic tree (or forest) corresponds a
product GI�J� from the canonical basis: a vertex j , distinct from the minimal vertex i

in the same connected component, is joined with a unique vertex h, and this is smaller
than j , namely the second last vertex on the path from i to j ; therefore j appears
only once on the second position, hence in the sequence J� .

There is an obvious action of the symmetric group Sn on the set of marked graphs:
the natural action of Sn on the set of vertices f1; 2; : : : ; ng induces an action on the
set of edges and an action on the connected components and the corresponding marks.
The set of monotonic marked forests is not Sn –stable, like the set of monomials in
the canonical basis of the Križ model. But E��.X; n/ and the Q vector space which is
generated by marked monotonic forests are Sn –stable and these two vector spaces will
be identified.
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In the next examples two S4 –orbits in the Q–span of monotonic marked forests
are described: ˚ and 	 stand for the sum and difference in this vector space and
�i D .i; iC1/ .i D 1; 2; 3/ are the Coxeter generators of S4 . In order to save space, we
have that the bullet � corresponds to the vertex 1, the root of the tree, and the vertices
connected to 1 are, from left to right, written in increasing order. Hence,

�
˘ ˘
˘

is the short form of:

�
˘ ˘
˘

1

2 3

4

But the rooted tree

�
˘ ˘
˘

is ambiguous, and therefore we will write

�
˘ ˘
˘

�
˘ ˘
˘

4 3

for the short form of

�
˘ ˘
˘

�
˘ ˘
˘

11

22 34

43

respectively. For the same reason the (unique) mark xh1
2 B is omitted.

Example 2.8

�

˘ ˘ ˘

�1
$

�

˘

˘ ˘

�2
$

�

˘
˘
˘
	

�

˘ ˘

˘

�3
$

�

˘
˘
˘
	

�

˘ ˘

˘
˚

�

˘ ˘ ˘
	

�

˘

˘ ˘

�

˘ ˘ ˘

�1
$

�

˘

˘ ˘

�2
$ 	

�

˘
˘
˘
˚

�

˘ ˘

˘

�3
$	 	 	 ˚ 	 ˚

�

˘
˘
˘

�

˘ ˘

˘

�

˘ ˘ ˘

�

˘

˘ ˘

ll �3�2 l�3 ll �2�1�1l
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Example 2.9

�

˘ ˘

˘

�

˘ ˘ ˘

�

˘

˘ ˘

�

˘
˘
˘

�

˘ ˘ ˘

�

˘

˘ ˘

�

˘ ˘

˘

�

˘
˘
˘

	 	 	 	 	 	 	 	
�2
$

�1
$

�2
$

�1
$

�2
$

˚ ˚

�

˘ ˘ ˘

�

˘ ˘

˘

3

�

˘ ˘

˘

4

�

˘ ˘

˘

�

˘ ˘

˘

4

�

˘ ˘

˘

3

�

˘
˘
˘

�

˘

˘ ˘

l l�3 �3

�3 �3

�

˘ ˘

˘

�

˘ ˘

˘

3

�

˘ ˘

˘

4

�

˘ ˘

˘

4
�

˘ ˘ ˘

�

˘ ˘

˘

3

�

˘

˘ ˘

�

˘
˘
˘

�

˘ ˘

˘

�

˘ ˘

˘

3

�

˘ ˘

˘

4

�

˘ ˘

˘

4
�

˘ ˘ ˘

�

˘ ˘

˘

3

�

˘

˘ ˘

�

˘
˘
˘

	 	
�1
$

�1
$

�2
$

�2 �3 �2

	 	 	 	

�1
$

�1
$

�2
$	 ˚ ˚

	

�

˘ ˘

˘

�

˘ ˘ ˘

�

˘

˘ ˘

�

˘
˘
˘

�

˘ ˘ ˘

�

˘

˘ ˘

�

˘ ˘

˘

�

˘
˘
˘

˚ ˚ ˚ ˚ ˚ ˚ ˚ ˚
�2
$

�1
$

�2
$

�1
$

�2
$

		 	 	

	 	
	

	

l l�3 �3�3 �3

�

˘ ˘ ˘

�

˘ ˘

˘

3

�

˘ ˘

˘

4

�

˘ ˘

˘

�

˘ ˘

˘

4

�

˘ ˘

˘

3

�

˘
˘
˘

�

˘

˘ ˘

�1 �1!  

�1 �1!  

� 0
1

� 0
1!  

� 0
1

� 0
1!  

�3

#

� 0
3

#

� 0
3

"

�3

"

In the first example we have a “small” orbit: the dimension of the representation is 3

and it is isomorphic to V .2; 1; 1/. In the second one we see a “complete” orbit: the
dimension is 6 and the representation is V .3; 1/˚ V .2; 1; 1/. The second example
suggests the next definition.

Definition 2.10 We say that two monotonic marked forests are of the same type,
.�;H�/Ï .� 0;H 0�/, if there is a permutation � 2Sn which induces a bijection between
the connected components of the two graphs, preserving the number of elements of the
corresponding components and their marks.

It is clear that marked monotonic forests in the same Sn –orbit are of the same type,
but not conversely. A complete system of representatives for this equivalence relation
is given by forests of bamboos:
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.�L� ;H�/: ˘ ˘ ˘ ˘ ˘˘ : : :: : : : : : ˘ ˘
xh1

xh2
xht

˘ : : :
1 2 L1 L1C1 L2 Lt�1C1 Lt

where the sequence of lengths of the bamboos L� D .�1; �2; : : : ; �t / is decreasing
�1� �2� � � � � �t , Li D �1C�2C� � �C�i , Lt D n, and, for equal lengths, the marks
are in a decreasing order. We split the Sn –modules Ek

q .X; n/ into smaller pieces using
the type of the associated monotonic marked forests.

Definition 2.11 For a given marked forest of bamboos .�L� ;H�/ we define the
subspace of type .L�;H�/ as the linear span of monomials with the associated marked
graph of type .�L� ;H�/; this will be denoted by E��.L�;H�/.

Example 2.12 For the type .�.3;1;1/; .h1; h2; h3//, where xh2
� xh3

,

.�L� ;H�/: ˘ ˘ ˘ ˘ ˘
1 2 3 4 5

xh1
xh2

xh3

the associated space E��.L�;H�/ is of dimension 40 and its canonical basis is given
by the monomials

xh1
˝ 1˝ 1˝xh2

˝xh3
G12G13; xh1

˝ 1˝ 1˝xh3
˝xh2

G12G13;

xh1
˝ 1˝ 1˝xh2

˝xh3
G12G23; xh1

˝ 1˝ 1˝xh3
˝xh2

G12G23;

� � � � � �

xh2
˝xh3

˝xh1
˝ 1˝ 1G34G45; xh3

˝xh2
˝xh1

˝ 1˝ 1G34G45:

If in this example xh2
D xh3

, the dimension of E��.L�;H�/ is 20.

To a given type .L�;H�/, L� D .�1; : : : ; �t /, H� D .h1; : : : ; ht /, we will associate
two integers,

jL�j D

tX
iD1

.�i � 1/; jH�j D

tX
iD1

deg.xhi
/:

Theorem 2.13 The bihomogenous components Ek
q .X; n/ can be decomposed into a

direct sum of monogenic Sn –submodules

Ek
q .X; n/D

M
jL�jDq

jH�jDk�q.2m�1/

Ek
q .L�;H�/

In particular, we have that the multiplicities of the irreducible Sn –submodules of each
term Ek

q .L�;H�/D
L
�`n m�V .�/ satisfy the relations m� � dim V .�/.
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Proof The Sn –module Ek
q .X; n/ is the direct sum

L
Ek

q .L�;H�/ by the very
definition of monomials of type .L�;H�/. We will show that

(a) for any type .L�;H�/, the vector space E.L�;H�/ is Sn –stable;

(b) a generator of the Sn –module E��.L�;H�/ is the monomial corresponding to
the marked monotonic bamboo .L�;H�/:

�.L�;H�/

D p�1 .xh1
/p�L1C1.xh2

/ � � �p�Lt�1C1.xht
/G1L1

�GL1C1;L2
� � �GLt�1C1;Lt

(here Gab DGa;aC1GaC1;aC2 � � �Gb�1;b ).

The last claim of the theorem is a consequence of the Sn – equivariant surjection

QŒSn�!E.L�;H�/; � 7! � ��.L�;H�/:

To prove (a) it is enough to consider the action of the transpositions �iD .i; iC1/ on the
tree T containing the vertices i; iC1 or on the disjoint union of two trees, T 0 and T 00 ,
containing i and iC1 respectively. In the case of one tree, the transform �iT is again a
monotonic tree (and �iT �T ) if the path from 1 to iC1 does not contain i . Otherwise
the monotonic path 1�� � ��h�i�.iC1/ is transformed into 1�� � ��h�.iC1/�i and
the corresponding factor Gh;iC1Gi;iC1 should be replaced by Gh;iGi;iC1�Gh;iGh;iC1 .
The resulting monomials have monotonic trees of the same type with T . The case
of two trees, i in T 0 and i C 1 in T 00 , is simpler: �i.T

0 t T 00/ is a union of two
monotonic trees (h< i < j is equivalent to h< iC1< j ) and obviously this union is
of the same type with T 0 tT 00 .

It is enough to prove (b) for a monotonic tree: we will show by induction on n that
the bamboo Bn D �.L�D.n/;H�D.xh// generate the module ResSn

Sn�1
E��.X; n/. If �

is a permutation in Sn�1 , we denote by z� its extension to Sn : z�.n/D n. In the case
nD 3 there is a unique monotonic tree which is not the monotonic bamboo B3 , but
this belongs to the S2 –orbit of B3 :

˘ ˘ ˘2 1 3 D �1. ˘ ˘ ˘1 2 3 /D �1.B3/, �1 2 S2 .

Let us consider a monotonic tree Tn with n vertices and its monotonic subtree
Tn�1DTnnfng (by monotonicity, the vertex n is connected to a unique other vertex, h).
From the set of permutations � 2Sn�1 with the property that �.Tn�1/ is still monotonic
we choose one such that �.h/D j is maximal. Now we start a second induction on
n� j , the number of vertices of �.Tn/ lying on the branches starting from j . If this
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number is equal to 1, then j D n�1 and, by induction on n there are permutations �a

in Sn�2 and constants ca 2Q such that

�.Tn�1/D
X

a

ca�a.Bn�1/:

The extension of a permutation z� of a permutation in Sn�2 does not change the edge
.n� 1/� n and we find z�.Tn/D

P
a caz�a.Bn/ and therefore

Tn D

X
a

ca
A��1� a.Bn/; where ��1�a 2 Sn�1:

If j is less than n� 1, then j C 1 is connected to j (by the maximality condition);
applying the transposition �j , we obtain a nonmonotonic tree �j�.Tn/ (if j ¤ 1). The
sequence k � .j C 1/� j should be replaced: we obtain a difference of monotonic
trees T 0n�T 00n , in each of them n is connected with j C 1. The second induction will
give two expansions

T 0n D
X
p

c0pz�
0
p.Bn/;T

00
n D

X
q

c00q z�
00
q .Bn/

with � 0p; �
00
q 2 Sn�1 . Therefore Tn is in QŒSn�1�.Bn/:

Tn D

X
p

c0p
C��1�j� 0p .Bn/�

X
q

c00q
C��1�j� 00q .Bn/:

In the case j D 1 the transposition �1 transforms �.Tn/ into a monotonic tree where n

is connected with 2 and we can apply the second induction.

Corollary 2.14 The Sn�1 orbit of the monomial xh ˝ 1˝ � � � 1G12G23 � � �Gn�1;n

coincides with E
.n�1/.2m�1/Cjxhj

n�1
.n; h/ and

ResSn

Sn�1
E
.n�1/.2m�1/Cjxhj

n�1
.n; h/ŠQŒSn�1�:

Proof In the proof of the theorem we obtained a surjective Sn�1 –map

QŒSn�1�! ResSn

Sn�1
E
.n�1/.2m�1/Cjxhj

n�1
.n; h/; � 7! � �Bn:

On the other hand the number of monotonic trees with n vertices is .n� 1/!.
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3 The Sn–module Ek
q .L�; H�/

In this section we will study the symmetric structure of the modules Ek
q .L�;H�/ using

two methods. We extend the main result of Lehrer and Solomon [19] and we will
give a general formula, but in an implicit form; next, in some particular cases, we will
present explicit computations of the irreducible components and their multiplicities,
using direct methods.

The symmetric structure of the bottom horizontal line is completely elementary: the
types are given by L� D .1

.n//, H� D .h
.m1/
1

; h
.m2/
2

; : : : ; h
.mt /
t /:

˘ ˘ : : : : : : : : : ˘ ˘
1 2 n�1 n

xh1
xh1

xht
xht

„ ƒ‚ …
m1

„ ƒ‚ …
mt

(here m1;m2; : : : ;mt are multiplicities of the elements xh1
� xh2

� � � � � xht
in B

and m1C � � �Cmt D n).

Example 3.1 In the case of distinct marks (all the multiplicities mi are equal to 1)
we obtain the largest possible “type” submodule

E
jH�j
0

.1.n/; .h1; h2; : : : ; hn//ŠQŒSn�:

Proof As ��1.x1˝ � � �˝xn/D˙x�.1/˝ � � �˝x�.n/ , the character of this module
is given by

�
E
jH�j

0

.�/D

�
n! � D id;
0 � ¤ id :

This completes the proof.

Example 3.2 In the case of a unique mark (m1 D n)

E
njxhj

0
.1.n/; h.n//Š

�
V .n/ if jxhj is even or nD 1;

V .1; 1; : : : ; 1/ if jxhj is odd and n� 2:

Proof This is the consequence of the relation

�i.xh˝ � � �˝xh/D .�1/jxhj.xh˝ � � �˝xh/:
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For the general type corresponding to the discrete graph we will use the notation

V �.m;h/
D

�
V .m/ if mD 1 or jxhj is even;
V .1; 1; : : : ; 1/ if m� 2 and jxhj is odd.

Proposition 3.1 The Sn structure of the type .L�;H�/, where L� D .1
.n//, H� D

.h
.m1/
1

; h
.m2/
2

; : : : ; h
.mt /
t / is given by

E
jH�j
0

.1.n/;H�/Š IndSn

Sm1
�Sm2

�����Smt
V �.m1;h1/˝V �.m2;h2/˝ � � �˝V �.mt ;ht /:

Proof The symmetric group Sn acts transitively on the set of 1–dimensional spaces
Qhx1˝� � �˝xni, where m1 factors (on different positions) coincide with xh1

; : : : ;mt

factors coincide with xht
. The subgroup leaving invariant the 1–dimensional subspace

xh1
˝ � � �˝xh1„ ƒ‚ …

m1

˝ � � �˝xht
˝ � � �˝xht„ ƒ‚ …

mt

is the direct product Sm1
�Sm2

�� � ��Smt
(with the obvious notation: Sm1

acts on the
subset f1; 2; : : : ;m1g, Sm2

acts on the subset fm1C1;m1C2; : : : ;m1Cm2g, and so
on) and the corresponding representation of this subgroup is V �.m1;h1/˝V �.m2;h2/˝

� � � ˝ V �.mt ;ht / . General facts from the theory of induced representations (see for
instance Serre [21, Chapter 7]) imply the result.

On the next horizontal line the types are given by a unique graph:

˘ ˘ ˘ ˘ : : : ˘ ˘
1 2 3 4 n�1 n

xh1
xh2

xh2
xht

xht

„ ƒ‚ …
m2

„ ƒ‚ …
mt

(here xh2
� � � � � xht

, but h1 could be equal to one of h2; : : : ; ht and we have
2Cm2C � � �Cmt D n).

Proposition 3.2 The Sn structure corresponding to the type H�D.h1;h
.m2/
2

; : : : ;h
.mt/
t /,

L� D .2; 1
.n�2//, is given by

E
2m�1CjH�j
1

.L�;H�/Š IndSn

S2�Sm2
�����Smt

V .2/˝V �.m2;h2/˝ � � �˝V �.mt ;ht /:

Proof This is similar to the previous proof: the module E��.L�;H�/ is the direct sum
of 1–dimensional subspaces Qhx1˝ � � �˝xnGij i, where on the i th position lies xh1

,
on the j th position is 1, and xh2

is lying on m2 (arbitrary) positions, : : : ;xht
on mt

positions, and these subspaces are permuted by Sn . The subgroup leaving invariant
the line

Q
D
xh1
˝ 1˝xh2

˝xh2
˝ � � �„ ƒ‚ …

m2

˝ � � �˝ � � �˝xht„ ƒ‚ …
mt

G12

E
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is the product S2 �Sm2
� � � � �Smt

and the representation on this line is equivalent
with V .2/˝V �.m2;h2/˝ � � �˝V �.mt ;ht / , hence the result.

The following types appear on the third horizontal line:

(a) L� D .3; 1
.n�3//; H� D .h1; h

.m2/
2

; : : : ; h
.mt /
t /

˘ ˘ ˘ ˘ ˘ : : : ˘ ˘
1 2 3 4 5 n�1 n

xh1
xh2

xh2
xht

xht

„ ƒ‚ …
m2

„ ƒ‚ …
mt

(b) L� D .2
.2/; 1.n�4//; H� D .h

.2/
1
; h
.m2/
2

; : : : ; h
.mt /
t /

˘ ˘ ˘ ˘ ˘ ˘ : : : ˘ ˘
1 2 3 4 5 6 n�1 n

xh1
xh1

xh2
xh2

xht
xht

„ ƒ‚ …
m2

„ ƒ‚ …
mt

(c) L� D .2
.2/; 1.n�4//; H� D .h1; h2; h

.m3/
3

; : : : ; h
.mt /
t /

˘ ˘ ˘ ˘ ˘ ˘ : : : ˘ ˘
1 2 3 4 5 6 n�1 n

xh1
xh2

xh3
xh3

xht
xht

„ ƒ‚ …
m3

„ ƒ‚ …
mt

(In the first two cases h2; : : : ; ht are distinct and h1 could be one of them, in the
third case xh1

� xh2
, xh3

� � � � � xht
and h1 or h2 are not necessarily different from

h3; : : : ; ht ).

Example 3.3 For n� 6, the module E
2.2m�1/
2

.L� D .3; 1
.n�3//;H� D .1; 1

.n�3///

has the stable decomposition

V .1/n˚V .2/n˚V .1; 1/n˚V .2; 1/n:

Proof Computing directly the corresponding character, we find for an arbitrary permu-
tation � 2 Sn of type .i1I i2I : : : I in/ (here iq is the number of cycles of length q ): for
any triple of 1–cycles .i/.j /.k/, 1� i < j < k � n, � fixes the monomials Gij Gik

and Gij Gjk and this gives 2
�
i1

3

�
such monomials. The 3–cycle .i; j ; k/ changes the

sign of Gij Gjk and there is no other combination of cycles leaving QhGij Gjki or
QhGij Giki invariant. Therefore the character is

�
E

2.2m�1/

2
.����������/

.i1I : : : I in/D 2

�
i1

3

�
� i3:

Using Frobenius’ formula we obtain the next results:

Algebraic & Geometric Topology, Volume 14 (2014)



Representation theory for the Križ model 73

�V .i1I : : : I in/

V .1/n i1� 1

V .1; 1/n
�
i1�1

2

�
� i2

V .2/n
1
2
i1.i1� 3/C i2

V .3/n
1
6
i1.i1� 1/.i1� 5/C i2.i1� 1/C i3

V .2; 1/n
1
3
i1.i1� 2/.i1� 4/� i3

V .3; 1/n
1
8
i1.i1� 1/.i1� 3/.i1� 6/C i2

�
i1�1

2

�
�
�
i2

2

�
� i4

As a consequence, we obtain the above decomposition.

In the unstable cases, nD 3; 4; 5, this module decomposes as

nD 3 W V .2; 1/;

nD 4 W V .3; 1/˚V .2; 2/˚V .2; 1; 1/;

nD 5 W V .4; 1/˚V .3; 2/˚V .3; 1; 1/:

The same decompositions appear if H� is replaced by H� D .h1; h
.n�3/
2

/ with
jxh1
j, jxh2

j even.

Example 3.4 The module E
2.2m�1/
2

.L� D .2
.2/; 1.n�4//;H� D .1

.2/I 1.n�4///, for
n� 7, has the stable decomposition

V .1/n˚V .2/n˚V .1; 1/n˚V .3/n˚V .2; 1/n˚V .3; 1/n:

Proof Direct computation of the character gives nonzero contributions only for factors
of the form .i/.j /.k/.l/, .i/.j /.k; l/, .i; j /.k; l/ and .i; j ; k; l/; the result is

�E��.������������/
.i1I : : : I in/D 3

�
i1

4

�
C i2

�
i1

2

�
�

�
i2

2

�
� i4

and from the same table we obtain the above decomposition.

In the unstable cases we obtain the decompositions

nD 4 W V .3; 1/;

nD 5 W V .4; 1/˚V .3; 2/˚V .3; 1; 1/˚V .2; 2; 1/;

nD 6 W V .5; 1/˚V .4; 2/˚V .4; 1; 1/˚V .3; 3/˚V .3; 2; 1/:

Example 3.5 In the case nD 4 we have the decompositions

E
2.2m�1/C2jxhj

2
.�

xh

1
��2 �

xh

3
��4/Š

�
V .3; 1/ if jxhj D even;
V .4/˚V .2; 2/ if jxhj D odd:
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Proof The even case is the same as in the previous example; for the odd case direct
computation of the character gives:

� id (12) (123) (1234) (12)(34)

�.�/ 3 1 0 1 3

For instance,

.1234/p�1 .xh/p
�
2 .xh/G13G24 D p�2 .xh/p

�
3 .xh/G24G13

D�p�2 .xh/p
�
3 .xh/G13G24

D�p�2 .xh/p
�
1 .xh/G13G24

D .�1/jxhjC1p�1 .xh/p
�
2 .xh/G13G24:

This completes the proof.

Using some of these particular cases and the same proof as in Propositions 3.1 and 3.2,
we obtain the following.

Proposition 3.3 The Sn structure of the modules corresponding to the types on the
third horizontal line is given by:

.a/ E�2
�
L� D .3; 1

.n�3//;H� D .h1; h
.m2/
2

; : : : ; h
.mt /
t /

�
Š IndSn

S3�Sm2
�����Smt

.V .2; 1/˝V �.m2;h2/˝ � � �˝V �.mt ;ht //

.b/ E�2
�
L� D .2

.2/; 1.n�4//;H� D .h
.2/
1
; h
.m2/
2

; : : : ; h
.mt /
t /

�
Š

(
IndSn

S4�Sm2
�����Smt

.V .3;1/˝V �.m2;h2/˝� � �˝V �.mt;ht// jxh1
j D even

IndSn

S4�Sm2
�����Smt

..V .4/˚V .2;2//˝V �.m2;h2/˝ � � �˝V �.mt;ht// jxh1
j D odd

.c/ E�2 .L� D .2
.2/; 1.n�4//;H� D .h1; h2; h

.m3/
3

; : : : ; h
.mt /
t //

Š IndSn

S2�S2�Sm3
�����Smt

.V .2/˝V .2/˝V �.m3;h3/˝ � � �˝V �.mt ;ht //

Š IndSn

S4�Sm3
�����Smt

..V .4/˚V .3; 1/˚V .2; 2//˝V �.m3;h3/˝ � � �˝V �.mt ;ht //

Now we will analyze the top horizontal line; we start with the upper-left vertex of the
trapezoid, E

.n�1/.2m�1/
n�1

.X; n/.
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Example 3.6 For small values of n the structure of this module is a consequence of
the absence (for n� 2) of the one-dimensional submodules of E�

n�1
.X; n/ and of the

result of Section 2, ResSn

Sn�1
E
.n�1/.2m�1/
n�1

.X; n/ŠQŒSn�1�:

nD 2 W E2m�1
1 Š V .2/;

nD 3 W E
2.2m�1/
2

Š V .2; 1/;

nD 4 W E
3.2m�1/
3

Š V .3; 1/˚V .2; 1; 1/;

nD 5 W E
4.2m�1/
4

Š V .4; 1/˚V .3; 2/˚V .3; 1; 1/˚V .2; 2; 1/˚V .2; 1; 1; 1/:

By Poincaré duality, the right side of the trapezoid has the same structure.

Example 3.7 For nD 6 there are seven S6 –modules without one-dimensional sub-
modules satisfying ResS6

S5
E5.2m�1/

5
ŠQŒS5�. A direct combinatorial computation of

the character of E5.2m�1/
5

will give its nonzero values:

� id .123456/ .123/.456/ .12/.34/.56/

�.�/ 120 �1 �3 8

Therefore we get the next (asymmetric) decomposition:

E
5.2m�1/
5

Š V .5; 1/ ˚ 2V .4; 2/ ˚ V .4; 1; 1/ ˚ 3V .3; 2; 1/

˚ V .2; 2; 2/ ˚ 2V .3; 1; 1; 1/ ˚ V .2; 2; 1; 1/ ˚ V .2; 1; 1; 1; 1/

One can find a character table of S6 in Ledermann [18].

Alternatively, we can use the next general result of Stanley [22] and Lehrer and
Solomon [19] and the Frobenius reciprocity formula. Let us recall some notation
necessary to present the Lehrer–Solomon theorem: consider the subgroup generated
by the n–cycle cn D .1; 2; : : : ; n/, hcni, the elementary character 'n of this cyclic
group, 'n.cn/ D e.2�i/=n and "n , the sign character of Sn . More generally, for a
partition L� ` n, L� D .�1 � �2 � � � ��t � 1/, let us denote by cL� the product
of cycles c�1

c�2
� � � c�t

, c�1
D .1; 2; : : : ;L1/, c�2

D .L1C 1;L1C 2; : : : ;L2/; : : :,
c�t
D .Lt�1C 1;Lt�1C 2; : : : ;Lt /. Associated to L� we have the next diagram of

groups and characters of one-dimensional representations:
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1

hc�i .NL� ; ˛L�/

.CL� ; 'L�/

.ZL� ; �L�/

St

SL�

.Sn; "n/

where hcL�i is the subgroup generated by cL� , SL� is the direct product

SL� Š S�1
�S�2

� � � � �S�t
;

and CL� is the centralizer of cL� in SL� :

CL� D hc�1
i � hc�2

i � � � � � hc�t
i

The group NL� is generated by the elements vi , “block transpositions” corresponding
to equal parts �i D �iC1 in the partition L� :

vi D .Li�1C 1;LiC 1/.Li�1C 2;LiC 2/ � � � .Li DLi�1C�i ;LiC1 DLiC�iC1/

The last group, ZL� , is the centralizer of cL� in Sn and it is a semidirect product

ZL� D CL� ÌNL� :

Lehrer and Solomon’s main formula involves the next characters:

'L� W CL� !C�; 'L� D .'�1
˝ � � �˝'�t

/ � "n jCL�

˛L� W NL� !C�; ˛L�.vi/D .�1/�iC1

�L� W ZL� !C�; �L� D ˛L� �'L�

Theorem 3.8 (Stanley [22], Lehrer and Solomon [19]) The representation of Sn on
the top component An�1.n/ of the Arnold algebra has the character

�An�1.n/ D "n IndSn

hcni
.'n/:
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On the upper horizontal line the types are parameterized by the n–monotonic bamboo
and the monomials from the fixed basis B :

˘ ˘ ˘
1 2 n: : :

xh

Proposition 3.4 The Sn structure of the top component is given by

�
E
.n�1/.2m�1/Cjxhj

n�1
.n;h/
Š "n IndSn

hcni
.'n/;

�
E
.n�1/.2m�1/Ci

n�1
.X ;n/

Š ˇi � "n IndSn

hcni
.'n/;

where ˇi is the i th Betti number.

Proof As the action of the symmetric group does not change the coefficients

�.xh˝ 1˝ � � �˝ 1GI�J�/D p��.1/.xh/ � �.GI�J�/D p�1 .xh/ � �.GI�J�/;

we have the Sn –decomposition

E
.n�1/.2m�1/Ci
n�1

.X; n/Š
M

xh2B\H i .X /

p�1 .xh/ �An�1.n/:

Example 3.9 If the number of points is an odd prime number p , then the multiplici-
ties m� of the irreducible Sp –modules are given by

E
.p�1/.2m�1/Cjxhj

p�1
.p; h/Š

M
�`p

m�V .�/;

m� D
1
p
.dim V .�/���.cp//:

Proof From the Frobenius reciprocity formula we obtain the expansion (here V .�"/D

V .1; 1; : : : ; 1/˝V .�/ with character ��" )

m� D h�V ; "p IndSp

hcpi
.'p/iSp

D h��" ; IndSp

hcpi
.'p/iSp

D hResSp

hcpi
��" ; .'p/iZp

D
1

p

p�1X
kD0

��".c
k
p /e

.2k�i/=p;

in which all the values ��".ck
p / are equal but not the first one:

��".c
0
p/D dim V .�"/D dim V .�/

Now we consider the type L� D .�1; �2; : : : ; �t /, H� D .1
.t// (jL�j D

P
.�i � 1/).

Translated into the language of types, the main formula of Lehrer and Solomon is the
following.
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Theorem 3.10 (Lehrer and Solomon [19]) The representation of Sn on the compo-
nent E

jL�j.2m�1/

jL�j
.L�; 1

.t// has the character

�
E
jL�j.2m�1/

jL�j
.L�;1.t//

D IndSn

ZL�
.�L�/:

To extend this to a general type L�D .�1; : : : ; �t /, H�D .h1; h2; : : : ; ht /, we modify
the notation of Lehrer and Solomon as follows: the group N.L�;H�/ is generated by the
elements vi corresponding to the transposition of equal marked bamboos: �i D �iC1 ,
hi D hiC1 (remember that for equal lengths �c D �cC1D � � � D �d , the corresponding
marks are decreasing, not necessarily strictly: xhc

� xhcC1
� � � � � xhd

); of course, vi

are given by the same product of disjoint transpositions.

The subgroup Z.L�;H�/ is defined by the same formula,

Z.L�;H�/ D CL� ÌN.L�;H�/;

but now is, in general, smaller than the centralizer of cL� in Sn . The character
'L� W CL� ! C� is given by the same formula: for a permutation � 2 SL� D

Sl1
� Sl2

� � � � � Slt
, the sign of �.xh1

˝ 1˝ � � � ˝ xh2
˝ 1 � � �GI�J�/ is given only

by the permutation of the exterior factors Gij , like in Lehrer and Solomon definition
of 'L� . The coefficients � � � ˝ xhi

˝ 1 � � � ˝ xhi
˝ 1˝ � � � do have a contribution to

the sign after the action of a permutation � 2 N.L�;H�/ if the degree jxhi
j is odd;

therefore the character ˛.L�;H�/ should be modified as follows:

˛.L�;H�/ D

�
.�1/�iC1 if jxhi

j is even;
.�1/�i if jxhi

j is odd;

and accordingly the character � is modified:

�.L�;H�/ D 'L� �˛.L�;H�/:

Finally we obtain the character of the Križ algebra E��.X; n/.

Theorem 3.11 (a) The Sn representation of the submodule E��.L�;H�/ has the
character

�E��.L�;H�/
D IndSn

Z.L�;H�/
.�.L�;H�//:

(b) The Sn representation of the component Ek
q .X; n/ has the character

�Ek
q .X ;n/

D

X
jL�jDq

jH�jCq.2m�1/Dk

IndSn

Z.L�;H�/
.�.L�;H�//:
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(c) The Sn representation of the Križ algebra E��.X; n/ has the character

�E��.X ;n/
D

X
.L�;H�/

IndSn

Z.L�;H�/
.�.L�;H�//:

Proof For a given partition ƒ� D .ƒ1; ƒ2; : : : ; ƒt / of the set f1; 2; : : : ; ng, where
jƒi j D �i , let us denote by E��.ƒ�;H�/ the span of monomials associated to the
marked graphs having ƒ� the set of connected components and H� the corresponding
marks. The symmetric group Sn acts transitively on the components of the direct sum

E��.L�;H�/D
M
ƒ�

E��.ƒ�;H�/:

Now we fix the term E��.ƒ�;H�/ with

ƒ� D .f1; : : : ;L1g; fL1C 1; : : : ;L2g; : : : ; fLt�1C 1; : : : ;Ltg/

and we follow the proof of Lehrer and Solomon [19, Section 4]: the subgroup of Sn

leaving E��.ƒ�;H�/ invariant is Z.L�;H�/ D CL� ÌN.L�;H�/ (from the set vi of
permutations of connected components of equal size we have to consider only the
permutations of components with the same mark). The action of this subgroup on
E��.ƒ�;H�/ is a composition of

(C) the action of CL� on each component separately, and this is given componentwise
by Proposition 3.4; its character is 'L� ;

(N) the action of N.L�;H�/ which permutes identical marked trees; the rules of
changing the sign were already explained.

The last two formulae of the theorem are direct consequences of the first one.

4 Proofs of Propositions 1.1 and 1.2

In this section we will give a proof of Propositions 1.1 and 1.2. From the last section
in [2] we will use the Sn –decomposition of E2m�1

1
.X; n/ŠA1.n/ and also the bases

for the irreducible Sn –submodules described in this paper.

Proposition 4.1 [2] The structure of the Sn –module E2m�1
1

.X; n/ is given by

E2m�1
1 .X; 2/Š V .2/;

E2m�1
1 .X; 3/Š V .3/˚V .2; 1/;

E2m�1
1 .X; n/Š V .n/˚V .n� 1; 1/˚V .n� 2; 2/ for n� 4:
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We choose one nonzero element from each Sn –submodule,

Gn
D

X
i<j

Gij in V .n/;

Gn
12 D

X
k�3

.G1k �G2k/ in V .n� 1; 1/;

G1234 DG14�G13CG23�G24 in V .n� 2; 2/;

and by direct computation we find nonzero differentials.

Lemma 4.1 The images of the elements Gn and Gn
12

under the composition

E2m�1
1

d
�!E2m

0

pr
�!

nM
iD1

p�i .H
2m/

are given by

Gn
7! .n� 1/

nX
iD1

p�i .w/;

Gn
12 7! .n� 2/p�1 .w/� .n� 2/p�2 .w/:

Lemma 4.2 Let x and y be cohomology classes of positive degree (x in B and y

in the dual bases B� ) such that xy D w . The image of the element G1234 under the
composition

E2m�1
1

d
�!E2m

0

pr
�!

M
i<j

p�i .Q.x//p
�
j .Q.y//

is given by

G1234 7! p�1 .x/p
�
4 .y/�p�1 .x/p

�
3 .y/Cp�2 .x/p

�
3 .y/�p�2 .x/p

�
4 .y/:

Proposition 4.2 If X is a smooth complex projective variety (X ¤ CP1 ), then the
“first” differential is injective:

d W E2m�1
1 .X; n/�E2m

0 .X; n/

Proof Using twice the Schur lemma for the Sn –morphisms

V .n/;V .n� 1; 1/ ,!E2m�1
1 .X; n/

d
�!E2m

0 .X; n/;

these two submodules have isomorphic images through d in E2m
0

and trivial kernels
because these morphisms are nonzero: d.Gn/¤ 0, d.Gn

12
/¤ 0. If X is of complex
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dimension m greater than two, we can take in Lemma 4.2 x to be the Kähler class and
y D xm�1 ; if X is a smooth projective curve, but not the projective line, the equation
xy D w has also nontrivial solutions.

Remark 4.3 In the remaining case, the differential

d W E1
1.CP1; n/!E2

0.CP1; n/

is injective only for nD 2; 3; for n� 4 we obtain

H 1
1 .F.CP1; n//Š V .2/n:

We will see in the last section that in the case of CP1 , n � 4, the differential
d W E

q
q .CP1/!E

qC1
q�1

.CP1/ has a nontrivial kernel for q D 1; 2; : : : ; n� 3 and it is
injective for q D n� 2; n� 1.

Remark 4.4 As a consequence of [17], Propositions 4.2 and 1.1 are true for any formal
space X whose rational cohomology satisfies Poincaré duality but not for cohomology
spheres (for n� 4).

Now we can give a proof of Proposition 1.1 by induction on q .

Proof of Proposition 1.1 Let us suppose that the differential

d W E
.q�1/.2m�1/
q�1

!E
.q�1/.2m�1/C1
q�2

is injective and let u2E
q.2m�1/
q be a nonzero cocycle. Let Gij be the smallest exterior

generator (in the reverse lexicographic order G12 <G13 <G23 <G14 < � � �<Gn�1;n )
which appears in a nonzero monomial (of the canonical basis) in u: uD Gij yC z ,
y 2Eq�1.G˛ˇ >Gij /nf0g; z 2Eq.G˛ˇ >Gij /. In the right hand side of the equation

0D d.u/D�Gij dyCp�ij .�/yC dz

the last two terms, p�ij .�/y and dz , the monomials in the canonical basis contain only
factors G˛ˇ >Gij ; therefore dy D 0 by induction on q , and y D 0, and this gives a
contradiction.

Proof of Proposition 1.2 The monomials from the canonical basis lying on the top
horizontal line are p�

1
.xh/G12Gi23 � � �Gin�1n , where jxhj D i 2 Œ0; 2m� and ia � a.
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The next composition is an isomorphism,

E
.n�1/.2m�1/Ci
n�1

d
�!E

.n�1/.2m�1/CiC1
n�2

pr
�!

M
I�D.i2;:::;in�1/

ia�a

p�1 .H
i/p�2 .H

2m/Gi23 � � �Gin�1n;

p�1 .xh/G12Gi23 � � �Gin�1n 7! p�1 .xh/p
�
2 .w/Gi23 � � �Gin�1n;

therefore the differential is injective on the top horizontal line.

5 An acyclic subalgebra of the Križ model

In [6] is introduced a quotient of the Križ model, denoted by Jn , which is quasi-
isomorphic to E��.X; n/, but the corresponding kernel is not Sn –stable. We will
identify an acyclic subcomplex of E��.X; n/, denoted by E��.w.X; n// (or simply
by E��.w/), which is also an Sn –submodule and a subalgebra, giving another smaller
complex quasi-isomorphic to the Križ model:

SE��.X; n/DE���E��.w/; H�.E��.X; n//ŠH�.SE��.X; n//

The last isomorphism is now Sn –equivariant.

We start with a well known result in the theory of hyperplane arrangements, see for
example Orlik and Terao [20]; a simple proof is included.

Definition 5.1 We define the differential @ of degree -1 on the Arnold algebra A�.n/
by @Gij D 1 and we call .A�.n/; @/ the Arnold differential algebra.

Proposition 5.1 The Arnold differential algebra .A�.n/; @/ is acyclic.

Proof Define the homotopy hW A� ! A�C1 by h.
 / D G12
 and verify that
@hC h@D idA� .

We denote by E
Top
� .X; n/ the submodule of the Križ model .E��.X; n/; d/ given by

the sum of the submodules of maximal total degree in each q–exterior degree

E
Top
� .X; n/D

n�1M
qD0

E
Top
q .X; n/D

n�1M
qD0

E2mn�q
q .X; n/:

It is obvious that E
Top
� .X; n/, the right side of the trapezoid, is a subcomplex and an

ideal of E��.X; n/.
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Proposition 5.2 There is an isomorphism of chain complexes of Sn –modules

.A�.n/; @/Š .ETop
� .X; n/; d/:

In particular
H�.E

Top
� .X; n/; d/D 0:

Proof Using the standard basis fGI�J� D Gi1j1
Gi2j2

� � �Giqjq
g in Aq.n/ and the

basis f
Q

h62J�
p�

h
.w/GI�J�g in E

Top
q .X; n/ (here 2�j1<j2< � � �<jq�n; 1� ia<ja )

we define the isomorphism

f W Aq
!E

Top
q ; f .GI�J�/D

Y
h 62J�

p�h.w/GI�J� :

Obviously f is Sn –equivariant (the degree of w is even) and f preserves the differ-
entials:

df .GI�J�/D d

� Y
h62J�

p�h.w/GI�J�

�

D

qX
aD1

.�1/aC1
Y

h 62J�

p�h.w/ �p
�
iaja

.�/Gi1j1
� � �1Giaja

� � �Giqjq

D

qX
aD1

.�1/aC1
Y

h 62J�

p�h.w/ �p
�
ja
.w/Gi1j1

� � �1Giaja
� � �Giqjq

D

qX
aD1

.�1/aC1
Y

h 62J�nfjag

p�h.w/Gi1j1
� � �1Giaja

� � �Giqjq

D f .

qX
aD1

.�1/aC1Gi1j1
� � �1Giaja

� � �Giqjq
/

D f @.GI�J�/

For the third equality we used ia 62 J� and the equality

p�ia
.w/p�iaja

.�/D p�ia
.w/p�ja

.w/:

Proof of Proposition 1.3 Now this is obvious.

Now we will define three acyclic subcomplexes which generalize the previous subcom-
plex .ETop

� .X; n/; d/. For a fixed nonempty subset A � f1; 2; : : : ; ng of cardinality
jAj D a� 2 and a fixed sequence ˇ of length bD n�a, ˇD .x1;x2; : : : ;xb/, where
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all the elements xj belong to the fixed basis B and are different from w , we denote the
increasing sequence of elements in f1; 2; : : : ; ngnA by b1< b2< � � �< bb , the productQb

jD1p�
bj
.xj / by p�.ˇ/, and its degree

Pb
jD1 deg.xj / by jˇj. Now we define the

subspace

E
Top
� .A; ˇ/D

a�1X
qD0

E2ma�qCjˇj
q .A; ˇ/

by

E2ma�qCjˇj
q .A; ˇ/DQ

� Y
i2AnJ�

p�i .w/p
�.ˇ/GI�J�

ˇ̌̌̌
I�[J� �A; jJ�j D q

�
(in words: the scalars in the “complementary positions,” given by ˇ , should be different
from w , on the “forbidden positions,” corresponding to J� , there is only 1, and all the
other “possible positions” should be filled with the top class w ).

Proposition 5.3 For any A and ˇ as before, the space E
Top
� .A; ˇ/ is an acyclic

subcomplex of the Križ model.

Proof By definition E
Top
� .A; ˇ/ is the direct sum of its subspaces E

2ma�qCjˇj
q .A; ˇ/

and it is stable under the differential:

d

� Y
i2AnJ�

p�i .w/p
�.̌ /GI�J�

�
D

X
jh2J�

˙

Y
i2AnJ�

p�i .w/p
�
jh
.w/p�.̌ /GI�nfihgJ�nfjhg

D

X
jh2J�

˙

Y
i2An.J�nfjhg/

p�i .w/p
�.̌ /GI�nfihgJ�nfjhg

This subcomplex is acyclic because of the isomorphism

.E
Top
� .A; ˇ/; d/Š .A�.a/; @/

given by Y
i2AnJ�

p�i .w/p
�.ˇ/GI�J�  ! .�1/ˇGI�J� ;

the differential of ˇ is zero and the compatibility of the differentials d; @ was checked
in the proof of 5.2.

Example 5.2 If A D f1; 2; : : : ; ng, then ˇ is the empty sequence, p�.ˇ/ D 1 and
E

Top
� .f1; 2; : : : ; ng; �/DE

Top
� .X; n/.
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Now we fix a number a from 2 to n and a sequence ˇ D .x1; : : : ;xb/ of length
b D n � a as before. We say that the sequence ˇ0 D .y1; : : : ;yb/ is similar to ˇ ,
ˇ � ˇ0 , if there is a permutation � 2 Sb such that yi D x�.i/ for i D 1; 2; : : : ; b . We
define a new subspace

E
Top
� .a; ˇ/D

X
jAjDa; ˇ0�ˇ

E
Top
� .A; ˇ0/:

Proposition 5.4 For any number a and a sequence ˇ as before, the space E
Top
� .a; ˇ/

is an acyclic subcomplex and Sn –invariant.

Proof The space is Sn –invariant by construction,

�.E
Top
� .A; ˇ//DE

Top
� .�A; �ˇ/DE

Top
� .�A; ˇ0/;

and the acyclicity is a consequence of the direct sum decomposition

.E
Top
� .a; ˇ/; d/D

M
jAjDa; ˇ0�ˇ

.E
Top
� .A; ˇ0/; d/:

Finally, we take the whole collection of these subcomplexes,

E��.w.X; n//D

nX
aD2

X
ˇ of length

n�a

E
Top
� .a; ˇ/:

Proposition 5.5 The space E��.w.X; n// is an acyclic, Sn –invariant subcomplex.

Proof It suffices to show the double sum is a direct sum: a monomial x1˝� � �˝xnGI�J�

from the canonical basis in E��.w.X; n// defines in a unique way the subset A and
the factor ˇ :

AD fi 2 f1; 2; : : : ; ng j xi D wg[J�;

ˇ D .xh1
;xh2

; : : : ;xhb
/;

where h1 < h2 < � � �< hb are the elements of f1; 2; : : : ; ng nA.

Proposition 5.6 The projection map

E��.X; n/ �! SE��.X; n/DE��.X; n/=E
�
�.w.X; n//

is a quasi-isomorphism.

Proof This is obvious from the long exact sequence associated to

0 �!E��.w.X; n// �!E��.X; n/ �! SE��.X; n/ �! 0:
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6 An example: F.CP 1; n/

We analyze the cohomology algebra of the configuration space of the complex projective
line using the symmetric structure of the Križ model. We encode the symmetric structure
of a bigraded Sn –module H�� into the Sn –Poincaré polynomial:

SPH ��
.t; s/D

X
�`n

�X
k;q

mk
q;�tksq

�
V .�/;

where we have that mk
q;�

is the multiplicity of the irreducible representation V .�/ in
the component H k

q ; the double Poincaré polynomial of H�� is a consequence of SPH ��
:

PH ��
.t; s/D

P
k;q.

P
�`n mk

q;�
dim V .�//tksq .

For nD 2 and nD 3 we have the next tables of the symmetric group structure of the
Križ model; using the injectivity properties of the differential, we obtain the first table
and for the second table we have to use the vanishing of the cohomology on the left,
top and the right side and also the acyclicity of the “interior part”

L
jAjD2 E

Top
� .A; 1/:

V .3/˚V .2; 1/Šhw˝ 1˝ 1G12; w˝ 1˝ 1G13; 1˝w˝ 1G23i

d
!
Šhw˝w˝ 1; w˝ 1˝w; 1˝w˝wi

E��.CP1; 2/:

k

q

˘ ˘ ˘ ˘ ˘

˘ ˘ ˘ ˘ ˘

� � �

� �

V .2/ V .2/ V .2/
V .1;1/

V .2/ V .2/

E��.CP1; 3/:

k

q

˘ ˘ ˘ ˘ ˘ ˘

˘ ˘ ˘ ˘ ˘ ˘

˘ ˘ ˘ ˘ ˘ ˘

� � � �

� � �

� �

V .3/ V .3/ V .3/ V .3/
V .2;1/ V .2;1/

V .3/ V .3/

V .2;1/ V .2;1/

V .2;1/ V .2;1/
2V .3/
2V .2;1/

As a consequence we obtain the following.
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Lemma 6.1 The nonzero components of the cohomology algebra of F.CP1; 2/ and
F.CP1; 3/ are

H 0
0 .F.CP1; 2//Š V .2/; H 2

0 .F.CP1; 2//Š V .1; 1/;

H 0
0 .F.CP1; 3//Š V .3/; H 3

1 .F.CP1; 3//Š V .3/:

In particular their symmetric Poincaré polynomials are

PF.CP1;2/.t; s/D V .2/C t2V .1; 1/;

PF.CP1;3/.t; s/D .1C st3/V .3/:

Corollary 6.2 The Poincaré polynomials of the unordered configuration spaces of the
projective line are

PC.CP1;2/.t/D 1;

PC.CP1;3/.t/D 1C t3:

Another consequence of the last computation is the fact that the Serre spectral sequences
of the fibrations

Fn W F.C; n� 1/ ,! F.CP1; n/!CP1

do not degenerate at E
�;�
2

(for n � 3): using the vanishing of the first and second
cohomology of F.CP1; 3/ and the projection pW F.CP1; n/!F.CP1; 3/, we obtain
the diagram (we use bold E

�;�
� for the components in the spectral sequences):

E
0;1
2
.F3/DQhG12i E

0;1
2
.Fn/ŠA1.n� 1/

E
2;0
2
.F3/ŠQhwi E

2;0
2
.Fn/ŠQhwi

d2 d2Š

p�

p�

Š

and we find that the differential d2 is surjective for n� 3. These spectral sequences
degenerate at E3 : the two nonzero columns are given by

E0;�
1 DE

0;�
3
D ker d2 ŠA�.n� 1/�.G12/;

E2;�
1 DE

2;�
3
ŠE

2;�
2
� Im d2 ŠQhwG12i˝A�.n� 1/�.G12/:

Proposition 6.1 [13] The cohomology algebra of the configuration space F.CP1; n/

(n� 3) is given by

H�.F.CP1; n//ŠH�.F.CP1; 3//˝A�.n� 1/�.G12/:
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In particular, its Poincaré polynomial is

PF.CP1;n/.t/D .1C t3/.1C 2t/.1C 3t/ � � � .1C .n� 2/t/:

Using the results from Section 5, we detect the nonzero bigraded components of the
cohomology algebra and (partially) its Sn –structure.

Proof of Theorem 1.2 The first cohomology group is

H 1.F.CP1; n//DH 1
1 Š V .n� 2; 2/;

and the subalgebra generated by degree 1 elements is contained in
Ln�3

qD0 H
q
q . The

element


 D 2.n� 2/
X
i<j

p�i .w/Gij �

X
i<j

X
k¤i;j

p�k.w/Gij 2E3
1.CP1; n/

is a cocycle in the V .n/–isotypic component. It can not be a coboundary because V .n/

is missing from E2
2

:

E2
2.CP1; n/ŠA2.n/

Š 2V .1/n˚ 2V .2/n˚ 2V .1; 1/n˚V .3/n˚ 2V .2; 1/n˚V .3; 1/n

(this is correct in the stable case n� 7 (see [9] or [2]); the trivial module V .n/ does
not appear in the unstable cases either).

As ˇ3 D 1C
P

2�i<j<k�n�2 ij k and the component H 3
3

contains a submodule of
dimension ˇ3� 1, we obtain

H 3
1 .F.CP1; n//Š V .n/:

The ideal generated by 
 is contained in
Ln�2

qD1 H
qC2
q and algebra structure shows

that all the other bigraded components are zero.

The module H 2
2

is a quotient of E2
2
Š A2.n/ (its decomposition into irreducible

modules was given in the last proof) and also a quotient of

H 1
1 ^H 1

1 Š
2̂V .2/n

Š V .1; 1/n˚V .2; 1/n˚V .1; 1; 1/n˚V .3; 1/n

(see [2]); the intersection of these decompositions gives (for n� 7) the inclusion

H 2
2 < V .1; 1/n˚V .2; 1/n˚V .3; 1/n

Algebraic & Geometric Topology, Volume 14 (2014)
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and computing their dimensions this inclusion becomes an equality:

ˇ2 D

X
2�i<j�n�2

ij D
.n� 4/.n� 3/.3n2� nC 2/

24

D
.n� 1/.n� 2/

2
C

n.n� 1/.n� 4/

3
C

n.n� 1/.n� 3/.n� 6/

8

D dim V .1; 1/nC dim V .2; 1/nC dim V .3; 1/n

Similar computations give the unstable cases of the next proposition.

Proposition 6.2 The decomposition of the second cohomology group becomes stable
for n� 7 and it is given by

H 2.F.CP1; n//DH 2
2 Š V .1; 1/n˚V .2; 1/n˚V .3; 1/n:

In the unstable cases we have

H 2.F.CP1; n//D 0; for nD 2; 3; 4;

H 2.F.CP1; 5//Š V .3; 1; 1/;

H 2.F.CP1; 6//Š V .4; 1; 1/˚V .3; 2; 1/:
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