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A spectral sequence for fusion systems

ANTONIO DiAZ RAMOS

We build a spectral sequence converging to the cohomology of a fusion system
with a strongly closed subgroup. This spectral sequence is related to the Lyndon—
Hochschild—-Serre spectral sequence and coincides with it for the case of an extension
of groups. Nevertheless, the new spectral sequence applies to more general situations
like finite simple groups with a strongly closed subgroup and exotic fusion systems
with a strongly closed subgroup. We prove an analogue of a result of Stallings in
the context of fusion preserving homomorphisms and deduce Tate’s p—nilpotency
criterion as a corollary.

55T10; 55R35, 20D20

1 Introduction

Let K < G be a normal subgroup of the finite group G and consider the extension
K—-G— G/K.

The Lyndon—Hochschild—Serre spectral sequence of this short exact sequence is an
important tool to analyze the cohomology of G with coefficients in the ZG -module M.
It has second page E;m = H"(G/K; H™(K; M)) with G/K actingon H™(K; M)
and converges to H"t"(G; M ).

Our aim in this work is to construct a related spectral sequence in the context of fusion
systems. This concept was originally introduced by Puig and developed by Broto, Levi
and Oliver in [3], to which we refer the reader for notation. It consists of a category F
with objects the subgroups of a finite p—group S and morphisms bounded by axioms
that mimic properties of conjugation morphisms.

In the setup of fusion systems the concept of a short exact sequence is an evasive one:
Let F be a fusion system over the p—group S. For a strongly F—closed subgroup T'
of S there is a quotient fusion system /T ; Craven [7, 5.10]. Nevertheless, in general
there is no normal fusion subsystem of F that would play the role of the kernel of the
morphism of fusion systems F — F /T ; Aschbacher [1, 8.11 ff]. So the answer to
Solomon and Stancu [16, Conjecture 11] is negative and one cannot expect to construct
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a Lyndon—Hochschild—Serre spectral sequence for fusion systems. Here we are able
to construct a spectral sequence that converges to the cohomology of F, H*(F; M),
where M is a Z(,)—module with trivial action of S. Recall that H*(F; M) is defined
[3, Section 5] as the following subring of F—stable elements in H*(S; M):

H*(S; M)” ={ze H*(S; M) | res(z) = ¢*(z) for each ¢ € Homr(P, S)},

where res: H*(S; M) — H*(P; M) is restriction in cohomology.

Theorem 1.1 Let F be a fusion system over the p—group S, T a strongly F—closed
subgroup of S and M a Z,y—module with trivial S—action. Then there is a first
quadrant cohomological spectral sequence with second page
f
E}™ =H"(S/T; H™(T: M))

and converging to H" ™" (F; M).

The notation 7 for the second page will be fully described in Section 2, and must
be thought as taking F—stable elements in a similar way as explained for H*(F; M)
above. Consider for each subgroup P of S the Lyndon—Hochschild—Serre spectral
sequence of the extension

PNT—-P—P/PNT =~PT/T

converging to H*(P; M). A morphism ¢ € Homz(P, Q) induces a morphism ¢*
between the spectral sequences corresponding to Q and P. Hence we have a contravari-
ant functor from F to the category of spectral sequences. Recall that a morphism in
this category from E’ to E” is a sequence of homomorphisms of differential bigraded
Z(py-modules, fi: E; — E}, k >0, such that H(f;) = fi41. The inverse limit
spectral sequence or spectral sequence of F—stable elements has E ;'m entry equal to
H™(S/T; H™(T:; M))” , ie, the elements z from

H"(S/T; H™(T; M))

such that ¢*(z) = res(z), Wherle ¢ € Homz(P,S) and res = (* is restriction in
cohomology for the inclusion P < S. Hence H*(S/T; H*(T; M))” is a differential
graded subalgebra of the differential graded algebra H*(S/T; H*(T; M)) and its
differential is just restriction of the differential of the latter. This should be useful
in computations. The theorem states that the abutment of this spectral sequence is
H*(F; M).

For the case of a normal subgroup K < G and F = Fs(G) with S € Syl,(G) we
have two spectral sequences converging to H*(G; M ). Here, M is a Z,)—module
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with trivial G —action (and hence trivial S—action). On the one hand, we have the
Lyndon—Hochschild—Serre spectral sequence associated to K — G — G/ K. On the
other hand, we have the spectral sequence associated to J and the strongly F—closed
subgroup 7' = KNS € Syl ,(K). In Section 5 we prove that the two spectral sequences
are isomorphic. Note that, in particular, this shows that the Lyndon—-Hochschild-Serre
spectral sequence of the extension K — G — G/ K depends only on the intersection
of K with a Sylow p—subgroup of G.

As an application of the spectral sequence in Theorem 1.1 we prove an analogue of a
result of Stallings. Meanwhile the original theorem deals with a group homomorphism,
here we replace that notion by that of a fusion preserving homomorphism. This is
a group homomorphism S; — S, between the Sylow p—subgroups of two fusion
systems JF7 and F, such that morphisms of F; are transformed into morphisms of
F> (see Section 6).

Theorem 1.2 (Stallings [17, page 170]) Let F; be a fusion system over the p—group
S; fori = 1,2 and let ¢: S; — S, be a fusion preserving homomorphism. If the
induced map in cohomology H'(F»; Fp) — H (Fi; Fp) is an isomorphism for i = 1
and a monomorphism for i = 2 then Sl/(’)p (S1) = S2/(9 L (S2).

The hyperfocal subgroup of F;, O}fi (Si), (i =1,2) is defined as follows:
0%.(Si) = ([P, OP (Autz, (P))] | P < S;).

It is the smallest subgroup of S; such that the quotient of F; over that subgroup is a
p—group; see Broto, Castellana, Grodal, Levi and Oliver [2]. Hence, the conclusion
of the theorem is that the largest p—group quotients of F; and J, are isomorphic.
For instance, when F; and F, are already p—groups, ie, F; = Fg,(S;), i = 1,2,
the conclusion is that S and S, are isomorphic. This particular case is a variant of
Stallings’ result by Evens [10, 7.2.4]. We can also deduce fusion system versions of
another result of Evens and Tate’s p—nilpotency criterion:

Corollary 1.3 (Evens [10, 7.2.5]) Let F be a fusion system over the p—group S.
If the map H2(.7:/E (S);Fp) — H*(F;Fp) is a monomorphism then S/O (S) is
elementary abelian.

Here, the elementary focal subgroup of F is defined as EZ 7(8) = q)(S)O (S) (Diaz,
Glesser, Park and Stancu [8]), where ®(.S) is the Frattini subgroup of .S. The conclusion
of this corollary is that the largest p—group quotient of F is elementary abelian.
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Corollary 1.4 (Tate [18, Corollary on page 109]) Let F be a fusion system over the
p—group S. If the restriction map H'(F;F,) — H'(S;F,) is an isomorphism then
F=Fs(S).

This last result was already proven in [8] using transfer for fusion systems and in
Cantarero, Scherer and Viruel [5] by topological methods. Here the proof mimics Tate’s
original cohomological proof that relies on the five-term exact sequence associated to
the Lyndon—Hochschild—Serre spectral sequence but uses instead the spectral sequence
of Theorem 1.1.

There are situations where the Lyndon—Hochschild-Serre spectral sequence is not
applicable while the spectral sequence from Theorem 1.1 can be used. For instance,
a classical drawback of the Lyndon—Hochschild—Serre spectral sequence is that it
cannot be applied to finite simple groups. Nevertheless there are finite simple groups
that do have a strongly closed p—subgroup: Flores and Foote [11] classified all finite
groups with a strongly closed p—subgroup, in particular such finite simple groups.
Notice that even if F is induced from a nonsimple finite group F = Fg(G) not
every strongly closed F—subgroup 7 of S is of the form 7" = K N § for some
normal subgroup K <1 G [1, Example 6.4]. This describes another circumstance where
Lyndon—Hochschild—Serre does not apply but Theorem 1.1 does. As final example of
this situation consider an exotic fusion system with a strongly closed p—subgroup. A
family of such exotic fusion systems is described in Diaz, Ruiz and Viruel [9], where
the authors classified all the fusion systems over p—groups of p—rank 2 (p odd).

This opens a new range of cohomology computations that can be carried out, some
of which the author intends to perform in a subsequent paper. The main limitation
here is that the spectral sequence from Theorem 1.1 requires knowledge of the Lyndon—
Hochschild—Serre spectral sequence of the extension of p—groups 7 — S — S/ T,
and these computations do not abound.

Remark 1.5 Theorem 1.1 holds for the wider class of F—stable Z,)S-modules, ie,
for Z(p)S-modules M such that for any morphism ¢: P — S in F and any p € P we
have ¢(p)-m = p-m. Also, the Lyndon—Hochschild-Serre spectral sequence of K <G
and the spectral sequence from Theorem 1.1 for F = Fg(G) and T = S N K coincide
for G —stable Z )G -modules, ie, for Z(,)G-modules M such that g thg-m=h-m
forany h,g e G.

Organization of the paper

In Section 2, F—stable elements and Mackey functors are defined and some related
results introduced. In Section 3, we describe a particular cohomological Mackey functor
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that will play a central role in the construction of the spectral sequence. In Section 4,
the spectral sequence is built and Theorem 1.1 is proven as Theorem 4.1. In Section 5
we compare the spectral sequence from Theorem 1.1 to the Lyndon—-Hochschild—Serre
spectral sequence and we give an example. In Section 6 we prove Stallings’ result and
some of its corollaries.
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when developing this paper. Also, I am grateful to P Symonds for showing me
how to prove that the two spectral sequences coincide in the normal subgroup case
(Theorem 5.1).
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2 Cohomology and F-stable elements

Throughout this section F denotes a fusion system over the p—group S. We start
by introducing some notation: If A: F — C is a contravariant functor and C is any
category then we denote the value A(¢) by ¢*, where ¢ is a morphism in F. For
Q= tﬁ, the inclusion of P into S, we write res := L}_S; * If C is a complete category
then we denote by A7 the inverse limit over F of the functor:

A7 :=1lim 4.
<«
]_‘
For the complete category CCh(Ab) of (unbounded) cochain complexes we have the
following favourable description of inverse limits:

Lemma 2.1 Let A: F — CCh(Ab) be a contravariant functor. Then:

AT = A(S) :={z € A(S) | res(z) = ¢*(2) for each ¢ € Homz (P, S)} C A(S).

We call the elements in A(S)” the F-stable elements in A(S). For such a functor we
can consider the cohomology H*(A”) = H*(A(S)”) of A(S)” € CCh(Ab). Notice
that we also have functors H"”(A): F — Ab obtained by taking cohomology in degree
n. Hence we may also consider the inverse limits H*(A4)” = H*(A(S))”. We are
interested in functors A for which taking F—stable elements and cohomology commute.
We prove in this section (Proposition 2.8) that being a cohomological Mackey functor
(Definition 2.2) with values in Z,)—-modules is sufficient for this.
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Definition 2.2 Let F be a saturated fusion system over the p—group S and let A
be an abelian category. A cohomological Mackey functor for F over A is a pair of
functors (4, B): F — A with A: F — A contravariant and B: F — A covariant
such that:

(1) A(P)= B(P) and A(p) = B(p~!) foreach P < S and ¢ € Homz(P, p(P)).

(2) (Identity) A(cp), B(cp): A(P) — A(P) are the identity morphisms for every
p € P =S, where cp: P— P, x> pxp~! is conjugation by p.

(3) (Double coset formula)

AW o BuR) = D B(5rg) 0 Algheg) © Alcx—1)x)
x€Q\P/R

for O, R < P < S, where Q\ P/R are the double cosets.

(4) (Cohomological) B(tg) o A(Lg)Z A(Q) — A(Q) is multiplication by |Q : P|
forevery P < Q < S.

See Webb [19] for the classical definition of Mackey functors and of cohomological
Mackey functors for finite groups.

Remark 2.3 In Definition 2.2 we have omitted the familiar conditions:
e (Transitivity)
B(8)oB(E)=B(E) and 4(8)oAaB)=4(F)
for P<Q=<R=<S.

e (Conjugation)

B(:2) 0 Al p) = A(p) 0 B(loip),

B(@)p) 0 A(2) = Ao o B(),
for P < Q <SS, ¢ € Homz(Q,¢(Q)).

In fact, they are consequences of the functoriality of 4 and B and of Condition (1).

We will use several times in the paper that cohomology of finite groups is a cohomo-
logical Mackey functor. For a proof of this fact see, eg, Brown [4].
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Remark 2.4 If the maps B(Lg) for the inclusions Lgi P — Q with P,Q < S are
given (these maps are called transfer) we can define B as follows: For any mor-
phism ¢ € Hom;(P Q) define B(p): A(P) — A(Q) by B(¢) = B(t (P)) 0 A(@™h)
with @: P — ¢(P). Such a B becomes functorlal if for any P < Q < R we have
B(LQ) B(LQ) = B(LR) and forany P < Q 4 ©(Q) we have

B($)o A(p)p) = A(p) o B(152).

Before proving the main result of this section we need to introduce (G, H)-bisets:
Sets with commuting free right G —action and free left H—action. Every (G, H)-biset
Q can be decomposed into a disjoint union of transitive (G, H)-bisets of the form

Hxy,G=HxG/~,
with K <G, ¢: K — H a monomorphism and
(h,kg) ~ (hp(k). g)

for he H, g € G and k € K. A saturated fusion system gives rise to a special type of
biset:

Proposition 2.5 [3, Proposition 5.5] For any saturated fusion system J over a p—
group S, there is an (S, S)-biset 2 with the following properties:
(a) Each transitive component of €2 is of the form S x4, S for some P < § and
¢ € Homx(P, S).
(b) For each P < S and each ¢ € Homz(P, S), the (P, S)-biset 2 p obtained by
restricting the right action from S to P and the (P, S)-biset 2, obtained by
restricting the right action from S to P via ¢ are isomorphic as (P, S)-bisets.

(© |22]/|S]=1mod p.
We call such an (S, S)-biset an F—stable (S, S)-biset. Now let (A4, B): F — A
be a cohomological Mackey functor for F over the abelian category 4. For each
transitive (Q, R)-biset R x, O with ¢ € Homz(P,R), P <0 =S, R< S, we have
the composition

B(%)
2-1) AR) 22 A(P) = B(P) = B(Q) = A(0).
For each (Q, R)-biset  with
Q=][Rx,0
we can define a map A(Q): A(R) — A(Q) by
(2-2) AQ) =) B1)oA().
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Lemma 2.6 Let (A, B): F — A be a cohomological Mackey functor. Then:

(1) For each transitive (Q, R)-biset R x, Q the morphism (2-1) depends only on
the isomorphism class of R xy, O as (Q, R)-biset.

(2) Forany (Q, R)-biset Q2 the morphism (2-2) depends only on the isomorphism
class of Q as (Q, R)-biset.

(3) For any (Q, R)-biset 2 and any monomorphism ¥: P — Q we have
A() 0 A(2) = A(Ry),

where Q. is the (P, R)-biset obtained by restricting the right action of 2 from
Q to P viavy.

(4) If A=Zp—mod and Q2 is an F-stable (S, S')-biset then

A(S)” =Im(A(RQ): A(S) — A(S)).
Proof of Lemma 2.6

Proof of (1) The transitive (Q, R)-bisets R x4, O and R xy, O with ¢1: P; — R,
2. Py —> R, Py, P, < Q are isomorphic as (Q, R)-bisets if and only if there exist
elements ¢ € Q and r € R such that the following diagram commutes:

PILR

-,k
P, 2 _Rr
Hence both squares in the following diagram commute:

4 B(%)
AR) 20 4(py) —

A(Q)
A(cq)[ \B(cq) ‘B(Cq)
o
A(p2) Blpy)
A(R) ——= A(P;) ——— A(Q)
Using Properties (1) and (2) from Definition 2.2 one finds that

B(2) o Alpr) = B(S) 0 A(g2).

A(er)

Proof of (2) Any automorphism of 2 permutes its transitive components via isomor-
phisms. So we may apply Lemma 2.6(1) to each component.

Algebraic & Geometric Topology, Volume 14 (2014)



A spectral sequence for fusion systems 357

Proof of (3) Write Q2 as a disjoint union of transitive (Q, R)-bisets 2 =[[ R x, Q.
The transitive (Q, R) biset R x, O with ¢: K — R, K < Q decomposes as a
(P, R)-biset with P acting via i as follows:

Rx, 0= U R Xgoc,—10% P,
w(P()]\EQ/K
v Cq1
with P> PNy~ 1(9K) 2 ¢v(P)NIK 2> K % R. Hence,
AQy) =D > Bltpny-1ag)) 0 Alpocg10V).
¢ W(P()I\EQ/K
Using functoriality of A and B we get

A(Qw)zA({ﬁ)o(Z Z B(Y P ek oA(cql)oA((p)),

¢ VI(P)\Q/K

with 1;: rs ¥ (P). Now the Mackey decomposition (3) from Definition 2.2 gives

AQy) =Y AW) 0 AW p)) 0 B1L) 0 A(p) = A(Y) 0 A(Q).
@

Proof of (4) Let z € A(S). We want to see that A(Q)(z) € A(S)”. Solet ¥ be a
morphism in Homz(P, S). Then

AW (AR)(2)) = (A(Y) 0 A(Q))(2) = A(Qy)(2)
by Part (3). By Proposition 2.5(b), the (P, §)-bisets €2, and QL;Z = Qp are isomor-
phic as (P, S)-bisets. Then by Part (2) we have A(Q2y,) = A(ng). Hence,

AW (AQ)(2)) = A(Qy)(2) = A(Q;5)(2) = A(p)(ARQ)(2))

by Part (3). Thus A(R2)(z) € A(S)”.
Now let z € A(S)” . Then

AQ)(2) =) BW(A(@)(2) =Y _ BO(AW(2))
as z is F—stable. Now by (4) of Definition 2.2 we get

AQ)(z) = (Z 1S : P|) .z

and by Proposition 2.5(c) the number ¢ = (D_ |S : P|) = |R2]/]S] is a p’—number. So
A(Q)(g) =z and hence z € Im A(R2). O
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For a fusion system JF over the p—group S denote by CohMackz,, (F) the abelian

category with objects the cohomological Mackey functors with values in Z ,)—mod

and morphisms the natural transformations commuting with both the contravariant and

covariant parts. This means that if (4, B) and (A’, B") are cohomological Mackey

functors, a morphism 7 between them consists of a morphism of Z,)~modules

np: A(P) — A’(P) for each P < S such that for ¢ € Homz(P, Q) we have
A'(p)ong =npoA(p) and ngoB(p)=B'(p)onp.

Lemma 2.7 Let F be a fusion system over the p—group S. Then the functor

_\F
CohMackz,, (F) (—)> Z.(py—mod
sending (A, B) — A’ is exact.

Proof Let
n
0= (A1, B1) = (42, By) = (43, B3) = 0

be an exact sequence in CohMackz, , (F). We want to prove that

f
0—>Af—>A§n—>A§:—>O

is exact in Z,)—mod. The nontrivial assertion to prove is that the arrow 45 — A7 is
an epimorphism. So let z be an F—-stable element in A5(.S). Fix an (S, S)-biset
satisfying the properties of Proposition 2.5. By Lemma 2.6 (4) there exists an element
z' € A3(S) with z = A3(R2)(z’). By hypothesis, the map

A5(5) 25 45(5)

is an epimorphism and hence there exists an element )’ € A,(S) with ng(y’) = z'.
By Lemma 2.6 (4) again we have that

yE 40

belongs to Af . Because n commutes with the covariant and contravariant parts of
(A,, B,) and (A3, Bj3), it is easy to see that

" (») =07 (42(2)()) = 43( Q) (0" () = 43(Q)(Z)) == O

Proposition 2.8 Let F be a fusion system over S and let (A, B): F — CCh(Zp))
be a cohomological Mackey functor. Then

H*(A(S)T) = H*(A(S))”.

Proof Thisis aconsequence of Lemma 2.7 and of the well-known fact that cohomology
commutes with exact functors. a
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Remark 2.9 Let F be a fusion system over the p—group S and let M be a trivial
7, pyS—-module. By [3, Section 5] the cohomology of F is defined as

H*(F; M) = H*(S; M)”,

where H*(-; M): F — Z(p—modules is the cohomological Mackey functor with
values H*(P; M). If one could choose cochains C*( - ; M): F — CCh(Zp)) such
that C*( - ; M) was the contravariant part of a cohomological Mackey functor then
Proposition 2.8 would give the computational-purposes formula

H*(F; M) = H*(C*(S; M)7).

In the next section some problems related to the functoriality of cochains will become
apparent.

3 A Mackey functor

Let F be a fusion system over the p—group S, T a strongly JF—closed subgroup of
S and M a Zp)—module with trivial S—action. In this section we prove that for
every n,m > 0 the functor H""™: F — 7 ,—mod sending the subgroup P < § to
H"(P/PNT;H™(PNT;M)) is the contravariant part of a cohomological Mackey
functor F — CCh? (Z(py) with values in double (cochain) complexes (Definition 2.2).
Here, by double complexes we mean the abelian category with objects families of
Z(py—modules {A"™}, ;7 together with maps d" (horizontal differential) and dV
(vertical differential)

dh:An,m_>An+1,m and dV: An,m_>An,m+1’

such that d"d" = d?dV = d"d" + d*d" = 0. A morphism from A"y ez
to {4}, mez is a family of maps of Z(,)—-modules {4™" — A"™™}, ez that
commute with horizontal and vertical differentials.

For P < S denote by P the group P/P N T . The bar resolutions B} and B* for P
and P respectlvely are projective resolutions of the trivial module Z( p) over Z( nP
and Z p)P respectively. Recall that the bar resolution is functorial (covariant) over
finite groups and homomorphisms. Define 4**(P) as the double complex associated
to the short exact sequence

0—PNT—-P—>Px=PT/T—0.
More precisely, for n > 0 and m > 0, we define

A™"™(P) = Homp (B% QB M),
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where P acts on B’%@Bg by p(y®x) = py ® px foryeB’Ig and x € BY.

As the action of P on M is trivial the cochains in A" (P) are the homomorphisms
fe Hom(B’l‘E ® B, M) such that

f(py®px)=f(y®x)
forallyeB’IL),xeB’I’} and p e P.

To obtain a double complex we consider the following horizontal and vertical differen-
tials for f € A™™(P):

d"(N)y®x)= (1" fd()®x), yeBL!, xeBy,

d(NHy@x)=D""f(y®dx), yeBL xeBp!,

where we are using the differential d of the complexes B% and Bj,. We choose the
signs as given by Mac Lane [13, XI.10.1] to ensure that dhdv + dvdh = 0. We
will obtain the functor H"" by taking vertical cohomology followed by horizontal
cohomology in 4™,

To define A on morphisms notice that any morphism ¢ € Homz(P, Q) takes PN T
to QNT as T is strongly F—closed. Hence it induces a homomorphism

: P— Q
Thus for any ¢ € Homz (P, Q) we may define

An.m
Ay L gnmpy

mapping the cochain f € A (Q) to the cochain in A" (P) that takes y € B'IL) and
x eBy to

f(B"@)(») & B"(p)(x)),

where B"(¢) and B™(p) are the usual morphisms between bar resolutions. They
commute with differentials and satisfy

B"(e)(p-y)=9(p)-B"(®)(»)
for every y € B’% and every p € P and
B™(@)(p-x) =¢(p)-B"(¢)(x)

for every x € By and p € P. It is straightforward that A™™(¢)(f) € A™™(P)
and that the family of morphisms {A™"(¢)},,m>0 commutes with the horizontal and
vertical differentials of the double complexes A**(Q) and 4**(P).
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Remark 3.1 By definition the fusion system /T is defined over the p—group S/T.
For T'< P, O =S the morphisms in Homz,7(P/T, Q/T) are those homomorphisms
Y: P/T — Q/T induced on the quotient from ¥ € Homrz(P, Q).

For P, Q0 < S and ¢ € Hom#(P, Q) we have a morphism @: P — Q. Then we have
a commutative diagram

PT/T -2~ 0T)T,

where the ¢ are induced by ¢ and where the vertical arrows are the natural isomor-
phisms. According to [7, 5.10] bottom morphism ¢ belongs to F/ T, ie, there exists
W € Homx(PT, QT) such that the induced map v: PT/T — QT /T coincides with
the given one.

Remark 3.2 The construction of A™™ is clearly functorial and hence so far we have
a contravariant functor A**: F — CCh? (Z(py) with values in double complexes.

Now we define B"™(P) = A™™(P) for every P < S and n,m > 0. For each
morphism ¢ € Homz(P, Q) we will define a morphism of double complexes
B®"(p): AM(P) — AM(Q).

This will not make B into a covariant functor F — CCh? (Z(p)) as the definition
depends on a choice of representatives. Nevertheless, B will become functorial once
we pass to cohomology.

To define B**(y) on ¥ € Homr(P, Q), write ¥ = 10, where ¥: P — ¥ (P) is
an isomorphism and ¢ is the inclusion ¥ (P) < Q, and set

(3-1) B**(y) = B** ) o A™* (7).
So we just need to define B on inclusions.

So let ¢ be the inclusion between subgroups P < Q of S. There are maps of Z,) P—
chain complexes and of Z ) P—chain complexes respectively

2F By > By 2 B% — By,

built as in [4, (D), page 82]. More precisely, the map t, P is induced by a map of
left P—sets O 5 P defined as follows: fix a set of representatives for the right cosets
P\Q, then p(q) = qg~!, where 7 is the representative with Pg = Pg. The map

Algebraic & Geometric Topology, Volume 14 (2014)



362 Antonio Diaz Ramos

f*Q P is defined analogously choosing representatives for the right cosets P\ Q. These

choices of representatives prevent B#>4 from being functorial.

We define the map
(3-2) B (0): Homp(B’;—,@)Bm,M)—>H0mQ(B”§®Bm,M),
BO(NHyex)= Y [fEZP@'»nerdfw ).

weQ/P

where w runs over a set of representatives of the left cosets Q/ P. This formula can be
thought as a relative transfer formula for twisted coefficients. Clearly its definition does
not depend on the representatives w chosen and B (1)(f) € A"™(Q). Moreover,
B™™ (1) commutes with both the horizontal and vertical differentials as 74« and T« do
and so it is a map of double complexes.

Remark 3.3 By Park [14] there are finite groups G and G such that S is a p—
subgroup of G (not necessarily a Sylow p—subgroup), S = S/7T is a p—subgroup of
G (not necessarily a Sylow p—subgroup) and with F = Fg(G) and F/T = F< S (G).
Let Bg; and BZ be the bar resolutions of G and G respectively. Then we could
have deﬁned for P<S

A™™(P) = Homp (B ® Bg, M),

where P acts on B”E ® B} by restricting the actions of G on By, and of G on Bg.
This means that p(y ® x) = py ® px for p € P. In this setup clearly one can define
a functorial B™™ on inclusions. On the other hand, to realize a morphism ¢: P — Q
we need to choose g € Ng(P, Q) with ¢ =c, and g € Né(p, 0) with ¢ = cg and
then define

A" (@) (y ® x) = (8y ® gx).

It is clear that in general A" defined this way will not be functorial on morphisms.
If one could choose A™™ and B™™ such that (A™™, B"™): F — CCh*(Z,)) was
a Mackey functor then the proof of Theorem 4.1 would be simpler.

On each double complex A**(P) with P < S we may take vertical cohomology
followed by horizontal cohomology to obtain H*(P; H*(P N T;M)) [13, Equa-
tion (10.2), page 352]. For any homomorphism ¢ € Homx (P, Q) the maps A™*(¢)
and B**(¢) are maps of double complexes and hence they induce maps

H"™(A)(p): H"(Q; H™(QNT;M)) — H"(P; H"(PNT; M)),
H™™(B)(¢): H"(P; H™(PNT;M)) — H"(Q; H"(QNT; M)).
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Lemma 3.4 For ¢: P — Q the map H""(A)(¢) factors as

H"(p —

& H"(P;H™(QNT:; M))
H" ()
—_

H"(Q: H™(QNT: M))
H"(P;H™(PNT; M)),
where
e H"(p) is the map induced by ¢ in cohomology with H™(Q NT; M')—coefficients,
e  H™(y) is the map induced by the change of coefficients

H™(¢p): H"(ONT;M)— H™"(PNT; M).

This map is a map of Z(p)ﬁ—modules where P actson H"(Q N T; M) via P 4%
p(P)= Q.

Proof By construction. O

Lemma 3.5 If P < Q and denotes the inclusion then the map H™™(B)(t) factors as

H"(P; H™(PNT; M)) 2,

H"(P;H™(QNT;M))
O, 5(Q: HM(Q N T3 M),
where

e H"(tr) is the transfer map in cohomology with H™(Q N T'; M) —coefficients,

e H™(tr') is the map induced by the change of coefficients given by the transfer map
in cohomology:

H™t')y: H"(PNT; M) — H™(ONT; M)

This map is a map of Z(p)ﬁ—modules where P actson H™(QNT; M) via P < Q.

Proof Choose representatives z; € Q of the left cosets O/ P and representatives
ti € ONT of the left cosets (Q N T)/(P NT). Choose also representatives g € Q
of the left cosets O = Q/(QNT). Then each z; € Q is represented as z; = qdk; fora
unique k; . It is an exercise to prove that the set of elements of Q gy, t; for all i and j
is a set of representatives of Q/P. Then we can rewrite Equation (3-2) as

> Y (s e (' Y).

z;€Q/P 1 €(@NT)/(PNT)
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Because t; € Q N T then gy;t; = gy, and the formula simplifies to
3 > (@@ e e ).
z;€Q/P 1 €(@NT)/(PNT)

This coincides with the composition in the statement of the lemma. a

Lemma 3.5 proves in particular that the definition of H"™(B)(t) does not depend on
the representatives chosen to construct the maps ‘[*Q P and ?*Q P (Although B™™ (1)
do depends on them.)

Corollary 3.6 For n,m > 0 the assignment
Hn’m(B)Z F — Z(p)—mod

taking P to H"(P; H™(P NT; M)) and taking ¢ € Homx(P, Q) to H"™(B)(p)
is a functor.

Proof By Remarks 2.4 and 3.2 and Equation (3-1) it is enough to prove that for any
P < Q0 < R we have

H"™(B)(:8) o H™™(B)(:5) = H"™(B)(:§)
and for any P < Q 4 ¢(Q) we have

H"™(B)(18) o H"™ (4)(gp) = H"" (4)(g) o H"™ (B)(:51D).

We can check both conditions at the level of cochains: For the first condition, the
definitions (3-2) of B"™™ (tIQ,), B™M (Lg) and B™™ (Lg) depend upon choices of rep-
resentatives for the right cosets

P\Q and P\QO, O\R and O\R, P\R and P\R

respectively. Fix choices of representatives for the first four right cosets. Then the
bijections P\Q x Q\R — P\R and P\Q x O\ R — P\R provide choices for the
last two right cosets. With these choices we have

B (1§) o B"" (1) = B™" (i§).

For the second condition, the maps B™™ (LIQ,) and B™™ (LZE%; ) depend on choices of

representatives for the right cosets

P\Q and P\Q, ¢(P)\¢(Q) and ¢(P)\¢(Q)
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respectively. Fix representatives in P\ Q and P\ Q and force the other choices via the
bijections
(p [ — ) — —
P\Q = p(P)\¢(Q) and P\Q % ¢(P)\p(Q).

Then we have

B (8) 0 A" (gp) = A" (A)(0) 0 B (D). o

Proposition 3.7 For each p,q > 0 the functor 7 — Z,y—mod with values
HP(P;HI(PNT:; M)

and taking ¢ € Homgz(P, Q) to HP9(A)(p) is a cohomological Mackey functor with
covariant part taking ¢ € Homgz(P, Q) to H?4(B)(¢).

Proof Property (1) from Definition 2.2 holds by Equation (3-1). Property (2) follows
from Property (1), the well known fact that conjugation induces the identity on coho-
mology, from Lemma 3.4 and from ¢, = ¢ for p € P < S. Now we check Property
(3), also known as the Mackey condition or double coset formula. Solet O, R< P < S.
We will prove this condition at the level of cochains, ie

Al o B Ry = Y BTG eg) 0 A (g g) © AT (Co1 )-
x€Q\P/R
Solet fe A"™(R) = HomR(B’I%®Bm,M), ye B”Q and x € Bg. Then

A" (ip) (B (1) () (y ® x) = B™™ (1) (/) (L_S(y) ®Lg(x))

= B""(B) (/) (y ®x).
This equals

Y rERR@ Ty @R wy)).

weP/R

where w runs over a set of representatives of the left cosets P/R, f,f R B% — B'I%
and r,ﬁ R, By — Bg. Now we let Q acts on the left on P/R and we group together
the terms corresponding to a given Q—orbitin P/R:

> Y rEYR@ !y @y R((ap) ).
PEQ\P/R q€Q/QNPR
where now p runs over a set of representatives for the double cosets O\ P/R and ¢
runs over a set of representatives of the left cosets Q/Q N"R. This equals

oY fERGTT e e ).

PEQ\P/R qeQ/ONPR
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The right-hand side of the Mackey formula is

> Yo (2 RG »pe pT 122 KRG x) p)
pEQ\P/R qeQ/QNPR
with
—0,0NPR. ,ONPR.
T2 O B — Bheg w0 R By — Bk
and where we have realized ¢, at the level of cochains as

p~ PR

AN ey, ) (v @ %) = (F P ® p~xp).

The map th R depends on a choice of representatives for the right cosets R\ P.
p

Similarly, for any representative p € Q\ P/ R, the map r,% *ON"R s built out of a set

of representatives of @ N PR\ Q. We want to choose representatives of R\ P and of

O N PR\ Q for each double coset OpR such that

Q _p';. Q N PR
qu‘ql lq'—wlqp
p—" R

commutes for each double coset QpR. For this is enough to choose arbitrary represen-
tatives g of @ NP R\ Q for each double coset QpR and build the representatives in
R\ P via the bijection
[ on?rR\Q—R\P
peQ\P/R
that takes (Q NP?R)q to Rp~1q. The same argument for f,l,p’R and the maps ?,,Q’anR
finishes the proof of Property (3).

To prove Property (4) we go back to the level of cohomology. Let P < Q < S. By
Lemmas 3.4 and 3.5 the composition H™™ (B)(LIQ,) o H™™M (A)(L}Q,) is equal to

H"(tr)o H™(tr') o Hm(tg) o H"(tg).

Because cohomology over finite groups is a cohomological Mackey functor we know
that H™(tr') o H™ (Lg) is multiplication by |Q N T'|/| P N T|. Moving out this factor
we are left with o

H"(tr) o H”(tg).

As Lg = L% we obtain again by properties of cohomology for finite groups that this

composition is multiplication by |Q|/|P|. So finally we obtain that

H"™(B)(:2) 0 HP(4)(:2)
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is multiplication by onT|0l |0l
—_— = . O
|PONT||P| |P]

4 Construction of the spectral sequence

In this section we prove the main theorem of this paper:

Theorem 4.1 Let F be a tusion system over the p—group S, T  a strongly F—closed
subgroup of S and M a Z,y—module with trivial S—action. Then there is a first
quadrant cohomological spectral sequence with second page

Ey™ =H"(S/T:H™(T: M))”
and converging to H"t™(F; M).

Proof For each subgroup P < .S we have the short exact sequence
PNT—-P—->P=P/PNT.

The construction of the Lyndon—Hochschild—Serre spectral sequence in [13, XI1.10.1]
associates to this short exact sequence a double complex naturally isomorphic to the
double complex

A"™™M(P) = HOI’I’IP(B% QB%, M)

defined in Section 3. This double complex we can filter either by columns or rows.
If we filter by columns we obtain a spectral sequence {°F Z’*(P), dy Yo<k<oco Whose
second page is CE;”"(P) = H"(P; H™(PNT;M)). If we filter by rows we obtain a
spectral sequence {’E;’*(P), dy Yo<k<oo Whose second page collapses as ’E’;’m(P) =
H™(P; M) for n =0 and "E}"™ (P) = 0 for n > 0.

For each morphism ¢ € Homz (P, Q) we have morphisms of double complexes
AT (g): ATT(Q) = AT(P) and  B™™(g): A"(P) > A""(Q)

defined in Section 3. These morphisms of double complexes induce morphisms of
spectral sequences consisting of a sequence of morphisms of differential bigraded
Z(py—modules

Ep"(A)(p): ET(Q) — B (P),
Ex(B)(@): EQN(P) = “E(Q),
"E(A) () "EQT(Q) = TECT(P),
"E;*(B)(@): "ET(P) = "EXT(Q),
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for 0 < k < co. We deal now with the filtration by columns spectral sequences.
The second page °F ; "* is obtained by computing vertical cohomology followed by
horizontal cohomology in the double complex A*:*. Hence we have

‘Ey™(P)=H"(P;H"(PNT: M)),
CEDM(A)(p) = H™(A)(p),
‘E}™(B)(p) = H™™(B)(¢).
for P < S and ¢ € Homg(P, Q), where H""(A) and H"™(B) are functors F —

Z(py-mod by Remark 3.2 and Corollary 3.6 respectively. Hence, for each 2 <k < oo,
we have a contravariant functor

CEZ’*(A): F — differential bigraded Z (,)—modules
and a covariant functor
E;’"(B): F — differential bigraded Z ,)—modules.

On the one hand, we can take invariants for each 2 < k < oo to obtain a differential
bigraded Z,)—module

*,%F

EX*T = (2 € CEF*(S) | Ef M (A) (@) (2) = E M (A)(5)(z) for P 5 S},

On the other hand, for k =2, we have by Proposition 3.7 that (‘E5"*(A),“E5>*(B)) isa
cohomological Mackey functor. Because “E}*; = H*(°E}""*, di) and because passing
to cohomology preserves cohomological Mackey functors we deduce that Ef>*(A) is
a cohomological Mackey functor with covariant part ‘E}>*(B) for 2 < k < co. By
Proposition 2.8 we obtain then that

*,k F
k+1

*, 0k F

(4-1) ‘E = H*(Er* di)” = H*(CE;™  dy)

for 2 <k < oo. Fix now n > 0 and m > 0. For each subgroup P < S we have
E(P) =B (P) = = CEGT(P)
for k big enough. Because there are a finite number of subgroups of S we deduce that

F F
CEZ;m CEn sm

__cpnmF
k+1 - EOO

for k big enough. Hence Equation (4-1) also holds for k = oo and we have obtained a

spectral sequence
cp*, %
{ Ey dk}zsksoo'
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To study whether this spectral sequence converges recall that for P < S the spectral
sequence {CE;:’*(P), di }o<k<oo converges to H*(P; M). Hence we have short exact
sequences

0 —— FPH"T™(P; M) —— F'PILH" M (P M) —— ‘EX)" (P) — 0,
where

is the filtration induced on H*(P; M) by the filtration by columns on the double
complex A™*(P). This short exact sequence is natural with respect to morphisms
of double complexes. Hence for each ¢ € Homr( P, Q) we have morphisms of short
exact sequences

0 — F'H" ™(Q; M) — F"™H H"™ ™ (Q; M) — El" (Q) — 0
lF“H"ﬂ"(A)(w) LF"“H”'"(A)(«;) lCE:;’"(A)((p)
0 — FPH"™M(P; M) —— F'HIgntm(p: M) —— EX™(P) — 0
and
0 — F"H"t™™M(P; M) — F" Tl gntmp. M) ——EZ" (P) — 0
LF”H"W(B)@) LF"“H"W(B)(@ LCE&M(BW)
0 — F"H" T ™(Q; M) — F"H T H" (0 M) — “Ex" (Q) — 0.

We want to show that the morphism H"(A)(p): H"(Q; M) — H"(P; M) and the
morphism H"(B)(¢p): H"(P; M) — H"(Q; M) induced by A and B on the targets
of the spectral sequences are the usual maps in cohomology of groups. We consider
the total complex of the double complex A**(P) defined as usual by

Tot*(4) = € 4™"(P)

n+m=s
and with total differential d” 4+ d. There is a chain map given by
¢: Homp(Bp, M) — Tot™(A)
sending 1 € Homp(B%, M) to ¢{(f) € A%™ defined by

S(N@F®x)=f(x), peP, xeby.
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The map ¢ induces an isomorphism between the cohomology of the total complex and
H*(P; M); cf [13, page 352]. Now, from the definitions of the maps

A%M(p): A%™(Q) — A%™(P) and B®™(i): A%™(P) — A%™(Q)
it is easy to check that H"(A4)(¢) and H"(B) (Lg) are the usual maps in cohomology
of groups; see [4, (D), page 82].

By properties of cohomology for finite groups (H"(A4), H"(B)): F — Z(,—mod
is a cohomological Mackey functor for each » > 0. Hence so are the functors
(FPH" ™M (A), F"H"T™(B)): F — Z(py—mod induced in the filtration for n,m > 0.
By the arguments above also the pair (‘Esy" (A), ‘EX" (B)): F — Z(py-mod is a
cohomological Mackey functor for n,m > 0. Then by Lemma 2.7 we have a short
exact sequence of Z,)—modules

0 S (Fan_Hn)]: (Fn-HHn-i-m)]-' cEgém]: 0.

It is immediate that taking invariants and filtering commute and hence we have

F F F
0 Fn(Hn+m ) Fn+1(Hn+m ) CEgém 0

for the filtration of H"*+™m” = gn+m (S)]: given by
Fn(Hn+mf) — FU(H"™(S)) N H T (S)T
This finishes the proof. a
Remark 4.2 We have seen in the proof that for each 2 < k < oo the pair
(‘E;""(A),°E”"(B)): F — differential bigraded Z (,)—modules

is a cohomological Mackey functor. Moreover, {(°E;""(A),“E;"" (B))}2<k<oo is @
spectral sequence of Mackey functors that converges as a Mackey functor to the usual
cohomology of finite groups Mackey functor (H*(A4), H*(B)): F — Z(p)—mod.

5 Comparison

In this section we compare our spectral sequence and Lyndon—Hochschild—Serre spectral
sequence. Let G be a finite group, K < G and S € Syl,(G). Then T = KNS is
a Sylow p—subgroup of K. Moreover, T is strongly Fg(G)—closed. Fix a Z,)—
module M with trivial G—action. The Lyndon—Hochschild—Serre spectral sequence
E, ¢ of the extension K - G — G/K is

H"(G/K; H™(K; M)) = H"7"™(G: M)
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meanwhile the spectral sequence Ey from Theorem 1.1 associated to T is

Fs(G)

H"(S/T; H™(T; M)) = H"t™(F; M).

Note that by the classical stable elements theorem, attributed to Tate by Cartan and
Eilenberg [6, XI1.10.1], H*(G; M) = H*(F; M) and both spectral sequences con-
verge to the same target. Recall that, by construction, E is a subspectral sequence of
the Lyndon—Hochschild—Serre spectral sequence Ex g of T — S — S/T'.

Theorem 5.1 The spectral sequences Ey g and E 4 are isomorphic.

Proof Consider the category Fg(G) with objects the subgroups of G and morphisms
given by Morr, (g)(H, 1) = Homg(H, I). Clearly Fg(G) is a full subcategory of
Fg(G). For each subgroup H < G we have a short exact sequence

HNK —-H—-H=H/HNK.

If ¢ =cg: H— I is amorphism in F(G) then, as K is normal in G, conjugation
by g € G takes HNK — H — H to I N K — I — I. Exactly the same construction
of Section 3 gives a cohomological Mackey functor (4, B): Fg(G) — CCh? (Zpy)
with values H +— A”’m(_H) = Hompg (ZS”;7 ® By, M), where B}, and B% are the bar
resolutions for H and H respectively. Moreover, for H < §,as T = KN S, we have
HN K= HNT and this functor over Fg(G) extends the one built in Section 3 over
Fs(G).

The inclusion of the short exact sequence T — S — S/ T into K - G — G/ K gives
a morphism {res, },>» of spectral sequences from E, g into E4 g. The morphism of
differential graded algebras res,;: £y ¢ — E» s coincides with the morphism induced
in cohomology by the functor A applied to the inclusion morphism S < G of Fg(G),
H**(A) (Lg). Applying the functor B to the same inclusion S < G we get another
morphism going in the opposite direction (transfer)

H™ " (A)(E)
/\
H"(G/K; H™(K: M)) H"(S/T; H™(T; M)).
\—/

H""(B)(§)

Recall that E, < E, g are exactly the F—stable elements H?(S/T; H4(T’; M))Fs@)
Because conjugation by g € G induces the identity on H?(G/K; HY1(K; M)) it is
straightforward that res;(E,,g) < E,. Hence {res,},>, is a morphism of spec-
tral sequences Ey G — E«. If we prove that res;(E; ) = E, then res; is an
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isomorphism and hence res, is an isomorphism for each r > 2 and we are done.
To see that res,(E2,g) = E, we proceed as usual when there is a Mackey functor
available; cf [4, Theorem II1.10.3]. Let z € H™(S/T; H™(T: M))”s(©) and consider
w= H”’m(B)(tg)(z) € H"(G/K; H™(K; M)). By the double coset formula 2.2(3)
and the cohomological condition 2.2(4) and because z is Fg(G)-stable we obtain

H"™(A)(§)w) = Y B(15nes)A(lghes)ci—i(2)

xeS\G/S
S S
= Z B(tsnxs) A(Usnrs)(2)
xeS\G/S
= ) [S:SN*S|z=|G:S]z.
xeS\G/S
As ¢ = |G : S| is a p’-number it follows that z = res(%). O

Example 5.2 Consider the symmetric group on 6 letters Sg. It has Sylow 2—subgroup
S = C, x Dg, where Dyg is the dihedral group of order 8. Because 4¢ < S¢, the
subgroup 7' =S N A¢ = Dg is strongly closed in F = Fg(Sg). In this example we
describe the Lyndon—Hochshild—Serre spectral sequence of A5 — S¢ — C, interpreted
as the spectral sequence E;* of Theorem 1.1 applied to F and T . This demonstrates
how the new spectral sequence works.

In the fusion system F there are three F—centric an JF-radical subgroups, namely, S,
P= C23 and Q0 = C23 . The intersections PNT and QNT are the two Klein subgroups
of T = Dg. The automorphisms are Autz(S) =1 and Autr(P) = Autr(Q) = 53,
the symmetric group on 3 letters.

Denote by E°5, EXp and E5 the Lyndon-Hochschild-Serre spectral sequences of
the extensions 7' — S — C,, PNT — P - C, and QNT — Q — C, respectively.
All three extensions are direct products and hence all differentials are 0 and the three
spectral sequences collapse at the second page. In particular, the ring H*(S'; IFZ) is
isomorphic as a ring to E>"% 28 and hence H*(S§: ;) is isomorphic as a ring to E
Moreover, for the 1nvar1ants we have
*,% *, *.7" *,% S\—1 /%% 83 S\—1/ %% S3

7 = B35 = B (es) T (E5S ) 0 (res) T (£,
because it is enough to consider invariants with respect to F—centric and F-radical
subgroups by Alperin’s fusion theorem. Here,

’ *9* 9 *’*
resP E Ez,P and resQ E Ez,Q
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are the restriction maps. Denoting by subscripts the degrees we have the following:
EJg = H*(Dg;F2) ® H*(Ca;Fa) = Fafx1, y1, wa]/ (xy) @ Falul,
Eyp= H*(C3:F2) ® H*(C2:F3) = Fa[x1, x1] @ Fa[u],
Ey = H"(C3:F2) ® H*(Cy;F2) = Fafy1, y1] @ Falu]
Restrictions are given by
resp(x) =x, resp(y) =0, resp(w)=xx'+x72, resh(u)=u,
res‘é(x) =0, res‘é(y) =y, resz(w) =y + 2 res*é(u) =u.

Now S3 = Autg (P) actson PNT = C22 and on the quotient C, = P/PNT.
The induced action on H*(C2;F,) is the natural one and on H*(C,;F,) the only
possibility is the trivial action. Hence, the invariants are given by

S
E337 =Tlx. x{]5 @ Fy[u] = Fy[ds. d3) @ Falu),

where dy = x%4+x">4+xx’ and d3 = (x+x’)xx’ are Dickson’s invariants. Analogously,
we have that

E;,’Z& = ez, €3] @ F2[u]
with ey = y2 + 2 + yy’ and e3 = (y + ') yy’. It is straightforward that
dy = res}s; (x2+w), dy= resg (xw), ep= resé (»?+w) and e3= res‘é(yw).
From this, it is immediate that Fo[x2 + y2 4+ w, xw, yw] ® F[u] C E;*

To check the reversed inclusion we first consider stable elements in the polynomial
algebras IFp[x, w] and F,[y, w]. As for Long [12, Lemma 1.4.6], the restrictions
resﬁ |, [x,w] and resz |F,[y,w] are injective, therefore

F,[x, w]ﬂ(resp) (E"< >|<S3) =Fy[x? 4+ w, xw],

**53)

Faly, w]N (resg) ™ (E Faly? +w, ywl.

A class v of H"(Dg;F,) can be written as follows, where we set k = [5]:

k
v=§:aiw’ n— 2l+,31 i n 21

From the discussion above we have that if v is F/—invariant then

v=ewk + Z yi(x? +w) (xw)’ + 8 (p* + w) (yw)’,
2i+3j=n
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where € =0 for n odd and € = o + By = Y, = & if n is even. If n is odd, then the
equalities (x2+y%4+w)(xw) = (x> +w)(xw) and (x2+y*+w)(yw) = (Y2 +w)(yw)
give that v € F5[x2+ p%4+w, xw, yw]. If n is even, then the only term left to consider is

e+ w) + 8,02 +w)k +ew’ = yk((x2 +w) + (2 +w)k + wk)

and an easy induction shows that (x2 4+ w)* + (y% + w)k + w* = (x2 + y2 + w)k.
So E;* =F5[x? 4+ % +w, xw, yw] ® F»[u]. The corner of E;* is

2

XW, yw Xwu, ywu xwu?, ywu

X2ty 4w 24yt wun (24 p? +w)u?

and we deduce that H*(Sg:F,) = Fo[u1,as, bz, c3]/(bc) with generators

a=x*>+y*+w, b=xw and c¢=yw.

6 Stallings’ Theorem

Associated to every first quadrant spectral sequence there is a five-term exact sequence.
In the case of the Lyndon—Hochschild—Serre spectral sequence for K < G and the
G-module M we obtain the inflation-restriction exact sequence:

6-1) 0—> HY(G/K;M¥)y—> HY(G: M)

— H' (K, M)"% — H*(G/K; MX) - H*(G; M),
where the second arrow from the right is the transgression. Before introducing the
five-term exact sequence for the spectral sequence of Theorem 1.1 we introduce some
notation. So let F be a fusion system over the p—group S with a strongly closed
F—subgroup 7. Set [T, F]=([t,¢]|t €T, ¢ € Homr({u), T)) < T, where [t,¢] =
to(t™1), T? = (t?,t € T), which is characteristic in 7', and the commutator subgroup
[T,S]=(t"'s"!ts|teT and s € S) < T . Because the element-wise product 77[T, S]

is a normal subgroup of 7', the element-wise product 77[S, T'|R is a subgroup of T’
forany R <T. For instance, TP[T, S|[T,F|=T?[T,F|<T.

The five-term exact sequence for the spectral sequence of Theorem 1.1 for F, 7" and
the Z(py—module M with trivial S—action is the following:

6-2) 00— HYS/T: M) - H'(F; M)
— HYT:M)” — H*(S/T; M)" — H*(F; M),
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where the arrow H'(T; M)* — H?(S/T; M)’ is the transgression.
For coefficients M =, we have

(6-3) HY(F;F,) = H'(S;F,)" =Hom(S/S?[S, F|.F,),
(6-4) HY(T;F,)" =Hom(T/TP[T, F|,Fp).

We also have

©5) H'\(S/T:M)” = HY(S/T:M)"/T,
HXS/T:M)” = HX(S/T:M)'T,

by Remark 3.1.

If F; is a fusion system over the p—group S; for i = 1,2, a homomorphism of
groups ¢: S; — S, is fusion preserving if for each ¢ € Homg, (P, S;) there exists
@ € Homz, (¢(P), S») such that p o = @ o ¢. It is easy to see that such a homo-
morphism induces a map in cohomology H*(F;:F,) — H*(F;;F,). In fact, by the
work of Ragnarsson [15], it induces a map even at the level of stable classifying spaces.
Assume, in addition, that ¢ induces a map of short exact sequences

TN, — 8 —=S1/Ty

Lk

T, ——= S, —= 8,/ 71>,

where 7; is strongly closed in S; with respect to F; for i = 1,2. This is equivalent
to assume that ¢(77) < T,. Denote by E; the spectral sequence from Theorem 1.1
applied to the strongly closed subgroup 7; for i = 1,2. Then ¢ induces a morphism
of spectral sequences E, — E; and, in particular, a map of five terms exact sequences.

Theorem 6.1 (Stallings [17]) Let F; be a fusion system over the p—group S; for
i =1,2 and let ¢: S1 — S» be a fusion preserving homomorphism. Define
Sio=Si and Siny1=S},[Sin Fi] fori=12andn>0.

If the induced map in cohomology H'(F»; Fp) — H(Fy; [Fp) is isomorphism for
i =1 and monomorphism for i = 2 then S1/S1, = S2/S2,, foreachn > 1. In
particular, for n big enough we obtain that Sl/Oé)_-1 (Sy) = Sz/(’)f_-z (S2).

Proof We will prove by induction that S;/Sy , = S2/S>,, and that S; ,, is strongly

Fi—closed and contains O;f-l_ (S;) for i =1, 2. For the base case n = 1, we have that
S;,1 contains 05-_7[, (S7) and is strongly F;—closed by [8, Corollary A.6] (i = 1,2).

Algebraic & Geometric Topology, Volume 14 (2014)



376 Antonio Diaz Ramos

Moreover, by hypothesis, H!(F,;F,) = H!(F|;F,) and then by Equation (6-3) we
get S1/81,1=82/81.

Now let n > 1. As @ is fusion preserving it is easy to see that ¢ (S ,) < S2,,. Then
we have the following map of short exact sequences:

Sip—=81 ——=S81/Six

]

Son —= 82 —=52/S2n

By the induction hypothesis, Sy , and S, , are strongly closed in F; and F, respec-
tively. Then by the discussion before the theorem we have a map of five-term short
exact sequences in cohomology with trivial [F, —coefficients:

0= H'(S1/S10)"t = HY(F)) = H' (S1 )" = H*(S1/S1,0)71 = H*(F)

A e P P

0= H'(S2/S24)72 = HY(Fy) = H'(S2,4)"2 = H*(S2/S2.0)"2 = H*(F>)

Because Oj—fi (S;) is contained in S; , the quotient F/S; , is a p—group, ie,
F/Sin= ]:S/Si,n (S/Sin) fori=1,2.

Then, by Equation (6-5), the maps f; and f, are isomorphisms as S;/S1,, = S2/S2..
Now, by hypothesis, g; is an isomorphism and g, is a monomorphism. Hence
by the five lemma /; is an isomorphism. Then by Equation (6-4) we obtain that
St,n/S1n+1 = S2,1/S2,n+1 and hence S1/S1 41 = S2/S2.n+1-

To finish the induction step, denote by F; , the unique p—power index fusion sub-
system of F; on S;, [2, Theorem 4.3]. Then using [8, Lemma A.5] we obtain that
Sint1 = Sipn[Si,n, S,-]Ofi_l_ . (S;,n) and hence, by [8, Corollary A.14],

Sin+1=S},[Sin, S1OZ.(Si).

Then S; ,41 contains O]’i-i (Si) and by [8, Proposition A.7(1)] S; ;41 is strongly
Fi—closed for i =1,2.

For the second part of the statement recall that for any finite p—group R the series
Ro =R, R, = Rf;_l[Rn_l, R] (n > 1) becomes trivial for n big enough. Then,
considering the image of S; , in Sl-/Ofé(S,-), it is easy to see that S; , = OJ,I—f(S,-) for

n bigenough and i =1, 2. a
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Corollary 6.2 (Evens [10, 7.2.5]) Let F be a tusion system over the p—group S.
If the map H*(F/E%(S);Fp) — H*(F;Fp) is a monomorphism then S/O%(S) is
elementary abelian.

Proof Set 7y =F and F, = F/E ;(S) and consider the fusion preserving quotient
map F; — F,. By Equation (6-3) and because E]’;(S) = CIJ(S)Oﬁ(S) = S?[S, F],
the quotient map induces an isomorphism in degree-1 cohomology. Then Theorem 6.1
gives that O;i-(S) = E]’i-(S) and we are done. a

Corollary 6.3 (Tate [18]) Let F be a fusion system over the p—group S. If the
restriction map H'(F;F,) — H'(S;F,) is an isomorphism then F = Fg(S).

Proof Consider F; = Fgs(S), F» = F and the fusion preserving morphism given by
inclusion F; € . Then H!(F;F,) — H'(S;F,) is isomorphism by hypothesis and
H*(F; Fp)—H 2(S; [F) is monomorphism by definition. Then from Theorem 6.1 we
obtain O;(S) = 1. Thus there are no p’—automorphisms in F and F = Fg(S). O
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