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The bumping set and
the characteristic submanifold

GENEVIEVE S WALSH

We show here that the Nielsen core of the bumping set of the domain of discontinuity
of a Kleinian group � is the boundary of the characteristic submanifold of the
associated 3–manifold with boundary. Some examples of interesting characteristic
submanifolds are given. We also give a construction of the characteristic submanifold
directly from the Nielsen core of the bumping set. The proofs are from “first princi-
ples”, using properties of uniform domains and the fact that quasi-conformal discs
are uniform domains.

30F40, 57M60

1 Notation and background

In this paper we show that a particular aspect of the 3–dimensional topology of a
hyperbolic 3–manifold with incompressible boundary can be deduced from the domain
of discontinuity on the sphere at infinity.

Let G be a Kleinian group without torsion where ƒ.G/ is the limit set and �.G/
is the domain of discontinuity. We denote the quotient 3–manifold with boundary,
.H3 [ �.G//=G , by M.G/. We require throughout that M.G/ is geometrically
finite with incompressible, quasi-Fuchsian boundary components. The group G is
finitely generated and the components of the domain of discontinuity are all discs. The
conformal boundary of M.G/, �.G/=G , is a finite union of finite area surfaces by
Ahlfors’ finiteness theorem. Then since each surface subgroup is quasi-Fuchsian, each
component of �.G/ is a quasi-disc, the image of the standard unit disc in the complex
plane under a quasi-conformal homeomorphism. The closure of any one component is
a closed disc. In this case we say, by abuse of notation, that G is a geometrically finite
Kleinian group with incompressible boundary.

We will be interested in where components of the domain of discontinuity meet.
Accordingly, define Bump.C1;C2; : : : ;Cn/ to be xC1\

xC2\� � �\
xCn where C1; : : : ;Cn

are components of the domain of discontinuity.
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Let C be a component of the domain of discontinuity �.G/. The Nielsen core of a
subset X of @C is the convex hull of X in the Poincaré metric on C. This is a subset
of �.G/. The Nielsen core is well defined as the Riemann map from the interior of
the unit disc to C extends to the boundary by Osgood and Taylor [11]. Let NielC1

.C/
denote the Nielsen core of the bumping set of components C D fC1; : : : ;Cng in C1 .
The Nielsen core of the bumping set of C D fC1; : : : ;Cng is

S
i NielCi

.C/, which we
denote simply by Niel.C/.
If the Nielsen core of any bumping set is non-trivial, this is an obstruction to M.G/

admitting a hyperbolic metric with totally geodesic boundary, and by work of Thurston
(see [8, Theorem 6.2.1]) this is the only obstruction. Maskit showed:

Lemma 1.1 (Maskit [9, Theorem 3]) ƒ.GC \GB/Dƒ.GC /\ƒ.GB/D xC \ xB

This was later generalized by Anderson [1].

In Section 2 we show that the image of these Nielsen cores in the quotient manifold
with boundary is in general a subsurface of the boundary.

Theorem 2.1 Let G be a geometrically finite Kleinian group with incompressible
boundary and let �W H3[�.G/!M.G/ be the covering map induced by the action
of G . Suppose that C1; : : : ;Cn are components of �.G/ with non-trivial Nielsen
core of the bumping set Bump.C1; : : : ;Cn/. Then the image of NielC1

.C1; : : : ;Cn/ in
@M.G/ is either a simple geodesic or a subsurface of �.C1/ bounded by geodesics.

In Section 3, we show that these subsurfaces are exactly the boundary of the character-
istic submanifold of M.G/. More precisely:

Theorem 3.1 Let G be a geometrically finite Kleinian group with incompressible
boundary and let �W H3[�.G/!M.G/ be the covering map induced by the action
of G . Then consider

S 0 D
G
C

�.NielC .C//;

where C ranges over the components of �.G/ and C is a collection of components of
�.G/ containing C, which has non-trivial bumping set. We require that each collection
be maximal in the sense that adding any other components would strictly decrease the
bumping set. Let S be S 0 with any simple closed curves replaced by regular annular
neighborhoods of these curves. Then S , considered as a disjoint union of components
as above, is the boundary of the characteristic submanifold of M.G/.

Since the boundary of the characteristic submanifold is a union of convex hulls, this gives
a geometric structure to this region, which is of course dependent on the representation.
Some background and examples of characteristic submanifolds are given in Section 3.
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2 The image of the Nielsen core of the bumping set

Here we show that the image of the Nielsen core of the bumping set of two or more
components is a union of simple closed essential curves and essential subsurfaces of the
boundary components. This image, with any simple closed curves thickened, will form
the boundary of the characteristic submanifold of the quotient M.G/. Recall that the
stabilizer GC �G of a component C of �.G/ has a representation � into PSL.2;R/
induced by the uniformization map from the unit disc. An accidental parabolic is an
element g 2 GC that is parabolic in G but where �.g/ is hyperbolic. Note that our
definition of Kleinian group with incompressible boundary, requiring that the closure
of any component is a disc, rules out accidental parabolics.

Theorem 2.1 Let G be a geometrically finite Kleinian group with incompressible
boundary and let �W H3[�.G/!M.G/ be the covering map induced by the action
of G . Suppose that C1; : : : ;Cn are components of �.G/ with non-trivial Nielsen
core of the bumping set Bump.C1; : : : ;Cn/. Then the image of NielC1

.C1; : : : ;Cn/ in
@M.G/ is either a simple geodesic or a subsurface of �.C1/ bounded by geodesics.

We note that a similar theorem is proven in Maskit [9, Theorem 1] although this uses the
deep work of his decomposition theorem, which we do not use. There is also a similar
statement in Lecuire [6]. Bill Thurston understood the characteristic submanifold
from this point of view in his discussion of the window in [12]. However, we wish to
emphasize that this result follows directly from properties of a group of quasi-conformal
maps acting on the sphere at infinity and is self-contained.

Proof We will consider the image of a boundary curve ˇ of NielC1
.C1; : : : ;Cn/.

Recall that NielC1
.C1; : : : ;Cn/ is the Nielsen core in C1 of the bumping set xC1 \

xC2\ � � � \
xCn . The curve ˇ is necessarily a geodesic since it is the boundary curve of

a convex hull. If the convex hull consists of a geodesic going between the two points
of the bumping set, we consider this to be a boundary curve. The strategy of the proof
is the following. We show that the image of ˇ (1) is simple, (2) does not accumulate,
and (3) does not exit a cusp. Therefore the image of a boundary curve ˇ is an essential
simple closed curve on the surface �.C1/. Since the map is a covering map, the image
will be bounded by essential simple closed curves, and hence will be either a simple
closed curve or a subsurface of �.C1/.

(1) The image of a boundary curve ˇ is simple. The pre-image of the curve �.ˇ/ in
C1 is the orbit of ˇ under the action of GC1

. If the image were not simple, then its
pre-images in C1 would intersect. Thus assume that there is a 
 in the stabilizer of C1

such that 
 .ˇ/ intersects ˇ transversely. Since ˇ is the boundary curve of a convex set,
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this implies 
 … Stab.Ci/ for some i 2 f2; 3; : : : ; ng. Two circles on the two-sphere
that intersect transversely must intersect more than once. Consider the convex hulls of
the endpoints of ˇ in xC1 and xCi and the endpoints of 
 .ˇ/ in xC1 and 
 . xCi/. These
are two circles in xC1[

xCi [ 
 . xCi/ that intersect exactly once transversely in C1 and
that do not intersect on the boundaries of the components. Thus the circles intersect
again, which implies Ci and 
 .Ci/ intersect in their interior. This contradicts the fact
that they are distinct components.

(2) The image of a boundary curve does not accumulate. Here we use that a quasi-disc
is a uniform domain.

Definition 2.2 A domain A is uniform if there are constants a and b such that every
pair of points z1; z2 2A can be joined by an arc ˛ in A with the following properties:

(1) The Euclidean length of ˛ satisfies l.˛/� ajz1� z2j.

(2) For every z 2 ˛ , min.l.˛1/; l.˛2// � bd.z; @A/, where ˛1 and ˛2 are the
components of ˛ n z .

By Lehto [7, Part I, Theorem 6.2], a K–quasi-disc is a uniform domain with constants
a and b , which depend only on K . Now suppose that the image of a boundary curve
ˇ of NielC1

.C1; : : : ;Cn/ accumulates in �.C1/. Then the images of ˇ in C1 under
the action of Stab.C1/ accumulate. Since ˇ is geodesic, there is a sequence f
ig

in Stab.C1/ such that the endpoints of 
i.ˇ/ accumulate in @.C1/ in the Poincaré
metric to two points p and q . Since ˇ is a boundary curve, there is some component
B 2 fC2; : : : ;Cng such that for an infinite number of 
i , 
i.B/ are all distinct from
each other and from B . We continue to call this subsequence f
ig. Since the 
i all
act conformally on S2

1 , each @
i.B/ is a KB –quasi-circle where KB is the quasi-
conformal constant associated to B . The point is that the 
i.B/ will eventually be too
skinny to satisfy a fixed b in condition (2) above.

There are points pi and qi of the 
i.B/ that are accumulating to p and q . Consider
circles centered at p that separate p and q . Then there is some such circle C.p; r/ that
separates infinitely many pi from the associated qi , and that separates p from q . Now
consider arcs ˛i in 
i.B/ that connect pi and qi . Let zi be a point on ˛i \C.p; r/.
Then the distances d.zi ; @
i.B// are going to zero since the @
i.B/\ C.p; r/ are
accumulating in C.p; r/. However, the distances from zi to pi and from zi to qi are
bounded strictly above zero. This is because we may assume that the pi are contained
in a closed disc, which has positive distance from C.p; r/. We may assume the same
thing for the qi . Since the lengths of the arcs of ˛i n zi are bounded below by the
distances d.zi ;pi/ and d.zi ; qi/, this contradicts property (2) above of a uniform
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domain in Definition 2.2. Since quasi-discs are uniform domains [7, Part I, Theorem
6.2], the image of a boundary curve cannot accumulate.

(3) Next we claim that the image of a boundary curve c of NielC1
.C1; : : : ;Cn/ does

not exit a cusp.

Suppose that the image of a boundary curve ˇ of NielC1
.C1; : : : ;Cn/ does exit a

cusp. Then in C1 , one of the endpoints of ˇ in @C1 is the fixed point of a parabolic
element 
p 2 Stab.C1/. Call this point p . Let B be another component of �.�/
whose boundary contains p .

We first claim that 
p also stabilizes B . Indeed, suppose not and conjugate so that

p fixes the point at infinity and translates by the action z! zC 1. If 
p does not
stabilize B , the interiors of 
 n

p .B/ are distinct for n 2Z. The quasi-circles @
i.B/ all
go through infinity. Therefore, since the transformations 
p and 
�1

p are translations
that take B off of itself, any point of B is at most distance 1 from @B . Since @B goes
through 1, there are points z1 and z2 of B such that jz1� z2j> 2b , for any constant
b . Then any arc ˛ connecting z1 and z2 contains a point z (the midpoint) such that
min.l.˛1/; l.˛2//�

1
2
jz1�z2j> b� bd.z; @B/, where ˛1 and ˛2 are the components

of ˛ n z . This is a contradiction, since B is a quasi-disc and hence a uniform domain.

Thus 
p stabilizes B , where B is any component of �.G/ such that p 2 @B . But
this contradicts the assumption that ˇ is a boundary curve. Indeed, let q be the other
endpoint of ˇ . Then 
 n

p .q/ and 
�n
p .q/ will approach p from both sides. Since 
p

stabilizes Bump.C1; : : : ;Cn/, ˇ cannot be a boundary curve of the convex hull of this
set. Therefore, the image of a boundary curve ˇ of NielC1

.C1; : : : ;Cn/ does not exit
a cusp.

Since the image of a boundary curve is simple, does not accumulate, and does not
exit a cusp, it is a simple closed curve. It is a geodesic in the Poincaré metric on
C1 as it is the boundary of a convex hull of points on the boundary @C1 . Since
�W H3[ƒ.G/!M.G/ is a covering map, the image of boundary curves are boundary
curves of the image. This proves Theorem 2.1.

3 The characteristic submanifold

The characteristic submanifold of .M.G/; @M.G// is a 3–submanifold .XM ;SM / of
.M.G/; @M.G// such that all of the essential tori and annuli in M.G/ can be properly
isotoped into .XM ;SM /. It was defined and studied extensively by Jaco and Shalen [3]
and Johannson [4]. See also Kapovich [5, 1.8]. It is defined by the following properties.
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(1) Each component .X;S/ of .XM ;SM / is an I–bundle over a surface or a solid
torus equipped with a Seifert fibered structure.

(2) The components of @X n @M.G/ are essential annuli.

(3) Any essential annulus (or Möbius band) is properly homotopic into .XM ;SM /.

(4) .X;S/ is unique up to isotopy.

A component of the characteristic submanifold that is a Seifert fibered solid torus can
be described from the point of view of the domain of discontinuity as in the following
example. Suppose that there are three components A, B and C of the domain of
discontinuity �.G/ such that xA\ xB\ xC D fp; qg and � is a pseudo-Anosov element
of G that fixes p and q such that �.A/ D B , �.B/ D C and �.C / D A. Thus
�3 2 Stab.A/. Now consider the solid torus T� that is the quotient of a regular �–
invariant neighborhood of the geodesic g� in H3 with endpoints p and q . There is
also an annulus in �.A/ that is the quotient of a regular neighborhood of the image
of the geodesic in the Poincaré metric on A, gA , with endpoints p and q . This gA

is stabilized by �3. Suppose further that A, B and C are the only components of
�.G/ whose closures meet p and q . This annulus in �.A/ and an annulus on @T�
co-bound an annulus �I . There is a preimage of this annulus �I invariant under � in
the universal cover that has three pieces, all of which meet the boundary of a regular
�–invariant neighborhood of g� . One piece meets A, the other B , and the third C.
The annulus on @T� wraps three times around in the direction invariant by � . Then
there is a component X of the characteristic submanifold of M.G/ that is T� union
the annulus �I . This is a solid torus fibered by that which wind three times around
the core. The boundary of X is an annulus on @M.G/ union an annulus in the interior
of M.G/. Thus @X n @M.G/ is an annulus. This is one of the cases described in the
proof of Theorem 3.1 below.

For now we give another example, where the union of the convex hulls of the bumping
sets is all of �.G/. Figure 1 shows the limit set of a quasi-Fuchsian free group of
rank 2 acting on C [1 D S2

1 . This picture was made with Curt McMullen’s lim
program [10]. The stabilizer of either component is the whole group. Figure 2 shows
what happens when we adjoin the square root of one of the generators. If we denote the
square root by 
 , then 
 switches two components of �.G/ that meet at the endpoints
of the geodesic invariant by 
 . These are the center and outer components in Figure 2.

 2 is in the stabilizer of both. As above, there is a component of the characteristic
submanifold which is a Seifert fibered torus and whose boundary is a union of two
annuli. In this case, we can also think of this component as a twisted I–bundle.

We will show here that the Nielson core of the bumping set, taken over all components
of �.G/, is the boundary of the characteristic submanifold of M.G/.
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Figure 1: A quasi-Fuchsian
punctured torus

Figure 2: After adjoining a
square root

Theorem 3.1 Let G be a geometrically finite Kleinian group with incompressible
boundary and let �W H3[�.G/!M.G/ be the covering map induced by the action
of G . Then consider

S 0 D
G
C

�.NielC .C//;

where C ranges over the components of �.G/ and C is a collection of components of
�.G/ containing C which has non-trivial bumping set. We require that each collection
be maximal in the sense that adding any other components would strictly decrease the
bumping set. Let S be S 0 with any simple closed curves replaced by regular annular
neighborhoods of these curves. Then S , considered as a disjoint union of components
as above, is the boundary of the characteristic submanifold of M.G/.

To this end, we will need the following lemma:

Lemma 3.2 Let G be a geometrically finite Kleinian group with incompressible
boundary. Let C be a component of �.G/. Assume � 2 Stab.C / and that the fixed
points of � in @C are in Bump.C;B/. Then � 2 Stab.B/.
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Proof The transformation � is either parabolic or hyperbolic, by which we mean
either strictly hyperbolic or loxodromic. The parabolic case is contained in (3) of the
proof of Theorem 2.1.

Suppose that � is hyperbolic. We may assume that � fixes 0 and 1. Then the
boundary of B , and the boundary of �n.B/ for all n, meet 0 and 1.

If the �n.B/ are all distinct, then they accumulate along the circle jzj D 1. Thus there
are pairs of points in the �n.B/ with one element of the pair close to 0 and the other on
the circle jzj D 2 that cannot be connected by any arc satisfying (2) of Definition 2.2.
This is because any arc connecting such a pair would have to pass through the circle
jzj D 1, and these points are arbitrarily close to the boundary. Thus �n.B/D B for
some n.

Now suppose that �.C / D C. This does not preclude � from being loxodromic.
However, � leaves S2

1 n
xC invariant, and this domain is conformally equivalent to

the hyperbolic plane. Then � is conjugate in the isometry group of S2
1 n
xC in its

Poincaré metric to z ! �z , where � is real. By abuse of notation, we continue to
denote the transformation z ! �z by � and we denote the image of B by �.B/.
The transformation �n leaves rays from the origin invariant. As xB is invariant under
�n , there is a leftmost ray r that meets xB in a point p other than 0 or 1. As xB is
connected and invariant under �n , there is an arc X in B connecting p and �n.p/

which must lie to the right of r . The component �.B/ meets the ray r in �.p/ and
�nC1.p/. These points are connected in �.B/ by an arc that must lie to the right
of r . The points p and �n.p/ are linked with �.p/ and �nC1.p/ along the ray r .
Therefore, if B ¤ �.B/, B and �.B/ must intersect, contradicting the assumption
that they are different components.

We now state the annulus theorem in this setting. See Cannon and Feustel [2] for
the general case. The proper immersed image A of an annulus or Möbius band in a
hyperbolic manifold M with boundary is essential if it induces an injection on the level
of fundamental groups, and if it is not properly homotopic into a cusp neighborhood.

Theorem 3.3 [2] Let G be a Kleinian group with incompressible boundary and let
�W H3[�.G/!M.G/ be the covering map. Let A be a proper immersed essential
annulus or Möbius band in M.G/ with embedded boundary. Then there is a proper
embedded essential annulus or Möbius band A with the same boundary and a pre-image
zA in H3[�.G/ with boundary in two different components of �.G/.

That any pre-image has boundary in two different components of �.G/ follows imme-
diately from the fact that A is essential. We add this to the statement only because it is
important for our point of view.
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We now give the proof of Theorem 3.1. Given a Kleinian group G with incompressible
boundary, we will form a submanifold N of M.G/ that is a characteristic submanifold.
We form this submanifold in pieces, considering maximal collections of components
of �.G/ that meet in a given bumping set. Note that if there are more than two
components in such a collection, the bumping set must be exactly two points, as every
circle on S2

1 is separating. (We ignore collections that bump in exactly one point,
since the convex hull of the bumping set will be trivial in this case.) In constructing
these pieces, we will show that they satisfy properties (1) and (2) of the definition of
characteristic submanifold above. Then we will show (3) that any essential annulus or
Möbius band is properly homotopic into one of these components. That the result is
unique up to isotopy follows from the fact that it is a characteristic submanifold.

Note that we are considering the disjoint union of the components in the statement
of Theorem 3.1. To have the union in M.G/ consist of disjoint components, the
components may need to be pushed slightly off of each other.

Components of the characteristic submanifold obtained by the bumping of two
components We first consider two components C and D that bump, and that bump
in exactly two points p and q . We assume maximality in that there are no other
components of the domain of discontinuity that meet both p and q . In this case
NielC .C;D/ consists of one arc in C, zl , which is invariant under some element g 2G

by Theorem 2.1. The element g fixes both p and q on S2
1 . We choose g so that it is

primitive in the stabilizer of C. By Lemma 3.2 D is also stabilized by g , g is primitive
in Stab.D/, and the arc zl 0 D NielD.C;D/ is also invariant under g . Then l D �.zl/

and l 0D �.zl 0/ are freely homotopic through the manifold M.G/ to the closed geodesic
lint in M.G/ that lifts to a geodesic zlint in H3 with endpoints p and q that is invariant
under g . If l D l 0 , then this homotopy will define an immersed Möbius strip. (In this
case there is an f 2G such that f 2Dg .) If l¤ l 0 , this homotopy defines an immersed
annulus. In either case, by the annulus theorem, there is an embedded essential Möbius
strip or annulus A with the same boundary. When A is an annulus, taking a regular
neighborhood of this annulus gives us .A� I;S1 �S0 � I/ as a component .X;S/
of the characteristic submanifold .XM ;SM /. When A is a Möbius strip, we get a
component .X;S/ that is a twisted I–bundle over an annulus. We can also realize this
case as .T;S/, where T is a solid torus with a natural Seifert fibered structure and S

is an annulus. There is a such a solid torus component of the characteristic submanifold
of the 3–manifold illustrated in Figure 2.

We now consider two components C and D which bump, and whose bumping set
contains more than two, and hence infinitely many, points. When Bump.C;D/ contains
more than 2 points, NielC .C;D/ contains more than just a single geodesic.
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If Bump.C;D/D @C D @D , then the characteristic submanifold is the entire manifold
M.G/, which is a I–bundle over a surface.

Otherwise the image �.NielC .C;D// of the convex hull of the bumping set is a
subsurface of �.C / bounded by geodesics, by Theorem 2.1. We claim that for each
boundary curve l of �.NielC .C;D//, there is a boundary curve l 0 of �.NielD.C;D//
and an essential annulus A with @A D l [ l 0 . Indeed, there is a lift zl of l that is a
boundary curve of NielC .C;D/.

By Theorem 2.1 and Lemma 3.2, zl is stabilized by some element g of G that stabilizes
C. Let p and q be the fixed points of g on S2

1 . By Lemma 3.2, the boundary geodesic
zl 0 of NielD.C;D/ in D with endpoints p and q is also stabilized by g . Let l 0D �.zl 0/.
Then l and l 0 are freely homotopic, since they are both homotopic to the geodesic
representing g .

If l ¤ l 0 , then by the annulus theorem, there is an embedded annulus A with boundary
l and l 0 .

If l D l 0 , then there is an f 2 G such that f .zl/ D zl 0 , where f has the same fixed
points as g . Since l is a boundary curve of NielC .C;D/, f .D/ ¤ C, so p and q

are contained in a bumping set involving at least C, D and f .D/. In this case, we
replace the boundary arcs zl and zl 0 with g–equivariant arcs also called zl and zl 0 that
lie just in the interior of NielC .C;D/ and NielD.C;D/. We replace NielC .C;D/
and NielD.C;D/ with the new, shrunken regions. Then l ¤ l 0 and we can form our
embedded annulus with these new curves.

We do this for each boundary curve of �.NielC .C;D//. Note that some boundary
curves will correspond to the same annulus if �.NielC .C;D//D �.NielD.C;D//.

Consider the resulting union of annuli. We claim that we may assume the union is
embedded. Firstly, the boundaries of the family of annuli do not intersect by construction.
Secondly, we can remove any inessential circles of intersection by an innermost disc
argument as M.G/ is irreducible. Thirdly, there can be no essential intersections.
Indeed, any such curve of intersection must lift to an arc in H3 that meets the limit set
of G in the same two points as the boundary components of two different annuli. But the
lifts of the boundaries of the allegedly essentially intersecting annuli meet the limit set
in different points of Bump.C;D/. This is because they correspond to different pairs of
boundary curves of �.NielC .C;D// and �.NielD.C;D//. Therefore, we may assume
that the collection of annuli connecting the boundary components of �.NielC .C;D//
and �.NielD.C;D// is embedded. This family of annuli lifts to an embedded family
of strips R2� I in H3[�.G/. There will be some region R bounded by these strips
that meets NielC .C;D/. The image �.R/ is a component .X;S/ of .XM ;SM /. It is
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an I–bundle over a surface. When �.NielC .C;D//D �.NielD.C;D//, this will be a
twisted I–bundle. The components of @X n @M are the annuli constructed above.

Components of the characteristic submanifold obtained by the bumping of more
than two components We now consider the case when there are more than two
components of the domain of discontinuity that bump non-trivially. In this case the
closures of the components must meet in exactly two points. Again we assume that
adding any components of �.G/ to the collection results in a smaller bumping set.
Let C1; : : : ;Cn be this maximal collection whose closures meet in two points p and
q . By Theorem 2.1 and Lemma 3.2, there is a g 2G such that for each Ci , there is a
geodesic zli that is stabilized by g . Denote the geodesic in H3 stabilized by g with
endpoints p and q by zlint , with image lint . Either (1) all the �.zli/D li are the same,
(2) all the �.zli/D li are different, or (3) the images fall into m classes, where m j n.
We deal with each situation in turn.

(1) If all the li D l1 are the same, then consider a regular neighborhood N.l1/ of l1 .
This lifts to regular neighborhoods of each of the zli . The boundary curves of these
regular neighborhoods end in p and q .

Orient N.l1/ so that there is a left side @N.l1/� and a right side @N.l1/C . Since each
of @N.l1/C and @N.l1/� is freely homotopic to lint , the lifts of @N.l1/C and @N.l1/�
in each Ci bound strips R� Œ0; 1� with zlint . Then consider two strips in H3[�.G/,
one which is bounded by a lift of @N.l1/C and zlint , and the other which is bounded
by a lift of @N.l1/� and zlint , where the lifts of @N.l1/C and @N.l1/� are in different
components of �.G/. Then the union of these two strips will map down to an essential
annulus in M.G/, and by the annulus theorem there is an embedded essential annulus
A with the same boundary, which is @N.l1/C[ @N.l1/� .

The pre-image of A is an embedded collection of strips, each of which meets �.G/ in
two different components. Order the components Ci cyclically around zlint . Since A is
embedded, the strips must connect Ci to CiC1 mod n. Then the pre-image of A will
partition H3[�.G/ into regions, one of which, R, will meet zli .

The region R is a regular neighborhood of zlint union thickened strips which meet
the lifts of N.l1/. It is a naturally fibered by g–invariant lines. (Note that zlint is
f –invariant, where f n D g .)

The image of R is a component of the characteristic submanifold,

.X;S/D .�.R/;N.l1//:

It is Seifert-fibered by the images of the g–invariant lines and @X n @M.G/ is the
annulus A.
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(2) We consider the case when the li are all distinct. Denote regular neighborhoods
of these curves by N.li/ and lifts that meet p and q by N.zli/. As above, order the Ci

around zlint and label the two boundary components of N.zli/ by @N.zli/C and @N.zli/�
so that @N.zli/C is next to @N.zliC1/� in this cyclic ordering. Note that the Ci may
be swirling around p and q as they approach them (if g is loxodromic) but we can
choose some circle on S2

1 separating p and q and cyclically order the components
with respect to this circle, and this is well-defined up to the orientation of S2

1 .

Then as above there are g–invariant strips in H3[ �.G/ connecting each component
of @N.zli/ to zlint . The union of two such g–invariant strips, one from @N.zli/C to zlint

and one from zlint to @N.zliC1/� map down to an immersed essential annulus in M.G/.
By the annulus theorem, there is an embedded essential annulus with the same boundary,
Ai . This has a lift zAi that meets p and q . Since all the li are distinct, this zAi has
boundary @N.zli/C and @N.zliC1/� . We form such an embedded annulus Ai for each
i mod n, with a lift zAi with boundary @N.zli/C and @N.zliC1/� that approaches p

and q .

We claim that we can choose such annuli so that the union is embedded. Firstly,
the union of the boundaries is already embedded. Secondly, remove any circles of
intersection which are trivial in some (hence any) annulus by incompressibility and
irreducibility. Now consider any remaining circles of intersection between the Ai and
A1 in A1 . These are parallel, essential curves on A1 . Hence in the lift zA1 , the lifts of
these intersections all approach p and q . This means that the lift zA1 only intersects
the zAi that approach p and q . As these are not linked in the cyclic ordering around p

and q , there is some pair of intersection curves that bounds annuli on both A1 and
some Ai . Switching these two inner annuli and pushing off will reduce the number of
intersection curves. Hence by choosing the collection Ai to minimize the number of
intersection curves, the collection will be embedded.

All the pre-images of the embedded collection Ai will partition H3[�.G/ into regions
that do not overlap in their interiors. One of these regions, R, will meet the N.zli/.
This region is naturally foliated by g–invariant lines. The image .�.R/;

S
N.li// is a

component of the characteristic submanifold that is Seifert-fibered by the images of
the g–invariant lines. �.R/ is a solid torus and @.�.R// n

S
N.li/ is the union of the

annuli Ai .

(3) Lastly we consider the case when the images of the zli are m distinct curves, where
m j n and m¤ 1; n. Our first task is to show that in this case lint , as defined above, is
embedded.

As before, each zli is invariant under g 2G , where g is hyperbolic and fixes p and q on
S2
1 . Recall that we denote the geodesic in H3 invariant under g by zlint . Then, as there
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are w D n=m curves in zli that are identified in the quotient, zlint is invariant under f ,
where f w D g . Now let zl1; zl2; : : : ; zlw be the f–orbit of zl1 , cyclically ordered around
p and q as above. Let l1 D �.zl1/ and let N.l1/ be a regular neighborhood of this
image. Then label the two boundary components of N.l1/ by @N.l1/C and @N.l1/�
so that the induced labeling of the boundary components of the lifts has @N.zli/C next
to @N.zliC1/� mod w in the cyclic ordering around p and q .

Then there is a g–invariant strip connecting @N.zl1/C and zlint and another connecting
zlint with @N.zl2/� . The union of these two invariant strips maps down to an immersed
essential annulus in M.G/ and by the annulus theorem, there is an embedded essential
annulus Atemp with the same boundary.

The lifts of Atemp do not intersect and hence the lifts meeting p and q consist of w
strips connecting each @N.zli/C to @N.zliC1/� . The action of f permutes these w
strips cyclically and takes zlint to itself. Therefore, zlint is on the inside of these strips.
That is, there is a region R bounded by preimages of Atemp that meets the N.zli/ and
R contains zlint . Thus zlint intersects its images under G in either itself or the empty set,
which implies �.zlint/D lint is embedded.

Now consider the whole set of zli . Order them cyclically around p and q . Each zli
is connected to zlint by a g–invariant strip. Since lint is embedded, it has a regular
neighborhood N.lint/, which is a solid torus. The image of such a g–invariant strip in
M.G/ will restrict to an essential proper immersed annulus in M.G/nN.lint/. By the
annulus theorem, there is an embedded annulus Ai;int in M.G/nN.lint/ with the same
boundary. We form such an annulus for each li . Note that each boundary on @N.lint/

is a curve of the same slope. Therefore, we can arrange so that the boundaries of the
Ai;int are disjoint, and cyclically ordered in the same order as the zli . Then since the
boundary of the annuli are not linked, by choosing a collection that intersect minimally,
the Ai;int will be disjoint.

Now take a regular neighborhood of N.lint/[
S

i Ai;int . This will be a solid torus
W , which meets the boundary of M.G/ in n parallel annuli N.li/, where N.li/ is
a regular neighborhood of li . The component of the characteristic submanifold will
be .W;

S
N.li//. This has a pre-image R in H3[�.G/, which meets the N.zli/ and

which is naturally foliated by g–invariant lines. The images of these lines in W are a
Seifert-fibering of the solid torus W . The components of @W n

S
N.li/ are annuli on

@W . The pre-images in R, as before, connect neighboring boundary components of
the N.zli/.

Now let B be an essential annulus or Möbius strip in M.G/. We will show that B
is properly homotopic into the submanifold constructed above. Pick a basepoint on
B and let g generate the fundamental group of B in G . Since B is essential, a lift
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zB of B must meet two different components, C and D , of �.G/, both of which are
g–invariant and which meet the fixed points p and q of g on S2

1 . Thus C and D

bump at p and q . From our construction, there is a g–invariant strip zA contained in
some component .X;S/ that meets C and D in the convex hull of p and q in each
component. Consider the solid torus T D .H3[S2

1nfp; qg/=hgi. This is a solid torus
and the images of zB and zA are two embedded essential annuli with the same slope.
They are therefore parallel by a proper isotopy. This isotopy maps down to a proper
homotopy of B into a component .X;S/ of the submanifold we have constructed.
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