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Lifting group actions, equivariant towers and
subgroups of non-positively curved groups

RICHARD GAELAN HANLON

EDUARDO MARTÍNEZ-PEDROZA

If C is a class of complexes closed under taking full subcomplexes and covers and
G is the class of groups admitting proper and cocompact actions on one-connected
complexes in C , then G is closed under taking finitely presented subgroups. As a
consequence the following classes of groups are closed under taking finitely presented
subgroups: groups acting geometrically on regular CAT.0/ simplicial complexes
of dimension 3 , k–systolic groups for k � 6 , and groups acting geometrically on
2–dimensional negatively curved complexes. We also show that there is a finite
non-positively curved cubical 3–complex that is not homotopy equivalent to a finite
non-positively curved regular simplicial 3–complex. We include applications to
relatively hyperbolic groups and diagrammatically reducible groups. The main result
is obtained by developing a notion of equivariant towers, which is of independent
interest.

20F67; 57M07

1 Introduction

We show that some classes of non-positively curved groups are closed under taking
finitely presented subgroups. We assume all spaces are combinatorial complexes and
all maps are combinatorial; see Definition 3.1. A complex is one-connected if it
is connected and simply connected. A subcomplex K of X is full if for any cell
� �X , @� �K implies � �K . An action of a group G on a space X is proper if
for all compact subsets K of X there are finitely many group elements g such that
K \g.K/¤∅. The action is cocompact if there is a compact subset K of X such
that the collection fgK W g 2Gg covers X . Our main result is the following.

Theorem 1.1 Let C be a category of complexes closed under taking full subcomplexes
and topological covers. Let G be the category of groups acting properly and cocom-
pactly by combinatorial automorphisms on one-connected complexes in C . Then G is
closed under taking finitely presented subgroups.
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Some words about the literature. A theorem of Steve Gersten states that finitely
presented subgroups of hyperbolic groups of cohomological dimension at most 2 are
hyperbolic [8]. This is a result only for dimension 2, since Noel Brady exhibited a
3–dimensional compact locally CAT.0/ cube complex with hyperbolic fundamental
group containing a finitely presented subgroup that is not hyperbolic [2]. Another
result on the positive side is that finitely presented subgroups of torsion-free systolic
groups are systolic; this was proved by Daniel Wise [24]. The proof of Theorem 1.1
builds on ideas of Bridson and Wise [4], Gersten [8], Howie [12] and Wise [24], and is
self-contained in the paper.

1.1 Sample applications

A regular simplicial complex is a piecewise Euclidean simplicial complex where
each 1–cell has unit length. A result of Rena Levitt shows that the category of
regular locally CAT.0/ simplicial complexes of dimension 3 is closed under taking
full subcomplexes [16]. It is immediate that this category is closed under taking covers.
Recall that a group action on a metric space is said to be geometric if it is proper,
cocompact and by isometries.

Corollary 1.2 If G acts geometrically on a regular CAT.0/ simplicial complex of
dimension 3, then any finitely presented subgroup acts geometrically on a regular
CAT.0/ simplicial complex of dimension 3.

It is not known whether Corollary 1.2 holds for higher dimensions. However, the proof
presented here does not generalize since Levitt has exhibited regular locally CAT.0/
simplicial complexes of dimension at least 4 containing full subcomplexes that are not
locally CAT.0/.

In [2], Noel Brady constructed a compact 3–dimensional locally CAT.0/ cubical
complex X such that �1.X / contains a finitely presented subgroup that does not admit
a finite classifying space. Since every compact locally CAT.0/ space is a classifying
space for its fundamental group, the previous corollary together with Brady’s example
implies the following statement.

Corollary 1.3 There is a 3–dimensional finite locally CAT.0/ cubical complex that
is not homotopy equivalent to a 3–dimensional finite regular locally CAT.0/ simplicial
complex.

Levitt proved that non-positively regular CAT.0/ simplicial complexes of dimension 3

are systolic complexes [17]; for this larger class our main theorem also applies.
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The notion of simplicial non-positive curvature for simplicial complexes was introduced
by Januszkiewicz and Świa̧tkowski in [15] and independently by Haglund [10] as a
combinatorial analog of non-positive curvature metric conditions. A simplicial complex
L is flag if any set of vertices that are pairwise connected by 1–cells of L spans
a simplex in L. A simplicial complex L is k–large, k � 6, if L is flag and there
are no embedded cycles of length less than k that are full subcomplexes of L. A
simplicial complex X is locally k–large if the links of all simplices in X are k–large.
The fact that the category of locally k–large simplicial complexes is closed under
taking covers and full subcomplexes immediately follows from the definitions. A group
is k–systolic if it acts properly and cocompactly by simplicial automorphisms on a
one-connected locally k–large simplicial complex. Wise proved that finitely presented
subgroups of torsion free k–systolic groups are k–systolic using a tower argument [24].
Corollary 1.4 extends Wise’s result to include groups with torsion. Previously to this
work, the statement of Corollary 1.4 was also proved by Gašper Zadnik using different
methods [26].

Corollary 1.4 For k � 6, if G is a k–systolic group then any finitely presented
subgroup of G is k–systolic.

In [20], Osajda introduced the notion of complexes with SD�2.k/ links for k � 6.
There it is proved that the class of fundamental groups of compact complexes with
SD�2.k/ links is closed under taking finitely presented subgroups [20, Theorem 8.7].
His proof is a tower argument for compact complexes, and in particular it is shown that
SD�2.k/ complexes are closed under taking covers and full subcomplexes. It follows
that Theorem 1.1 applies to the class of SD�2.k/ providing an extension of Osajda’s
result.

A 2–complex X is negatively curved if it satisfies one of the following conditions:
(1) (Metric condition) There is � < 0 such that X admits the structure of a locally

CAT.�/ M� –complex.
(2) (Conformal condition) There is an assignment of a non-negative real number,

called an angle, to each corner of each 2–cell such that the sum of the angles on
an n–gon is strictly less than .n�2/� and links of 0–cells satisfy Gromov’s link
condition: Every non-trivial circuit in the link is of angular measure at least 2� .

A group acting geometrically on a one-connected negatively curved 2–complex is word
hyperbolic (Bridson and Haefliger [3] and Gromov [9]). Gersten proved that finitely
presented subgroups of fundamental groups of finite negatively curved 2–complexes
are word hyperbolic [8, Theorem 2.1]. One easily verifies that the category of negatively
curved 2–complexes is closed under taking subcomplexes and covers. The following
corollary extends Gersten’s result.
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Corollary 1.5 (Subgroups of 2–dimensional negatively curved groups) Let Y be a
one-connected negatively curved proper and cocompact H–2–complex. If G �H is
finitely presented, then G is word hyperbolic.

We remark that Corollary 1.5 would follow from Gersten’s result if H were known to
be virtually torsion-free. This is an open question for hyperbolic groups [9]. We also
obtain an analogous result for relatively hyperbolic groups stated below.

A G–complex X is almost proper if G acts properly on the complement of the zero-
skeleton of X . Observe that a proper action is almost proper. A group is called slender
if all its subgroups are finitely generated. For definitions of relatively hyperbolic groups
and fine complexes we refer the reader to Section 5.2.

Theorem 1.6 (Theorem 5.15, subgroups of 2–dimensional relatively hyperbolic
groups) Let Y be a one-connected negatively curved, fine, almost proper and cocom-
pact H–2–complex such that H–stabilizers of cells are slender. If G �H is finitely
presented then G is hyperbolic relative to a finite collection of G–stabilizers of cells
of Y .

The term “diagrammatically reducible complex”, defined below, was introduced by
Gersten in connection with the study of equations over groups [7]. The notion was
first used, with different names, by Chiswell, Collins and Huebschmann [5] and
Sieradski [23]. Recall that an immersion is a locally injective map, and a near-immersion
is a map that is locally injective except at 0–cells of the domain. A 2–complex X is
diagrammatically reducible if there are no near-immersions C !X , where C is a cell
structure for the 2–dimensional sphere.

Since the composition of a near-immersion followed by an immersion is a near-
immersion, the category of diagrammatically reducible complexes is closed under
taking covers and subcomplexes. This category of complexes includes locally CAT.0/
2–complexes, certain classes of small cancellation complexes, conformal negatively
curved 2–complexes, spines of hyperbolic knots, and non-positively curved square
complexes, to name a few examples. Recall that a proper G–complex X is a model for
EG if for every finite subgroup F � G , the fixed point set X F is contractible. The
following theorem is proved in Section 5.

Theorem 1.7 (Theorem 5.10, diagrammatically reduced groups) Let X be a dia-
grammatically reducible one-connected proper H–2–complex. If G �H is finitely
presented, then G admits a diagrammatically reducible 2–dimensional cocompact
model for EG .
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1.2 Equivariant towers and the proof of Theorem 1.1

Briefly, Theorem 1.1 is proved using an extension of the tower method to equivariant
maps. There are several applications of towers in combinatorial group theory as
illustrated in Gersten [8], Howie [12; 13], Hruska and Wise [14], Wise [24; 25] and
the results of this paper. Towers are a geometric technique from 3–manifold topology
introduced by Papakyriakopolous [21], and later brought to combinatorial group theory
by Howie [13]. The idea of using towers to investigate finitely presented subgroups
as used in this article goes back to Gersten [8] and Shalem [4]. A combinatorial map
X ! Y between connected CW–complexes is a tower if it can be expressed as a
composition of inclusions and covering maps. A tower lifting f 0 of f is a factorization
f D g ıf 0 , where g is a tower. The lifting f 0 is trivial if g is an isomorphism and
the lifting is maximal if the only tower lifting of f 0 is the trivial one. It is well known
that if X is a finite complex, then any combinatorial map X ! Y admits a maximal
tower [12, Lemma 3.1]. A tower is called an F –tower if it is a composition of covering
maps and inclusions of full subcomplexes.

By a locally finite complex, we mean a complex such that every closed cell intersects
finitely many closed cells.

Theorem 1.8 (Theorem 3.14, maximal equivariant F –towers) Let f W X ! Y be a
G–map. If X is one-connected and G–cocompact and Y is locally finite, then f has a
maximal F –tower lifting f D g ıf 0 , where g and f 0 are G–maps.

An analogous result to Theorem 1.8 where Y is not required to be locally finite and
instead f 0 is only a maximal tower lifting (not a maximal F –tower lifting) also holds;
see Theorem 3.18. This slightly different result is relevant to applications such as
Theorem 1.6.

In [24], there is a result similar to Theorem 1.8 stating that if X ! Y is a map between
finite simplicial complexes then there is a maximal expanded tower lifting. This is a
different class of towers, and neither result subsumes the other. The class of expanded
towers works well in the setting of 2–skeletons of systolic complexes, which Wise
used to prove Corollary 1.4 in the torsion-free case.

A consequence of Theorem 1.8 is the following.

Theorem 1.9 (Theorem 4.1, Existence of immersed cocompact F –cores) If Y is
a one-connected, proper and locally finite H–complex and G � H is finitely pre-
sented, then there is a one-connected cocompact G–complex X and a G–equivariant
F –tower X ! Y .

Algebraic & Geometric Topology, Volume 14 (2014)
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The proof of Theorem 1.9 relies on the construction of a one-connected and cocom-
pact G–complex X0 together with a G–map f W X0! Y ; this construction uses the
hypothesis that Y is one-connected. Given such a map, since X0 is one-connected,
there is an equivariant maximal F –tower lifting f D g ı f 0 with gW X ! Y . The
maximality of f 0 implies that X is one-connected, and together with Y being locally
finite, that X is G–cocompact.

We also prove a version of Theorem 1.9 without the assumption that Y is locally
finite, but with the weaker conclusion that the G–map X ! Y is only a tower; see
Theorem 4.4. The proof of our main result, Theorem 1.1, follows immediately from
Theorem 1.9.

Proof of Theorem 1.1 Let Y be a one-connected complex in C , let H be a group
acting properly and cocompactly on Y , and let G �H be a finitely presented subgroup.
Since Y is a proper and cocompact H–complex, it is locally finite. By Theorem 1.9,
there is a one-connected cocompact G–complex X and an G–equivariant F –tower
X ! Y . By equivariance, X is also a proper G–complex. Since C is closed under
taking full-subcomplexes and covers, it follows that X is in C . Therefore G is in G .

1.3 Outline of the paper

The rest of the paper is organized in four sections. Section 2 contains a result that
provides sufficient conditions to lift a group action on a space to an intermediate cover.
Section 3 contains the definition of equivariant towers and the proof of the existence
of maximal equivariant F –towers. Section 4 contains the proof of the existence of
immersed cocompact F –cores. The last section contains the proofs of Theorems 1.5
and 1.7.
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2 Lifting group actions

In this section, all spaces are topological spaces that are path-connected, locally path-
connected and semilocally simply connected. These are the standard hypotheses for the
existence of universal covers. All maps between spaces are continuous. For standard
results on covering space theory we refer the reader to Hatcher’s textbook on algebraic
topology [11].

Definition 2.1 Let X be a G–space and let Y be an H–space. A map f W X ! Y is
equivariant with respect to a group homomorphism f#W G!H if f .g:x/Df#.g/f .x/

for every g 2G and x 2X .

If Y is an H–space then the universal cover zY is naturally an zH –space and the
covering map zY ! Y is equivariant with respect to a natural group homomorphism
zH ! H , as the theorem below states. The proof is patterned after an argument by

Bridson and Haefliger in the context of complexes of groups [3, Chapter III.C 1.15].

Theorem 2.2 (Lifting an action to the universal cover) Let Y be an H–space, and
let �W zY ! Y be the universal covering map. Then there is a group zH and action
zH � zY ! zY with the following properties.

(1) There is an exact sequence of groups

1! �1Y ! zH !H ! 1:

(2) The covering map zY ! Y is equivariant with respect to zH !H .

(3) The restriction of zH � zY ! zY to �1Y � zY ! zY is the standard action by deck
transformations of �1Y on zY .

(4) For each zy 2 zY mapping to y 2 Y , the homomorphism zH !H restricts to an
isomorphism zHzy ! Hy between the zH –stabilizer of zy and the H–stabilizer
of y .

(5) If G � zY ! zY is an action satisfying the four analogous properties above, then
there is an isomorphism ˆW G! zH such that g:zy Dˆ.g/:zy for all zy 2 zY .

(6) If f W X!Y is equivariant with respect to f#W G!H , and X is one-connected,
and zf W X ! zY is a lifting of f , then zf is equivariant with respect to a group
homomorphism zf W G! zH that lifts f W G!H .

It is an immediate corollary that there exists liftings to intermediate covers that are
H–regular as defined below.

Algebraic & Geometric Topology, Volume 14 (2014)
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Definition 2.3 (H–regular covers) Let Y be an H–complex. A covering map yY !Y

is H–regular if the composition �1
yY ! �1Y ! zH is a normal subgroup of zH .

Remark 2.4 Let Y be an H–complex. By definition, the universal cover of an H–
complex is H–regular. Furthermore any cover of Y associated to a characteristic
subgroup of �1.Y / is H–regular.

Corollary 2.5 (Lifting an action to an intermediate cover) Let Y be an H–space and
let yY ! Y be an H–regular cover. Then the quotient group yH D zH=�1

yY acts on yY
and the map yY ! Y is equivariant with respect to yH !H . Furthermore, stabilizers
of points are preserved in the sense that if yy 2 yY maps to y 2 Y , then the restriction
yHyy!Hy is an isomorphism.

Proof of Theorem 2.2 Let y0 be a point of Y , and recall that zY can be identified
with the set

zY D fŒc� j c is a path in Y starting at y0g;

where Œc� denotes the homotopy class of c with respect to homotopies fixing the
endpoints c.0/ and c.1/. The covering map zY ! Y is interpreted as sending Œc� to
c.1/. The action of �1.Y;y0/ on zY is given by

�1.Y;y0/� zY ! zY ; Œ
 �� Œc� 7! Œ
 � c�:

For details of this standard construction of the universal cover and the action of the
fundamental group, we refer the reader to [11]. Let

zH D f.h; Œc�/ j h 2H; c a path in Y from y0 to h:y0g:

The group operation on zH is given by

zH � zH ! zH ; .h; Œc�/� .h0; Œc0�/ 7! .hh0; Œc � h:c0�/;

where as usual � denotes concatenation of paths. Observe that the operation is well
defined since for any pair of paths f 2 Œc� and f 0 2 Œc0� the terminal point of f equals
the initial point of hf 0 , c � h:c0 is homotopic relative to endpoints to f � h:f 0 , and
the terminal point of c �h:c0 is hh0:y0 . Showing that this operation endows zH with a
group structure is routine and it is left to the interested reader. The action of zH on zY
is given by

zH � zY ! zY ; .h; Œc�/:Œc0�D Œc � h:c0� ;

and one easily verifies that it is a well-defined action. Now we verify the six properties.
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Properties (1), (2) and (3) Observe that the natural projection

zH !H; .h; Œc�/ 7! h

is a surjective homomorphism with kernel

f.1; Œc�/ j c is a closed path with c.0/D c.1/D y0g Š �1.Y;y0/:

By definition the action zH � zY ! zY extends the action of �1.Y;y0/ on zY . To verify
that zY ! Y is equivariant with respect to zH !H , let .h0; Œc0�/ 2 zH and Œc� 2 zY and
observe that the terminal point of the path .h0; Œc0�/:Œc� equals the point h0:c.1/.

Property (4) This statement follows from properties (1), (2) and (3): Let zy 2 zY and
let y 2 Y be the image of zy by the covering map. By equivariance, the homomorphism
zH !H maps the stabilizer zHzy into Hy . Let h 2Hy and let zh 2 zH be an element

mapping to h. Then there is g 2 �1Y such that g:zy D zh:zy . It follows that g�1zh 2 zHzy
and g�1zh maps to h. This shows that zH ! H is surjective. For injectivity, if
zh1; zh2 2

zHzy map to h 2Hy , then zh�1
1
zh2 2 �1Y \ zHzy . Since �1Y acts freely on Y ,

it follows that zh1 D
zh2 .

Property (5) The isomorphism is a consequence of the short five lemma. Suppose
that G is another group acting on zY and satisfying properties one to three; the fourth
property is not needed as it is a consequence of the other three. By property (1) of G ,
there is a short exact sequence

1!K!G
'
!H ! 1;

where K Š �1.Y /. Denote by � the covering map zY ! Y , and let zy0 2
zY be such

that �.zy0/ D y0 . For g 2 G , let cg denote a path in Y starting at y0 obtained by
composing � with a path in zY from zy0 to g:zy0 ; here we use that G acts on zY . Since
zY is simply connected, the homotopy class Œcg� depends only on g ; by property (2)
of G , the pair .'.g/; Œcg�/ is an element of zH . It follows that there is a well-defined
group homomorphism

ˆW G! zH ; g 7! .'.g/; Œcg�/:

Observe that ˆ.K/ is a subset of the kernel of zH !H and therefore ˆ satisfies the
following commutative diagram:

1 // K //

ˆ
��

G
' //

ˆ
��

H

id
��

// 1

1 // �1.Y;y0/ // zH // H // 1
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We claim that the ˆW K! �1.Y;y0/ is an isomorphism. By property (3) of G , the
action of K on zY is the action of deck transformations of zY ! Y . Therefore for
Œc�2�1.Y;y0/, there is k 2K acting on zY as .1; Œc�/ does. Recall that Œc� is identified
with .1; Œc�/ 2 zH . By definition of ˆ, we have that ˆ.k/D .'.k/; Œc�/D .1; Œc�/ and
hence ˆW K!�1.Y;y0/ is surjective. For injectivity, observe that if k 2K and ˆ.k/
is trivial, then k 2 Gzy0

; then, by property (3) of G , k is trivial. By the short five
lemma applied to the commutative diagram above, ˆW G! zH is an isomorphism.

Now we verify that the actions of zH and G are identical up to composing with
ˆ, ie, for every g 2 G and zy 2 zY , g:zy D ˆ.g/:zy . Suppose that zy D Œc0�. Then
g:zy D Œcg � '.g/:c

0� since cg � '.g/:c
0 lifts to a path from zy0 to g:zy . Hence g:zy D

Œcg �'.g/:c
0�D .'.g/; Œcg�/:Œc

0�.

Property (6) To simplify notation, we denote by f the map X ! Y and the group
homomorphism G!H . Let x0 2 X be such that f .x0/D y0 . Since X is simply
connected, using the description of zY as a set of equivalence classes of paths, for any
x 2X we have that zf .x/D Œf ı c� where c is any path in X from x0 to x . We show
that zf W X ! zY is equivariant with respect to the group homomorphism

zf W G! zH ; g 7! .f .g/; Œf ı c�/;

where c is a path in X from x0 to g:x0 . Observe that zf is well-defined as a map
since X is simply connected and f W X ! Y is an equivariant map. To show that zf is
a homomorphism is routine. To verify equivariance, first let x 2X and g 2G . Let c

be a path from x0 to g:x , let c0 be a path from x0 to g:x0 , and let c00 be a path from
x0 to x . Since X is simply connected, we have that Œc0 �g:c00�D Œc� and hence

zf .g/: zf .x/D .f .g/; Œf ı c0�/:Œf ı c00�D Œ.f ı c0/� .f .g/:.f ı c00//�

D Œf .c0 �g:c00/�D Œf .c/�D zf .g:x/:

This completes the proof of the theorem.

3 Maximal equivariant towers

For the rest of the paper, all spaces are combinatorial complexes and all maps are com-
binatorial. All group actions on complexes are by combinatorial maps. A G–complex
X is proper (respectively cocompact, free) if the G–action is proper (respectively,
cocompact, free). For a cell � of X , the pointwise G–stabilizer of � is denoted by
G� and the G–orbit of � is denoted by G.�/.
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Definition 3.1 (Combinatorial complexes and maps [3, Chapter I, Appendix] ) A map
X ! Y between CW–complexes is combinatorial if its restriction to each open cell of
X is a homeomorphism onto an open cell of Y . A CW–complex X is combinatorial
provided that the attaching map of each open cell is combinatorial for a suitable
subdivision.

3.1 Definition of equivariant tower and basic lemmas

Definition 3.2 (Equivariant map) Let X be a G–complex and let Y be an H–
complex. An equivariant map f W X ! Y is a pair .f; f#/, where f W X ! Y is
a combinatorial map, f#W G!H is a group homomorphism and f is equivariant with
respect to f# , that is, f .g:x/D f#.g/f .x/ for every g 2G and x 2X . As usual, if
both X and Y are G–complexes and f# is the identity map on G , then f is called a
G–map. As a convention, we use bold letters to denote equivariant maps f , and in
this case, we use f to denote the map between complexes, and f# to denote the group
homomorphism. The domain of an equivariant map is the space together with the group
acting on it, and the same convention applies to the codomain. The composition of
equivariant maps is defined in the natural way. Equality of equivariant maps f D g

means their domains and codomains are equal, f D g and f# D g# .

Definition 3.3 (Equivariant isomorphism) An equivariant map is an isomorphism if
the map at the level of spaces is a homeomorphism and the map a the level of groups
is a group isomorphism.

Definition 3.4 (Equivariant inclusions) An equivariant map {D .{; {#/ is called an
equivariant inclusion if { and {# are injective. The equivariant inclusion { is called
proper if either { or {# is not surjective.

Definition 3.5 (Equivariant cover) Let Y be an H–complex. A covering map yY !Y

is called an equivariant cover if yY is an H–regular cover. By Corollary 2.5, if � is an
equivariant cover then there is a well defined group homomorphism �#W yH !H such
that .�; �#/ is an equivariant map. When referring to an equivariant cover we will be
implicitly referring to the associated equivariant map .�; �#/.

Definition 3.6 (Towers and F –towers) Let X be a G–complex and let Y be an
H–complex. An equivariant map gW X ! Y is an equivariant tower if it can be
expressed as an alternating composition of equivariant inclusions and equivariant
covers. Specifically, g is a composition

X DXn ,! yXn!Xn�1 ,! � � � ,! yX2!X1 ,! yX1!X0 D Y

Algebraic & Geometric Topology, Volume 14 (2014)
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and g# is a composition

G DGn ,! yGn!Gn�1 ,! � � � ,! yG2!G1 ,! yG1!G0 DH;

where Xi is a Gi –complex, yXi!Xi�1 is a Gi�1 –regular cover of Xi�1 inducing the
yGi –action on yXi , Xi is a subcomplex of yXi invariant under the subgroup Gi �

yGi ,
and both G DGn and H DG0 . In the case that each Xi is a full subcomplex of yXi ,
and the tower g is called an F –tower.

The length of the tower g is the smallest value of n in an expression for g as above.
In particular, an equivariant inclusion or cover have length at most one. By convention,
the identity map has length zero.

Definition 3.7 (Equivariant tower lifting and F –tower lifting) Let f be an equi-
variant map. An equivariant tower lifting of f is an equivariant map f 0 such that
there is an equivariant tower g such that f D g ıf 0 . The lifting is trivial if g is an
equivariant isomorphism, and the lifting is maximal if the only equivariant tower lifting
of f 0 is the trivial one. The notions of equivariant F –tower lifting, trivial F –tower
lifting and maximal F –tower lifting are defined analogously.

Remark 3.8 (Composition of towers) Observe that if f and h are equivariant
towers, and the codomain of f equals the domain of h (this means on the space and
the group), then the composition h ıf is an equivariant tower. The same statement
holds for F –towers.

Suppose f D g ıf 0 is a tower lifting of f and f 0D g0 ıf 00 is a tower lifting of f 0 .
Since the composition g ıg0 is a tower, f D .g ıg0/ ıf 00 is a tower lifting of f . In
particular, if f 00 is a maximal tower lifting of f 0 then f 00 is a maximal tower lifting
of f . The same statement holds for F –towers liftings.

Definition 3.9 (0–surjective) A map X ! Y is 0–surjective if every 0–cell of Y is
in the image of X .

Proposition 3.10 (Maximality , surjectivity) Let X be a one-connected and G–
cocompact complex and let f W X ! Y be a G–map.

(1) An equivariant tower lifting f 0 of f is maximal if and only if f 0 is surjective
and �1 –surjective, and f 0# is surjective.

(2) An equivariant F –tower lifting f 0 of f is maximal if and only if f 0 is 0–
surjective and �1 –surjective, and f 0# is surjective.
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Proof We sketch the proof for F –towers and the proof of the first statement is left to
the reader. The “only if” part is immediate since otherwise f 0 would factor through a
non-trivial inclusion or the universal covering map. For the “if” part, let f 0 D h ıf 00

be an F –tower lifting of f 0 . Suppose that h is an equivariant inclusion of a full-
subcomplex; since f 0 is 0–surjective and f 0# is surjective we have that h and h# are
surjective and hence h is an equivariant isomorphism. Suppose that h is an equivariant
cover; since X is one-connected and f 0W X ! Y 0 is �1 –surjective it follows that
Y 0 is one-connected and hence h is the trivial cover and h# is an isomorphism. The
general case follows by induction on the length of the tower.

Definition 3.11 (Preserving 0–stabilizers) An equivariant map f from the G–com-
plex X to the H–complex Y is said to preserve 0–stabilizers if for every 0–cell � of
X the map f#W G� !Hf .�/ is a group isomorphism.

Definition 3.12 (d.f /; r.f /; e.X /) For a G–complex X , let v.G;X / denote the
number of G–orbits of 0–cells and let e.G;X / denote the number of G–orbits of
1–cells. If the group is understood, we simply write v.X / and e.X /. Observe that
v.G;X /<1 and e.G;X /<1 if X is G–cocompact. If f W X!Y is an equivariant
map from the G–complex X to the f#.G/–complex Y , we define d.f /D v.G;X /

and r.f /D v.f#.G/; f .X //. Observe that for a G–map f W X ! Y , we have that
d.f /� r.f / and e.X /� e.f .X //.

Lemma 3.13 Let gW X ! Y be an equivariant tower such that g# is an isomorphism,
preserves 0–stabilizers, and 1> d.g/D r.g/. The following statements hold.

(1) The map g is an equivariant inclusion and when restricted to the 0–skeletons is
an isomorphism.

(2) If g is surjective, then g is an equivariant isomorphism.

(3) If 1> e.X /D e.Y /, then g is an isomorphism when restricted to 1–skeletons
and, in particular, g is �1 –surjective.

Proof Since g# is an isomorphism, assume that X and Y are G–complexes and
g#W G!G is the identity map. Observe that the second statement is immediate if the
first statement holds.

For the first statement, we show first that g induces a bijection between the 0–skeletons.
Since 1> d.g/D r.g/, the pigeon-hole argument shows that g induces a bijection
between G–orbits of 0–cells. Hence it is enough to show that for any 0–cell x in
the domain of g , the induced map between orbits gW G.x/!G.g.x// is a bijection.
By equivariance, gW G.x/!G.g.x// is surjective. For injectivity, suppose there are
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x;x0 2X and h 2G such that h:x D x0 and g.x/D g.x0/. By equivariance, h is in
the G–stabilizer of g.x/. Since g#W Gx! Gg.x/ is the identity map, it follows that
h 2 Gx and hence x0 D x . We have proved that g induces a bijection between the
0–skeletons. Now we show that g is an inclusion of complexes. Let � and � 0 be two
k–cells of X mapping to the same k–cell of Y . Since g is bijective on 0–cells, the
cells � and � 0 have a common 0–cell in their closure. Since g is a tower, it is a locally
injective map. Therefore � and � 0 are the same k–cell.

The third statement is proved as follows. The first statement of the lemma implies
that g induces an equivariant inclusion between the 1–skeletons and an isomorphism
between 0–skeletons. It remains to prove that the induced map between 1–skeletons is
surjective. Since 1> e.X /D e.Y /, the pigeon-hole argument shows that g induces a
bijection between G–orbits of 1–cells. For any 1–cell � , equivariance implies that the
induced map between orbits gW G.�/!G.g�/ is surjective. Therefore g is surjective
on 1–cells, and hence the induced map between the 1–skeletons is an isomorphism.

3.2 Existence of maximal F –tower liftings

Theorem 3.14 (Maximal equivariant F –towers) Let f W X ! Y be a G–map. If
X is one-connected and G–cocompact and Y is locally finite, then f has a maximal
equivariant F –tower lifting.

Before the proof of the theorem we need a definition and a remark.

Definition 3.15 (Span) The span of a subcomplex K �X , denoted by SpanX .K/,
is the smallest full subcomplex of X containing K .

Remark 3.16 If Y is a G–complex and K � Y is a G–subcomplex, then SpanX .K/

is a G–subcomplex of Y . If, in addition, Y is locally finite and K is G–cocompact
then SpanX .K/ is G–cocompact and in particular e.SpanX .K// is finite.

Proof of Theorem 3.14 Let f0 denote the G–map f . Let Y1 be the G–subcomplex
Span.f .X // of Y , let f1W X ! Y1 by the G–map defined as f1.x/ D f .x/ for
x 2X and let g1W Y1! Y be the G–equivariant inclusion. Since X is G–cocompact,
1> d.f1/� r.f1/. Since Y is locally finite and X is G–cocompact, Y1 is locally
finite and 1> e.Y1/.

For n� 1, suppose that for we have defined an F –tower lifting fnW X ! Yn of fn�1

and an F –tower gnW Yn! Yn�1 such that gn ıfn D fn�1 and Yn is locally finite
and 1> d.fn/� r.fn/ and 1> e.Yn/. Let �nW

zYn! Yn be the universal covering
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map and let zfnW X ! zYn be the equivariant lifting of fn to the universal cover zYn . By
Theorem 2.2, zfn is naturally a G–map. Let YnC1 be the G–subcomplex Span. zfn.X //

of zYn and let fnC1W X ! YnC1 the G–map defined by fnC1.x/ D zfn.x/ for each
x 2 X . Let gnC1W YnC1 ! Yn be the restriction of �n to YnC1 . By construction,
fnC1W X ! YnC1 is 0–surjective. Since zYn is locally finite and X is G–cocompact,
YnC1 is also locally finite and1> e.YnC1/. The construction is illustrated in Figure 1.

YnC1

gnC1

  
� � // zYn

// Yn
� � // � � � // Y3

g3

��
� � // zY2

// Y2
� � //

g2

��
zY1

// Y1
� � g1 // Y

X

f

CC

f1

II

f2

UU

f3

aa

fn

ff

fnC1

ii

Figure 1: The tower construction in the proof of Theorem 3.14

Consider the well-ordered set consisting of pairs of positive integers N �N with the
dictionary order �dic . For each fn we assign an element jfnj of N �N defined as

jfnj D .d.f /� r.fn/; e.Yn//:

Lemma 3.17 (Decreasing complexity) The following statements hold.

(1) If Yn is simply connected, then fnW X ! Yn is a maximal F –tower lifting of
f W X ! Y .

(2) If jfnC1j Ddic jfnj, then Yn is simply connected.

(3) For every n, jfnC1j �dic jfnj.

Proof If Yn is simply connected then fn is �1 –surjective. Since fn is also 0–
surjective, Proposition 3.10 implies that fn is a maximal F –tower lifting of f . This
proves the first statement.

For the second statement, suppose jfnC1j Ddic jfnj. We will show that gnC1W YnC1!

Yn is �1 –surjective using Lemma 3.13(3); then the proof concludes by observing
that gnC1 factors through the simply connected space zYn and hence Yn is simply
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connected. It remains to verify that gnC1 satisfies the hypotheses of Lemma 3.13(3).
By construction, gnC1W YnC1! Yn is a G–map and a tower; the assumption implies
that 1 > d.gnC1/ D r.fnC1/ D r.fn/ D r.gnC1/ and 1 > e.YnC1/ D e.Yn/;
an induction argument together with Theorem 2.2(4) shows that gnC1 preserves 0–
stabilizers for n� 1.

The third statement is proved as follows. First observe that

1> d.f /D d.fnC1/� r.fnC1/D d.gnC1/� r.gnC1/� r.fn/� 0;

and hence d.f /�r.fn/�d.f /�r.fnC1/�0. If r.fn/D r.fnC1/, then d.gnC1/D

r.gnC1/. Then Lemma 3.13(1) implies that gnC1W YnC1 ! Yn is a G–equivariant
inclusion and therefore e.Yn/� e.YnC1/. It follows that jfnC1j �dic jfnj.

To conclude the proof of Theorem 3.14 observe that if for every n the complex Yn is
not simply connected, then there is an infinite strictly decreasing sequence of elements
of .N�N;�dic/. Since this is impossible, there is n such that Yn is simply connected,
and then fn is a maximal F –tower lifting of f .

3.3 Existence of maximal towers liftings

Theorem 3.18 (Maximal equivariant towers) Let f W X ! Y be a G–map. If X is
one-connected and G–cocompact, then f has a maximal equivariant tower lifting.

Sketch of the proof The proof of Theorem 3.18 is the same as the proof of Theorem
3.14 with some simplifications. Define inductively the sequence of tower liftings
fnC1W X ! YnC1 where Yn is defined as the G–subcomplex zfn.X / of zYn and
Y1 D f .X /. Since X is G–cocompact and fn is surjective, Yn is G–cocompact and
hence d.fn/� r.fn/ <1. Then, the same argument shows that

d.fn/� r.fn/� d.fnC1/� r.fnC1/:

One verifies that if Yn is not simply connected then the inequality above is strict.
Specifically, if r.fn/D r.fnC1/ then gnC1 is a surjective G–equivariant tower pre-
serving 0–stabilizers and such that d.gnC1/D r.gnC1/; then Lemma 3.13(2) implies
that gnC1 is an isomorphism factoring through zYn and hence Yn is simply connected.
If each Yn is not simply connected then d.fn/� r.fn/ defines a strictly decreasing
infinite sequence of natural numbers which is impossible. Therefore some Yn is simply
connected and the corresponding fn is the desired maximal tower lifting of f .
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4 Immersed cocompact cores

Theorem 4.1 If Y is a one-connected, proper and locally finite H–complex and
G �H is finitely presented, then there is a one-connected cocompact G–complex X

and a G–equivariant F –tower X ! Y .

The proof of the theorem requires two lemmas.

Lemma 4.2 Let G be a finite graph of groups such that vertex groups are finitely gener-
ated and edge groups are finite. If 'W �1.G/!G is a surjective group homomorphism
into a finitely presented group, then Kernel.'/ is normally finitely generated.

Proof The hypotheses on G imply that �1.G/ is finitely generated. Therefore there is
a surjective homomorphism  W F!�1.G/, where F is a finite-rank free group. Since
G is finitely presented and F has finite rank, the kernel of ' ı is normally finitely
generated, say Kernel.' ı /D hhr1; : : : ; rmii. Since Kernel.'/D  .Kernel.' ı //,
we have that Kernel.'/D hh .r1/; : : : ;  .rm/ii.

Recall that a group is slender if all its subgroups are finitely generated, and a G–complex
is almost proper if G acts properly on the complement of the 0–skeleton.

Lemma 4.3 (One-connected complex for finitely presented subgroup) Let Y be a
one-connected, almost proper H–complex such that H–stabilizers of cells are slender.
Suppose that G � H is finitely presented. Then there exists a cocompact and one-
connected G–2–complex X , and an equivariant map f W X ! Y such that f# is the
inclusion G ,!H and f# is injective when restricted to 0–cell stabilizers.

Proof First we construct the 1–skeleton X .1/ of X as a G–equivariant cocompact
subcomplex of Y . Let fgig

m
iD1

be a finite generating set for G and let y0 be a 0–cell
of Y . Since Y is connected, for each 1� i �m there is a combinatorial path 
i from
y0 to giy0 . Let D be the finite subcomplex D D 
1[ � � � [ 
m of Y and let X .1/ be
the union of all G–translates of D in Y . Then X .1/ is a G–equivariant 1–dimensional
cocompact connected subcomplex of Y . Connectedness follows from the assumption
that fgig

m
iD1

generates G , and cocompactness from D being a finite subcomplex.

Next we show that �1X .1/ is a normally finitely generated group. Invoking Theorem 2.2,
consider the group zG acting on the universal cover T of X .1/ such that T ! X .1/

is equivariant with respect to zG ! G and �1X .1/ is isomorphic to the kernel of
zG!G . By considering the barycentric subdivision T 0 of T , we have a cocompact
action without inversions of zG on the tree T 0 ; here cocompactness follows from X .1/
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being G–cocompact. By Theorem 2.2(4) the group homomorphism g#W zGx!Gg.x/

is injective for every x 2 T . Therefore 1–cell zG –stabilizers of T 0 are finite, since Y

is an almost proper G–complex. Moreover, 0–cell zG –stabilizers of T 0 are isomorphic
to either a subgroup of the G–stabilizer of a 0–cell of Y and hence finitely generated
by the slender hypothesis, or to a subgroup of the setwise zG –stabilizer of a 1–cell of
Y and hence finite since Y is almost proper. Then the theory of Bass and Serre on
actions on trees [22] implies that zG is isomorphic to the fundamental group of a finite
graph of groups G with finite edge groups and finitely generated vertex groups. By
Lemma 4.2, the kernel of zG!G is normally finitely generated.

To conclude the proof, we paste finitely many G–orbits of 2–cells to X .1/ to obtain
a one-connected complex. Choose a 0–cell zx0 of T as a basepoint. Since �1X .1/

is normally finitely generated, there is a finite collection frig
q
iD1

of based loops in
X .1/ such that �1X .1/ D hhr1; : : : ; rqii. Since Y is simply connected and X .1/ is a
subcomplex of Y , for each ri there is a disk-diagram Di! Y with boundary path ri .
Let X be the complex obtained by attaching a copy of Di to X .1/ along the closed
path g:ri for each g 2G and each 1� i � q . Observe that X is connected and simply
connected, and the G–action on X .1/ naturally extends to a cocompact G–action on
X . The equivariant inclusion X .1/ ,! Y extends to a map X ! Y equivariant with
respect to G ,!H .

The proof of the Theorem 4.1 is an application of Lemma 4.3 together with Theorem 3.14.

Proof of Theorem 4.1 Observe that the hypotheses of Lemma 4.3 are satisfied since
Y being proper implies that stabilizers of 0–cells are finite and proper implies almost
proper. Therefore there is a one-connected cocompact G–complex X0 and a G–map
f W X0! Y . By Theorem 3.14, there is a maximal F –tower lifting f D g ıf 0 of
f , where gW X ! Y . By Proposition 3.10(2), f 0 is 0–surjective and �1 –surjective,
and f 0# is surjective. It follows that X is one-connected and f 0# is an isomorphism; in
particular, f 0 is a G–map. Since Y is locally finite and g is a tower, it follows that
X is locally finite. Since X0 is G–cocompact and f 0W X0! X is 0–surjective, we
have that X is G–cocompact.

Analogously to the argument in the proof of Theorem 4.1, one obtains the following
result by combining Lemma 4.3 and Theorem 3.18. In this result, the complex Y is
not necessarily locally finite but the conclusion is weaker.

Theorem 4.4 Let Y be a one-connected and almost proper H–complex such that
H–stabilizers of cells are slender. If G � H is finitely presented, then there is a
one-connected cocompact G–complex X and a G–equivariant tower X ! Y .
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A version of Theorem 4.4 appears in Martínez-Pedroza and Wise [19, Lemma 6.4]
where is shown that a G–map with locally finite target always factors as the composition
of a surjective and �1 –surjective G–map followed by a G–equivariant immersion.

5 Applications

5.1 Subgroups of diagrammatically reducible groups

Definition 5.1 (Near-immersion) A map X ! Y is a near immersion if it is locally
injective in the complement of the 0–skeleton of X .

Definition 5.2 (Diagrammatically reducible complex, [7]) A 2–complex X is dia-
grammatically reducible if there are no near-immersions C !X , where C is a cell
structure for the 2–dimensional sphere.

First we recall some properties of diagrammatically reducible complexes in the propo-
sition below.

Proposition 5.3 (1) Diagrammatically reducible complexes are aspherical.

(2) Covers and subcomplexes of diagrammatically reducible complexes are diagram-
matically reducible.

(3) The barycentric subdivision of a diagrammatically reducible complex is diagram-
matically reducible.

Proof The first statement is a result of Gersten [7, Remark 3.2], the second statement is
trivial since the composition of a near-immersion and an immersion is a near-immersion
and the third statement is due to Howie [7, Remark 6.10].

Definition 5.4 (Free 1–cells and collapsing) Let X be a 2–complex. A 1–cell e of
a subcomplex Z � X is free if it belongs to the boundary of a 2–cell f of Z , and
e does not belong to the boundary of a 2–cell ¤ f in Z . In this case, collapsing Z

along e means to remove the interior of e and the interior of f .

The following characterization of a diagrammatically reducible complex is a result of
Jon Corson.

Theorem 5.5 (Characterization, [6, Theorem 2.1]) A one-connected 2–complex is
diagrammatically reducible if and only if every finite subcomplex is 1–dimensional or
contains a free 1–cell.
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Remark 5.6 (Equivariant collapsing and inversions) Recall that a group action on a
complex has no inversions if whenever a cell is fixed setwise by a group element then
it is fixed pointwise by the group element. Let Z be a G–complex without inversions
and suppose that e is a free 1–cell of Z that belongs to the boundary of the 2–cell
f . Observe that for every g 2 G the 1–cell g:e is free in Z . Since G acts without
inversions, for every g 2G , the 2–cell g:f contains only one 1–cell in the G–orbit
of e , namely g:e . Therefore we can simultaneously collapse Z along g:e for every
g 2G obtaining a G–equivariant subcomplex Z0 of X .

Corson also proves that if F is a finite group acting on a one-connected diagrammat-
ically reducible 2–complex X then the fixed point set X F of F is non-empty [6,
Theorem 4.1]. The following proposition shows that X F is also contractible.

Proposition 5.7 (Contractible fixed point sets) Let X be a one-connected diagram-
matically reducible 2–complex. If F is a finite group acting on X without inversions,
then the fixed point set X F of F is a non-empty contractible subcomplex.

Proof Since F acts without inversions, X F is a subcomplex of X . By Proposition
5.3(1), it is enough to show that X F is one-connected. First we verify that X F is
connected. Take two vertices x0 and x1 of X F . Since X is connected, there is an
edge–path ˛ in X between x0 and x1 . Let Y0 be the subcomplex of X defined as
the union of all the images of ˛ under the action of F . Observe that Y0 is a connected
finite 1–dimensional subcomplex of X invariant under the F –action. Construct a finite
one-connected F –complex Y as follows. Fix a basepoint of Y0 and let 
1; : : : ; 
n be
a collection of closed paths in Y0 that generate �1.Y0/. For each 
i , there is a disk
diagram Di ! X with boundary path 
i ! X . Let Y be the 2–complex obtained
by attaching a copy of Di to Y0 along k:
i for each k 2 F . Then Y is a finite
one-connected 2–complex, the F –action on Y0 extends to an action on Y , and there
is a natural F –equivariant map f W Y ! X . By Theorem 3.18, there is a maximal
equivariant tower lifting

Y
f 0

�!Z
g
�!X

of f . Since g is an immersion, Z is diagrammatically reducible. Since F acts without
inversions on X , it also acts without inversions on Z . By Theorem 5.5, it follows that if
Z contains 2–cells, then it has a free 1–cell e . After a finite number of F –equivariant
collapses of Z one obtains a 1–dimensional one-connected F –complex equivariantly
immersed into X ; see Remark 5.6. Without loss of generality, we can assume that Z

is 1–dimensional. Then Z is a tree and therefore F fixes pointwise an edge-path in
Z between x0 and x1 . By equivariance of the map Y !X , F fixes pointwise a path
between x0 and x1 .
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Now we verify that X F is simply connected. Since X is simply connected, consider
an essential embedded closed path 
 in X F with minimal area in X . Then there is a
disk-diagram D!X with boundary 
 of minimal area. Let g 2 F with g ¤ 1 and
observe that the spherical diagram D [ gD! X is a near-immersion. Since this is
impossible, X F is simply connected.

Remark 5.8 (Inversions and connected fixed point sets) During the review process
of the article, the referee observed that in the proof of Proposition 5.7 one can prove
that X F is connected without assuming that F acts without inversions. The sketch
of the argument is as follows. Suppose that X F is not connected and choose x0 and
x1 at minimal distance in different connected components of X F . Consider a path 

in X between x0 and x1 . Since x0 and x1 are in different connected components,
the path 
 is not fixed by F and hence there is a non-trivial element g 2 F that does
not fix 
 pointwise. For given 
 and g 2 F , there is a disk diagram D! X with
boundary path 
�1g.
 /. Among all these possible choices of 
 , g and D , choose
the ones that minimize Area.D/. It follows that the diagram D contains 2–cells and
no cut-points. Let n be the order of the element g . Then one can glue together n

copies of D , by identifying g.
 / in the i th copy of D with 
 in the .i C 1/st copy of
D , producing a sphere S . The map S !X , which maps the i th copy of D in S to
gi.D/ in X is a near-immersion by our minimality choices. This contradicts the fact
that X is diagrammatically reducible.

Definition 5.9 Let G be a group. A proper G–complex X is a model for EG if for
every finite subgroup of F �G , the fixed point set X F is contractible.

Theorem 5.10 (Diagrammatically reduced groups) Let Y be a diagrammatically
reducible proper H–2–complex. If G � H is finitely presented then G admits a
diagrammatically reduced 2–dimensional cocompact model for EH .

Proof By passing to a subdivision of Y we can assume that G acts without inversions
while still assuming that Y is diagrammatically reducible; see Proposition 5.3(3). By
Theorem 4.4, there is an equivariant immersion X ! Y , where X is a one-connected
cocompact G–2–complex. Since Y is diagrammatically reducible, Proposition 5.3(2)
implies that X is diagrammatically reducible as well. Since the H–action on Y is
proper and without inversions, the same properties hold for the G–action on X . Let K

be a finite subgroup of G . Then Proposition 5.7 implies that the fixed point set X F is
contractible.

Algebraic & Geometric Topology, Volume 14 (2014)



2804 Richard Gaelan Hanlon and Eduardo Martínez-Pedroza

5.2 Subgroups of relatively hyperbolic groups acting on negatively curved
2–complexes

Definition 5.11 (Fine graphs and fine complexes, Bowditch [1]) A 1–complex is
fine if each 1–cell is contained in only finitely many circuits of length n for each n.
Equivalently, the number of embedded paths of length n between any pair of (distinct)
0–cells is finite. A complex is fine if its 1–skeleton is fine.

Definition 5.12 (Relatively hyperbolic groups [1]) A group G is hyperbolic relative
to a finite collection of subgroups P if G acts cocompactly, almost properly on a
connected, fine, ı–hyperbolic 1–complex, and P is a set of representatives of distinct
conjugacy classes of vertex stabilizers such that each infinite stabilizer is represented.

Proposition 5.13 (2–dimensional relative hyperbolicity) Let X be a one-connected,
negatively curved, fine, cocompact and almost proper G–2–complex. Then G is a
hyperbolic group relative to a (hence any) collection of representatives of conjugacy
classes of 0–cell stabilizers.

Proof Since X is negatively curved and one-connected, it is a ı–hyperbolic space.
Indeed, it is well known that a CAT .�/–space with � < 0 is ı–hyperbolic, and in the
conformal case X satisfies a linear isoperimetric inequality and hence the combinatorial
metric on its one skeleton is a ı–hyperbolic space [3; 8]. Since X is G–cocompact there
are finitely many types of 2–cells and hence the 1–skeleton X .1/ is quasi-isometric to
X ; in particular X .1/ is a ı0–hyperbolic space. It follows that X .1/ is endowed with a
G–action satisfying the conditions of Definition 5.12.

Proposition 5.14 Let Y be a diagrammatically reducible one-connected cocompact
almost proper H–2–complex with a fine one-skeleton. If X is one-connected and there
is an immersion X ! Y , then X has a fine one-skeleton.

Proof We use the following characterization of simplicial fine graphs due to Brian
Bowditch [1, Proposition 2.1]. By simplicial we mean no double edges and no single
edge loops. A simplicial graph K is fine if and only if for each vertex x 2K , the set
V .x/ of vertices adjacent to x has the following property: every subset of V .x/ that
is bounded in K n fxg with respect to the combinatorial metric is finite.

Without loss of generality, assume that the boundary path of every 2–cell of Y is an
embedded path, and that X and Y have simplicial one-skeleton. Indeed, by considering
the barycentric subdivisions of X and Y , we can assume the boundary paths of 2–
cells are embedded and one-skeletons are simplicial. Proving the proposition for the
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barycentric subdivisions is sufficient since the one-skeleton of an almost proper H–2–
complex is fine if and only if the one-skeleton of its barycentric subdivision is fine;
this follows directly from [1, Lemma 2.3] or [18, Lemma 2.9]. Moreover, a complex is
diagrammatically reducible if and only if its barycentric subdivision is diagrammatically
reducible; see Proposition 5.3(3).

Since Y admits a cocompact H–action and its one skeleton is fine, for every n 2N
there are finitely many cycles of length n up to the H–action. Therefore, since Y is
simply connected, there is a well defined Dehn function �W N!N , that is, �.n/ is
an upper bound for the area of minimal area disk diagrams with given boundary path
of length at most n.

Let f W X ! Y be an immersion. Let x0 2X be 0–cell of X and let A be a subset
of 0–cells adjacent to x . Denote by diam.A/ the diameter of A in X n fx0g in the
combinatorial metric, and analogously let diam.f .A// denote the diameter of f .A/
in Y n ff .x0/g in the combinatorial metric. The claim is that if diam.A/ is finite then

(5-1) diam.f .A//� C ��.diam.A/C 2/;

where C is an upper bound for the boundary length of a 2–cell of Y ; here C is finite
since Y admits a cocompact action. Assuming the claim, we conclude using Bowditch’s
characterization of fineness as follows. If diam.A/ is finite, then the claim implies that
diam.f .A// is finite; then Y being fine implies that f .A/ is a finite set; since f is
an immersion and one-skeletons are simplicial, the induced map f W A! f .A/ is a
bijection and hence A is finite set.

Suppose that diam.A/Dm <1 in X n fx0g. Let a; b 2 A and suppose that a¤ b .
Then there is a combinatorial path 
 in X n fx0g from a to b of length at most m. If
the path f ı
 in Y does not contain the 0–cell f .x0/ then the combinatorial distance
between f .a/ and f .b/ is bounded by m; however this assumption on f ı 
 might
not hold. A general argument is as follows. Consider the closed path 
 0!X defined
as the concatenation 
 0 D e1 � 
 � e2 , where e1 is an 1–cell from x0 to a, and e2 is
a 1–cell from b to x0 . Since X is simply connected, there is a near-immersion of a
disk-diagram D!X with boundary path 
 0 . Observe that there is only one 0–cell in
@D mapping to x0 2X ; by abuse of notation, let x0 denote this 0–cell of D .

The main observation is that Dnfx0g is connected. Indeed, if Dnfx0g is not connected,
then the boundary path @D!X passes through x0 more than once. Since e1!X

and e2!X are 1–cells with only one endpoint equal x0 , and the image of 
 !X

does not contain x0 , it follows that @D D e1 � 
 � e2 passes through x0 only once,
and hence D n fx0g is connected.

Algebraic & Geometric Topology, Volume 14 (2014)



2806 Richard Gaelan Hanlon and Eduardo Martínez-Pedroza

The fact that D n fx0g is connected implies that there is an embedded path �! D

between the two 0–cells adjacent to x0 in @D . This path �! D factors through
D nfx0g and goes around the 2–cells of D adjacent to x0 ; see Figure 2. Observe that

�!D!X
f
�! Y

is a path between f .a/ and f .b/, and the combinatorial length of � is bounded by
C �Area.D/ where C is the upper bound for the boundary length of a 2–cell of Y .

Now observe that the path

�!D!X
f
�! Y

does not intersect f .x0/. Indeed, since boundary paths of 2–cells of Y (and hence of
D ) are embedded, if �! Y intersects f .x0/ then there is a 2–cell R of D whose
boundary path contains x0 2 @D and another 0–cell x 2 � both mapping to f .x0/,
this would imply that @R! Y is not an embedded path, which is impossible by our
initial assumption.

x0 x1

�

a

b

e1

e2

D

Figure 2: In the disk diagram D , the space D n fx1g is not connected. If D

is a disk diagram, x0 is a 0–cell on @D adjacent to the 0–cells a; b 2 @D

with a ¤ b , and D n fx0g is connected, then there is an edge path �! D

between a; b that factors through D n fx0g and goes around the 2–cells of
D adjacent to x0 . The length of � is bounded by Area.D/ �C1 , where C1 is
an upper bound for the boundary length of 2–cells of D .

Since Y is diagrammatically reducible and D! Y is a near-immersion, it follows that
D! Y is a minimal area disk diagram for @D! Y . Therefore j�j �C ��.j@Dj/, and
hence the combinatorial distance between f .a/ and f .b/ in Y n ff .x0/g is bounded
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by j�j � C ��.diam.A/C 2/. Since a and b were arbitrary, we have proved that
inequality (5-1) holds.

Theorem 5.15 (Subgroups of 2–dimensional relatively hyperbolic groups are rela-
tively hyperbolic) Let Y be a one-connected negatively curved, fine, almost proper
and cocompact H–2–complex such that H–stabilizers of cells are slender. If G �H

is finitely presented then G is hyperbolic relative to a finite collection of G–stabilizers
of cells of Y .

Proof of Theorem 5.15 By Theorem 4.4, there is an equivariant tower X ! Y where
X is a one-connected cocompact G–2–complex. Since Y is negatively curved and
almost proper G–complex, the same properties hold for X . Proposition 5.14 implies
that X is fine. Proposition 5.13 implies that G is hyperbolic relative to a finite collection
P of G–stabilizers of cells of X . Since X ! Y is a G–map, the collection P consists
of G–stabilizers of cells of Y .
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