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On third homologies of groups and of quandles via the
Dijkgraaf–Witten invariant and Inoue–Kabaya map

TAKEFUMI NOSAKA

We propose a simple method for producing quandle cocycles from group cocycles by
a modification of the Inoue–Kabaya chain map. Further, we show that, with respect
to “universal extension of quandles”, the chain map induces an isomorphism between
third homologies (modulo some torsion). For example, all Mochizuki’s quandle
3–cocycles are shown to be derived from group cocycles. As an application, we
calculate some Z–equivariant parts of the Dijkgraaf–Witten invariants of some cyclic
branched covering spaces, via some cocycle invariant of links.

20J06, 57M12; 57M27, 57N65

1 Introduction

A quandle is a set X with a binary operation whose definition was partially motivated
by knot theory. Fenn, Rourke and Sanderson [8; 9] defined a space BX , called the
rack space in analogy to the classifying spaces of groups. Carter et al [3; 4] introduced
quandle cohomologies H�Q.X IA/ with local coefficients by slightly modifying the
cohomology of BX ; in addition they defined combinatorially a state-sum invariant
I .L/ of links L constructed from a cocycle  2H�Q.X IA/. The construction can
be considered as an analogue of the Dijkgraaf–Witten invariant [6] of closed oriented
3–manifolds M constructed from a finite group G and a 3–cocycle � 2H 3

gr.GIA/.
To be specific, the invariant is defined as the formal sum of pairings expressed by

(1) DW�.M / WD
X

f 2Homgr.�1.M /;G/

hf �.�/; ŒM �i 2 ZŒA�;

where ŒM � is the fundamental class in H3.M IZ/. Inspired by this analogue, for
many quandles X , Nosaka [22] gave essentially topological meanings of the cocycle
invariants, using the Dijkgraaf–Witten invariant and the homotopy group �2.BX /.

We mainly focus on a relation between quandle and group homologies, which have
been investigated in several studies. For example, the second quandle homology has
been extensively studied by Eisermann [7] on the basis of the first group homologies.
In addition, Nosaka [22] roughly computed some third quandle homologies from the
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group homologies of �1.BX / with some ambiguity. Furthermore, for any quandle
X , Inoue and Kabaya [11] constructed a chain map 'IK from the quandle complex to
a certain complex. Although the latter complex seems far from something familiar,
Kabaya [13] modified the 'IK mapping to a group homology under a certain strong
condition of X . Furthermore, for certain special quandles, Nosaka [21] proposed a
method for constructing quandle cocycles from invariant theory via their chain map.

This paper demonstrates a relation between third homologies of groups and those of
quandles via the Inoue–Kabaya map, with respect to a broad subclass of quandles. Here,
a quandle in the subclass is defined as a group G with the operation g C h WD�.gh�1/h

for g; h2G , where �W G!G is a fixed group isomorphism (Definition 2.1). Let such
a quandle be denoted by X D .G; �/. Let also H

gr
n .GIZ/Z be a quotient of the group

homology of G subject to the action of � , called the Z–coinvariant. In Section 2.2,
we reformulate the Inoue–Kabaya map, ˆn , which induces a homomorphism

.ˆn/�W H
Q
n .X IZ/ �!H

gr
n .GIZ/Z:

We then lift this map ˆn to a chain map 'n from C
Q
n .X IZ/ to the usual group

homology H
gr
n .GIZ/; see Proposition 2.6. As a corollary, if a presentation of a group

n–cocycle � of G is given, we can easily obtain the presentation of the induced quandle
n–cocycle '�n .�/.

This paper also investigates properties of the chain map ˆn above. First, we focus
on a class of universal quandle coverings zY that are constructed from “connected”
quandles Y of finite order. Here zY is a quandle of the form .Ker."Y /; �/ for some
group Ker."Y /, and it possesses an epimorphism pY W

zY ! Y (as a quandle covering);
see Example 2.3 for details. Then we show that the associated chain map ẑ 3 induces
an isomorphism

(2) . ẑ 3/�W H
Q
3
. zY /ŠH

gr
3
.Ker."Y //Z up to tY –torsion;

where tY 2N is the minimal number satisfying �tY D id (Theorem 2.10).

Needless to say, ˆ3 is not always an isomorphism for such quandles .G; �/; however,
from the universality of coverings, in some cases we can analyze the map ˆ3 as
follows.

We consider quandles Y of the form (Fq; �! ) with ! 2 Fq , referred to commonly
as Alexander quandles. Here we regard the finite field Fq as an additive group and
the symbol “ �!” denotes the !–multiplication of Fq . Fortunately, Mochizuki [19]
determined all the quandle 3–cocycles of Y , which are the most well-known quandle
cocycles so far. However, he found the 3–cocycles of Y by solving certain differential
equations over Fq , and his statement was not so simple (see Section 4.1). In this paper,
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we easily obtain and explain all his 3–cocycles on the basis of some group 3–cocycles
via the map ˆ�n (see (25) and Lemma 4.6). Moreover, we show that the third quandle
cohomology H 3

Q
.Y IFq/ is isomorphic to a sum of some group homologies via the

maps ˆ2 , ˆ3 and ẑ 3 (see Theorem 2.13 in detail). In conclusion, all the Mochizuki
3–cocycles stem from some group 3–cocycles via the three maps. Therefore, such
an approach using ˆ� is generally expected to be useful for finding valuable quandle
cocycles of the quandles .G; �/.

As an application of the isomorphism (2), we propose a relation to a partial sum of
some Dijkgraaf–Witten invariants of yC t

L , where yC t
L denotes the t –fold cyclic covering

space of S3 branched over a link L (see (10) for the detailed definition of the partial
sum, and denote it by DWZ

� .
yC t

L/2ZŒA�). To be specific, we show (Theorem 2.15) that
if the induced map p�

Y
W H 3

Q
.Y IA/!H 3

Q
. zY IA/ is surjective, and if Y is connected

and of finite order, then any group 3–cocycle � of the above group Ker."Y / admits
some quandle 3–cocycle  of Y for which the equality

(3) DWZ
� .
yC t

L/D I .L/ 2 ZŒA�

holds. Here I .L/ is the quandle cocycle invariant of links L [4] (see Remark 2.16
for some quandles satisfying the assumption on p�

Y
). While the equivalence of the

two invariants was implied in the previous paper [22] by abstract nonsense and the
proofs of (2) and (3) are based on some results in [22], the point of our results is that
the cocycle  is directly obtained from the chain map ẑ 3 .

Compared with [22], we emphasize that our theorem serves to compute some parts of
the Dijkgraaf–Witten invariants DWZ

� .
yC t

L
/ via the right invariant I .L/. A standard

way to compute the invariant is to find a fundamental class from a triangulation of
M (see Dijkgraaf and Witten [6] and Wakui [23]). However, presentations of group
3–cocycles are intricate in general. Hence most known computations of the Dijkgraaf–
Witten invariants are those with respect to abelian groups. However, in computing
them via the right invariant I .L/, we use no triangulation of M and many quandle
3–cocycles are simpler than group ones (in our experience).

In fact, in Section 5, we succeed in computing some of the formal sums DWZ
� .
yC t

L
/ by

using the Mochizuki 3–cocycles, which are derived from triple Massey products of
a meta-abelian group GX (see Proposition 4.7). For example, we will calculate the
cocycle invariants of the torus knots T .m; n/ (see Theorem 5.1); hence, we obtain the
partial sum DWZ

� of the Brieskorn manifold †.m; n; t/, which is the covering space
branched over the knot T .m; n/. As the special case ! D�1, we compute the cocycle
invariant of some knots K and thus obtain some values DWZ

� .
yC t

K
/ for the double

covering spaces branched along K (see Table 1 in Section 5.1).
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This paper is organized as follows. In Section 2, we introduce a lift of the Inoue–
Kabaya chain map and state our theorems. In Section 3, we prove Theorems 2.10 and
2.15. In Section 4, we show that Mochizuki 3–cocycles are derived from some group
3–cocycles. In Section 5, we calculate some partial sums of the Dijkgraaf–Witten
invariants.

Notation and convention Fq is a finite field of characteristic p> 0. H
gr
n .G/ denotes

the group homology of a group G with trivial integral coefficients. We assume that
manifolds are smooth, connected and oriented.

2 Results

In Section 2.3 and 2.4, we state our theorems. For this purpose, we briefly review
quandle homologies and their properties in Section 2.1, and we modify the Inoue–
Kabaya map in Section 2.2.

2.1 Review of quandles and quandle cohomologies

We start by recalling basic concepts about quandles. A quandle is a set X with
a binary operation .x;y/ ! x C y such that, for any x;y; z 2 X , x C x D x ,
.x C y/ C z D .x C z/ C .y C z/ and there exists a unique w 2 X such that
w C y D x . A quandle X is said to be of type tX if tX > 0 is the minimal number N

satisfying aD .� � � .a C b/ � � � /C b (N nested parentheses to the right of b ) for any
a; b 2X . The associated group As.X / of X is defined to be the group expressed by

As.X / WD hex j e
�1
xCye�1

y exey for x;y 2X i:

The group As.X / acts on X by the formula x �ey WD x C y for x;y 2X . If the action
is transitive, X is said to be connected. If we have a homomorphism "X W As.X /! Z
sending ex to 1, we get an exact group extension

(4) 0 �! Ker."X /
�
�! As.X /

"X
�! Z �! 0:

Next we introduce a subclass of quandles that we mainly investigate in this paper.

Definition 2.1 (Joyce [12, Section 4]) Fix a group G and a group isomorphism
�W G!G . Equip X DG with a quandle operation by setting

(5) g C h WD �.gh�1/h:
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Note that the quandle .G; �/ is of type tX if and only if tX is the smallest number for
which �tX D idG holds.

Although the .G; �/ only form a subclass of quandles, they include interesting examples:

Example 2.2 (Alexander quandle) Let X D G be an abelian group. Denoting �
by T , we can regard X as a ZŒT;T �1�–module. Then the quandle operation is
rewritten as

x C y WD T xC .1�T /y

and X is called an Alexander quandle. Given a finite field Fq and ! 2 F�q with !¤ 1,
the quandle X D Fq ŒT �=.T �!/ is called an Alexander quandle on Fq with ! .

The type tX of X equals the smallest n satisfying T n D 1 in X . We can easily check
that X is connected if and only if .1�T / is invertible.

Example 2.3 (Universal quandle covering) Given a connected quandle X , con-
sider the kernel G D Ker."X / in (4). Fix a 2 X . Using a group homomorphism
�aW Ker."X / ! Ker."X / defined by �a.g/ D e�1

a gea , we have a quandle zX D
.Ker."X /; �a/, called an extended quandle of X . We can easily check the independence
of the choice of a 2X up to quandle isomorphisms.

Considering the restriction of the action X Ô As.X / to Ker."X /, the map pX W
zX!X

sending g to a �g is known to be a quandle homomorphism (see [12, Theorem 4.1]),
and is called a (universal quandle) covering [7]. It can easily be seen that if X is of
type tX and of finite order, then so is zX . Furthermore, the quandle zX is connected
[22, Lemma 6.8].

Finally, we briefly review the quandle complexes introduced in [3]. Let X be a quandle.
Let us construct a complex by considering the free Z–module C R

n .X / spanned by
.x1; : : : ;xn/ 2X n and letting the boundary @R

n .x1; : : : ;xn/ 2 C R
n�1

.X / beX
2�i�n

.�1/i
�
.x1; : : : ;xi�1;xiC1; : : : ;xn/� .x1 C xi ; : : : ;xi�1 C xi ;xiC1; : : : ;xn/

�
:

The composite @R
n�1
ı @R

n is zero. The pair .C R
� .X /; @

R
� / is called a rack complex.

Let C D
n .X / be a submodule of C R

n .X / generated by n–tuples .x1; : : : ;xn/ with
xi D xiC1 for some i 2 f1; : : : ; n� 1g if n � 2; otherwise, let C D

1
.X / D 0. Since

@R
n .C

D
n .X // � C D

n�1
.X /, we can define a complex .C

Q
� .X /; @�/ by the quotient

C R
n .X /=C

D
n .X /. The homology H

Q
n .X / is called the quandle homology of X .

Dually, we can define the cohomologies H n
R
.X IA/ and H n

Q
.X IA/ where A is a

commutative ring.
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However, the second term of the differential @R
n seems to be incomprehensible. In the

next subsection, for quandles of the form .G; �/, we give another simple definition
of @R

n .

2.2 A lift of Inoue–Kabaya chain map

We now construct a chain map (7) with respect to a class of quandles in Definition 2.1.
Our construction is a modification of the Inoue–Kabaya map [11, Section 3] (see the
Remark below).

In this subsection, we often denote �.x/ by x� and �n.x/ by xn� , respectively.

For a quandle X of the form .G; �/ in Definition 2.1, we will reformulate the rack
complex C R

n .X / .Š ZhGni/ in non-homogeneous coordinates. To be specific, we
consider a module isomorphism ‡ W C R

n .X /Š C R
n .X / derived from the bijection

(6) ‡ W .x1; : : : ;xn/ 7! .x1x�1
2 ;x2x�1

3 ; : : : ;xn�1x�1
n ;xn/;

and we define another differential @RG
n W C

R
n .X / ! C R

n�1
.X / to be the composite

�‡ ı @R
n ı‡

�1 . Then a direct calculation shows the following:

Lemma 2.4 For generators .g1; : : : ;gn/ 2 C R
n .X /, the differential @RG

n is

@RG
n .g1; : : : ;gn/D

X
1�i�n�1

.�1/i
�
.g1; : : : ;gi�1;gigiC1;giC2; : : : ;gn/

� .g
�
1
; : : : ;g

�
i�1
;g
�
i giC1;giC2; : : : ;gn/

�
:

When we discuss this @RG
n , we often denote the module C R

n .X / by C RG
n .X /. We also

define a subcomplex Dn.G/ generated by n–tuples .g1; : : : ;gn/ such that gi D 1 for
some i � n� 1. We denote the quotient complex C RG

n .G/=Dn.G/ by C QG
n .X /. Its

homology H QG
n .X / is isomorphic to the quandle homology H Q

n .X / in Section 2.1.

Next we give a brief review of the normalized chain complexes C
gr
n .G/ of groups

in non-homogeneous terms (see Brown [2]) as follows: Let C
gr
n .G/ denote the free

Z–module generated by Gn , and let its boundary map @gr
n .g1; : : : ;gn/ 2 C

gr
n�1

.G/ be

.g2; : : : ;gn/C
X

1�i�n�1

.�1/i.g1; : : : ;gi�1;gigiC1;giC2; : : : ;gn/

C .�1/n.g1; : : : ;gn�1/:

We can easily check that @gr
n .Dn.G//�Dn�1.G/ for the submodule Dn.G/ mentioned

above. Let C
gr
n .G/ denote the quotient complex of C

gr
n .G/ modulo Dn.G/. As is well

known, the associated homology H.C
gr
� .G// coincides with the usual group homology

of G (see [2, Section I.5]).

We now construct a chain map 'n from the complex C
RG
n .X / to C

gr
n .G/.
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Definition 2.5 Assume that a quandle X of the form .G; �/ is of type tX . Take a set

Kn WD f.k1; : : : ; kn/ 2 Zn
j 0� ki�1� ki � 1; 0� kn � tX � 1g

of order tX 2n�1 . We define a homomorphism 'nW C
RG
n .X /! C

gr
n .G/ by setting

'n.g1;g2; : : : ;gn/D
X

.k1;:::;kn/2Kn

.�1/k1�kn
�
g

k1�
1
;g

k2�
2
; : : : ;gkn�

n

�
2 C

gr
n .G/:

For example, when nD 3, '3.x;y; z/ is written as

(7)
X

0�i�tX�1

.xi�;yi�; zi�/� .x.iC1/�;yi�; zi�/

� .x.iC1/�;y.iC1/�; zi�/C .x.iC2/�;y.iC1/�; zi�/:

Proposition 2.6 Let X be a quandle of the form .G; �/. If X is of type tX <1,
then the homomorphism 'nW C

RG
n .X / ! C

gr
n .G/ is a chain map. To be specific,

@
gr
n ı'n D 'n�1 ı @

RG
n .

Furthermore, the image of Dn.G/ under this map is zero. The 'n induce a chain map
from the quotient C

QG
n .X / to C

gr
n .G/ and a homomorphism H

QG
n .X /!H

gr
n .G/.

Proof Since the identity @
gr
n ı 'n D 'n�1 ı @

RG
n is proven similarly those in [11,

Lemma 3.1] or [21, Appendix], we defer the details to the Appendix. It is easy to check
the latter part directly by using the definitions.

We realize an easy construction of quandle cocycles from group cocycles:

Corollary 2.7 Let a quandle X D .G; �/ be of type tX . For any normalized group
n–cocycle � of G , the pullback '�n .�/ is a quandle n–cocycle.

Remark We roughly compare our map 'n with a chain map 'IK introduced by Inoue
and Kabaya [11]. For any quandle Q, they constructed a complex C�

n .Q/ from a
simplicial object and formulated the map 'IKW C

R
n .Q/! C�

n .Q/ in its homogeneous
coordinate system (see [11, Section 3] for details).

To see this in greater detail, we define a module C
gr
n .G/Z as the quotient of C

gr
n .G/

modulo the relation .g1; : : : ;gn/D .�.g1/; : : : ; �.gn//, called the Z–coinvariant of
C

gr
n .G/. Let �� denote the projection C

gr
n .G/! C

gr
n .G/Z . We can see that if Q is a

connected quandle of the form .G; �/, then the above complex C�
n .Q/ is isomorphic

to the coinvariant C
gr
n .G/Z ; further, we can check the equality tX �'IK D �� ı'n . In

summary, our map 'n is of a lift of the Inoue–Kabaya map 'IK in connected cases
and is relatively simple. Therefore we fix some notation:
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Definition 2.8 Let ˆn be the composite chain map �� ı'nW C
QG
n .X /! C

gr
n .G/Z ,

that is,
ˆnW C

QG
n .X /

'n
�! C

gr
n .G/

��
�! C

gr
n .G/Z:

Incidentally, we prepare a “reduced map” of the ˆn , which is used temporarily in
Theorem 2.15. Consider a homomorphism P W C RG

n .X /! C RG
n�1.X / derived from a

map X n!X n�1 sending .x1; : : : ;xn/ to .x1; : : : ;xn�1/. We discuss the composite
ˆn�1 ıP :

Proposition 2.9 Let X be a quandle .G; �/ of type tX . The composite

ˆn�1 ıP W C RG
n .X /! C

gr
n�1

.G/Z

is a chain map. Furthermore, it induces a chain map from the quotient C
QG
n .X / to

C
gr
n�1

.G/Z .

Proof From the definitions, first note that

.@
RG

n�1
ıP �P ı @RG

n /.g1; : : : ;gn/D .�1/n
�
.g1; : : : ;gn�2/� .g

�
1
; : : : ;g

�
n�2

/
�
:

The map ˆn�1 sends this element to zero by the definitions of Kn and 'n . Here, we
use �tX .g/D g for any g 2 G . Since 'n is a chain map (Proposition 2.6), so is the
composite.

2.3 Results on the chain map ˆ3

We now study the chain map ˆn with nD 3 (see Theorems 2.10, 2.13).

First we study the maps ˆn with respect to extended quandles in Example 2.3.

Theorem 2.10 Let X be a connected quandle of type tX , and let zX D .Ker."X /; �a/

be the extended quandle in Example 2.3. Let ẑ n denote the chain map in Definition 2.8.
Assume that the H

gr
3
.As.X // is finitely generated (eg X is of finite order). Then the

induced map
. ẑ 3/�W H

Q
3
. zX /!H

gr
3
.Ker."X //Z

is an isomorphism modulo tX –torsion.

Remark 2.11 We can compare this theorem with [22, Theorem 3.18], which states the
existence of an isomorphism H Q

3
. zX /ŠH gr

3
.As.X // modulo tX . Later, in Lemma 3.4,

we obtain a canonical isomorphism H gr
3
.As.X //ŠH gr

3
.Ker."X //Z modulo tX . Thus

this theorem says that the chain map . ẑ 3/� gives an explicit presentation of this
isomorphism.
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Next, as a special case, we focus on the Alexander quandles on Fq in Example 2.2.
Using the maps ˆn , we will characterize the third quandle cohomology from group
homologies. Identifying X D Fq with .Zp/

h as an additive group, let �W Fq ! Fq

denote the multiplication by ! . Then we have a chain map ˆ�nW C
n
gr..Zp/

h/Z!C n
Q
.X /

and will later show the following:

Proposition 2.12 Let X be an Alexander quandle on Fq with ! as in Example 2.2.
Let q D ph . The induced map ˆ�

3
W H 3

gr..Zp/
hIFq/

Z!H 3
Q
.X IFq/ is injective.

Furthermore, if H
Q
2
.X / vanishes, then this ˆ�

3
is an isomorphism.

In general, this ˆ�
3

is not surjective. To get around the obstruction H
Q
2
.X /, we

consider the chain map ẑ nW C
Q
n .
zX /! C gr

n .Ker."X //Z with respect to the extended
quandle (Example 2.3). As seen in Section 4, the abelianization of Ker."X / is given by
ProjW Ker."X /! .Zp/

h (as a set-theoretic projection). Then we obtain a commutative
diagram:

H n
gr..Zp/

hIFq/
Z

ˆ�n //

Proj�

��

H n
Q
.X IFq/

p�
X

��

H n
gr.Ker."X /IFq/

Z
ẑ�

n // H n
Q
. zX IFq/

We remark that when nD 3, the bottom map ẑ�
3

is an isomorphism by Theorem 2.10.
Let res. ẑ�

3
/ denote the isomorphism restricted to the cokernel Coker.Proj�/. In

addition, we take the chain map ˆn�1 ıP W C QG
n .X /! C

gr
n�1

.G/Z in Proposition 2.9.

To summarize these homomorphisms, we characterize the third quandle cohomology
of X :

Theorem 2.13 Let X be an Alexander quandle on Fq . Let q D ph be odd. Then
there is a section sW H 3

Q
. zX IFq/!H 3

Q
.X IFq/ of p�

X
such that the following homo-

morphism is an isomorphism:

(8) .ˆ2 ıP/�˚ˆ�3˚
�
s ı res. ẑ�3/

�
W

H 2
gr..Zp/

h
IFq/

Z
˚H 3

gr..Zp/
h
IFq/

Z
˚Coker.Proj�/!H 3

Q.X IFq/:

The proof will appear in Section 4. Although the paper [22, Theorem 3.16] showed the
existence of an isomorphism

H 3
Q.X IFq/ŠH

gr
3
.As.X //˚

�
H

Q
2
.X /^H

Q
2
.X /

�
;
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this theorem gives an explicit formulation of the isomorphism in some sense, and
implies clearly that all the Mochizuki 3–cocycles are derived from group 3–cocycles
of .Zp/

h and Ker."X / via the chain map ˆn .

Incidentally, at a higher degree, we now observe that the induced map .'n/�W H
Q
n .X /!

H
gr
n .G/ is far from injective and surjective.

Example 2.14 To see this, we let qDp and examine the chain map 'n with respect to
an Alexander quandle X on Fp in Example 2.3. There we see that Ker."X /Š Zp (cf
(20)); hence H n

gr.ZpIFp/Š Fp for any n 2N . Nosaka [20] showed that the integral
quandle homology H Q

n .X / is .Zp/
bn , where bn 2 Z is determined by the recurrence

formula

bnC2t D bnC bnC1C bnC2; b1 D b2 D � � � D b2t�2 D 0 and b2t�1 D b2t D 1;

and t > 0 is the minimal number satisfying !t D 1. In conclusion, since the bn grow
exponentially, the map .'n/� is not bijective.

2.4 Shadow cocycle invariant and Dijkgraaf–Witten invariant

We address a topological relation between the shadow cocycle invariant [4] and
the Dijkgraaf–Witten invariant [6]. We will review both the invariants and state
Theorem 2.15.

First, to describe the former invariant, we review X–colorings. Given a quandle X , an
X–coloring of an oriented link diagram D is a map CW farcs of Dg ! X satisfying
the condition on the left-hand side of Figure 1 at each crossing of D . Let ColX .D/
denote the set of all X–colorings of D . Note that two diagrams D1 and D2 related
by Reidemeister moves admit a 1:1 correspondence ColX .D1/$ ColX .D2/; see [3;
4] for details.

We define a shadow coloring to be a pair consisting of an X–coloring C and a map
� from the complementary regions of D to X such that, if regions R and R0 are
separated by an arc ˛ as shown on the right-hand side of Figure 1, the equality
�.R/C C.˛/D �.R0/ holds. Let ColX .D/ denote the set of shadow colorings of D .
Given an X–coloring C , we put x0 2 X on the region containing a point at infinity.
Then, by the rules in Figure 1, the colors of other regions are uniquely determined,
and they ensure a shadow coloring S denoted by .CIx0/. Thus, we obtain a bijection
ColX .D/�X ' ColX .D/ sending .C;x0/ to S D .CIx0/.

We briefly formulate (shadow) quandle cocycle invariants [4]. Let D be a diagram
of a link L, and let S 2 ColX .D/ be a shadow coloring. For a crossing � shown in
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˛ ˇ


 C.˛/C C.ˇ/D C.
 /

˛

R

R0

�.R/C C.˛/D �.R0/

Figure 1: Coloring conditions at each crossing and around arcs. In this paper,
we describe orientations of links as normal orientations.

Figure 2, we define a weight of � to be �� .x;y; z/ 2 C Q
3
.X IZ/, where �� 2 f˙1g is

the sign of � according to Figure 2. Then, the fundamental class of S is defined to beP
��� .x;y; z/2C Q

3
.X IZ/, and it is known to be a 3–cycle. We denote the homology

class by ŒS �. For a quandle 3–cocycle  2 C 3
Q.X IA/, we consider the pairing

h ; ŒS �i2A. If X is of finite order, the formal sum I .L/ WD
P

S2ColX .D/ 1Zfh ; ŒS �ig
in the group ring ZŒA� is called the quandle cocycle invariant of L, where the symbol
1Zfag 2ZŒA� denotes the generator corresponding to a 2A. By construction, in order
to calculate the invariant concretely, it is important to find explicit formulas for quandle
3–cocycles.

x

y z

x

z

y

Figure 2: Positive and negative crossings with X–colors

On the other hand, we will briefly formulate a Dijkgraaf–Witten invariant below (10).
For a link L, let yC m

L denote the m–fold cyclic covering space of S3 branched over L.
Note that Z canonically acts on the space yC m

L by covering transformations. According
to [22], when X is connected and of type t , for an X–coloring of L, we can construct
a Z–equivariant homomorphism �C W �1. yC

t
L/! Ker."X /, where Z acts on Ker."X /

via the homomorphism �a in Example 2.3; see Section 3.1 for the definition of �C . In
summary, given a link-diagram D , we have a map

(9) ��W ColX .D/! HomZ
gr
�
�1. yC

t
L/;Ker."X /

�
;

where the right-hand side is the set of the Z–equivariant group homomorphisms
�1. yC

t
L/! Ker."X /. Furthermore, consider the pushforward of the fundamental class

Œ yC t
L� 2 H3. yC

t
L/ via the induced map .�C/�W H3. yC

t
L/! H gr

3
.Ker."X //. Using this,

with respect to a Z–invariant 3–cocycle � of Ker."X /, we define a Z–equivariant

Algebraic & Geometric Topology, Volume 14 (2014)



2666 Takefumi Nosaka

part of the Dijkgraaf–Witten invariant of yC t
L

by the formula

(10) DWZ
� .
yC t

L/D
X

C2ColX .D/

˝
�; .�C/�.Œ yC

t
L�/
˛
2 ZŒA�:

We remark that this invariant depends on the link L, and not on only the topological
type of the cyclic branched coverings space yC t

L with the Z–action on their fundamental
group. Actually, in general, the map (9) is not surjective.

Next we state that with respect to a connected quandle that satisfies a certain assumption,
the two invariants explained above are equivalent (see Section 3 for the proof).

Theorem 2.15 Let X be a finite connected quandle of type tX . Assume that an abelian
group A contains no tX –torsion, and the induced map p�X W H

3
Q.X IA/!H 3

Q.
zX IA/ is

surjective. Then any Z–invariant 3–cocycle � of Ker."X / admits a quandle 3–cocycle
 of X , which ensures the equality

I .L/D jX j �DWZ
� .
yC

tX
L
/ 2 ZŒA�:

Conversely, given a quandle 3–cocycle  of X , there is a Z–invariant group 3–cocycle
� of Ker."X / for which the equality holds.

Remark 2.16 As seen in in Section 3.2, for some quandles, we can obtain the quandle
cocycle  in Theorem 2.15 concretely from a group 3–cocycle � . For instance, if
pX W

zX ! X is an isomorphism, then  is given by '�
3
.�/. As another example,

for Alexander quandles on Fq , the relations between  and � are given by explicit
formulas (see Section 4.2 in detail).

As mentioned in the introduction, the homotopical equivalence of the two invariants
was implied in [22]. However, this theorem gives the equivalence explicitly in the
cohomological viewpoint and hence it serves to compute some parts of the Dijkgraaf–
Witten invariants DW�. yC

tX
L
/ via the quandle cocycle invariants I .L/.

To conclude, under the assumption on the p�
X

, the invariant DWZ
� .
yC t

L/ constructed
from any Z–invariant 3–cocycle � of Ker."X / can be computed from the quandle
cocycle invariants via link-diagrams. Fortunately, there are some quandles satisfying
the assumption of the surjectivity of p�

X
: for example, connected Alexander quandles

X such that the order jX j is odd or tX is even [22, Lemma 9.15], and “symplectic
quandles X over Fq ” with g D 1 [22, Section 3.3].

In contrast, other quandles do not satisfy the assumption. In fact, with respect to
symplectic quandles X with g > 1 in a stable range, which are of type p , it has been
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shown [22, Section 3] that

H gr
3 .Ker."X //ŠH gr

3 .Sp.2gIFq//Š Z=q2
� 1 and H Q

3 .X /Š 0:

Hence the invariant DWZ
� .
yC

tX
L
/ can not always be interpreted from shadow cocycle

invariants.

3 Proofs of Theorems 2.10 and 2.15

We will prove Theorems 2.10 and 2.15. The idea of the proofs is, roughly speaking,
to reduce of the chain map '3 to two homomorphisms from a certain group …2. zX /.
As was shown in [22], the homomorphisms are isomorphisms in some cases, which
play roles in the proofs. Thus Section 3.1 reviews the group …2.X / and the two
homomorphisms. In Section 3.2, we prove the theorems using the homomorphisms
and a key lemma. In Section 3.3, we give a proof of the key lemma. Readers who are
interested in only Theorem 2.13 may skip to Section 4.

3.1 Review of two homomorphisms �X;x0
and ‚X

We construct the two homomorphisms that appear in (11) and (12) below. For this,
we start by reviewing the group …2.X / defined in [8; 9]. Consider the set of all
X–colorings of all link-diagrams. We define …2.X / to be the quotient set subject to
Reidemeister moves and concordance relations illustrated in Figure 3. Disjoint unions
of X–colorings make …2.X / into an abelian group. For a connected quandle X of
finite order, the group …2.X / has been well-studied (see Theorem 3.1 below).

a

a

aa

a

�

Figure 3: The concordance relations

Next we will explain the first homomorphism (11). Recall from Section 2.4 that given
an X–coloring C and x0 2X , we can construct a shadow coloring of the form .CIx0/

and the fundamental class Œ.CIx0/� contained in H Q
3
.X /. We easily see that if two

X–colorings C , C0 are related by Reidemeister moves and concordance relations, then
the associated classes Œ.CIx0/�, Œ.C0Ix0/� are equal in H Q

3
.X / by definition. Hence

we obtain a homomorphism

(11) �X ;x0
W …2.X /!H

Q
3
.X /; C 7! Œ.CIx0/�:
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We will now explain the second ‚X , which appears in (12). To this end, we first
examine the fundamental group of the t –fold cyclic branched covering yC t

L . Given
a link-diagram D of L, let 
0; : : : ; 
n be the arcs of D . Consider the Wirtinger
presentation of �1.S

3 nL/ generated by 
0; : : : ; 
n . For s 2 Z, we take a copy 
i;s

of the arc 
i . Then by the Reidemeister–Schreier method (see [13, Section 3] for the
details), the group �1. yC

t
L
/ can be presented by

generators 
i;s .0� i � n, s 2 Z/

relations 
k;s D 

�1

j ;s�1
i;s�1
j ;s for each crossing in the figure below

i;s D 
i;sCt ; 
0;s D 1


i 
j


k


j 
k


i

Let X be a connected quandle of type t . Given an X–coloring C 2ColX .D/, we denote
the color on the arc 
i by xi 2 X . Define a group homomorphism �C W �1. yC

t
L/!

Ker."X / by setting
�C.
i;s/ WD es�1

x0
exi

e�s
x0

(this is well-defined; see [22, Section 4]). Furthermore, considering the fundamental
class, Œ yC t

L�, in H3. yC
t
L/, it gives a (group) homology class in H

gr
3
.�1. yC

t
L//. We

often denote the pushforward of this homology class under .�C/� by .�C/�.Œ yC t
L�/ 2

H gr
3
.Ker."X // in abuse of notation. We thus obtain a map

�X ;D W ColX .D/!H
gr
3
.Ker."X //; C 7! .�C/�.Œ yC

t
L�/:

As is shown [22], if two X–colorings C; C0 can be related by Reidemeister moves
and concordance relations, then �X ;D.C/D �X ;D0.C0/. Therefore the maps �X ;D with
respect to all diagrams D yield a homomorphism

(12) ‚X W …2.X /!H
gr
3
.Ker."X //:

This ‚X plays an important role in the study of the group …2.X / up to t –torsion.

Theorem 3.1 [22, Theorems 3.4 and 3.18]1 Let X be a connected quandle of type
tX . Recall the inclusion �W Ker."X /! As.X / in (4). If the homology H gr

3
.As.X // is

finitely generated, then �� ı‚X W …2.X /!H gr
3
.As.X // is a split surjection modulo

tX –torsion, whose kernel is isomorphic to H Q
2
.X / modulo tX –torsion.

Furthermore, the induced map .pX /�W …2. zX /!…2.X / is a split injection modulo
tX –torsion, and this cokernel is isomorphic to the kernel of the composite �� ı‚X .

1In [22], the maps ‚X and �� ı‚X were denoted by ‚…� , ‚X , respectively.
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3.2 A key lemma and proofs of Theorems 2.10 and 2.15

For the proofs, we state a key lemma. We here fix terminology: A (shadow) zX –coloring
of D is said to be based if an arc 
0 of D is colored by the identity 1Ker."X / 2

zX .

Lemma 3.2 (cf [13, Theorem 9.1]2) Let X be a connected quandle of type tX <1,
and let pX W

zX ! X be the projection in Example 2.3. Take the chain isomorphism
‡ W C R

3
. zX / ! C RG

3
. zX / described in (6). Let S 2 Col zX .D/ be a based shadow

coloring. Let zC 2 Col zX .D/ be the restriction of S 2 Col zX .D/. Then

‚X .ŒpX . zC/�/D '3 ı‡.ŒS �/ 2H
gr
3
.Ker."X //:

Before proving the lemma, we will complete the proofs of Theorems 2.10 and 2.15.

Proof of Theorem 2.10 As mentioned in Remark 2.11, there is an isomorphism
H Q

3
. zX /ŠH gr

3
.As.X // up to tX –torsion, as finitely generated Z–modules. Hence,

in order to prove that the map . ẑ 3/� is an isomorphism, it is enough to show it is
surjective. To this end, we set the composite of the three homomorphisms mentioned
above:

…2. zX /
.pX /�
����!…2.X /

‚X
��!H

gr
3
.Ker."X //

��
�!H

gr
3
.As.X //:

It follows from Theorem 3.1 that this composite is an isomorphism up to tX –torsion.
Note that Lemma 3.4 below ensures the existence of an isomorphism

�W H
gr
3
.As.X //!H

gr
3
.Ker."X //Z

such that �ı��D tX �.��/� , where �� is the projection C
gr
3
.Ker."X //!C

gr
3
.Ker."X //Z

explained in Section 2.2. Hence, the following composite is an isomorphism up to
tX –torsion as well:

.��/� ı‚X ı .pX /�W …2. zX / �!H
gr
3
.Ker."X //Z:

Therefore, for any 3–cycle K 2 H
gr
3
.Ker."X //Z that is annihilated by tX , we can

choose some based zX –coloring zC such that KD .��/� ı‚X ı .pX /�.Œ zC�/. We here
set a shadow coloring S of the form . zCI 1 zX /. Then by the key Lemma 3.2, we notice
the equalities

ẑ
3.‡.ŒS �//D .��/� ı .'3 ı‡/.ŒS �/D .��/� ı‚X

�
pX .Œ zC�/

�
DK:

Since K is arbitrary, we obtain the surjectivity of ẑ 3 as required.

2Kabaya [13] showed a similar statement under a certain strong condition of quandles. However,
as seen in the proofs of Theorems 2.10 and 2.15, in order to verify a relation to the Dijkgraaf–Witten
invariant, we may deal with only the extended quandle zX in Example 2.3, which may not satisfy the
strong condition. The point is that Kabaya’s condition (16) is strong and does not hold in most cases.

Algebraic & Geometric Topology, Volume 14 (2014)



2670 Takefumi Nosaka

Proof of Theorem 2.15 We first construct two homomorphisms (13), (14) below. Let
X be a finite connected quandle of type tX . Given a Z–invariant group 3–cocycle � ,
consider a composite homomorphism from …2.X /:

(13) …2.X /
‚X
��!H

gr
3
.Ker."X //

h�;�i
���!A:

On the other hand, by the assumption that

p�X W H
3
Q.X IA/!H 3

Q.
zX IA/

is surjective, we can choose a quandle cocycle  2 H 3
Q
.X IA/ such that p�

X
. / D

.'3 ı‡/
�.�/. We then set a composite homomorphism

(14) …2.X /
Œ�Ix0�
����!H

Q
3
.X /

h ;�i
���!A:

We remark that this kernel contains the kernel of ‚X by Theorem 3.1, since A contains
no tX –torsion by assumption.

Next we claim the equivalence of the two maps (13) and (14). For this, we choose zX –
colorings zC1; : : : ; zCn that generate …2. zX /; here we may assume that these colorings
are based by Lemma 3.3 below. Notice that, by Theorem 3.1, the group …2.X / is
generated by the kernel Ker.��ı‚X / and the elements pX . zC1/; : : : ;pX . zCn/. Therefore,
the claimed equivalence results from the equalities˝

�;‚X .pX . zCi/
˛
D
˝
�; '3 ı‡

�
Œ. zCi I zx0/�

�˛
D
˝
p�X . /; Œ.

zCi I zx0/�
˛
D
˝
 ;
�
pX . zCi/IpX .zx0//

�˛
;

where the first equality is obtained from Lemma 3.2.

We further show the equivalence of the two invariants as stated in Theorem 2.15. By
definition, these invariants are reformulated as

DWZ
� .
yC

tX
L
/D

X
C2ColX .D/

1Zfh�;‚X .C/ig;

I .L/D
X
x2X

X
C2ColX .D/

1Zfh ; ŒCIx�/g 2 ZŒA�:

We know that I .L/D jX j
P

C2ColX .D/1Zfh ; ŒCIx0�/g for any x0 2 X [11, Theo-
rem 4.3]. In conclusion, since the homomorphisms (13), (14) are equal as claimed
above, so are the two invariants.

Finally, to prove the latter part of Theorem 2.15, recall that the map ẑ 3 is an iso-
morphism after tensoring by A (Theorem 2.10). So, given a quandle 3–cocycle  ,

Algebraic & Geometric Topology, Volume 14 (2014)



On third homologies of groups and of quandles 2671

we define a Z–invariant group 3–cocycle � of Ker."X / to be .‡ ı ẑ�3/
�1.p�X . //.

Hence, by a similar argument as above, we have the desired equality

I .L/D jX j �DWZ
� .
yC

tX
L
/:

3.3 Proof of the key lemma

We will prove Lemma 3.2 as a modification of [13, Theorem 9.1].

For this purpose, we review descriptions in [13, Section 4] to formulate concretely the
orientation class Œ yC t

L
�2H3. yC

t
L
IZ/ of the branched covering space yC t

L . Let c0; : : : ; cn

be the crossings of the diagram D . For each crossing ci , we can construct 4 tetrahedra
T .u/

i �S3 with 1�u� 4, and further decompose the 3–sphere S3 into these 4.nC1/

tetrahedra. Furthermore, set up 4t tetrahedra T .u/
i;s that correspond to lifts of T .u/

i ,
where 0� s < t and 1� u� 4, and consider the action of Z=t on the set fT .u/

i;s gi;s;u

defined by .T .u/
i;0
/�sD T .u/

i;s . Let us fix the orderings of the vertices of T .u/
i;s following

Kabaya in [13, Figure 8]. There, Kabaya glued each of the tetrahedra T .u/
i;s along

appropriate boundary triangles of other tetrahedra (see [13, Figures 7 and 14]). Then he
showed that the resulting union

S
i;s;uT .u/

i;s is homeomorphic to the branched covering
space yC t

L , that the homeomorphism is compatible with the orientations and the Z–
actions, and that, in particular, the formal sum

P
i;s�i.T

.1/
i;s � T .2/

i;s � T .3/
i;s C T .4/

i;s /

represents the orientation class Œ yC t
L
�, where �i 2 f˙1g is the sign of the crossing ci .

Moreover, he examined the pushforward f�.Œ yC t
L�/ with respect to a homomorphism

f W �1. yC
t
L/! G as below. Let us set up some situations to give a labeling of the

tetrahedron T .u/
i;s by a group G . Let us take the generators 
i;s 2�1. yC

t
L/ in Section 3.1,

and assume we have the identities

(15)
f .
k;s/D f .
j ;s�1/

�1f .
i;s/f .
j ;s/ .i; j ; k as in Figure 2, s D 1; : : : ; t/;

f .
0;1/D f .
0;2/D � � � D f .
0;t /D 1G :

Also, consider a map L W fT .u/
i;s gi;s;u!G3 satisfying the conditions

(16) L.T .1/
i;s / �f .
i;s/D L.T .3/

i;sC1
/; L.T .2/

i;s / �f .
i;s/D L.T .4/
i;sC1

/ 2G3;

where the symbol � means the diagonal multiplication. We assume that if a point
x 2 yC t

L
is contained as a vertex in two tetrahedra, then the two images of x under L

are equal in G .

Condider the constant map IW fT .u/
i;s gi;s;u!G that sends all elements to the identity

of G . We here regard the product I �L as a labeling of vertices in T .u/
i;s according

to the vertices of the ordering. As is seen in [6; 23], we have a (simplicial) map from
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the 1–skeleton of the union
S

i;s;u T .u/
i;s to the Eilenberg–MacLane space K.G; 1/;

hence we have a group homomorphism from �1.Œ yC
t
L�/ to G . Then, as a result of

[13, Section 4], the condition (16) implies that this homomorphism coincides with the
original f . In what followed, the pushforward f�.Œ yC t

L
�/ was shown to be represented

by the formula

(17) ‡

� X
0�i�n

X
0�s<t

L
�
�i

�
T .1/

i;s �T .2/
i;s �T .3/

i;s CT .4/
i;s

���
2 C

gr
3
.G/;

where ‡ W C gr
n .G/! C

gr
n .G/ is the isomorphism defined in (6).

Proof of Lemma 3.2 We will prove the lemma by expressing the left-hand side
‚X .pX . zC// in detail. We later denote the X–coloring pX . zC/ by C for short.

Starting from the based shadow zX –coloring S , we will define a labeling L compatible
with the group homomorphism �C W �1. yC

t
L/! Ker."X / in (9). For each crossing ci ,

let .g; h; k/ 2 zX 3 DKer."X /3 be the weight of ci . Using the quandle structure on zX ,
we then define a map LW fT .u/

i;s gs;i;u! Ker."X /3 D zX 3 by

L.T .1/
i;s / WD .gs�1; hs�1; ks�1/; L.T .2/

i;s / WD .gs�1 C hs�1; hs�1; ks�1/;

L.T .3/
i;s / WD .gs C ks; hs C ks; ks/; L.T .4/

i;s / WD ..gs C hs/C ks; hs C ks; ks/;

where we temporarily use notation gs WD es
age�s

a 2 Ker."X / for short.

We will verify the equalities (16) for this L in order to apply �C to f . From the
definition of the action X Ô As.X /, we notice an equality epX .k/D ea�k D k�1eak 2

As.X / for any k 2 zX . In addition, we note .pX /�.S.
0//D pX .1 zX /D a 2X since
the S is based by assumption. Hence, using the generator 
i;s 2 �1. yC

t
L
/, we have

(18) �C.
i;s/D .ea/
s�1ea�S.
i /e

�s
a D .ea/

s�1epX .k/e
�s
a D es�1

a k�1eake�s
a :

Using (18) we see that for any b 2X , we have the identity

.es�1
a be1�s

a / ��C.
i;s/D es
a.b C k/e�s

a 2 Ker."X /:

Plugging the three cases b D g , b D h or b D g C h into this identity establishes
condition (16).

Hence the labeling L yields the homomorphism �C W �1. yC
t
L/! As.X /. Actually, the

homomorphism f D �C satisfies (15) by definition, and it is not hard to see that the
labels L of any two vertexes that are identified in the union

S
i;s;u T

.u/
i;s are exactly

equal, where we follow the description of the tetrahedra by Kabaya [13, Section 3, 4].
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Finally, we discuss the pushforward of the orientation class .�C/�.Œ yC t
L
�/2C

gr
3
.Ker."X //.

We first check that, for any x;y; z 2 zX D Ker."X /, we have

�‡�1
ı'3 ı‡.x;y; z/

D

X
1�s�t

.xs;ys; zs/� .xs C ys;ys; zs/� .xs C zs;ys C zs; zs/

C ..xs C ys/C zs;ys C zs; zs/:

This verification is easily obtained by recalling the definitions of '3 in Definition 2.5
and ‡ in (6). Hence, comparing with the map L, we immediately have the equality

�‡�1
ı'3 ı‡.ŒS �/D

X
i

X
s

L
�
�i

�
T .1/

i;s �T .2/
i;s �T .3/

i;s CT .4/
i;s

��
2 C

gr
3
.Ker."X //

exactly. Notice that the right-hand side is the push-forward ‡�1..�C/�.Œ yC
t
L
�// by (17).

Hence, from the definition of ‚X , we conclude the desired equality in Lemma 3.2.

We now provide proofs of the two lemmas which we used above.

Lemma 3.3 Let X be a connected quandle. Any element in …2. zX / is represented by
a class of some based zX –coloring.

Proof Let C be an zX –coloring representing the element and h 2 zX be the X–color
of the arc 
0 . Since the extended quandle zX is also connected [22, Lemma 9.15], we
have g1; : : : ;gn 2

zX such that .� � � .h C g1/C � � � /C gnD 1 zX . Then, by considering
the following picture, we can change C to another zX –coloring C0 of D such that the
arc 
0 is colored by h C g1 and that ŒC�D ŒC0� 2…2. zX /.


0
h

D D D D 2…2.X /C C

h

g1 C
h

g1

C0

h C g1

g1

C0

h C g1

Here the first and forth equalities are obtained from the concordance relation, and in
the second (resp. third) equality, the loop colored by g1 passes under (resp. over) all
the arcs of D . Note that here we only use Reidemeister moves. Hence, iterating this
process, we have a based zX –coloring C.n/ of D such that ŒC�D ŒC.n/� 2…2. zX /.

Lemma 3.4 Let X be a connected quandle of type tX . Let �W Ker."X /! As.X / be
the inclusion (4), and ��W C

gr
3
.Ker."X //! C

gr
3
.Ker."X //Z be the projection. Then

there is an isomorphism �W H
gr
3
.As.X //!H

gr
3
.Ker."X //Z modulo tX –torsion such

that � ı �� D tX � .��/� .
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Proof Fix x 2X and consider the subgroup hentX
x in2Z of As.X /, which is contained

in the center (see [22, Lemma 4.1]). Define the quotient QX WDAs.X /=hentX
x in2Z . By

the Lyndon–Hochschild spectral sequence, the projection P induces an isomorphism
P�W H

gr
3
.As.X //ŠH

gr
3
.QX / up to tX –torsion, since H

gr
2
.As.X // is annihilated by tX

[22, Corollary 6.4]. Furthermore, noting the group extension Ker."X /!QX !Z=tX ,
the transfer gives an isomorphism T W H gr

3
.QX /!H

gr
3
.Ker."X //Z modulo tX ; see [2,

Section III.10]. Hence, denoting T ıP� by � , we have the equality � ı �� D tX � .��/�
by construction.

4 Proofs of Proposition 2.12 and Theorem 2.13

The outline of the proofs of Proposition 2.12 and Theorem 2.13 is as follows. A basis for
the third cohomology of an Alexander quandle over Fq was found by Mochizuki [19],
which we review in Section 4.1. We will see that it is enough to show that the map in
(8) is surjective. So we will construct group 3–cocycles of As.X / as preimages of the
basis via the chain maps ˆ3 and ẑ 3 (see Section 4.2).

To implement this outline, we start by reviewing a simple presentation of As.X /,
where X of a connected Alexander quandle, according to Clauwens [5]. Consider
a tensor product X ˝X over Z to be an abelian group. Define a homomorphism
�X W X ˝X !X ˝X by

�X .x˝y/D x˝y �Ty˝x:

We equip a product Z�X �Coker.�X / with a group operation given by

(19) .n; a; �/ � .m; b; �/D .nCm;T maC b; �C �C ŒT ma˝ b�/:

Then a homomorphism As.X /! Z�X �Coker.�X / sending the generators ex to
.1;x; 0/ is an isomorphism [5, Theorem 1]. Then we easily see that the lower central
series of As.X / are then described as

(20) As.X /�X �Coker.�X /� Coker.�X /� 0:

In particular, the kernel Ker."X / in (4) is a subgroup of the set X � Coker.�X /.
Incidentally, there is an isomorphism H

Q
2
.X /Š Coker.�X / [5]. Note that the action

of �a in Example 2.3 is reformulated as �a.0;x; ˛/D .0;T x; ˛/.

Notation Denote by GX a subgroup of X �Coker.�X /. In this section, we let X

be an Alexander quandle on Fq with ! 2 Fq . Let X be of type tX . That is, tX is the
minimal number satisfying !tX D 1. Note that tX is coprime to q since !q�1 D 1.
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4.1 Review of Mochizuki 3–cocycles

We will review Mochizuki 2– and 3–cocycles of X D Fq . We here regard polynomials
in the ring Fq ŒU1; : : : ;Un� as functions from X n to Fq , and as being in the complex
C n

QG
.X IFq/ in Section 2.2.

Theorem 4.1 [19, Lemma 3.7] The following set is a basis of H 2
Q
.X IFq/:

fU
q1

1
U

q2

2
j !q1Cq2 D 1; 1� q1 < q2 < q and qi is a power of pg:

Next, we describe all the quandle 3–cocycles of X . For this, recall the following three
polynomials over Fq [19, Section 2.2]:

(21) �.Uj ;UjC1/ WD
X

1�i�p�1

.�1/i�1i�1U
p�i

j U i
jC1

D
�
.Uj CUjC1/

p
�U

p
j �U

p
jC1

�
=p;

E0.a �p; b/ WD
�
�.!U1;U2/��.U1;U2/

�a
�U b

3 ;

E1.a; b �p/ WD U a
1 �
�
�.U2;U3/��.!

�1
�U2;U3/

�b
:

Define a set ICq;! consisting of the polynomials under some conditions:

(22) ICq;! WD fE0.q1 �p; q2/ j !
p�q1Cq2 D 1; q1 < q2g

[ fE1.q1; q2 �p/ j !
q1Cp�q2 D 1; q1 � q2g

[ fU
q1

1
U

q2

2
U

q3

3
j !q1Cq2Cq3 D 1; q1 < q2 < q3g:

Here the symbols qi range over powers of p with qi < q .

We review polynomials denoted by �.q1; q2; q3; q4/. For this, we define a set Qq;! �

Z4 consisting of quadruples .q1; q2; q3; q4/ such that:

� q2 � q3 , q1 < q3 , q2 < q4 , and !q1Cq3 D !q2Cq4 D 1. Here, if p D 2, we
omit q2 D q3 .

� One of the following holds:

Case 1 !q1Cq2 D 1.

Case 2 !q1Cq2 ¤ 1 and q3 > q4 .

Case 3 .p ¤ 2/, !q1Cq2 ¤ 1 and q3 D q4 .

Case 4 .p ¤ 2/, !q1Cq2 ¤ 1, q2 � q1 < q3 < q4 , !q1 D !q2 .

Case 5 .p D 2/, !q1Cq2 ¤ 1, q2 < q1 < q3 < q4 , !q1 D !q2 .
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We call an element of the set Qq;! a Mochizuki quadruple. For .q1; q2; q3; q4/2Qq;! ,
in each case the associated polynomial �.q1; q2; q3; q4/ is defined as follows:3

Case 1 �.q1; q2; q3; q4/ WD U
q1

1
U

q2Cq3

2
U

q4

3
.

Case 2 �.q1; q2; q3; q4/ WD U
q1

1
U

q2Cq3

2
U

q4

3
�U

q2

1
U

q1Cq4

2
U

q3

3

� .!q2 � 1/�1.1�!q1Cq2/.U
q1

1
U

q2

2
U

q3Cq4

3
�U

q1Cq2

1
U

q4

2
U

q3

3
/:

Case 3 �.q1; q2; q3; q4/ WD U
q1

1
U

q3Cq4

2
U

q2

3
.

Cases 4, 5 �.q1; q2; q3; q4/ WD U
q3

1
U

q1Cq2

2
U

q4

3
.

Remark 4.2 The 3–cocycle in Case 3 (resp. 4 and 5) is formulated as that in Case 1
after changing the indices .1; 2; 3; 4/ to .1; 3; 4; 2/ (resp. to .3; 1; 2; 4/).

Theorem 4.3 [19] The following set composed of quandle 3–cocycles gives a basis
of the third cohomology H 3

Q
.X IFq/. Here qi means a power of p with qi < q .

ICq;![f�.q1; q2; q3; q4/ j .q1; q2; q3; q4/2Qq;!g[f U
q1

1
U

q2

2
j!q1Cq2 D 1; q1< q2g:

Remark Unfortunately the original statement and his proof of this theorem contained
slight errors, which have been corrected by Mandemaker [17].

4.2 Proofs of Proposition 2.12 and Theorem 2.13

First, to prove Proposition 2.12, we prepare a lemma for a study of the quandle 3–
cocycles in (22), using the notation � from (21):

Lemma 4.4 Let us identify GD .Zp/
h with Fq as an additive group. Then the second

group cohomology H 2
gr.GIFq/Š .Fq/

h.hC1/=2 is generated by the group 2–cocycles

(23) fU q1

1
U

q2

2
; �.U1;U2/

q3 j1�q1<q2<q; 1�q3<q; where qi is a power of pg:

Furthermore, H 3
gr.GIFq/Š Fq

h.hC1/.hC2/=6 is spanned by the 3–cocycles

fU
q1

1
U

q2

2
U

q3

3
j q1 < q2 < q3g[ f�.U1;U2/

q1 �U
q2

3
j q1 < q2g

[ fU
q1

1
��.U2;U3/

q2 j q1 � q2g;

where q1; q2; q3 run over powers of p with 1� qj < q . Regarding the multiplication
of ! 2 Fq as an action of Z on Fq , the Z–invariant parts H i

gr.GIFq/
Z are generated

by the above polynomials of degree d satisfying !d D 1, where i D 2; 3.

3In Cases 3 , 4 and 5 , we change the forms of �.q1; q2; q3; q4/ in [19]; however, our � are cohomol-
ogous to the original ones.
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Proof In the proof, we rely on the well-known graded ring isomorphism

(24) H�gr.GIFq/Š
V
.˛1; : : : ; ˛h/˝Fq

Fq Œˇ1; : : : ; ˇh�;

where the degrees of ˛i and of ˇi are 1 and 2, respectively. See [2, Sections V.2, 3, 4]
for details.

We will determine a basis of the second cohomology H 2
gr.GIFq/. We remark that

the first one H 1
gr.GIFq/Š Hom.G;Fq/Š .Fq/

h is generated by the Frobenius maps
U pi

1
with 0< i � h. Recall that the cup product is the usual product in the complex

C �gr.GIFq/; see [2, Section V.3]. Hence, remembering (24), the cup products U
q1

1
U

q2

2

for q1 < q2 < q are non-trivial and are linearly independent in C 2
gr.GIFq/ up to

coboundary. For any z 2 Fq we set Z WD
Pp

nD1
.z; nz/ 2 C

gr
2
.GIFq/. Then we easily

see that Z is a 2–cycle, and further compute the pairings

hU
q1

1
U

q2

2
;Zi D 0; h�.U1;U2/

q3 ;Zi D .�z/q3�p:

Since z is arbitrary, we see the linear independence of these 2–cocycles. Noting that
dim H 2

gr.GIFq/D h.hC 1/=2, the set in (23) forms a basis of H 2
gr.GIFq/ as desired.

Next we discuss the third cohomology. Following (24) again, the third cohomology is
generated by the products of H 1

gr.GIFq/ and H 2
gr.GIFq/. Hence, by the presentation

of their cohomologies, the above polynomials give a basis of H 3
gr.GIFq/ as desired.

Finally, concerning the invariant parts, notice that the boundary @gr
� commutes with the

action of Z on Fq , by definition. We therefore have a direct decomposition

C gr
n .GIFq/Š

M
i

C
gr
n .GIFq/

!i

as chain groups, where C
gr
n .GIFq/

!j denotes the !j –eigenvalue space of C
gr
n .GIFq/.

Hence all cocycles of the Z–invariant parts H i
gr.GIFq/

Z are given by ones in a subring
of H i

gr.GIFq/ as desired.

Returning to our subject, we apply these generators in Lemma 4.4 to the pullback of
the chain map '3 (see Definition 2.5). Then the quandle 3–cocycles in ICq;! in (22)
explicitly appear as follows:

Lemma 4.5 We have

(25)

'�3 .U
q1

1
U

q2

2
U

q3

3
/D tX .1�!

q1/.1�!q1Cq2/ �U
q1

1
U

q2

2
U

q3

3
;

'�3
�
�.U1;U2/

q1 �U
q2

3

�
D tX .!

q1 � 1/ �E0.p � q1; q2/;

'�3
�
U

q1

1
��.U2;U3/

q2
�
D tX .!

q1 � 1/ �E1.q1;p � q2/ 2 C 3
Q.X IFq/:
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Proof We will show only the second identity since we can do the others in a similar
manner.

Since the 3–cocycle �.U1;U2/
q1 �U

q2

3
is Z–invariant by Lemma 4.4, the sum in the

formula (7) becomes the multiplication of tX and it is sufficient to consider the case
i D 0. Hence, according to the formula (7), the left-hand side hand is

tX �
�
�.U1;U2/

q1 ��.!U1;U2/
q1 ��.!U1; !U2/

q1 C�.!2U1; !U2/
q1
�
�U

q2

3

D tX .1�!
q1/ �

�
�.U1;U2/

q1 ��.!U1;U2/
q1
�
�U

q2

3
:

Here we use that �.!U1; !U2/
q1 D!q1�.U1;U2/

q1 by definition. Since the last term
is tX .!

q1 � 1/ �E0.q1; q2/ exactly, we obtain the desired identity.

Compared with the method [19] in which the right quandle 3–cocycles were found
as solutions of a differential equation over Fq , the three identities via the map '�

3
are

simple and miraculous.

Using the identities, we will prove Proposition 2.12 as follows:

Proof of Proposition 2.12 The injectivity of ˆ�
3
D .�� ı '3/

� follows from the
fact that ˆ�

3
gives a 1 W 1 correspondence between a basis of H 3

gr..Zp/
hIFq/

Z and a
basis of a subspace of H 3

Q.X IFq/ because of the previous three identities (compare
Theorem 4.3 with Lemma 4.4).

Next assume H 2
Q.X IFq/D 0. Then Theorem 4.1 implies that no pair .q1; q2/ satisfies

!q1Cq2 D 1 with q1 < q2 < q . Hence, by examining Theorem 4.3 carefully, we see
that H 3

Q.X IFq/ is generated by the image of ˆ�
3

. Therefore ˆ�
3

is an isomorphism
as desired.

To prove Theorem 2.13, we now examine the cokernel Coker.ˆ�
3
/. To begin with, we

study the chain map

.ˆ2 ıP/�W H 2
gr
�
.Zp/

h
IFq

�Z
!H 3

Q.X /

from Proposition 2.9. Recall from Lemma 4.4 that this domain is generated by polyno-
mials of the form U

q1

1
U

q2

2
. So, recalling the composite ˆ2 ıP from Proposition 2.9,

we easily see

.ˆ2 ıP/�.U q1

1
U

q2

2
/D tX .1�!

q1/U
q1

1
U

q2

2
2 C 3

QG
.X IFq/:

Hence, the third term in Theorem 4.3 is spanned by the image of this map .ˆ2 ıP/� .

We also discuss the cokernel of ˆ�
3
˚ .ˆ2 ıP/� . By examining Theorem 4.3 carefully,

we see that a basis of the cokernel consists of the polynomials � coming from the
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Mochizuki quadruples Qq;! . Let us denote a quadruple .q1; q2; q3; q4/ 2 Qq;! by
q for short. Case by case, we now introduce a map �q

�
W .GX /

3! Fq by setting the
values of �q

�
at .x; a˝b;y; c˝d; z; e˝f /2 .X �Coker.�X //

3D .GX /
3 as follows.

In Case 1, �q
�

is defined by the formula

(26) .1�!/�q2
�
xq1yq2Cq3 Cxq1Cq3yq2

� .1�!/�q2.!q2aq1bq2 C aq2bq1 �xq1Cq2/yq3

C .1�!/�q1.aq1bq3 C!q1aq3bq1 �xq1Cq3/yq2
�
zq4 :

In Case 2, the value of �q
�

is given by the formula

.1�!/�q1�q2
�
xq1.yq2Cq3zq4 Cyq2zq3Cq4/� .xq1Cq2yq4 Cxq2yq1Cq4/zq3

C .1�!/�q3.xq1Cq3 �!q3aq1bq3 � aq3bq1/yq2zq4

� .1�!/�q4.xq2Cq4 �!q4aq2bq4 � aq4bq2/yq1zq3
�
:

Furthermore, for Case 3 (resp. 4 and 5), the value is defined to be that of Case 1

after changing the indices .1; 2; 3; 4/ to .1; 3; 4; 2/ (resp. to (3; 1; 2; 4)), according to
Remark 4.2.

Lemma 4.6 For q D .q1; q2; q3; q4/ 2 Qq;! , the map �q
�

from .GX /
3 to Fq is a

Z–invariant group 3–cocycle of GX .

Moreover, the pullback ẑ�
3
.�

q
�
/ equals tX �p

�
X
.�.q// in C 3

Q
. zX IFq/.

Proof Note that a map � W .GX /
3!A is a Z–invariant group 3–cocycle, by definition,

if and only if it satisfies the two equalities

�.b; c; d/� �.ab; c; d/C �.a; bc; d/� �.a; b; cd/C �.a; b; c/D 0;

�..!a; ˛/; .!b; ˇ/; .!c; 
 //D �..a; ˛/; .b; ˇ/; .c; 
 //

for any aD .a; ˛/; bD .b; ˇ/; cD .c; 
 /; dD .d; ı/ 2 GX D X �Coker.�X /. Then,
by elementary and direct computations, it can be seen that the maps �q

�
are Z–invariant

group 3–cocycles of GX . Also, similar to Lemma 4.5, the desired equality ẑ�
3
.�

q
�
/D

tX �p
�
X
.�.q// is easily obtained by a direct calculation.

Proof of Theorem 2.13. Let q be odd. As is known [22, Lemma 9.15], the induced
map p�

X
W H 3

Q
.X IFq/! H 3

Q
. zX IFq/ is surjective. Hence, Lemma 4.6 ensures the

existence of a section
sW H 3

Q.
zX IFq/!H 3

Q.X IFq/
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such that s. ẑ�
3
.�

q
�
//D �.q/ for any q 2Qq;! . Thus the sum

..ˆ2 ıP/�˚ˆ�3/˚
�
s ı res. ẑ�3/

�
explained in (8) is an isomorphism to H 3

Q
.X IFq/.

We will show that the above group 3–cocycles �q
�

, except the ones from Case 2, are
presented by Massey products. To see this, we consider a group homomorphism

f qi W GX ! Fq; .x; ˛/ 7! xqi ;

which is a group 1–cocycle of GX . For group 1–cocycles f , g and h, we denote
by f ^g the cup product; also, if f ^g D g^ hD 0 2H 2

gr.GX IFq/, we denote by
hf;g; hi the triple Massey product in H 2

gr.GX IFq/ as usual (see Kraines [15] for the
definition).

Proposition 4.7 Let e ¤ 2. Let .q1; q2; q3; q4/ 2Qq;! satisfy Case e in Section 4.1.
The group 3–cocycle �q

�
described above is of the following form in the cohomology

group H 3
gr.GX IFq/.

H 3
gr.GX IFq/ 3 �

q
�
D

8<:
.1�!q2/�1hf q3 ; f q1 ; f q2i ^f q4 for e D 1;

.1�!q3/�1hf q4 ; f q1 ; f q3i ^f q2 for e D 3;

.1�!q3/�1hf q1 ; f q2 ; f q3i ^f q4 for e D 4 or 5:

Proof We use notation .x; a˝ b;y; c˝ d; z; e˝ f / 2 .X �Coker.�X //
3 as above.

For Case 1, we now calculate the Massey product hf q3 ; f q1 ; f q2i. We easily check
the two equalities

xq3yq1 D .1�!/�q1ı1.a
q1bq3 C!q1aq3bq1 �xq1Cq3/;

xq1yq2 D .1�!/�q2ı1.!
q2aq1bq2 C aq2bq1 �xq1Cq2/:

Hence, from the definition of Massey products, hf q3 ; f q1 ; f q2i is represented by

.1�!/�q1.aq1bq3 C!q1aq3bq1 �xq1Cq3/yq2

C .1�!/�q2xq3.!q2cq1dq2 C cq2dq1 �yq1Cq2/:

Furthermore, we define a group 2–cocycle F by the formula

.1�!/�q2
�
hf q3 ;f q1 ;f q2iC.1�!/�q2ı1.!

q2xq3aq1bq2Cxq3aq2bq1�xq1Cq2Cq3/
�
:

A direct calculation then shows the equality F � zq4 D �
q
�

by definitions, immediately
leading to the desired .1�!/�q1hf q3 ; f q1 ; f q2i ^f q4 D �

q
�
2H 3

gr.GX IFq/.

Similarly, the same calculation holds for Cases 3, 4, 5 according to Remark 4.2.

An algebraic interpretation of the cocycle �q
�

in Case 2 remains to be found.
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5 Some calculations of shadow cocycle invariants

As an application of Theorem 2.15, we will compute some Z–equivariant parts of the
Dijkgraaf–Witten invariants, which are equivalent to a shadow cocycle invariant. In this
section, we restrict ourselves to the Alexander quandles on Fq with ! 2 Fq . Recall
from Lemma 4.6 that the quandle 3–cocycles �.q1; q2; q3; q4/ found by Mochizuki
(see Section 4.1 for the definition) are derived not from group cohomologies of abelian
groups, but from that of the non-abelian group GX . So we focus on the 3–cocycles,
and fix some notation: for short, let q denote a Mochizuki quadruple .q1; q2; q3; q4/

in Qq;! , and let �.q/e denote the 3–cocycle �.q1; q2; q3; q4/, if q satisfies Case e

in Section 4.1 (e � 5).

We remark that the set of X–colorings has been well-studied. In fact, if D is a diagram
of a knot K , then there is a bijection

(27) ColX .D/$X ˚
M
iD1

Fq ŒT �=
�
T �!;�i.T /=�iC1.T /

�
;

where �i.T / is the i th Alexander polynomial of K (see Inoue [10]). Therefore, we
shall study weights in the cocycle invariants.

5.1 Cocycle invariants of torus knots constructed from �.q1; q2; q3; q4/

This subsection deals with the torus knots T .m; n/. We here remark that m and n are
relatively prime and there is an isotopy T .m; n/' T .n;m/, so we may assume n is
relatively prime to p without loss of generality. We determine all of the values of the
invariants for T .m; n/ as follows:4

Theorem 5.1 Let q be relatively prime to n. Take the torus knot T .m; n/. Let
q 2Qq;! be a Mochizuki quadruple, and �.q/e be the associated quandle 3–cocycle.
Then the quandle cocycle invariant I�.q/e .T .m; n// is expressed by one of the following
formulas:

.i/ If e D 1, !mn D 1, !m ¤ 1 and !n ¤ 1, then I�.q/1.T .m; n// equals

(28) q2
X

a2Fq

1Z

�
�2mn

.� �!/q2Cq3!q4

.1� �/q2Cq3
� aq1Cq2Cq3Cq4

�
2 ZŒFq �;

where � is the nth primitive root of unity satisfying !m D �m . Furthermore, if
e D 3 (resp. 4 or 5), then the value of I�.q/e is obtained from the above value

4 We here refer to known results of Asami and Kuga [1, Section 5.2]. They partially calculated some
values of I�.q/e .T .m; n// in the case Fq D F52 and nD 3 , with the help of a computer.

Algebraic & Geometric Topology, Volume 14 (2014)



2682 Takefumi Nosaka

I�.q/1 after changing the indices .1; 2; 3; 4/ to .1; 3; 4; 2/ (resp. to .3; 1; 2; 4/)
such as Remark 4.2.

.ii/ Let p D 2 or 3, and let e D 1. If !n D 1 and if m is divisible by p , then

(29) I�.q/1.T .m; n//D q2
X

a2Fq

1Z

n
mn

p
.1�!/q3Cq4aq1Cq2Cq3Cq4

o
2 ZŒFq �:

Furthermore, if e D 3 (resp. 4 or 5), then the value I�.q/e is obtained from
the value I�.q/1 after changing the indices .1; 2; 3; 4/ to .1; 3; 4; 2/ (resp. to
.3; 1; 2; 4/), similarly.

.iii/ Let e D 2. If p D 2, !n D 1 and if m is divisible by 2, then I�.q/2.T .m; n//

is equal to q
P

a;ı2Fq
1ZfmnE2.a; ı/=2g 2 ZŒFq �. Here E2.a; ı/ 2 Fq is tem-

porarily defined by

aq2Cq3
�
.1C!q1/aq1ıq4 C .1C!q4/aq4ıq1

�
C aq1Cq4

�
.1C!q2/aq2ıq3 C .1C!q3/aq3ıq2

�
:

.iv/ Otherwise, the invariant is trivial. Namely, I�.q/e .T .m; n// 2 Z.

This is proved in Section 5.3. Note that for e D 2, the invariant is non-trivial in only
the case (iii).

As an application, we consider the t –fold cyclic cover of S3 branched over T .m; n/,
which is the Brieskorn manifold †.m; n; t/; see Milnor [18]. Hence, according to
Remark 2.16, we obtain the Z–equivariant part of the Dijkgraaf–Witten invariant of
†.m; n; t/.

Corollary 5.2 Let m; n be coprime integers. Assume that X is of type t . Let a
Mochizuki quadruple .q1; q2; q3; q4/2Qq;! satisfy Case 1, and �� 2H 3

gr.GX IFq/ be
the group 3–cocycle in Lemma 4.6. Let p > 2 be coprime to n and to t . If !mn D 1,
!n ¤ 1 and !m ¤ 1, then

DWZ
��

�
†.m; n; t/

�
D

X
a2Fq

1Z

�
�2tmn

.� �!/q2Cq3!q4

.1� �/q2Cq3
aq1Cq2Cq3Cq4

�
2 ZŒFq �:

Here recall from Proposition 4.7 that the cocycle �� forms a Massey product; hence
we clarify partially the Massey product structure of some Brieskorn manifolds. Here
we emphasize that there are a few methods for computing Massey products with
Z=p–coefficients, in comparison with those with Q–coefficients viewed from rational
homotopy theory.
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Finally, we comment on the interesting result in Theorem 5.1(ii). In general, for finite
nilpotent groups G , the Massey products in H 3

gr.GIFq/ with p D 2; 3 often display
exceptional phenomena. For example, when qDp2 , the group GX is isomorphic to the
group P .3/ in Leary [16]. See [16, Theorems 6 and 7] for an exceptional phenomenon
in the cohomology ring H�gr.GX IFp/ with p D 2; 3.

5.2 Further examples in the case !D�1

We change our focus to other knots. However, it is not so easy to calculate the cocycle
invariant I�.q/e .K/ of knots, although it is elementary.

We now consider the simplest case ! D �1; hence the Alexander quandle X on
Fq is of type 2. Note that, for any Mochizuki quadruple q D .q1; q2; q3; q4/, the
associated 3–cocycle forms U

q1

1
U

q2Cq3

2
U

q4

3
by definition. Thus it is not relatively

hard to compute the cocycle invariant. However, in computer experiments, for many
knots whose colorings satisfy jColX .D/j D q2 , the invariants are frequently of the
form q2

P
a2Fq

aq1Cq2Cq3Cq4 up to constant factors. In order to avoid the cases
jColX .D/j D q and jColX .D/j D q2 , recall the bijection (27). Accordingly, we shall
deal with some knots having non-trivial second Alexander polynomials as follows:

Example 5.3 Let !D�1. The knots K in Table 1 are those whose crossing numbers
are less than 11, satisfying jColX .D/j D q3 with p > 3, and whose second Alexander
polynomials are non-trivial. We only list computations of the invariants without the
proofs, although the computations seem interesting. Here note that, according to
Theorem 2.15 and Proposition 4.7, the cocycle invariant stems from triple Massey
products of double branched covering spaces. We refer to the tables in Kawauchi
[14, Exercise 5.5.5, Appendix F.2] for some information of double coverings of S3

branched over such knots K .

K p I�.q/1.K/

940 5 G.qI 1; 5/
941 7 G.qI 3; 4/
949 5 G.qI 3; 4/

10103 5 G.qI 2; 1/
10123 11 q4

10155 5 G155.q/

10157 7 G.qI 1; 5/
Table 1: The values of I�.q/1.K/
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Here q 2Qq;! is arbitrary and, for n;m 2Z, the symbols G.qI n;m/ and G155.q/ are
polynomials expressed by

G.qI n;m/ WD q2
X

a;b2Fq

1Z
˚
n
�
aq1Cq2bq3Cq4 C aq3Cq4bq1Cq2

C aq1Cq3bq2Cq4 C aq2Cq4bq1Cq3
�

Cm.aq1Cq4bq2Cq3 C aq2Cq3bq1Cq4/
	
2 ZŒFq �;

G155.q/ WD q2
X

a;b2Fq

1Z
˚
4.aq1Cq2Cq3Cq4C aq1bq2Cq3Cq4/

C .aq1Cq2Cq3bq4 C aq1Cq2bq3Cq4/

C 2.aq1Cq2Cq4bq2 C aq1Cq2Cq4bq3

C aq1Cq3bq2Cq4 C aq2Cq4bq1Cq3/
	
2 ZŒFq �:

5.3 Proof of Theorem 5.1

For the proof, we first recall a slight reduction [11, Theorem 4.3] of the cocycle invariant,
which implies that the shadow cocycle invariant does not depend on the complementary
containing the infinity point. That is, we may consider only shadow colorings of the
forms S D .CI 0/. More precisely,

(30) I .L/D q �
X

C2ColX .D/

1Zfh ; Œ.CI 0/�ig 2 ZŒA�:

We establish terminologies on the torus knot T .m; n/. Regard T .m; n/ as the closure
of a braid �m , where � WD �n�1 � � � �1 2 Bn . Let ˛1; : : : ; ˛n be the top arcs of �m .
For 1� i �m, we let xi;1; : : : ;xi;n�1 be the crossings in the i th �; see Figure 4.

˛1 ˛2 j̨
˛n

xi;1
xi;2 xi;j xi;n�1

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

Figure 4: The arcs j̨ and crossing points xi;j on the diagram of the torus knot
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Proof of Theorem 5.1 Although Asami and Kuga [1] formulated some X–colorings
of T .m; n/, we will give another formulation appropriate to the 3–cocycle �.q/e . If
given an X–coloring C of T .m; n/, we define aj WD C. j̨ /, and consider a vector
aD .a1; : : : ; an/ 2 .Fq/

n ; notice that it satisfies the equation aD aPm , where P is
given by a companion matrix

P WD

0BBBBBBBB@

0 ! 0 � � � 0 0

0 0 ! � � � 0 0

0 0 0
: : : 0 0

:::
:::

:::
: : :

: : :
:::

0 0 0 � � � 0 !

1 1�! 1�! � � � 1�! 1�!

1CCCCCCCCA
2Mat.n� nIFq/:

Note that the characteristic polynomial of P is .��1/.�n�!n/=.��!/, and that the
roots are �D �k! and 1, where 1� k < n and by � we mean an nth primitive root of
unity in the algebraic closure Fp . Therefore, the proof comes down to the following
two cases:

Case I !n ¤ 1 To be precise, the roots are mutually distinct.

Case II !n D 1 Then � D 1 is the unique double root of the characteristic
polynomial.

We will calculate the weights coming from such X–colorings case by case. While
statement (i) will be derived from Case I, (ii) and (iii) will come from Case II.

Case I Let !n ¤ 1. We will study the solutions of aD aPm . We easily see that if
.��k!/m D 1 for some k , then the solution is of the form

ajC1 D a
�
.1� �kj /=.1� �/

�
C a

�
�kj=.1�!/

�
C ı

for some a; ı 2 Fp ; conversely, if the equation a D aPm has a non-trivial solution,
then there is a unique k satisfying .��k!/m D 1 and 0< k < n. It is further verified
that such a solution gives rise to an X–coloring C if and only if a; ı; � are contained
in Fq . To summarize, we may assume that a; ı; � 2 Fq and .��1!/m D 1 with � ¤ ! .
Indeed this assumption justifies a shadow coloring S of the form .CI 0/.

Remark 5.4 We give a remark on this assumption. Notice that for s2Z, two equalities
!m D �m and !s D 1 imply �ms D 1, hence �s D 1 since m and n are coprime.
In particular, considering special cases of s D q1 C q3 and s D q2 C q4 , we have
�q1Cq3 D �q2Cq4 D 1. Similarly we notice that if !q1Cq2 D 1, then �q1Cq2 D 1.
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We will present the weights of ŒS �D Œ.CI 0/�, where C is the X–coloring as the solution
mentioned above. We then can easily check the color of every regions in the link-
diagram. After a tedious calculation, the weight of xi;j turns out to be�

a��i!i 1� �j�1

1� �
C.1�!j�1/ı; a��i!i

�
1� �j�1

1� �
C
�j�1

1�!

�
Cı;

a��i�1!iC1

1�!
Cı

�
in C

Q
3
.X /. We next compute the pairing h�.q/e; ŒS �i 2 Fq . To begin with the case

e D 1, recalling that �.q/e D U
q1

1
U

q2Cq3

2
U

q4

3
D .x1 � x2/

q1.x2 � x3/
q2Cq3x

q4

3
by

definition, we describe the pairing asX
i�m

j�n�1

�
a��i!i�j�1

1�!
�!j�1ı

�q1
�

a��i�1!i.!��/.�j�1/

.1�!/.1��/

�q2Cq3
�

a��i�1!iC1

1�!
Cı

�q4

in Fq . We note that
Pm

iD1.�
�1!/si D 0 unless ��s!s D 1. Therefore, several terms

in this formula vanish by Remark 5.4 above. In the sequel, it is easily seen that the
non-vanishing term in h�.q/1; ŒS �i forms

(31)
aq1Cq2Cq3Cq4.��!/q2Cq3!q4

.1�!/q1Cq2Cq3Cq4.1��/q2Cq3

X
i�m

j�n�1

.��1!/i.q1Cq2Cq3Cq4/�jq1.1��j /q2Cq3 ;

in Fq . Here, by Remark 5.4 again, we notice two equalities

.��1!/q1Cq2Cq3Cq4 D 1 and �jq1.1� �j /q2Cq3 D �jq1 C �jq2 � 2:

Therefore, noting that
Pn�1

jD1 �
jq1 D

Pn�1
jD1 �

jq2 D �1, the sum in the formula (31)
equals �2nm. By (30), we hence obtain the required formula (28).

Similarly, by Remark 4.2, the same calculations hold for the cases 3� e � 5.

Next we deal with eD2. For the shadow coloring SD .CI 0/, we claim h�.q/2; ŒS �iD0.
To see this, by a similar calculation to (31), we can reduce the paring h�.q/2; ŒS �i to
h�.q/2; ŒS �i D �2nmaq1Cq2Cq3Cq4 �Aq , where Aq is temporarily defined by

.��!/q2Cq3!q4

.1��/q2Cq3
�
.��!/q1Cq4!q3

.1��/q1Cq4
C

1�!q1Cq2

1�!q2

�
.��!/q2!q3Cq4

.1��/q2
�
.��!/q4!q3

.1��/q4

�
:

We assert that the last term in this formula Aq is zero. Indeed, noting that .1��/�q4 D

�q2.1� �/�q4��q2 D �q2.� � 1/�q2 by Remark 5.4, we easily have

.� �!/q2!q3Cq4

.1� �/q2
�
.� �!/q4!q3

.1� �/q4
D
.� �!/q2!q3Cq4 C .� �!/q4�q2!q3

.1� �/q2
D 0:
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Similarly we easily see an equality .1� �/�q1�q4 D �q2Cq3.1� �/�q2�q3 . Therefore
the first and second terms in Aq are canceled. Hence AqD 0 as claimed. In conclusion,
the cocycle invariants using �.q/2 are trivial as desired.

Case II We next consider another case of !n D 1. Notice that the matrix P �En is
of rank n� 1. Hence, if the above equation aD aPm has a non-trivial solution, then
m must be divisible by p (consider the Jordan block of P ). For such an m, we can
verify that the solution is of the form aj D a! � a!j C ı for some a; ı 2 Fq , which
provides an X–coloring C . Consider a shadow coloring of the form S D .CI 0/. The
weight of the crossing xi;j is then given by�
a.1�j /.1�!/!j�1

C.ai!�aiCaCı/.1�!j�1/; a.1�!j
Ci!�i/Cı; ai.!�1/Cı

�
:

Let us calculate the pairings h�.q/e; ŒS �i. First, when e D 1, the pairing h�.q/1; ŒS �i
equals

(32)
X
i�m

j�n�1

�
.aj .!� 1/�ai.!� 1/� ı/!j�1

�q1
�
a�a!j

�q2Cq3
�
ai.!� 1/C ı

�q4 :

We consider the sum on i and note
P

i�m iq1Cq4 D
P

i�m i2Dm.mC1/.2mC1/=6.
Hence, since m is divisible by p , the pairing vanishes unless p D 2; 3.

Similarly, we can see that in other cases of e , the pairings are zero unless p D 2; 3.
We therefore may devote ourselves to the cases p D 2; 3 hereafter.

First, assume p D 3 and e D 1. Note that the non-vanishing term in (32) is only the
coefficients of

P
iq1Cq4 , and that

P
i�m iq1Cq4 D �m=3. Then the pairing (32) is

reduced to

aq1Cq2Cq3Cq4.1�!/q1Cq4

X
1�j�n�1

!q1.j�1/.1�!j /q2Cq3

X
1�i�m

iq1Cq4

D
mn

3
aq1Cq2Cq3Cq4.1�!/q3Cq4 ;

where
P
!q1.j�1/.1� !j /q2Cq3 D 2n!�q1 in this equality follows from !n D 1.

Hence, by running over all shadow colorings, we obtain the required formula (29).
Similarly, when p D 2 and e D 1, a calculation using Lemma 5.5(i) below can show
the formula (29).

The same calculation holds for the cases 3� e � 5 and p D 2; 3. Actually, it is done
by changing the quadruple .q1; q2; q3; q4/ in the previous calculation in Case 1, as is
routine for these cases.
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At last, it is enough for the proof to work out the remaining case e D 2 and p D 2; 3.
By Lemma 5.5(ii) below and the definition of �.q/2 , the pairing is reduced to

(33) h�.q/2; ŒS �i D
˝
U

q1

1
U

q2Cq3

2
U

q4

3
; ŒS �

˛
�
˝
U

q2

1
U

q1Cq4

2
U

q3

3
; ŒS �

˛
:

We claim that if p D 3, h�.q/2; ŒS �i D 0. The first term is reduced to

2mnaq1Cq2Cq3Cq4.1�!/q3Cq4=3;

by a calculation similar to (29). The second term is obtained by changing the indices
.1; 2; 3; 4/ in the first term to .2; 1; 4; 3/. Hence the pairing h�.q/2; ŒS �i vanishes.

To complete the proofs, we let p D 2. The explicit formula of the first term in (33)
follows from Lemma 5.5(iii) below. Furthermore, by the previous change of the indices,
we can determine the second term in (33). In summary, we conclude the desired formula
in (iii).

The following lemma used in the above proof can be obtained from the definitions and
elementary calculations, although they are a little complicated.

Lemma 5.5 Let S D .CI 0/ be the shadow coloring in Case II as above.

.i/ If p D 2 and !q1Cq2 D 1, then˝
U

q1

1
U

q2Cq3

2
U

q4

3
; ŒS �

˛
D .1C!/q3Cq4aq1Cq2Cq3Cq4mn=2:

.ii/ If !q1Cq2 ¤ 1 and p D 2 or 3, then˝
U

q1

1
U

q2

2
U

q3Cq4

3
�U

q1Cq2

1
U

q4

2
U

q3

3
; ŒS �

˛
D 0:

.iii/ If p D 2 and !q1Cq2 ¤ 1, then hU q1

1
U

q2Cq3

2
U

q4

3
; ŒS �i is equal to

mn

2
aq2Cq3

�
.1C!q1/aq1ıq4 C .1C!q4/aq4ıq1 C

�
1C

!�q1 C!�q2

1C!q1Cq2

�
aq1Cq4

�
:
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Appendix: Proof of Proposition 2.6

For the proof, we will use the notation �k.g/D gk� and Kn defined in Section 2.2.
Furthermore, for i � n� 1, we set up the following two subsets of the set Kn :

KCn;i WDf.k1; : : : ; kn/2Kn jkiDkiC1C1g; K0
n;i WDf.k1; : : : ; kn/2Kn jkiDkiC1g:

Note that jKCn;i j D jK
0
n;i j D tX 2n�2 and KnDKCn;i[K

0
n;i for any i � n�1. Hereafter,

we denote elements of Kn by kn for short.

Proof of Proposition 2.6 Our goal is to prove the equality @gr
n ı'nD 'n�1ı@

RG
n . For

arbitrary .g1; : : : ;gn/ 2Gn , we start computing the left 'n�1 ı @
RG
n .g1; : : : ;gn/ as

'n�1

�n�1X
iD1

.�1/i
�
.g1; : : : ;gigiC1; : : : ;gn/�.g

�
1
; : : : ;g

�
i�1
;g
�
i giC1;giC2; : : : ;gn/

��
D

X
i�n�1

� X
kn2K0

n;i

.�1/k1�knCi
�
g

k1�
1
; : : : ;g

ki�1�
i�1

;g
kiC1�

i g
kiC1�

iC1
;g

kiC2�

iC2
; : : : ;gkn�

n

�
�

X
kn2KCn;i

.�1/k1�knCiC1.g
k1�
1
; : : : ;g

ki�1�
i�1

;g
.kiC1C1/�

i g
kiC1�

iC1
;g

kiC2�

iC2
; : : : ;gkn�

n /

�

D

X
i�n�1

� X
kn2Kn

.�1/k1�knCi.g
k1�
1
; : : : ;g

ki�1�
i�1

;g
ki�
i g

kiC1�

iC1
;g

kiC2�

iC2
; : : : ;gkn�

n /

�
:

Next we compute the other @gr
n ı'n.g1; : : : ;gn/ as

@
gr
n

� X
kn2Kn

.�1/k1�kn.g
k1�
1
; : : : ;gkn�

n /

�
D

X
kn2Kn

.�1/k1�kn.g
k2�
2
; : : : ;gkn�

n /C
X

kn2Kn

.�1/k1Cn�kn.g
k1�
1
; : : : ;g

kn�1�
n�1

/

C

X
i�n�1

� X
kn2Kn

.�1/iCk1�kn
�
g

k1�
1
; : : : ;g

ki�1�
i�1

;g
ki�
i g

kiC1�

iC1
;g

kiC2�

iC2
; : : : ;gkn�

n

��

by definition. Noticing from the previous equation that the third term here is the left
'n�1 ı @

RG
n .g1; : : : ;gn/, it suffices to show that the first and second terms vanish.

We immediately verify the first vanishing by considering the sum according to Kn D

KCn;1 [K0
n;1 . Next, for m � tX � 1, we define a subset, K0;m

n;n�1 , of K0
n;n�1 to be
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fkn 2K0
n;n�1 j kn Dmg. Then we can formulate the second term asX

0�m<tX

X
kn2K0;m

n;n�1

.�1/k1�knCn
�
.g

k1�
1
; : : : ;g

kn�1�
n�1

/� .g
.k1C1/�
1

; : : : ;g
.kn�1C1/�
n�1

/
�

D

X
0�m<tX

X
kn2K0;0

n;n�1

.�1/k1�knCn
�
.g
.k1Cm/�
1

; : : : ;g
.kn�1Cm/�
n�1

/

� .g
.k1CmC1/�
1

; : : : ;g
.kn�1CmC1/�
n�1

/
�

D

X
kn2K0;0

n;n�1

.�1/k1�knCn
�
.g

k1�
1
; : : : ;g

kn�1�
n�1

/� .g
.k1CtX /�
1

; : : : ;g
.kn�1CtX /�
n�1

/
�

Since �tX .g/D g for any g 2G , this term is zero as desired.
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