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L2–invariants of nonuniform lattices
in semisimple Lie groups

HOLGER KAMMEYER

We compute L2 –invariants of certain nonuniform lattices in semisimple Lie groups by
means of the Borel–Serre compactification of arithmetically defined locally symmetric
spaces. The main results give new estimates for Novikov–Shubin numbers and vanish-
ing L2 –torsion for lattices in groups with even deficiency. We discuss applications to
Gromov’s zero-in-the-spectrum conjecture as well as to a proportionality conjecture
for the L2 –torsion of measure-equivalent groups.

22E40; 57Q10, 53C35

1 Introduction

Let � be a discrete countable group and consider a finite free �–CW complex X with
cellular chain complex Cp.X /. The group � acts isometrically on the L2 –completion
C
.2/

p .X /D`2.�/˝Z�Cp.X / and the differentials of Cp.X / induce the L2 –Laplacian
�pDd�p dpCdpC1d�

pC1
acting on C

.2/
p .X /. The L2 –invariants of X capture spectral

properties of the bounded �–equivariant operators �p .

The L2 –Betti numbers b
.2/
p .X /D dimN .�/ ker�p for p� 0 are the simplest example

of such invariants. Their definition involves the real-valued von Neumann dimension
induced by the trace of the group von Neumann algebra N .�/. It turns out that L2 –
Betti numbers provide powerful invariants. As an example, a positive L2 –Betti number
obstructs nontrivial circle actions and nontrivial self-coverings of �nX . We will be
concerned with two more sophisticated types of L2 –invariants. The pth Novikov–
Shubin invariant z̨p.X / 2 Œ0;1�[1C measures by von Neumann dimension how
slowly aggregated eigenspaces of �p grow for small eigenvalues. The L2 –torsion
�.2/.X / 2R is the L2 –counterpart of classical Reidemeister torsion. It is only defined
if X is det-L2 –acyclic, which essentially means that b

.2/
p .X /D 0 for p � 0.

L2 –invariants are homotopy invariants, so we immediately obtain invariants of groups
with finite E� . An important class of those groups is given by torsion-free lattices
� �G in semisimple Lie groups. If such a lattice is uniform (has compact quotient), a
finite E� is given by the symmetric space X D G=K , where K � G is a maximal
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compact subgroup. The locally symmetric space �nX is then a closed manifold model
for B� . This opens up the analytic approach to L2 –invariants, where the cellular
L2 –Laplacian is replaced by the de Rham Laplacian acting on differential p–forms of
X . With this method the L2 –invariants of all uniform lattices have been computed
by Olbrich [35], building on previous work by Hess and Schick, Lott, and Borel; see
Theorem 3.2.

It is however fairly restrictive to require that lattices be uniform, as this already rules out
the most natural example, SL.n;Z/, which is central to number theory and geometry.
Therefore the purpose of this paper is to calculate L2 –invariants of nonuniform lattices
by using a compactification of the locally symmetric space �nX . Of course the
compactification has to be homotopy equivalent to the original �nX to make sure it is
a B� . A construction due to Borel and Serre suggests adding boundary components at
infinity so that �nX forms the interior of a compact manifold with corners. To expand
on this, let us first suppose that � is irreducible and that G is connected linear with
rankR G > 1. Then Margulis’ celebrated arithmeticity theorem says we may assume
there exists a semisimple linear algebraic Q–group G such that G D G 0.R/ and
such that � is commensurable with G .Z/. We assemble certain nilmanifolds NP

and so-called boundary symmetric spaces XP DMP=KP to boundary components
e.P /DNP �XP associated with the rational parabolic subgroups P �G . We define
a topology on the bordification X D

S
P e.P / such that e.Q/ is contained in the

closure of e.P / if and only if Q � P . The �–action on X D e.G / extends freely
to X . The bordification X is still contractible but now has a compact quotient �nX
called the Borel–Serre compactification of the locally symmetric space �nX .

We note that L2 –Betti numbers and Novikov–Shubin invariants have been defined for
groups with not necessarily finite E� by Cheeger and Gromov [13], Lück [29] and Lück,
Reich and Schick [31]. In the case of L2 –Betti numbers it follows already from the
work of Cheeger and Gromov [12] that for a lattice � �G , uniform or not, b

.2/
p .�/¤ 0

if and only if dim X D 2p and ı.G/ D 0, where ı.G/ D rankC.G/ � rankC.K/

is the deficiency of G . To the author’s knowledge, the only results for Novikov–
Shubin invariants and L2 –torsion of nonuniform lattices have been obtained in the
hyperbolic case. An upper bound for the first Novikov–Shubin invariant of compact
hyperbolic 3–manifolds was given by Lott and Lück [28]. This can be seen as the case
G D SO.3; 1IC/ of our first result.

Theorem 1.1 Let G be a connected semisimple linear algebraic Q–group. Suppose
that rankQ.G / D 1 and ı.G .R// > 0. Let P � G be a proper rational parabolic
subgroup. Then for every arithmetic lattice � �G .Q/,

z̨q.�/� ı.MP/C d.NP /:
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Here q is the middle dimension of X , so either dim X D 2q or dim X D 2q C 1,
and d.NP / denotes the degree of polynomial growth of the unipotent radical NP of
P DP .R/. An important feature of the theorem is that no restriction is imposed on
the real rank of G . We will for example construct lattices � � SL.4;R/ that fall under
the assumptions of the theorem so that z̨4.�/� 4.

The L2 –torsion of a torsion-free lattice � � G is only defined if X is det–L2 –
acyclic which is equivalent to ı.G/ > 0. The only such rank-one Lie groups without
compact factors are the groups G D SO0.2n C 1; 1/. It is a deep result of Lück
and Schick [33] that the L2 –torsion of a torsion-free lattice � � SO0.2nC 1; 1/

is proportional to the hyperbolic covolume, the first few proportionality constants
being �1=.6�/, 31=.45�2/ and �221=.70�3/ for nD 1; 2; 3. One can get rid of the
torsion-free assumption by defining the virtual L2 –torsion �.2/virt.�/D �

.2/.� 0/=Œ� W � 0�

for a torsion-free subgroup � 0 � � of finite index, which always exists by Selberg’s
Lemma; see Aplerin [2]. This is well-defined because L2 –torsion is multiplicative
under finite coverings. In contrast to the result of Lück and Schick, we prove that for
higher-rank Lie groups the virtual L2 –torsion vanishes in (at least) half of all cases.

Theorem 1.2 Let G be a connected semisimple linear Lie group with positive, even
deficiency. Then every lattice � �G is virtually det-L2 –acyclic and

�
.2/
virt.�/D 0:

Note that this is a statement about higher-rank Lie groups because rankR.G/�ı.G/�2.
For example �.2/virt.SL.nIZ//D 0 if n> 2 and nD 1 or 2 mod 4.

The computation of L2 –invariants is a worthwhile challenge in itself. Yet we want to
convince the reader that the problem is not isolated within the mathematical landscape.
The following conjecture goes back to Gromov. We state it in a version that appears in
Lück [30, page 437].

Conjecture 1.1 (Zero-in-the-spectrum conjecture) Let M be a closed aspherical
Riemannian manifold. Then there is p � 0 such that zero is in the spectrum of the
minimal closure of the Laplacian

.�p/minW dom..�p/min/�L2�p. �M /!L2�p. �M /

acting on p–forms of the universal covering �M with the induced metric.

The conjecture has gained interest due to its relevance for seemingly unrelated questions.
For one example, the zero-in-the-spectrum conjecture for M with � D �1.M / is a
consequence of the strong Novikov conjecture for � which in turn is contained in the
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Baum–Connes conjecture for � . Following the survey [30, Chapter 12], let us choose a
�–triangulation X of �M . We define the homology N .�/–module H�

p .X IN .�//D
Hp.N .�/˝Z� C�.X //, where we view the group von Neumann algebra N .�/ as a
discrete ring. Then the zero-in-the-spectrum conjecture has the equivalent algebraic
version that for some p � dim M the homology H�

p .X IN .�// does not vanish. L2 –
invariants enter the picture in that for a general finite �–CW complex X we have
H�

p .X IN .�//D 0 for p� 0 if and only if b
.2/
p .X /D 0 and z̨p.X /D1C for p� 0.

Therefore Olbrich’s Theorem 3.2 implies that closed locally symmetric spaces �nX
coming from uniform lattices satisfy the conjecture. The statement of the conjecture
does not immediately include locally symmetric spaces �nX coming from nonuniform
lattices because they are not compact. Therefore Lück has asked the following more
general question; see [30, page 440].

Question 1.1 If a group � has a finite CW model for B� , is there p � 0 such that
H�

p .E�IN .�// does not vanish?

This question makes sense for nonuniform lattices, and as we said, L2 –Betti numbers
and Novikov–Shubin invariants provide a way to answer it. In our case Theorem 1.1
combined with Theorem 3.3 by Cheeger and Gromov gives the following result.

Theorem 1.3 The answer to Question 1.1 is affirmative for torsion-free arithmetic
subgroups of connected semisimple linear algebraic Q–groups G with rankQ.G /D 1.

In a different direction, Gaboriau has proven in the far-reaching paper [18] that
if � and ƒ are measure-equivalent groups of index c in the sense of Gromov, then
b
.2/
p .�/D c � b

.2/
p .ƒ/. For obvious reasons nothing similar can be true for Novikov–

Shubin invariants but for the L2 –torsion we have the following conjecture.

Conjecture 1.2 (Lück–Sauer–Wegner) Let � and ƒ be det-L2 –acyclic groups.
Assume that � and ƒ are measure-equivalent of index c . Then �.2/.�/D c � �.2/.ƒ/.

This conjecture appears in [32, Conjecture 1.2], where it is proven to hold true if
measure equivalence is replaced by the far more rigorous notion of uniform measure
equivalence. Regarding the original Conjecture 1.2, the authors state that evidence
comes from the similar formal behavior of Euler characteristic and L2 –torsion as
well as from computations. Our Theorem 1.2, together with a rigidity theorem due to
Furman [17], adds the following piece of evidence.

Theorem 1.4 Let Leven be the class of det-L2 –acyclic groups that are measure equiv-
alent to a lattice in a connected simple linear Lie group with even deficiency. Then
Conjecture 1.2 holds true for Leven .
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Of course in fact �.2/.�/ D 0 for all � 2 Leven , which one might find unfortunate.
On the other hand, Leven contains various complete measure equivalence classes of
det-L2 –acyclic groups, so Theorem 1.4 certainly has substance. Gaboriau points out
in [19, page 1810] that apart from amenable groups and lattices in connected simple
linear Lie groups of higher rank, no more measure equivalence classes of groups have
been completely understood so far.

In order to prove Theorems 1.1 and 1.2, a close understanding of the Borel–Serre
compactification is indispensable. Thus we will give a detailed exposition of it in
Section 2. We will closely follow the presentation of Borel and Ji [8, Chapter III.9],
but unlike them we consider also disconnected algebraic groups and give a sharpened
version of [8, Lemma III.16.2, page 371] in Proposition 2.3 to stress the recursive
character of the construction. Section 3 gives a brief introduction to L2 –invariants and
their basic properties. Section 4 forms the main part of this article where we compute
L2 –invariants of the Borel–Serre compactification and conclude the results presented
in this introduction. Our strategy is to reduce the computation of L2 –invariants from
the entire Borel–Serre bordification X to the boundary components e.P /. If P is
minimal parabolic, then a certain subgroup of � acts cocompactly on e.P / so that the
results of Olbrich can be applied to the boundary symmetric space XP , whereas the
nilpotent factor NP can be dealt with by results of Rumin and Wegner.

Acknowledgments The material in this article is part of the author’s doctoral the-
sis [25]. It was written within the project “L2 –invariants and quantum groups” funded
by the German Research Foundation (DFG). I wish to thank my advisor Thomas Schick
for many helpful suggestions.

2 Borel–Serre compactification

In this section we introduce the Borel–Serre compactification of a locally symmet-
ric space mostly following the modern treatment by Borel and Ji [8, Chapter III.9,
page 326]. The outline is as follows. In Section 2.1 we recall basic notions of linear
algebraic groups, their arithmetic subgroups and associated locally symmetric spaces. In
Section 2.2 we study rational parabolic subgroups and their Langlands decompositions.
These induce horospherical decompositions of the symmetric space. We classify rational
parabolic subgroups up to conjugacy in terms of parabolic roots. In Section 2.3 we
introduce and examine the bordification, a contractible manifold with corners which
contains the symmetric space as an open dense set. In Section 2.4 we see that the
group action extends cocompactly to the bordification. The compact quotient gives the
desired Borel–Serre compactification. We will examine its constituents in some detail.
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2.1 Algebraic groups and arithmetic subgroups

Let G �GL.n;C/ be a reductive linear algebraic group defined over Q satisfying the
following two conditions.

(I) We have �2 D 1 for all � 2XQ.G /.

(II) The centralizer ZG .T / of each maximal Q–split torus T � G meets every
connected component of G .

This class of groups appears in Harish-Chandra [22, page 1]. Condition (I) implies that
the group XQ.G

0/ of Q–characters on the unit component of G is trivial. Thus G

has no central Q–split torus. Note that the structure theory of reductive algebraic
groups is usually derived for connected groups; see for example Borel [5, Chapter IV].
But if one tries to enforce condition (I) for a connected reductive Q–group H by going
over to

T
�2XQ.H / ker�2 , the resulting group will generally be disconnected. This is

why we impose the weaker condition (II), which will turn out to be good enough for
our purposes.

A subgroup � � G .Q/ is called arithmetic if it is commensurable with G .Z/.
This means � \ G .Z/ has finite index both in � and in G .Z/. The real points
GDG .R/ form a reductive Lie group with finitely many connected components [5, Sec-
tion 24.6(c)(i), page 276]. By a theorem of Borel and Harish-Chandra [6, Theo-
rem 9.4, page 522] condition (I) implies that an arithmetic subgroup � �G .Q/ is a
lattice in G , which means the quotient space G=� has finite G–invariant measure.
Selberg’s Lemma [2] says that � has torsion-free subgroups of finite index. We want
to assume that � is torsion-free to begin with. This ensures that � acts freely and
properly from the left on the symmetric space X D G=K , where K is a maximal
compact subgroup of G .

Corresponding to K there is a Cartan involution �K on G that extends to an algebraic
involution of G ; see Borel and Serre [9, Definition 1.7, page 444]. If G is semisim-
ple, �K is the usual Cartan-involution. The symmetric space X is connected because
K meets every connected component of G . In general, it is the product of a symmetric
space of noncompact type and a Euclidean factor. The quotient �nX D �nG=K is
called a locally symmetric space. The locally symmetric space �nX is a connected
finite-volume Riemannian manifold and in fact a classifying space for � because its
universal covering X is contractible. The quotient �nG , or equivalently the locally
symmetric space �nX , is compact if and only if rankQ.G /D 0.

Algebraic & Geometric Topology, Volume 14 (2014)
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2.2 Rational parabolic subgroups

If G is connected, a closed Q–subgroup P �G is called a rational parabolic subgroup
if G =P is a complete (equivalently projective) variety. If G is not connected, we
say that a closed Q–subgroup P � G is a rational parabolic subgroup if it is the
normalizer of a rational parabolic subgroup of G 0 . These definitions are compatible
because rational parabolic subgroups of connected groups are self-normalizing. It
is clear that P 0 D P \G 0 , and condition (II) on G ensures that P meets every
connected component of G [22, Lemma 1, page 2], so G =P is complete.

Given a rational parabolic subgroup P �G we set NP DRu.P / and we denote by
LP DP=NP the Levi quotient of P . Let SP �LP be the maximal central Q–split
torus and set MP D

T
�2XQ.LP /

ker�2 , where XQ.LP/ denotes the group of Q–
characters of LP . The Q–group MP is reductive and satisfies conditions (I) and (II).
It complements SP as an almost direct product in LP [22, page 3]. This means
LP D SPMP and SP \MP is finite. For the groups of real points LP D LP.R/,
AP DSP.R/

0 and MP DMP.R/, the situation is even better behaved. One can verify
that LP DAPMP but now the finite group AP \MP is actually trivial because AP

is torsion-free. Since both AP and MP are normal, the product is direct. We would
like to lift these decompositions to some Levi k –subgroup of P . The following result
due to Borel and Serre asserts that the maximal compact subgroup K�G singles out a
canonical choice for doing so [9, Proposition 1.8, page 444]. The caveat is that k DQ
needs to be relaxed to k D R. We view x0 D K as a base point in the symmetric
space X .

Proposition 2.1 Let P � G be a rational parabolic subgroup and let K � G be
maximal compact. Then P contains one and only one R–Levi subgroup LP;x0

which
is stable under �K .

We remark that for a given P , the maximal compact subgroup K which is identified
with the base point x0DK in X can always be chosen such that LP;x0

is a Q–group.
In fact, LQ;x0

is then a Q–group for all parabolic subgroups Q�G that contain P .
This follows from the proof of [8, Proposition III.1.11, page 273]. In this case we will
say that x0 is a rational base point for P . In general however, there is no universal base
point x0 such that the �K –stable Levi subgroups of all rational parabolic subgroups
would be defined over Q [20, Section 3.9, page 151].

The canonical projection � W LP;x0
! LP is an R–isomorphism. The groups SP

and MP lift under � to the R–subgroups SP;x0
and MP;x0

of P . The rational
parabolic subgroup P thus has the decomposition

(2-1) P DNPSP;xo
MP;x0

ŠNP Ì .SP;x0
MP;x0

/;

Algebraic & Geometric Topology, Volume 14 (2014)
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where LP;x0
D SP;x0

MP;x0
is an almost direct product. Similarly, we have that the

Lie groups LP , AP and MP lift to the Lie subgroups LP;x0
, AP;x0

and MP;x0
of

the cuspidal group P DP .R/.

Definition 2.1 The point x0 2X yields the rational Langlands decomposition

P DNP AP;x0
MP;x0

ŠNP Ì .AP;x0
�MP;x0

/:

We intentionally used a nonboldface index for NP DNP.R/ because NP coincides
with the unipotent radical of the linear Lie group P . The number s–rank.P / D
dimR AP;x0

is called the split rank of P . Let KP D P \K and K0
P
D �.KP /.

Inspecting [9, Proposition 1.8, page 444], we see that KP � LP;x0
so K0

P
� LP .

Since K0
P

is compact, we have �.K0
P
/� f˙1g for each � 2XQ.LP/ so that actually

K0
P
�MP and thus KP �MP;x0

. Moreover G D PK so that P acts transitively on
the symmetric space X DG=K .

Definition 2.2 The map .n; a;mKP / 7! namK is a real analytic diffeomorphism

NP �AP;x0
�XP;x0

ŠX

of manifolds called the rational horospherical decomposition of X with respect to P

and x0 and with boundary symmetric space XP;x0
DMP;x0

=KP .

Note that KP is a maximal compact subgroup of MP;x0
, because it is even a maximal

compact subgroup of the larger group P [9, Proposition 1.5, page 442]. Write an
element p 2 P according to the rational Langlands decomposition as p D nam

and write a point x1 2 X according to the rational horospherical decomposition as
x1 D .n1; a1;m1KP /. Then we see that the left-action of P on X is given by

nam:.n1; a1;m1KP /D .n
amn1; aa1;mm1KP /;

where we adopt the convention to write hg for the conjugation hgh�1 .

The horospherical decomposition realizes the symmetric space X as the product of
a nilmanifold, a flat manifold and yet another symmetric space XP;x0

. The iso-
morphism � identifies the latter one with the symmetric space XP DMP=K

0
P

. It
is the symmetric space of the reductive Q–group MP which meets conditions (I)
and (II). The group MP inherits the arithmetic lattice � 0MP

which is the image of
�P D�\NG.P / under the projection P!P=NP ŠLP . Here we have � 0MP

�MP

because �.� 0
MP

/� f˙1g for all � 2XQ.LP/ as �.� 0MP
/�GL.1;Q/ is arithmetic.

In general � 0MP
might have torsion elements. But there is a condition on � that ensures

it does not.
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Definition 2.3 A matrix g 2GL.n;Q/ is called neat if the subgroup of C� generated
by the eigenvalues of g is torsion-free. A subgroup of GL.n;Q/ is called neat if all of
its elements are neat.

The notion of neatness is due to Serre. It appears first in Borel [3, Section 17.1, page 117].
A neat subgroup is obviously torsion-free. Every arithmetic subgroup of a linear
algebraic Q–group has a neat subgroup of finite index [3, Proposition 17.4, page 118]
and neatness is preserved under morphisms of linear algebraic groups [3, Corollaire 17.3,
page 118]. Therefore � 0MP

is neat if � is, and in that case � 0MP
acts freely and

properly on the boundary symmetric space XP . We observe that rankQ.MP/ D

rankQ.G /� dim AP . In this sense the locally symmetric space � 0MP
nXP is closer to

being compact than the original �nX . This is a key observation for the construction
of the Borel–Serre compactification. If in particular P is a minimal rational parabolic
subgroup, then SP;x0

�P is G –conjugate to a maximal Q–split torus of G so that
rankQ.MP/D 0 and thus � 0MP

nXP is compact.

Now the group MP has itself rational parabolic subgroups Q0 whose cuspidal sub-
groups Q0 have a Langlands decomposition Q0 DNQ0AQ0;x0

0
MQ0;x0

0
with respect to

the base point x0
0
D K0

P
. The isomorphism � identifies those groups as subgroups

of MP;x0
. We set

N �Q DNP NQ0 ŠNP Ì NQ0 ;

A�Q;x0
DAP;x0

AQ0;x0
0
DAP;xo

Ì AQ0;x0
0
;

M �
Q;x0

DMQ0;x0
0
:

Then we define Q� D N �
Q

A�Q;x0
M �

Q;x0
. The group Q� is the cuspidal group of a

rational parabolic subgroup Q� of G such that Q� � P . Equivalently, Q� is a
rational parabolic subgroup of P . The Langlands decomposition of Q� with respect
to x0 is the decomposition given in its construction.

Lemma 2.1 The map Q0 7! Q� gives a bijection of the set of rational parabolic
subgroups of MP to the set of rational parabolic subgroups of G contained in P .

This is [22, Lemma 2, page 4]. We use the inverse of this correspondence to con-
clude that for every rational parabolic subgroup QDQ� �P we obtain a rational
horospherical decomposition of the boundary symmetric space

(2-2) XP;x0
ŠXP ŠNQ0 �AQ0;x0

0
�XQ0;x0

0
:

In the case P DG condition (I) gives MG ;x0
DG so that we get back the original

rational horospherical decomposition of Definition 2.2.
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In the rest of this section we will recall the classification of rational parabolic sub-
groups of G up to conjugation in G .Q/ in terms of parabolic roots [22, Chap-
ter 1, pages 3–4]. Let g0 , p, nP , aP;x0

and mP;x0
be the Lie algebras of the Lie

groups G , P , NP , AP;x0
and MP;x0

. From the viewpoint of algebraic groups, these
Lie algebras are given by R–linear left-invariant derivations of the field of rational
functions defined over R on the unit components of G , P , NP , SP;x0

and MP;x0
,

respectively. A linear functional ˛ on aP;x0
is called a parabolic root if the subspace

nP;˛ D fn 2 nP W ad.a/.n/D ˛.a/n for all a 2 aP;x0
g

of nP is nonzero. We denote the set of all parabolic roots by ˆ.p; aP;x0
/. If

l D dim aP;x0
, there is a unique subset �.p; aP;x0

/ � ˆ.p; aP;x0
/ of l simple par-

abolic roots such that every parabolic root is a unique linear combination of simple
ones with nonnegative integer coefficients. The group AP;x0

is exponential so that
expW aP;x0

!AP;x0
is a diffeomorphism with inverse “log”. Therefore we can evaluate

a parabolic root ˛ 2ˆ.p; aP;x0
/ on elements a 2AP;x0

setting a˛ D exp.˛.log a//,
where “exp” is now the ordinary real exponential function.

The subsets of �.p; aP;x0
/ classify the rational parabolic subgroups of G that con-

tain P as we will now explain. Let I � �.p; aP;x0
/ be a subset and let ˆI �

ˆ.p; aP;x0
/ be the set of all parabolic roots that are linear combinations of simple roots

in I . Set aI D
T
˛2I ker˛ and nI D

L
˛2† nP;˛ , where †D †.p; aP;x0

/ denotes
the set of all parabolic roots which do not lie in ˆI . Consider the sum pI D nI ˚z.aI /

of nI and the centralizer of aI in g0 . Let PI DNG.pI / be the normalizer of pI in G .
If x1 2X is a different base point, then x1Dp:x0 for some p 2P and aP;x1

D paP;x0

as well as n.I p/ D
pnI . It follows that the group PI , thus its Zariski closure PI , is

independent of the choice of base point. Since rational base points exist for P , the
Lie algebra of PI , which as a variety is given by C–linear left-invariant derivations
of the field of rational functions on P 0

I
, is defined over Q. It follows that PI is

a Q–group [22, page 1]. In fact, PI is a rational parabolic subgroup of G with
cuspidal group PI . Let NI and AI be the Lie subgroups of PI with Lie algebras nI

and aI . Then NI � PI is the unipotent radical and AI D SPI;x0
.R/0 . The parabolic

roots ˆ.pI ; aI / are the restrictions of †.p; aP;x0
/ to aI , where simple parabolic roots

restrict to the simple ones �.pI ; aI / of pI .

Every rational parabolic subgroup of G that contains P is of the form PI for a
unique I ��.p; aP;x0

/. The two extreme cases are P∅ D P and P�.p;aP;x0
/ D G .

If P is minimal, the groups PI form a choice of so called standard rational parabolic
subgroups. Every rational parabolic subgroup of G is G .Q/–conjugate to a unique
standard one. Whence there are only finitely many rational parabolic subgroups up to
conjugation in G .Q/. There are even only finitely many when we restrict ourselves to
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conjugating by elements of an arithmetic subgroup � �G .Q/. This is clear from the
following result of Borel [22, page 5].

Proposition 2.2 Let P �G be a rational parabolic subgroup and let � �G .Q/ be
an arithmetic subgroup. Then the set �nG .Q/=P .Q/ is finite.

2.3 Bordification

From now on we drop x0 and x0
0

from our notation. The resulting notational collisions
AP D AP;x0

, MP D MP;xo
and XP D XP;x0

regarding Levi quotients and Levi
subgroups are justified by Proposition 2.1 and the discussion throughout the preceding
section. We will use the symbol “

S
� ” for general disjoint unions in topological spaces,

whereas the symbol “
`

” is reserved for the true categorical coproduct.

Let P �G be a rational parabolic subgroup. It determines the rational horospherical
decomposition X DNP �AP �XP of Definition 2.2. Define the boundary component
of P by e.P / D NP �XP . Then as a set, the Borel–Serre bordification X of the
symmetric space X is given by the countable disjoint union

X D
a

P�G

e.P /

of all boundary components of rational parabolic subgroups P � G . This includes
the symmetric space X D e.G /. In order to topologize the set X we introduce
different coordinates on e.P / for every parabolic subgroup Q � P . We do so by
writing the second factor in e.P /DNP �XP according to the rational horospherical
decomposition of the boundary symmetric space XP D NQ0 �AQ0 �XQ0 given in
(2-2). From the preparation of Lemma 2.1 we get NQ DNP NQ0 and MQ DMQ0 so
that we are left with

(2-3) e.P /DNQ �AQ0 �XQ:

The closed sets of X are now determined by the following convergence class of
sequences [8, I.8.9–I.8.13, page 113].

A sequence .xi/ of points in e.P / converges to a point x 2 e.Q/ if Q� P and if
for the coordinates xi D .ni ; ai ;yi/ of (2-3) and x D .n;y/ of e.Q/DNQ�XQ the
following three conditions hold true:

(i) a˛i !C1 for each ˛ 2ˆ.q0; aQ0/

(ii) ni! n within NQ

(iii) yi! y within XQ
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A general sequence .xi/ of points in X converges to a point x 2 e.Q/ if for each
P �G every infinite subsequence of .xi/ within e.P / converges to x .

Note that in the case QDP the set ˆ.q0; aQ0/ is empty so that condition (i) is vacuous.
We therefore obtain the convergence of the natural topology of e.P /. In particular, the
case QDP DG gives back the natural topology of X . It is clear that we obtain the
same set X with the same class of sequences if we go over from G to G 0 . We thus
may cite [8, Section III.9.2, page 328], where it is stated that this class of sequences
does indeed form a convergence class of sequences. This defines the topology of X .

Since a sequence .xi/ in e.P / can only converge to a point x 2 e.Q/ if Q�P , it is
immediate that the Borel–Serre boundary @X �X of X defined as

(2-4) @X D
[
�

P¨G

e.P /

is closed in X . Whence its complement e.G / D X � X is open. The following
proposition sharpens [8, Lemma III.16.2, page 371].

Proposition 2.3 The closure of the boundary component e.P / in the bordification X

can be canonically identified with the product

e.P /DNP �XP ;

where XP is the Borel–Serre bordification of the boundary symmetric space XP .

Proof By construction of the convergence class of sequences we have

(2-5) e.P /D
[
�

Q�P

e.Q/:

In terms of the rational parabolic subgroup Q0 �MP of Lemma 2.1 the boundary
component e.Q/ can be expressed as

(2-6) e.Q/DNQ �XQ DNP �NQ0 �XQ0 DNP � e.Q0/:

In the distributive category of sets we thus obtain

e.P /D
a

Q�P

e.Q/D
a

Q0�MP

NP � e.Q0/DNP �

a
Q0�MP

e.Q0/DNP �XP :

We have to verify that this identifies the spaces e.P / and NP �XP also topologically
if we assign the bordification topology to XP . For this purpose we show that the natural
convergence classes of sequences on e.P / and NP �XP coincide. Let us refine our
notation and write Q0DQ jP to stress that Q0�MP . Let R�Q be a third rational
parabolic subgroup. Then the equality MQ DMQjP implies the cancellation rule
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R jQD .R jP / j .Q jP /. Incorporating coordinates for e.Q/ with respect to R as
in (2-3), then (2-6) can now be written as

e.Q/DNR �ARjQ �XR DNP � .NRjP �A.RjP/j.QjP/ �XRjP/:

Here the product NRjP � A.RjP/j.QjP/ � XRjP gives the coordinates (2-3) for
e.Q jP / with respect to R jP . Let .ni ; ai ;yi/ be a sequence in e.Q/ converging to
.n;y/ 2 e.R/. We decompose uniquely

ni D nP
i n

RjP
i and nD nP nRjP

according to NR DNP NRjP ŠNP Ì NRjP . Then firstly nP
i ! nP in NP . Secondly

.n
RjP
i ; ai ;yi/ is a sequence in e.Q j P / that converges to .nRjP ;y/ 2 e.R j P /

according to the convergence class of the bordification XP . Since the convergence
class of NP �XP consists of the memberwise products of convergent sequences in NP

and the sequences in the convergence class of XP , this clearly proves the assertion.

One special case of this proposition is e.G /D X . The other important special case
occurs when P is a minimal rational parabolic subgroup. Then rankQ.MP/D 0, so
XP DXP , which means that e.P / is closed.

As we have e.P / D
S
� e.Q/, the union running over all Q � P , we should also

examine the subset
e.P /D

[
�

Q�P

e.Q/�X :

To this end, consider the rational horospherical decomposition X DNP �AP �XP

of X given P . Let �.p; aP/D f˛1; : : : ; ˛lg be a numbering of the simple parabolic
roots. The map a 7! .a�˛1 ; : : : ; a�˛l / defines a coordinate chart 'P W AP ! .R>0/

l .
The minus signs make sure the “point at infinity” of AP will correspond to the origin
in Rl . Let xAP be the closure of AP in Rl under the embedding 'P . Given Q�P ,
let I ��D�.p; aP/ be such that QDPI and set

AP;Q D exp
� \
˛2�nI

ker˛
�
:

Since the simple roots �.p; aP/ restrict to the simple roots �.pI ; aI /, we obtain
inclusions AP;Q �

xAQ �
xAP . If oQ 2

xAQ denotes the origin, these inclusions
combine to give a disjoint decomposition

xAP D

[
�

Q�P

AP;Q � oQ

of the corner xAP into the corner point (for Q D P ), the boundary edges, the
boundary faces, : : :, the boundary hyperfaces and the interior (for Q D G ). In

Algebraic & Geometric Topology, Volume 14 (2014)



2488 Holger Kammeyer

the coordinates e.Q/ D NP �AP 0 �XP as in (2-3), the group AP 0 can be identi-
fied with the group AP;Q [8, Lemma III.9.7, page 330]. It follows that the subset
NP �AP;Q � oQ �XP in NP �

xAP �XP can be identified with e.Q/ and hence

(2-7) e.P /ŠNP �
xAP �XP

has the structure of a real analytic manifold with corners. For a proof that the involved
topologies match, we refer to [8, Lemmas III.9.8–10, pages 330–332]. The mani-
fold e.P / is called the corner in X corresponding to the rational parabolic subgroup P .
The corners e.P / are open. With their help, neighborhood bases of boundary points
in X can be described [8, Lemma III.9.13, page 332]. These demonstrate that X is a
Hausdorff space [8, Proposition III.9.14, page 333]. The corners e.P / form an open
cover of the bordification X . One verifies that their analytic structures are compatible
to conclude the following result [8, Proposition III.9.16, page 335].

Proposition 2.4 The bordification X has a canonical structure of a real analytic
manifold with corners.

If one wishes, the corners of X can be smoothed to endow X with the structure of a
smooth manifold with boundary [9, Appendix]. The collar neighborhood theorem thus
implies that X is homotopy equivalent to its interior.

Corollary 2.1 The bordification X is contractible.

Another corollary of Proposition 2.4 together with Proposition 2.3 is that the closures
of boundary components e.P / are real analytic manifolds with corners as well. In fact,
the inclusion e.P /�X realizes e.P / as a submanifold with corners of X . Note that
topologically a manifold with corners is just a manifold with boundary. We conclude
this section with the observation that

(2-8) e.P /\ e.Q/D e.P \Q/

if P \Q is rational parabolic. Otherwise the intersection is empty. Dually,

e.P /\ e.Q/D e.R/;

where R now denotes the smallest rational parabolic subgroup of G that contains
both P and Q. If R DG , the intersection equals X .
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2.4 Quotients

We extend the action of G .Q/ on X to an action on X . Given g 2 G .Q/ and a
rational parabolic subgroup P , let k 2K , n 2NP , a 2AP and m 2MP such that
gD kman. Note that we have swapped m and n compared to the order in the rational
Langlands decomposition in Definition 2.1. This ensures that a and n are unique. In
contrast, the elements k and m can be altered from right and left by mutually inverse
elements in KP . Their product km is however well-defined. We therefore obtain a
well-defined map g:W e.P /! e.kP / by setting

(2-9) g:.n0;m0KP /D
�

kma.nn0/;
k.mm0/KkP

�
:

Using the convergence class of sequences, one checks easily that this defines a con-
tinuous and in fact a real analytic action of G .Q/ on X , which extends the action
on X [8, Propositions III.9.15–16, pages 333–335]. The restricted action of � �G .Q/
is proper [8, Proposition III.9.17, page 336] and thus free because � is torsion-free. The
quotient �nX is therefore Hausdorff and in fact a real analytic manifold with corners.
It is called the Borel–Serre compactification of the locally symmetric space �nX in
view of the following result [8, Theorem III.9.18, page 337].

Theorem 2.1 The real analytic manifold with corners �nX is compact.

By Corollary 2.1 the Borel–Serre compactification �nX is a classifying space for � .
The subgroup �P D�\NG.P / of � leaves e.P / invariant. Let us denote the quotient
by e0.P /D �Pne.P /. Since g:e.P /\ e.P /D∅ for every g 2 � that does not lie
in �P , we have the following disjoint decomposition of the quotient �nX [8, Proposi-
tion III.9.20, page 337].

Proposition 2.5 Let P1; : : : ;Pr be a system of representatives of �–conjugacy
classes of rational parabolic subgroups in G . Then

�nX D

r[
�

iD1

e0.Pi/:

The closure of e0.P / in �nX is compact and has the decomposition

(2-10) e0.P /D
[
�

Q�P

e0.Q/:

This follows from the compatibilities e0.P / D �.e.P // and e0.P / D �.e.P // and
from (2-5), where �W X ! �nX denotes the canonical projection [9, Proposition 9.4,
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page 476]. By (2-5) and the remarks preceding Proposition 2.5 we see that e0.P /D

�.e.P // also equals �Pne.P /. We will examine this latter quotient.

Let �NP
D � \ NP . The rational Langlands decomposition in Definition 2.1 de-

fines a projection P ! MP . Let �MP
be the image of �P under this projection.

Equivalently, �MP
is the canonical lifting under � of the group � 0MP

defined below
Definition 2.2; see [7, Proposition 2.6, page 272]. We should however not conceal a
word of warning. The lift � 0MP

! �MP
does not necessarily split the exact sequence

1 �! �NP
�! �P �! � 0MP

�! 1;

not even if the suppressed base point was rational for P . By [7, Propositions 2.6 and 2.8,
page 272] we have �P �NP�MP

DNP�P . We analyze how the action of �P on e.P /

behaves regarding the decomposition e.P /DNP �XP of Proposition 2.3.

Proposition 2.6 Let p 2 �P and let p D mn be its unique decomposition with
m 2 �MP

and n 2NP . Let .n0;x/ 2NP �XP D e.P /. Then

p:.n0;x/D
�
m.nn0/;m:x

�
:

Proof There is a unique rational parabolic subgroup Q � P and there are unique
elements n0

0
2NQ0 and m0

0
2MQ0 such that

x D .n00;m
0
0KQ0/ 2NQ0 �XQ0 D e.Q0/�XP :

We decompose m 2 MP as m D km0a0n0 with k 2 KP , m0 2 MQ0 , a0 2 AQ0

and n0 2 NQ0 . By (2-6) we have NP � e.Q0/ D e.Q/ D NQ � XQ and under
this identification our element .n0;x/ corresponds to .n0n0

0
;m0

0
KQ/. We have p D

km0a0.n0n/ with m0 2MQ0 DMQ , a0 2 AQ0 � AQ and n0n 2 NQ . According to
(2-9), the element p therefore acts as

p:.n0n00;m
0
0KQ/D

�
km0a0

.n0nn0n00/;
k.m0m00/KkQ

�
:

For the left-hand factor we compute

km0a0

.n0nn0n00/D
km0a0

.n
0

.nn0/n
0n00/D

km0a0n0

.nn0/
km0a0

.n0n00/

D
m.nn0/

km0a0

.n0n00/:

Transforming back from NQ �XQ to NP � e.Q0/, we therefore obtain

p:.n0;x/D
�
m.nn0/;

�
km0a0

.n0n00/;
k.m0m00/KkQ

��
D
�
m.nn0/;m:x

�
:
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If � is neat, then Proposition 2.6 makes explicit that we have a commutative diagram

e.P / //

��

�Pne.P /

��

XP
// �MP

nXP

of bundle maps of manifolds with corners. The bundle structure of �Pne.P / will later
be of particular interest.

Theorem 2.2 Let � �G .Q/ be a neat arithmetic subgroup. Then the manifold with
corners e0.P / D �Pne.P / has the structure of a real analytic fiber bundle over the
manifold with corners �MP

nXP with the compact nilmanifold �NP
nNP as a typical

fiber.

Also for later purposes we remark that the Borel–Serre compactification �nX clearly
has a finite CW structure such that the closed submanifolds e0.P / are subcomplexes.
The bordification X is a regular covering of this finite CW complex with deck
transformation group � , in other words a finite free �–CW complex in the sense
of tom Dieck [14, Section II.1, page 98]. In the sequel we want to assume that X

is endowed with this �–CW structure as soon as a torsion-free arithmetic subgroup
� �G .Q/ is specified. Then Corollary 2.1 and Theorem 2.1 say in more abstract terms
that the bordification X is a cofinite classifying space E� . In fact, something better
is true. The bordification is a model for the classifying space E� for proper group
actions for every general, not necessarily torsion-free, arithmetic subgroup � �G .Q/.
This means every isotropy group is finite and for every finite subgroup ƒ � � the
fixed point set Xƒ is contractible (and in particular nonempty). This was pointed
out by Adem and Ruan [1, Remark 5.8, page 546] and Ji thereafter supplied a proof
in [24, Theorem 3.2, page 520].

3 L2–invariants

In this section we review L2 –Betti numbers, Novikov–Shubin invariants and L2 –
torsion of �–CW complexes following [30, Chapters 1–3]. Let � be a discrete
countable group. It acts unitarily from the left on the Hilbert space `2� of square-
integrable functions �!C . This Hilbert space has a distinguished vector e 2� � `2� .
The �–equivariant bounded operators N .�/D B.`2�/� form a weakly closed, uni-
tal �–subalgebra of B.`2�/ called the group von Neumann algebra of � . This al-
gebra comes endowed with a canonical trace trN .�/ given by the matrix coefficient
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corresponding to the distinguished vector, trN .�/.f / D hf .e/; ei. The trace trN .�/
extends diagonally to positive �–equivariant bounded endomorphisms of a direct
sum

Ln
kD1 `

2� .

Let X be a finite free �–CW complex in the sense of [14, Section II.1, page 98].
Equivalently, X is a Galois covering of a finite CW complex with deck transforma-
tion group � . Let C�.X / be the cellular Z�–chain complex. The L2 –completion
C
.2/
� .X / D `2� ˝Z� C�.X / is called the L2 –chain complex. The differentials

cpW C
.2/
p .X /! C .2/

p�1.X / are �–equivariant bounded operators induced from the dif-
ferentials in C�.X /. These define the pth Laplace operator �pW C

.2/
p .X /!C .2/

p .X /

given by �p D cpC1c�
pC1
C c�p cp . Let fEp

�
g be the family of �–equivariant spectral

projections associated with �p . Choosing a cellular basis of X yields identifications
C .2/

p .X / D
Lnp

kD0
`2� , where np is the number of equivariant p–cells in X . Two

such identifications differ by a unitary transformation. As the trace is constant on
unitary conjugacy classes, the following definition is justified.

Definition 3.1 The pth spectral density function of X is given by

FpW Œ0;1/! Œ0;1/; � 7! trN .�/.E
p

�
/:

Spectral density functions are density functions in the measure-theoretic sense; they
are monotone nondecreasing and right-continuous.

Definition 3.2 (Cellular L2 –invariants)

(i) The pth L2 –Betti number of X is given by

b.2/p .X IN .�//D Fp.0/ 2 Œ0;1/:

(ii) The pth Novikov–Shubin invariant of X is given by

z̨p.X IN .�//D lim inf
�!0C

log.Fp.�/�Fp.0//

log.�/
2 Œ0;1�;

unless Fp."/DFp.0/ for some ">0, in which case we set z̨p.X IN .�//D1C .

(iii) The L2 –torsion of X is given by

�.2/.X IN .�//D� 1

2

X
p�0

.�1/pp

Z 1
0C

log.�/ dFp.�/ 2R;

where we require Fp.0/D 0 and
R1

0C log.�/ dFp.�/ > �1 for each p .
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Frequently we will suppress N .�/ from our notation. We give some explanations.
The trace of a spectral projection gives the so-called von Neumann dimension of its
image. Therefore the pth L2 –Betti number equals the von Neumann dimension of
the harmonic L2 –p–chains, whence the terminology. Novikov–Shubin invariants
measure how slowly the spectral density function grows in a neighborhood of zero. The
fractional expression is so chosen that it returns k if Fp happens to be a polynomial
with highest order k . The value “1C” is just a formal symbol that indicates a spectral
gap of �p at zero. We agree that 1C >1 > r for all r 2 R. In the definition of
L2 –torsion we integrate the natural logarithm over the Borel space .0;1/ with respect
to the Lebesgue–Stieltjes measure defined by the density function Fp . This gives the
so-called Fuglede–Kadison determinant of �p . Note that Fp equals np after finite
time so there is no issue with divergence to C1. Conjecturally it is also always true
that

R1
0C log.�/ dFp.�/ > �1. This is known if � lies in a large class of groups G

that notably contains all residually finite groups; see Schick [38]. For short we will say
that X is det-L2 –acyclic if it satisfies the conditions in (iii).

For many purposes it is more convenient to work with a finer version of Novikov–Shubin
invariants p̨.X /, which we obtain by replacing the operator �p by cpjim.cpC1/?

. We
get back the above version by the formula

z̨p.X /D
1
2

minf p̨.X /; p̨C1.X /g:

Moreover, a finite free �–CW pair .X;A/ defines a relative L2 –chain complex
C
.2/
� .X;A/. Its Laplacians define the relative L2 –invariants b

.2/
p .X;A/, p̨.X;A/

and also �.2/.X;A/ provided .X;A/ is det-L2 –acyclic.

Theorem 3.1 (Selected properties of cellular L2 –invariants)

(i) Homotopy invariance Let f W X ! Y be a weak �–homotopy equivalence of
finite free �–CW complexes. Then

b.2/p .X /D b.2/p .Y / and p̨.X /D p̨.Y / for all p � 0:

Suppose that X or Y is L2 –acyclic and that � 2 G . Then

�.2/.X /D �.2/.Y /:

(ii) Poincaré duality Let the �–CW pair .X; @X / be an equivariant triangulation
of a free proper cocompact orientable �–manifold of dimension n with possibly
empty boundary. Then

b.2/p .X /D b.2/n�p.X; @X / and p̨.X /D ˛nC1�p.X; @X /:
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Suppose X is det-L2 –acyclic. Then so is .X; @X / and

�.2/.X /D .�1/nC1�.2/.X; @X /:

Thus �.2/.X /D 0 if the manifold is even-dimensional and has empty boundary.

(iii) Euler characteristic and fiber bundles Let X be a connected finite CW com-
plex. Then the classical Euler characteristic �.X / can be computed as

�.X /D
X
p�0

.�1/pb.2/p . zX /:

Let F !E! B be a fiber bundle of connected finite CW complexes. Assume
that the inclusion Fb ! E of one (hence every) fiber induces an injection of
fundamental groups. Suppose that zFb is det-L2 –acyclic. Then so is zE and

�.2/. zE/D �.B/ � �.2/. zF /:

(iv) Aspherical CW complexes and elementary amenable groups Let X be a
finite CW complex with contractible universal covering. Suppose that �D�1.X /

is of det�1–class and contains an elementary amenable infinite normal subgroup.
Then

b.2/p . zX /D 0 for p � 0; p̨. zX /� 1 for p � 1 and �.2/. zX /D 0:

The proofs are given in [30, Theorem 1.35, page 37, Theorem 2.55, page 97, Theo-
rem 3.93, page 161, Corollary 3.103, page 166, Theorem 3.113, page 172, Lemma 13.6,
page 456]. The assertion �.2/. zX /D 0 in (iv) is due to Wegner [41], who has recently
given a slight generalization in [42]. We list three more facts that will be of particular
importance for our later applications.

Lemma 3.1 Let the �–CW pair .X; @X / be an equivariant triangulation of a free
proper cocompact orientable L2 –acyclic �–manifold. Then for each p � 1,

1
2

minf p̨.X /; ˛n�p.X /g � p̨.@X /:

Proof We apply the last inequality of [30, Theorem 2.20, page 84] to the short exact
sequence of L2 –chain complexes of the pair .X; @X /. Since b.2/p .X /D 0, it reduces to

1

p̨.@X /
�

1

p̨.X /
C

1

p̨C1.X; @X /
:

The lemma follows because p̨C1.X; @X /D ˛n�p.X / by Theorem 3.1(ii).

Note that the lemma yields z̨q.X /� ˛q.@X / if dim X D 2qC 1 or dim X D 2q . In
the latter case it gives in fact more precisely ˛q.X / � 2˛q.@X /. The next lemma is
stated as [30, Exercise 3.23, page 209].
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Lemma 3.2 Let the �–CW pair .X; @X / be an equivariant triangulation of a free
proper cocompact orientable �–manifold of even dimension. Assume X is det-L2 –
acyclic. Then so is @X and

�.2/.X /D 1
2
�.2/.@X /:

Finally, we recall that L2 –torsion has the same additivity property as the Euler charac-
teristic [30, Theorem 3.93(2), page 161].

Lemma 3.3 Consider the pushout of finite free �–CW complexes

X0

j2

//

j1
��

X2

��

X1
// X;

where j1 is an inclusion of a �–subcomplex, j2 is cellular and X carries the induced
�–CW structure. Assume that Xi is det-L2 –acyclic for i D 0; 1; 2. Then so is X and

�.2/.X /D �.2/.X1/C �
.2/.X2/� �

.2/.X0/:

L2 –invariants, being homotopy invariants by Theorem 3.1(i), yield invariants for
groups whose classifying spaces have a finite CW model B� . For this purpose we
set b

.2/
p .�/ D b

.2/
p .E�IN .�// as well as p̨.�/ D p̨.E�IN .�//. We say that

� is det-L2 –acyclic if E� is, and set �.2/.�/ D �.2/.E�IN .�// in that case. In
fact, L2 –Betti numbers have been generalized to arbitrary �–spaces and therefore to
arbitrary groups [13; 29]. Novikov–Shubin invariants can likewise be defined for general
groups [31]. So we shall allow ourselves to talk about b

.2/
p .�/, p̨.�/ and z̨p.�/ for

any countable discrete group � . Only for the L2 –torsion such a generalization has not
(yet) been given.

If M is a cocompact free proper Riemannian �–manifold without boundary, there is a
parallel theory of analytic L2 –invariants of M , exploiting the analytic Laplacian �a

p

acting on square integrable p–forms on M [30, Sections 1.3, 2.3, 3.5]. Since �a
p is

an unbounded operator, some more technical effort is necessary in particular to handle
analytic L2 –torsion. If M comes equipped with a finite equivariant triangulation,
then the cellular and analytic L2 –invariants agree. The result is due to Dodziuk for
the L2 –Betti numbers [15], to Efremov for the Novikov–Shubin invariants [16] and
lastly to Burghelea, Friedlander, Kappeler and McDonald for the L2 –torsion [11]. This
bridge between topological and analytic methods makes L2 –invariants powerful. On
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the one hand, from the analytic definition, it is not at all obvious that L2 –invariants
are homotopy invariants. On the other hand, the analytic approach can give access to
computations if the Riemannian structure is particularly nice. This definitely applies
to the case of a symmetric space of noncompact type, M D G=K for a connected
semisimple Lie group G with maximal compact subgroup K . Then M is a finite E�

for every torsion-free uniform lattice � �G . Recall that the deficiency of G is given
by ı.G/D rankC.G/� rankC.K/.

Theorem 3.2 (L2 –invariants of uniform lattices) Let � � G be a uniform lattice
and set mD ı.G/ and nD dim.M /.

(i) We have b
.2/
p .�/¤ 0 if and only if mD 0 and nD 2p .

(ii) We have p̨.�/ D1
C unless m > 0 and p 2 Œn�m

2
C 1; nCm

2
� in which case

p̨.�/Dm.

(iii) Assume that � is torsion-free. We have �.2/.�/¤ 0 if and only if mD 1.

Part (i) can already be found in Borel [4]. Parts (ii) and (iii) are due to Olbrich [35]
generalizing previous work of Lott [27] and Hess and Schick [23]. The methods
used involve .g;K/–cohomology as well as the Harish-Chandra–Plancherel theorem.
Formulas for the nonzero values of L2 –Betti numbers and L2 –torsion involving the
geometry of the compact dual of M are also given in [35]. We note that n�m (thus
nCm) is always even and positive.

For L2 –Betti numbers nothing new happens in the case of a nonuniform lattice � �G .

Theorem 3.3 Let � �G be any lattice and set mD ı.G/ and nD dim.M /. We have
b
.2/
p .�/¤ 0 if and only if mD 0 and nD 2p .

This is already contained in the work of Cheeger and Gromov [12] who consider
compact exhaustions of certain finite-volume manifolds. A more conceptual line of
reasoning uses that G possesses uniform lattices which are all measure equivalent to � .
Hence the result follows from a proportionality theorem of Gaboriau [18, Théorème 6.3,
page 95].

4 L2–invariants of the Borel–Serre bordification

Let us recall that Margulis showed that taking integer points of algebraic Q–groups is
essentially the only way to produce lattices in higher-rank Lie groups. A lattice � in a
connected semisimple Lie group G without compact factors is called reducible if G
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admits infinite connected normal subgroups H and H 0 such that G DHH 0 , such that
H \H 0 is discrete and such that �=.� \H /.� \H 0/ is finite. Otherwise � is called
irreducible. Two groups are called abstractly commensurable if they have isomorphic
subgroups of finite index.

Theorem 4.1 (Margulis arithmeticity) Let G be a connected semisimple linear Lie
group of rankR.G/ > 1 without compact factors. Let � �G be an irreducible lattice.
Then there is a connected semisimple linear Q–group H such that � and H .Z/ are
abstractly commensurable and such that G and H .R/ define isometric symmetric
spaces.

The standard formulation of Margulis arithmeticity is slightly different [34, Theorem 1,
page 97]; see [25, Corollary 4.4, page 33] for the conclusion of our version. Lück,
Reich and Schick have shown in [31, Theorem 3.7.1] that abstractly commensurable
groups have equal Novikov–Shubin invariants. Therefore all irreducible lattices in
higher rank semisimple Lie groups are covered when we work for the moment with
arithmetic subgroups of connected semisimple linear algebraic Q–groups. Before we
come to the proof of Theorem 1.1, we need to recall the following definition for a
compactly generated locally compact group H with compact generating set V �H

and Haar measure �; compare with Guivarch [21].

Definition 4.1 The group H has polynomial growth of order d.H /� 0 if

d.H /D inf
�

k > 0 W lim sup
n!1

�.V n/

nk
<1

�
:

This definition is independent of the choice of V and of rescaling � [21, page 336].
If H is discrete and V is a finite symmetric generating set, we get back the familiar
definition in terms of metric balls in the Cayley graph defined by word lengths. Let us
recall the result we want to prove.

Theorem 1.1 Let G be a connected semisimple linear algebraic Q–group. Suppose
that rankQ.G / D 1 and ı.G .R// > 0. Let P � G be a proper rational parabolic
subgroup. Then for every arithmetic lattice � �G .Q/

z̨q.�/� ı.MP/C d.NP /:

Here q is the middle dimension of X DG .R/=K , so dim X D 2qC1 or dim X D 2q .
The deficiency of a reductive Lie group G0 is defined as ı.G0/D rankC.G

0/�rankC.K
0/

for a maximal compact subgroup K0 �G0 as in the case of semisimple groups. The
deficiency of G0 is also known as the fundamental rank f–rank.X 0/ of the associated
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symmetric space X 0 D G0=K0 . Note that G trivially satisfies conditions (I) and (II)
of Section 2.1. Since rankQ.G / D 1, all proper rational parabolic subgroups are
conjugate under G .Q/ so that the constant ı.MP/Cd.NP / only depends on G . One
example of a group G as in Theorem 1.1 is of course G D SO.2nC 1; 1IC/. But
the point of Theorem 1.1 is that no restriction is made on the real rank of G and
we will consider groups G with higher real rank in Example 4.1 after proving the
theorem. The proof will require an estimation of Novikov–Shubin invariants of the
boundary components e.P /DNP �XP of the Borel–Serre bordification X . Since a
product formula is available for Novikov–Shubin invariants, the calculation eventually
reduces to Theorem 3.2(ii) and the following theorem due to Rumin [37, Theorem 3.13,
page 144]; see also [36, Theorem 4, page 990].

Theorem 4.2 (Rumin) Let N be a simply connected nilpotent Lie group whose Lie
algebra n comes with a grading nD

Lr
kD1 nk . Assume that N possesses a uniform

lattice �N . Then for each p D 1; : : : ; dim N ,

0< p̨.N IN .�N //�

rX
kD1

k dim nk :

In fact, Rumin gives a finer pinching than the above, which in special cases gives
precise values. For example ˛2.N IN .�N //D

Pr
kD1 k dim nk if N is quadratically

presented [37, Section 4.1, page 146].

Corollary 4.1 Let P � G be a proper rational parabolic subgroup. Then for every
torsion-free arithmetic subgroup � �G .Q/ and each p D 1; : : : ; dim NP we have

p̨.NP IN .�NP
//� d.NP /:

Proof At the end of Section 2.2 we have seen that the Lie algebra nP of NP is
conjugate to a standard nI D

L
˛2† nP;˛ and thus graded by the lengths of parabolic

roots. Since ŒnP;˛; nP;ˇ � � nP;˛Cˇ by Jacobi identity, this graded algebra can be
identified with the graded algebra associated with the filtration of nP coming from
its lower central series. It thus follows from [21, Théorème II.1, page 342] that the
weighted sum appearing in Theorem 4.2 equals the degree of polynomial growth
of NP .

Proposition 4.1 Suppose rankQ.G / D 1. Then for every proper rational parabolic
subgroup P �G and every torsion-free arithmetic subgroup � �G .Q/ we have

˛q.e.P /IN .�P //� f–rank.XP/C d.NP /:
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Proof Fix such P �G and � �G .Q/. We mentioned below Definition 2.3 that �
possesses a neat and thus torsion-free subgroup of finite index. It induces a neat
subgroup of finite index of �P . Since Novikov–Shubin invariants remain unchanged
for finite index subgroups, we may assume that � itself is neat. Thus �MP

acts
freely on XP . As rankQ.G / D 1, every proper rational parabolic subgroup is min-
imal (and maximal). So the boundary component e.P / is closed as we observed
below Proposition 2.3. Therefore the �P –action on e.P / is cocompact. Since also
�NP
��MP

acts cocompactly, [30, Theorem 3.183, page 201] implies

˛q.e.P /IN .�P //D ˛q.NP �XP IN .�NP
��MP

//:

This observation enables us to apply the product formula for Novikov–Shubin invari-
ants [30, Theorem 2.55(3), page 97]. It says that ˛q.NP�XP IN .�NP

��MP
// equals

the minimum of the union of the four sets

f˛iC1.NP /C˛q�i.XP/ W i D 0; : : : ; q� 1g;

f˛i.NP /C˛q�i.XP/ W i D 1; : : : ; q� 1g;

f˛q�i.XP/ W i D 0; : : : ; q� 1; b
.2/
i .NP / > 0g;

f˛i.NP / W i D 1; : : : ; q; b
.2/
q�i.XP/ > 0g:

We need to discuss one subtlety here. Applying the product formula requires us to
verify that both NP and XP have the limit property. This means that “lim inf” in
Definition 3.2(ii) equals “lim sup” of the same expression. But this follows from
the explicit calculations in [36; 35]. Note that the third set above is actually empty
because of Theorem 3.1(iv). The group MP DZPM 0

P
is the almost direct product

of its center ZP and the derived subgroup M 0
P
D ŒMP ;MP � which is semisimple.

Accordingly, the boundary symmetric space XP D X Eucl
P
� X nc

P
is the product of

a Euclidean symmetric space and a symmetric space of noncompact type. Clearly
f–rank.X Eucl

P
/D dim X Eucl

P
so that

f–rank.XP/D f–rank.X Eucl
P �X nc

P /D dim X Eucl
P C f–rank.X nc

P /:

As s–rank.P /D 1 we get dim e.P /D dim X�1 with dim X D 2q or dim X D 2qC1.
Let us set n D dim NP , hence dim XP D dim X � 1� n. Now we distinguish two
cases. First we assume that f–rank.XP/D 0. Then XP DX nc

P
is even-dimensional and

we obtain from Theorem 3.2(i) that b.2/q�dn=2e.XP/ > 0. Here for a real number a 2R
we denote by dae and bac the smallest integer not less than a and the largest integer
not more than a, respectively. Therefore the Novikov–Shubin invariant ˛dn=2e.NP /

appears in the fourth set above and is bounded by d.NP / according to Corollary 4.1.
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Now let us assume f–rank.XP/ > 0. We compute q � dn
2
e D b.dim XP C 1/=2c if

dim X D 2q and q � bn
2
c D d.dim XP/=2e if dim X D 2qC 1. We claim that both

values lie in the interval Œ1
2
.dim XP � f–rank.XP//C 1; 1

2
.dim XP C f–rank.XP//�.

This is clear if dim XP is odd because then both values equal .dim XP C 1/=2 which
is the arithmetic mean of the interval limits. If on the other hand dim XP is even, then
both values equal .dim XP/=2. The fundamental rank f–rank.XP/ is then likewise
even and thus f–rank.XP/� 2. Therefore 1

2
.dim XP�f–rank.XP//C1� .dim XP/=2

and the claim is verified. It follows from [30, equation (5.14), page 230] that in the two
cases ˛q�dn=2e.XP/ and ˛q�bn=2c.XP/ are bounded by f–rank.X nc

P
/C dim X Eucl

P
D

f–rank.XP/. Moreover ˛dn=2e.NP / � d.NP / and ˛bn=2c.NP / � d.NP / again by
Corollary 4.1 so that either the number ˛dn=2e.NP /C ˛q�dn=2e.XP/ or the number
˛bn=2c.NP /C ˛q�bn=2c.XP/ appears in the second of the four sets above and both
are bounded by d.NP / C f–rank.XP/. So in any case we conclude ˛q.e.P // �

f–rank.XP/C d.NP /.

We make one last elementary observation to prepare the proof of Theorem 1.1.

Lemma 4.1 Let the discrete group � act freely and properly on the path-connected
space X . Let Y �X be a simply connected subspace which is invariant under the action
of a subgroup ƒ� � . Then the induced homomorphism ƒD �1.ƒnY /! �1.�nX /

is injective.

Proof From covering theory we obtain a commutative diagram of groups

�1.ƒnY / //

��

ƒ

��

�1.�nX / // �:

The upper map is an isomorphism and the right-hand map is injective. So the left-hand
map must be injective as well.

Proof of Theorem 1.1 Again by Selberg’s Lemma and stability of Novikov–Shubin in-
variants for finite index subgroups [31, Theorem 3.7.1], we may assume that � is torsion-
free. The bordification X is L2 –acyclic by Theorem 3.3. According to Lemma 3.1
we thus have z̨q.X / � ˛q.@X /. Recall from (2-4) that the Borel–Serre boundary
@X D

S
� P¨G e.P / is given by the disjoint union of all boundary components of proper

rational parabolic subgroups. Since rankQ.G /D 1, every proper rational parabolic
subgroup is minimal so all the boundary components are closed. As X is normal (T4 ),
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the Borel–Serre boundary is in fact the coproduct @X D P̀ min e.P / of all boundary
components of minimal rational parabolic subgroups. Proposition 2.5 implies that there
is a finite system of representatives P1; : : : ;Pk of �–conjugacy classes of minimal
rational parabolic subgroups which give the decomposition �n@X D

`k
iD1 e0.Pi/.

It thus follows from Lemma 4.1 applied to each e.Pi/ � X and �Pi
� � that

@X D
`k

iD1 e.Pi/ ��Pi
� . According to [30, Lemma 2.17(3), page 82] we ob-

tain ˛q.@X / D minif˛q.e.Pi/��Pi
�/g. Since the minimal rational parabolic sub-

groups P1; : : : ;Pk are G .Q/–conjugate, we have in fact ˛q.@X /D˛q.e.P1/��P1
�/.

The induction principle for Novikov–Shubin invariants [30, Theorem 2.55(7), page 98]
in turn says that ˛q.e.P1/��P1

�IN .�//D ˛q.e.P1/IN .�P1
// which is bounded

from above by f–rank.XP1
/C d.NP1

/ according to Proposition 4.1.

For the following example we assume some familiarity with the classification theory
of semisimple algebraic groups over nonalgebraically closed fields as outlined by Tits
in [39].

Example 4.1 Upon discussions with Veneziano and Wiethaup we have come up with
the family of senary diagonal quadratic forms

Qp
D h1; 1; 1;�1;�p;�pi

over Q, where p is a prime congruent to 3 mod 4. Let Gp D SO.QpIC/ be the
Q–subgroup of SL.6IC/ of matrices preserving Qp . By Sylvester’s law of inertia,
the groups Gp are R–isomorphic to SO.3; 3IC/, so that Gp.R/Š SO.3; 3/ which
has deficiency one. Over Q there is an obvious way of splitting off one hyperbolic
plane,

Qp
D h1;�1i ? h1; 1;�p;�pi;

but the orthogonal complement h1; 1;�p;�pi is Q–anisotropic. To see this, recall
from elementary number theory that if a prime congruent to 3 mod 4 divides a sum of
squares, then it must divide each of the squares. It thus follows from infinite descent
that the Diophantine equation x2

1
Cx2

2
Dp.x2

3
Cx2

4
/ has no integer and thus no rational

solution other than zero. Therefore rankQ.G
p/D 1 and Gp satisfies the conditions of

Theorem 1.1. The group Gp is xQ–isomorphic to SO.6IC/ which accidentally has
SL.4IC/ as a double cover and thus is of type A3 . Note that the hyperbolic plane in
the above decomposition of Qp gives an obvious embedding of a one-dimensional
Q–split torus S into Gp . Let T �Gp be a maximal torus containing S . Then from
the tables in [39] , one sees that Gp can only have one of the following two Tits indices:
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The Tits index is given by the Dynkin diagram of the root system ˆ.Gp;T /, where
simple roots in the same Gal.xQ=Q/–orbit are drawn close to one another and where
the distinguished orbits, consisting of roots that do not restrict to zero on S , are circled.
To find out which of the above indices is correct, let P �Gp be a minimal parabolic
subgroup corresponding to a choice of positive restricted roots of Gp with respect
to S D SP . The centralizer ZGp .SP/D SPMP D SPZPM 0

P
obviously contains

a Q–subgroup that is R–isomorphic to SO.2; 2IC/ so that SO.4IC/ �M 0
P

as a
C–embedding. Because of the exceptional isomorphism D2 DA1 �A1 , the Dynkin
diagram of M 0

P
must contain two disjoint nodes. But we obtain the Dynkin diagram

and in fact the Tits index of M 0
P

by removing the distinguished orbits. Therefore
we see that only the left-hand Tits index can correspond to Gp . Since it is of inner
type [39], the center ZP of MP is trivial and in fact MP DM 0

P
ŠR SO.2; 2IC/.

Thus ı.MP/D ı.SO.2; 2//D ı.SL.2IR/�SL.2;R//D 0.

Now we explain how to compute the number d.NP /. The Lie algebra nP of NP has
the decomposition nP D

L
˛2† nP;˛ as we saw at the end of Section 2.2 so that nP

is graded by parabolic root lengths. In view of the formula in Theorem 4.2 it only
remains to determine † and the multiplicities m˛ given by the dimensions of the root
spaces nP;˛ . The root system ˆ.G ;T / is three-dimensional so that we can see this
data visually in Figure 4.1. In the Tits index of Gp , the left-hand node corresponds

Figure 4.1: The root system of type A3 with the restricted root system
depicted by thick arrows

to the arrow pointing up front, the center node corresponds to the arrow pointing
down right and the right-hand node corresponds to the arrow pointing up rear. Since
both the left and right nodes of the Tits index do not lie in distinguished orbits, the
subspace XQ.SP/˝Z R is given by the intersection of the planes orthogonal to their
corresponding arrows which is the line going through the centers of the left face and

Algebraic & Geometric Topology, Volume 14 (2014)



L2 –invariants of nonuniform lattices in semisimple Lie groups 2503

right face of the cube. It follows that the restricted root system ˆ.Gp;SP/ is of type A1

and that four roots of ˆ.Gp;T / restrict to each of the two roots in ˆ.Gp;SP/. Thus
we have only one root of length one and multiplicity four in †DˆC.GP ;SP/ which
gives d.NP /D 4. The symmetric space of Gp.R/ has dimension nine, so Theorem 1.1
gives

z̨4.G
p.Z//� 4:

Note that the bound is uniform in p even though the quadratic forms Qp and hence
the groups Gp are definitely not mutually Q–isomorphic. Since SO.6IC/ is doubly
covered by SL.4IC/, we can take the preimage of Gp.Z/ to get nonuniform lattices
in SL.4IR/ whose fourth Novikov–Shubin invariant is equally bounded by four.

Now we turn our attention to L2 –torsion. Recall that L2 –torsion is only defined for
groups which are det-L2 –acyclic. For a lattice � �G in a semisimple Lie group we
have � 2 G so that this is equivalent to ı.G/ > 0 by Theorem 3.3. Among the rank-one
simple Lie groups, the only groups with positive deficiency are G D SO0.2nC 1; 1/

which have been treated by Lück and Schick in [33]. For higher rank Lie groups,
we again have Margulis arithmeticity available so that the following Theorem will be
enough to cover general lattices in even deficiency groups as we will see subsequently.

Theorem 4.3 Let G be a connected semisimple linear algebraic Q–group. Suppose
that G .R/ has positive, even deficiency. Then every torsion-free arithmetic lattice
� �G .Q/ is det-L2 –acyclic and

�.2/.�/D 0:

Note that in the odd deficiency case, Borel and Serre have proved correspondingly that
�.�/D 0 in [9, Proposition 11.3, page 482]. The core idea will also prove successful
for the proof of Theorem 4.3 though various technical difficulties arise owed to the
considerably more complicated definition of L2 –torsion. A combinatorial argument
will reduce the calculation of the L2 –torsion of X D

S
P�G e.P / to the calculation

of the L2 –torsion of the manifolds with corners e.P / for proper rational parabolic
subgroups P �G which form the boundary @X of the bordification. This in turn is
settled by the following proposition.

Proposition 4.2 Let P �G be a proper rational parabolic subgroup. Then for every
torsion-free arithmetic subgroup ��G .Q/ the finite free �P –CW complex e.P /�X

is det-L2 –acyclic and �.2/.e.P /IN .�P //D 0.
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Proof L2 –torsion is multiplicative under finite coverings [30, Theorem 3.96(5),
page 164] so that similar to the proof of Proposition 4.1, we may assume that � is
neat. We have already remarked below Theorem 2.1 that e.P /, hence its closure e.P /,
is a �P –invariant subspace of the bordification X . So e.P / regularly covers the
subcomplex e0.P / of �nX with deck transformation group �P . It thus is a finite free
�P –CW complex. In fact e.P / is simply connected so that it can be identified with
the universal covering of e0.P /. The nilpotent group �NP

is elementary amenable and
therefore of det� 1–class [38]. It is moreover infinite because it acts cocompactly on
the nilpotent Lie group NP . This Lie group is diffeomorphic to a nonzero Euclidean
space because P � G is proper. By Theorem 3.1(iv) the universal cover NP of
the finite CW complex �NP

nNP is L2 –acyclic and �.2/.NP IN .�NP
// D 0. The

canonical base point KP 2XP and Proposition 2.3 define an inclusion NP � e.P /.
Applying Lemma 4.1 to NP � e.P / and �NP

��P shows that the fiber bundle e0.P /

of Theorem 2.2 satisfies the conditions of Theorem 3.1(iii). We conclude that e.P / is
det-L2 –acyclic and

�.2/.e.P /;N .�P //D �.�MP
nXP/�

.2/.NP IN .�NP
//D 0:

Proof of Theorem 4.3 Fix a torsion-free arithmetic subgroup � � G .Q/. As re-
marked, the bordification X is det-L2 –acyclic by Theorem 3.3 because ı.G/ > 0.
Since X is even-dimensional, Lemma 3.2 says that the boundary @X is det-L2 –acyclic
and we have proven the theorem when we can show �.2/.@X IN .�//D 0. To this end,
consider the space Yk D

`
s–rank.P/Dk e.P / for k D 1; : : : ; rankQ.G /, the coproduct

of all boundary components e.P / of rational parabolic subgroups P �G with split
rank k . The usual action given in (2-9) defines a free proper action of � on Yk

because the split rank of a rational parabolic subgroup is invariant under conjugation
with elements in G .Q/. This action extends uniquely to a free proper action on the
coproduct xYk D

`
s–rank.P/Dk e.P / of closed boundary components because Yk �

xYk

is dense. The canonical �–equivariant map xYk !X lies in the pullback diagram

xYk
//

��

X

��

�n xYk
// �nX :

By Proposition 2.5, we have a finite system of representatives of �–conjugacy classes of
rational parabolic subgroups of G . Let P k

1 ; : : : ;P
k
rk

be an ordering of the subsystem of
rational parabolic subgroups with split rank k . Then we have �n xYk D

`rk

iD1 e0.P k
i /.
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We apply Lemma 4.1 to each inclusion e.P k
i /�X and �Pk

i
� � to conclude that

xYk D

rka
iD1

e.P k
i /��Pk

i

�:

Since every space e.P k
i /��Pk

i
� is a �–invariant subcomplex of @X , this endows xYk

with the structure of a finite free �–CW complex such that the equivariant map xYk!@X

is cellular. By the induction principle for L2 –torsion [30, Theorem 3.93(6) page 162]
and Proposition 4.2, xYk is det-L2 –acyclic and

�.2/. xYk IN .�//D
rkX

iD1

�.2/.e.P k
i /��

Pk
i

�IN .�//D
rkX

iD1

�.2/.e.P k
i /IN .�Pk

i
//D 0:

From Theorem 3.1(ii) we also obtain that . xYk ; @ xYk/ is det-L2 –acyclic, so the boundary
@ xYk D

xYk nYk is det-L2 –acyclic by [30, Theorem 1.21, page 27]. Lemma 3.2 says
moreover that �.2/.@ xYk IN .�//D 0 if xYk is even-dimensional. But the same is true
if xYk is odd-dimensional by Theorem 3.1(ii). Consider the �–CW subcomplexes
X k D

S
� s–rank.P/�k e.P / of X , where k D 1; : : : ; rankQ.G /. It follows from (2-8)

that they can be constructed inductively as pushouts of finite free �–CW complexes

(4-1)

@ xYk
//

��

X kC1

��

xYk
// X k :

The beginning of the induction is the disjoint union X rankQ.G/ D
S
� P minimal e.P /

within X . Since e.P / is closed if P is minimal, we observe as in the proof of
Theorem 1.1 that in fact X rankQ.G/ D P̀ minimal e.P /D xYrankQ G . Thus Lemma 3.3
verifies that each X k is det-L2 –acyclic and �.2/.X k IN .�// D 0. This proves the
theorem because X 1 D @X .

A group ƒ has type F if it possesses a finite CW model for Bƒ. The Euler char-
acteristic of a type F group is defined by �.ƒ/ D �.Bƒ/. A slight generalization
of this is due to Wall [40]. If ƒ virtually has type F , its virtual Euler characteristic
is given by �virt.ƒ/D �.ƒ

0/=Œƒ Wƒ0� for a finite index subgroup ƒ0 with finite CW
model for Bƒ0 . This is well defined because the Euler characteristic is multiplicative
under finite coverings. Since the L2 –torsion in many respects behaves like an odd-
dimensional Euler characteristic, we want to define its virtual version as well. If a
group � is virtually det-L2 –acyclic, we define �.2/virt.�/D �

.2/.� 0/=Œ� W � 0� for a finite
index subgroup � 0 with finite det-L2 –acyclic � 0–CW model for E� 0 . Again this is
well-defined because �.2/ is multiplicative under finite coverings.
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Lemma 4.2 Let ƒ be virtually of type F and let � be virtually det-L2 –acyclic.
Then ƒ�� is virtually det-L2 –acyclic and

�
.2/
virt.ƒ��/D �virt.ƒ/ � �

.2/
virt.�/:

Proof Let ƒ0 �ƒ and � 0 �� be finite index subgroups with finite classifying spaces
such that E� 0 is det-L2 –acyclic and apply Theorem 3.1(iii) to the trivial fiber bundle
B� 0! B.ƒ0 �� 0/D Bƒ0 �B� 0! Bƒ0 .

Theorem 1.2 Let G be a connected semisimple linear Lie group with positive, even
deficiency. Then every lattice � �G is virtually det-L2 –acyclic and

�
.2/
virt.�/D 0:

Proof By Selberg’s Lemma there exists a finite index subgroup � 0 � � which is
torsion-free. Thus � 0 can neither meet any compact factor nor the center of G which
is finite because G is linear. Therefore we may assume that G has trivial center and
no compact factors. Suppose � 0 was reducible. By Witte Morris [43, Proposition 4.24,
page 48] we have a direct product decomposition G DG1 � � � � �Gr with r � 2 such
that � 0 is commensurable with � 0

1
� � � ��� 0r , where � 0i DGi \�

0 is irreducible in Gi

for each i . Again by Selberg’s Lemma we may assume that � 0
1
�� � ��� 0r is torsion-free.

If rankR.Gi/D1, then �i is of type F , for example by a compactification of Kang [26].
If rankR.Gi/ > 1, then �i is virtually type F by Margulis arithmeticity, Theorem 4.1
and the Borel–Serre compactification. Therefore, and by Theorem 3.3, � 0

1
� � � � �� 0r

and thus � is virtually det-L2 –acyclic. Thus we may assume that � 0
1
� � � � � � 0r is

honestly det-L2 –acyclic and we have to show that �.2/.� 0
1
� � � � �� 0r /D 0.

Since ı.G/ > 0, there must be a factor Gi0
with ı.Gi0

/ > 0. Let H be the prod-
uct of the remaining factors Gi and let �H be the product of the corresponding
irreducible lattices �i . If ı.H / > 0, then �H is det-L2 –acyclic by Theorem 3.3
and �.2/.� 0

1
� � � � � � 0r / D �

.2/.� 0i0
� �H / D 0 by Lemma 4.2 because �.� 0i0

/ D 0

by Theorem 3.1(iii). If ı.H / D 0, then ı.Gi0
/ is even, and Lemma 4.2 says that

�.2/.�H � �
0
i0
/ D �.�H /�

.2/.� 0i0
/. So we may assume that the original � 0 was

irreducible. We have rankR.G/� ı.G/�2 as follows from Borel and Wallach [10, Sec-
tion III.4, Formula (3), page 99]. By Margulis arithmeticity, Theorem 4.1, � 0 is
abstractly commensurable to H .Z/ for a connected semisimple linear algebraic Q–
group H . Moreover ı.H .R//D ı.G/ because H .R/ and G define isometric sym-
metric spaces. Theorem 4.3 completes the proof.

It remains to give some details for our application to the Lück–Sauer–Wegner conjecture.
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Theorem 1.4 Let Leven be the class of det-L2 –acyclic groups that are measure
equivalent to a lattice in a connected simple linear Lie group with even deficiency. Then
Conjecture 1.2 holds true for Leven .

Proof Let � 2Leven be measure equivalent to ƒ�G with G as stated. Then ı.G/>0

by [18, Théorème 6.3, page 95] because � is L2 –acyclic by assumption. Since � has
a finite B� , it is of necessity torsion-free so that � is a lattice in Ad G by [17, The-
orem 3.1, page 1062]. Theorem 1.2 applied to � � Ad G completes the proof.
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