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Hyperbolicity of the graph of
nonseparating multicurves

URSULA HAMENSTÄDT

A nonseparating multicurve on a surface S of genus g � 2 with m � 0 punctures
is a multicurve c so that S � c is connected. For k � 1 define the graph NC.S; k/
of nonseparating k–multicurves to be the graph whose vertices are nonseparating
multicurves with k components and where two such multicurves are connected by an
edge of length one if they can be realized disjointly and differ by a single component.
We show that if k < g=2C 1 , then NC.S; k/ is hyperbolic.

57M50; 20F65, 57M99

1 Introduction

The curve graph CG of an oriented surface S of genus g � 0 with m� 0 punctures
and 3g � 3Cm � 2 is the graph whose vertices are isotopy classes of essential (ie
noncontractible and not homotopic into a puncture) simple closed curves on S. Two
such curves are connected by an edge of length one if and only if they can be realized
disjointly. The curve graph is a locally infinite ı–hyperbolic geodesic metric space of
infinite diameter (Masur and Minsky [6]) for a number ı > 0 not depending on the
surface (Aougab [1], Bowditch [2], Clay, Rafi and Schleimer [3], Hensel, Przytycki
and Webb [5]).

The mapping class group Mod.S/ of all isotopy classes of orientation-preserving
homeomorphisms of S acts on CG as a group of simplicial isometries. This action is
coarsely transitive, ie the quotient of CG under this action is a finite graph. Curve graphs
and their geometric properties turned out to be an important tool for the investigation
of the geometry of Mod.S/ (Masur and Minsky [7]).

If the genus g of S is positive then for each k � g we can define another Mod.S/–
graph NC.S; k/ as follows. Vertices of NC.S; k/ are nonseparating k–multicurves,
ie multicurves � consisting of k components such that S � � is connected. Two such
multicurves are connected by an edge of length one if they can be realized disjointly and
differ by a single component. The mapping class group of S acts coarsely transitively
as a group of simplicial isometries on the graph of nonseparating k–multicurves. In fact,
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the action is transitive on vertices. Note that NC.S; 1/ is just the complete subgraph
of CG whose vertex set consists of all nonseparating simple closed curves in S.

The goal of this note is to show the following.

Theorem For g � 2 and k < g=2C 1 the graph NC.S; k/ of nonseparating k–
multicurves is hyperbolic.

For the proof of the theorem, we adopt a strategy from Hamenstädt [4]. Namely, we
begin by showing that for g � 2 the graph NC.S; 1/ is hyperbolic. This is easy if S

has at most one puncture, in fact in this case the inclusion map NC.S; 1/! CG is a
quasi-isometry (see Section 3). If S has at least two punctures then this inclusion is
not a quasi-isometry any more. In this case we apply a tool from [4]. This tool is also
used in Section 4 to successively add components to the multicurve until the number
k < g=2C 1 of components is reached.

We summarize the results from [4] which we need in Section 2. At the end of this note
we give an example indicated to us by Tarik Aougab and Saul Schleimer which shows
that the strict bound g=2C 1 for the number of components of the multicurve in the
theorem is sharp.

Acknowledgements This work was carried out while the author visited the Institute
for Pure and Applied Mathematics in Los Angeles. In a first version of this paper, I
erroneously misstated the range of the number of components of multicurves for which
the theorem is valid. I am grateful to Tarik Aougab and Saul Schleimer for pointing
out this error to me. This work has been partially supported by the Hausdorff Center
Bonn and ERC grant number 10160104.

2 Hyperbolic extensions of hyperbolic graphs

In this section we consider any (not necessarily locally finite) metric graph .G; d/
(ie edges have length one). Let C be any finite, countable or empty index set. For
a given family H D fHc j c 2 Cg of complete connected subgraphs of G define the
H–electrification of G to be the metric graph .EG; dE/ which is obtained from G by
adding vertices and edges as follows.

For each c 2 C there is a unique vertex vc 2 EG � G . This vertex is connected with
each of the vertices of Hc by a single edge of length one, and it is not connected with
any other vertex.
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Definition 2.1 For a number r > 0 the family H is called r –bounded if for c 6D d 2 C
the intersection Hc \Hd has diameter at most r , where the diameter is taken with
respect to the intrinsic path metric on Hc and Hd .

A family which is r –bounded for some r > 0 is simply called bounded.

In what follows, all parametrized paths 
 in G or EG are supposed to be simplicial.
This means that they are defined on a closed connected subset of the reals whose finite
endpoints (if any) are integers. We require that the image of every integer is a vertex,
and that the restriction to an integral interval Œk; k C 1� either is a homeomorphism
onto an edge, or it is constant. In particular, simplicial paths are continuous.

Call a simplicial path 
 in EG efficient if for every c 2 C we have 
 .k/D vc for at
most one integer k . Note that if 
 is an efficient simplicial path in EG which passes
through 
 .k/D vc for some c 2 C then 
 .k � 1/ 2Hc , 
 .kC 1/ 2Hc . This is true
because the vertex vc 2 EG is only connected with vertices in Hc by an edge.

For a number L > 1, an L–quasigeodesic in EG is a path 
 W Œa; b�! EG such that
for all a� s < t � b we have

jt � sj=L�L� d.
 .s/; 
 .t//�Ljt � sjCL:

In slight deviation from this standard definition, we will require throughout that all
quasigeodesics are simplicial, in particular, they are continuous. We will often but not
always state this explicitly.

Definition 2.2 The family H has the bounded penetration property if it is r –bounded
for some r > 0 and if for every L> 0 there is a number p.L/ > 2r with the following
property. Let 
 be an efficient simplicial L–quasigeodesic in EG , let c 2 C and let
k 2Z be such that 
 .k/D vc . If the distance in Hc between 
 .k�1/ and 
 .kC1/ is
at least p.L/ then every efficient simplicial L–quasigeodesic 
 0 in EG with the same
endpoints as 
 passes through vc . Moreover, if k 0 2 Z is such that 
 0.k 0/D vc then
the distance in Hc between 
 .k � 1/, 
 0.k 0� 1/ and between 
 .kC 1/, 
 0.k 0C 1/

is at most p.L/.

Let H be as in Definition 2.2. Define an enlargement y
 of an efficient simplicial
L–quasigeodesic 
 W Œ0; n� ! EG with endpoints 
 .0/; 
 .n/ 2 G as follows. Let
0 < k1 < � � � < ks < n be those points such that 
 .ki/D vci

for some ci 2 C . Then

 .ki � 1/; 
 .ki C 1/ 2Hci

. For each i � s replace 
 Œki � 1; ki C 1� by a simplicial
geodesic in the graph Hci

with the same endpoints. Note that since we require that
the endpoints of 
 are vertices in G , an enlargement of 
 is a path with the same
endpoints.
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For a number k > 0 define a subset Z of the metric graph G to be k–quasiconvex
if any geodesic with both endpoints in Z is contained in the k–neighborhood of Z .
In particular, up to perhaps increasing the number k , any two points in Z can be
connected in Z by a (not necessarily continuous) path which is a k–quasigeodesic
in G .

In [4] the following is shown.

Theorem 2.3 Let G be a metric graph and let HD fHc j c 2 Cg be a bounded family
of complete connected subgraphs of G . Assume that the following conditions are
satisfied.

(i) There is a number ı > 0 such that each of the graphs Hc is ı–hyperbolic.

(ii) The H–electrification EG of G is hyperbolic.

(iii) The family H has the bounded penetration property.

Then G is hyperbolic. There is a number L> 1 such that enlargements of geodesics
in EG are L–quasigeodesics in G . The subgraphs Hc are uniformly quasiconvex.

In fact, although this was not stated explicitly, one obtains that the graph G is ı0–
hyperbolic for a number ı0 > 0 only depending on the hyperbolicity constant for EG ,
the common hyperbolicity constant ı for the subgraphs Hc and the constants which
enter in the bounded penetration property.

3 Hyperbolicity of the graph of nonseparating curves

In this section we consider an arbitrary surface S of genus g� 2 with m� 0 punctures.
Let CG be the curve graph of S and let NC.S; 1/ be the complete subgraph of CG
whose vertex set consists of nonseparating curves. The goal of this section is to show
the following proposition.

Proposition 3.1 The graph NC.S; 1/ is hyperbolic.

Example If S is a surface of genus gD 1 then any two disjoint nonseparating simple
closed curves in S are homotopic after closing the punctures and the graph NC.S; 1/
is not connected.
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Define a properly embedded connected incompressible subsurface X of S to be thick
if the genus of X equals g . This is equivalent to stating that each of the boundary
circles of X is separating in S and that moreover there is no nonseparating simple
closed curve in S which is contained in S �X. Observe that the only thick subsurface
of a surface S with at most one puncture is S itself.

If X � S is thick then each component of S �X is a bordered punctured sphere
with connected boundary. If we collapse each boundary circle of X to a puncture
then we can view X as a surface of finite type whose genus equals the genus of S. In
particular, we can look at thick subsurfaces of X. However, the thick subsurfaces of X

are precisely the thick subsurfaces of S which are contained in X.

For a thick subsurface X of S and for p � 1 define a graph A.X;p/ as follows.
The vertices of A.X;p/ are nonseparating simple closed curves in X. Two such
vertices c , d are connected by an edge of length one if either they are disjoint or if
they are both contained in a proper thick subsurface Y of X of Euler characteristic
�.X /Cp . Note that if p � ��.X /� 2gC 2 then A.X;p/DNC.X; 1/.

Recall that for a number L�1 two geodesic metric spaces Y , Z are L–quasi-isometric
if there is a map F W Y !Z so that

d.x;y/=L�L� d.Fx;Fy/�Ld.x;y/CL; 8x;y 2 Y;

and so that for all z 2Z there is some y 2 Y with d.Fy; z/�L. In general, quasi-
isometries are not continuous. A map F W Y ! Z is called coarsely L–Lipschitz if
d.Fx;Fy/�Ld.x;y/CL for all x;y 2 Y .

Let CG.X / be the curve graph of X.

Lemma 3.2 For every thick subsurface X of S the vertex inclusion extends to a
2–quasi-isometry A.X; 1/! CG.X /.

Proof Since two simple closed curves which are contained in a proper thick subsur-
face Y of X are disjoint from a boundary circle of Y which is essential in X, the
vertex inclusion extends to a coarsely 2–Lipschitz map A.X; 1/! CG.X /. Thus it
suffices to show that the distance in A.X; 1/ between any two nonseparating simple
closed curves does not exceed twice their distance in CG.X /.

To this end let 
 W Œ0; n�!CG.X / be a simplicial geodesic connecting two nonseparating
simple closed curves 
 .0/, 
 .n/. We construct first a simplicial geodesic z
 in CG.X /
with the same endpoints such that for each i , the curve z
 .i/ either is nonseparating
or it decomposes X into a thick subsurface of Euler characteristic �.X /C 1 and a
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three-holed sphere. Call such a simple closed curve (with either of these two properties)
admissible hereafter.

For the construction of z
 replace first each of the vertices 
 .2i/ with even parameter
0 < 2i < n by an admissible curve. Namely, if 
 .2i/ is not admissible then 
 .2i/

decomposes X into two surfaces X1 , X2 which are different from three holed spheres.

If 
 .2i � 1/, 
 .2i C 1/ are contained in distinct components of X � 
 .2i/ then they
are disjoint and hence they are connected in CG.X / by an edge. This implies that we
can shorten 
 with fixed endpoints. Since 
 is length-minimizing this is impossible.

Thus 
 .2i � 1/, 
 .2i C 1/ are contained in the same component of X � 
 .2i/, say
in X1 . Then X2DX�X1 either has positive genus and hence contains a nonseparating
curve, or it is a sphere with at least four holes and contains an admissible separating
curve. Thus there is an admissible curve z
 .2i/�X2 , and this curve is disjoint from

 .2i � 1/ [ 
 .2i C 1/. Replace 
 .2i/ by z
 .2i/. This process leaves the points

 .2i C 1/ with odd parameter unchanged.

In the second step, replace with the same construction each of the points 
 .2i C 1/

with odd parameter by an admissible curve. Let z
 W Œ0; n�! CG.X / be the resulting
simplicial geodesic. The image of every vertex is admissible.

The geodesic z
 is now modified as follows. Replace each edge z
 Œi; i C 1� connecting
two separating admissible simple closed curves z
 .i/, z
 .i C 1/ by an edge path in
CG.X / of length 2 with the same endpoints so that the middle vertex is a nonseparating
simple closed curve. This is possible because if c1 , c2 are two disjoint separating
admissible curves then c1[c2 is disjoint from some nonseparating simple closed curve
in X. The length of the resulting path y
 is at most twice the length of 
 .

The path y
 can be viewed as a path in A.X; 1/ by simply erasing all vertices which
are separating admissible simple closed curves. Namely, each such vertex v is the
boundary circle of a thick subsurface Y of X of Euler characteristic �.X /C 1. The
two adjacent vertices are nonseparating simple closed curves contained in Y . Thus
by the definition of A.X; 1/, these curves are connected in A.X; 1/ by an edge. This
shows that the endpoints of 
 are connected in A.X; 1/ by a path whose length does
not exceed twice the distance in CG.X / between the endpoints.

Since a surface with at most one puncture does not admit any proper thick subsurface
we obtain the following as an immediate corollary.

Corollary 3.3 If S has at most one puncture then the inclusion NC.S; 1/! CG is a
1–quasi-isometry.
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Write A.p/DA.S;p/. Our goal is to use Lemma 3.2 and induction on p to show
that A.p/ is hyperbolic for all p . Since A.p/DNC.S; 1/ for p � ��.S/� 2gC 2,
this then shows Proposition 3.1.

Now let p�1� 1 and let X be a thick subsurface of S such that �.X /D�.S/Cp�1.
Let HX be the complete subgraph of A.p/ whose vertex set consists of all nonsepa-
rating simple closed curves which are contained in X. Let HD fHX jX g. Our goal
is to apply Theorem 2.3 to the graph A.p/ and its H–electrification. The next easy
observation is the basic setup for the induction step.

Lemma 3.4 We have that A.p � 1/ is 2–quasi-isometric to the H–electrification
of A.p/.

Proof Let E be the H–electrification of A.p/. Let c , d be any two simple closed
curves which are connected in A.p� 1/ by an edge. Then either c , d are disjoint and
hence connected in A.p/ by an edge, or c , d are contained in a thick subsurface X

of S of Euler characteristic �.X / D �.S/C p � 1. Thus c , d are vertices in HX

and hence the distance between c , d in E is at most two. This shows that the vertex
inclusion A.p� 1/! E is 2–Lipschitz.

That this is in fact a 2–quasi-isometry follows from the observation that A.p/ is
obtained from A.p � 1/ by deleting some edges. Moreover, the endpoints of an
embedded simplicial path in E of length 2 whose midpoint is a special vertex not
contained in A.p/ are nonseparating simple closed curves which are contained in a
thick subsurface X of S of Euler characteristic �.S/C p � 1, and hence they are
connected by an edge in A.p� 1/.

Our goal is now to check that the family H D fHX j X g has the properties stated
in Theorem 2.3. The following lemma together with Lemma 3.2 implies that the
graphs HX are ı–hyperbolic for a universal constant ı > 0.

Lemma 3.5 We have that HX is isometric to A.X; 1/.

Proof Let X be a thick subsurface of S of Euler characteristic �.S/Cp�1. If c1 , c2

are two nonseparating simple closed curves contained in X then c1 , c2 are connected
in A.p/ by an edge if either c1 , c2 are disjoint or if c1 , c2 are contained in a thick
subsurface X0 of S of Euler characteristic �.X0/D �.S/Cp D �.X /C 1.

Now the thick subsurface X0 can be chosen to be contained in X. Namely, any
thick subsurface of S of Euler characteristic �.S/C ` .` � 0/ can be described as
the complement in S of a small neighborhood of an embedded forest in S (ie an
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embedded, possibly disconnected graph with no cycles) with ` edges whose vertices
are the punctures of S.

Assume for the moment that there is a forest G defining X which is the union of a
connected component yG and isolated points. Then yG has precisely p vertices and p�1

edges, where p � 1D �.X /��.S/. Since the graph G0 defining X0 has p edges,
there is at least one puncture x of S which is not contained in yG and which is the
endpoint of an edge e of G0 . If, up to homotopy with fixed endpoints, e intersects yG
at most at the second endpoint then the complement of a small neighborhood of yG [ e

is a thick subsurface Y of X of Euler characteristic �.S/Cp which contains c1[ c2 .
This is what we wanted to show.

If e intersects yG in an interior point which can not be removed with a homotopy
of e with fixed endpoints, let e0 be the subarc of e with endpoints x and the first
intersection point with yG . Concatenation of e0 with a subarc of an edge of yG and
modification of the resulting arc with a small homotopy with fixed endpoints yields
an embedded arc ye in S whose interior is disjoint from the interior of yG , so that
yG [ ye defines a thick subsurface Y of X of Euler characteristic �.S/Cp disjoint
from c1[ c2 .

The general case is treated in the same way. Namely, there is at least one edge e of G0

which connects two distinct connected components of G , and the argument above can
be applied to the edge e .

As a consequence, c1 , c2 are connected by an edge in A.X; 1/, which is what we
wanted to show.

Lemma 3.6 The family of subgraphs HX of A.p/, where X runs through the thick
subsurfaces of S of Euler characteristic �.S/Cp� 1, is bounded.

Proof Let X, Y be two thick subsurfaces of S of Euler characteristic �.S/Cp� 1.
If X 6D Y then up to homotopy, X \Y is a (possibly disconnected) subsurface of X

whose Euler characteristic is strictly bigger than the Euler characteristic of X. In
particular, the diameter in the curve graph of X of the set of simple closed curves
contained in X \Y is uniformly bounded. Thus the lemma follows from Lemmas 3.2
and 3.5.

The proof of the bounded penetration property is more involved. To this end recall
from [7] that for every proper connected subsurface X of S there is a subsurface
projection �X of CG into the subsets of the arc and curve graph of X. This projection
associates to a simple closed curve c in S which is not disjoint from X the intersection
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components �X .c/ of c with X, viewed as a subset of the arc and curve graph of X.
The diameter of the image is at most one. If c is disjoint from X then this projection
is empty. The arc and curve graph of X is 2–quasi-isometric to the curve graph of X

(see [7]).

Recall that every vertex of any of the graphs A.p/ .p � 1/ is a nonseparating simple
closed curve in S. By definition of a thick subsurface of S, for any such curve c and
every thick subsurface Z of S we have �Z .c/ 6D∅. This fact will be used throughout
the remainder of this section.

We need the following result from [7] (in the version formulated in [4, Lemma 6.5]).

Proposition 3.7 For every number L > 1 there is a number �.L/ > 0 with the
following property. Let Y be a proper connected subsurface of S and let 
 be a
simplicial path in CG which is an L–quasigeodesic. If �Y .v/ 6D∅ for every vertex v
on 
 then

diam�Y .
 / < �.L/:

If 
 W Œ0; n�!A.S; 1/ is any geodesic then for all j , the curves 
 .j / and 
 .j C 1/

either are disjoint and hence connected in CG by an edge, or they are contained in a
common thick subsurface Y of S of Euler characteristic �.S/C1. In the second case
replace the edge 
 Œj ; j C 1� by an edge path in CG of length two connecting the same
endpoints which passes through an essential simple closed curve in the complement
of Y . We call z
 a canonical modification of 
 . By Lemma 3.2 and its proof, z
 is a
simplicial path in CG which is a 2–quasigeodesic.

We now define a family of geodesics in A.S; 1/ which serve as substitutes for the tight
geodesics as introduced in [7]. Namely, for numbers � > 0, p � 1, define a simplicial
path �W Œ0; k�!A.S; 1/ to be (� ,p)–good if the following holds true. Let X � S be
any thick subsurface of Euler characteristic �.X /� �.S/Cp ; then there is a number
uD u.X / 2 Œ0; k/ with the following property.

(i) For every j � u, diam.�X .�.0/[ �.j ///� � .

(ii) For every j > u, diam.�X .�.j /[ �.k///� � .

Thus in a good simplicial path, big subsurface projections into thick subsurfaces can
be explicitly localized.

We use Proposition 3.7 to show the following lemma.

Lemma 3.8 There is a number �1 > 0 such that any two vertices in A.S; 1/ can be
connected by a .�1; 1/–good geodesic.
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Proof Let c1 , c2 be nonseparating simple closed curves and let 
 W Œ0; k�!A.S; 1/ be
a simplicial geodesic connecting c1 to c2 , with canonical modification z
 W Œ0; zk�! CG .

Let `1< � � �<`s be such that for each i the curves z
 .`i/, z
 .`iC2/, are both separating
and such that the subsurface of S filled by z
 .`i/[ z
 .`iC2/ (ie the smallest subsurface
of S which contains z
 .`i/[ z
 .`iC2/) is a holed sphere whose complement Z in S is
thick (we may have sD0, ie there may not be such a pair of vertices). Then z
 .`iC1/ is
a nonseparating simple closed curve contained in Z . Let z
1.`iC1/ be a nonseparating
simple closed curve contained in Z which is contained in the 1–neighborhood of the
subsurface projection �Z .c2/ of c2 . That the subsurface projection �Z .c2/ is not
empty follows since c2 is nonseparating and hence can not be contained in S �Z .

Replace z
 .`i C 1/ by z
1.`i C 1/. The simplicial path z
1 constructed in this way is a
canonical modification of a geodesic 
1 in A.S; 1/ connecting c1 to c2 . We claim
that 
1 is a .�.2/; 1/–good geodesic in A.S; 1/ where �.2/> 0 is as in Proposition 3.7.

Namely, if Z is an arbitrary thick subsurface of S then since 
1 is a geodesic in
A.S; 1/, there are at most two parameters k , k C � (here � D 0 or � D 2) such that
z
1.k/, z
1.kC �/ are disjoint from Z . Since z
1 is a 2–quasigeodesic in CG , if there
is at most one such point (which is in particular the case if the Euler characteristic
of Z equals �.S/C 1, ie if there is a unique essential curve disjoint from Z ) then
the properties (i), (ii) for Z with � D �.2/ are immediate from Lemma 3.2 and
Proposition 3.7. Otherwise the property follows from the construction of 
1 and
the fact that for subsurfaces X � Y � S and any simple closed curve c we have
�X .c/D �X .�Y .c// (with a small abuse of notation).

We use Proposition 3.7 and Lemma 3.8 to define a level-p hierarchy path in A.p/
connecting two nonseparating simple closed curves c1 , c2 as follows. The starting
point is a .�1; 1/–good geodesic 
 W Œ0; k�!A.S; 1/. For any j such that the curves

 .j /, 
 .j C 1/ are not disjoint there is a thick subsurface Yj of Euler characteristic
�.Yj / D �.S/C 1 so that 
 .j /; 
 .j C 1/ � Yj . Replace the edge 
 Œj ; j C 1� by a
simplicial .�1; 1/–good geodesic in A.Yj ; 1/ with the same endpoints. The resulting
path is an edge-path in the subgraph A.2/ of A.1/. Proceed inductively and construct
in p such steps a simplicial path in A.p/�A.1/ connecting c1 to c2 , which we call
a level-p hierarchy path.

Lemma 3.9 For every p � 1 there is a number �p > 0 such that a level-p hierarchy
path in A.p/ is .�p;p/–good.

Proof We proceed by induction on p . The case p D 1 follows from the definition
of a hierarchy path and Lemma 3.8. Thus assume that the lemma holds true for all
p� 1� 1.
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Let 
 W Œ0; n�!A.p/ be a level-p hierarchy path. The construction of 
 is as follows.
There is a level-.p� 1/ hierarchy path �W Œ0; s�!A.p� 1/, and there are numbers
0 � �1 < � � � < �q < s such that for each i , the edge �Œ�i ; �i C 1� connects two
nonseparating simple closed curves which are contained in a thick subsurface Zi of S

of Euler characteristic �.S/Cp� 1. For ` 62 f�1; : : : ; �qg, the simple closed curves
�.`/, �.`C 1/ are disjoint. The hierarchy path 
 is obtained from � by replacing
each of the edges �Œ�i ; �i C 1� by a .�1; 1/–good geodesic in A.Zi ; 1/ with the same
endpoints.

By induction hypothesis, � is .�p�1;p�1/–good for a number �p�1>1 not depending
on � . Thus for any thick subsurface Z of S of Euler characteristic �.Z/� �.S/Cp

there is a number u 2 Œ0; s� such that for all j � u, diam.�Z .�.0/[ �.j /// � �p�1

and similarly for j � uC 1.

Let now i > 0 be such that �i < u. There is a subarc � of 
 which is a .�1; 1/–good
geodesic in A.Zi ; 1/ connecting �.�i/ to �.�iC1/. By the definition of a .�1; 1/–good
geodesic in A.Zi ; 1/, since

diam.�Z .�.�i/[ �.�i C 1///

� diam.�Z .�.0/[ �.�i///C diam.�Z .�.0/[ �.�i C 1///� 2�p�1;

for each vertex �.t/ on the geodesic � the diameter of the subsurface projection
�Z .�.�i/[ �.t// does not exceed 2�p�1C �1 . Then for each t we have

diam.�Z .�.0/[ �.t///� 3�p�1C �1 D �p:

This argument is also valid for �i > u.

Finally, if �i D u then we can apply the same reasoning as before to the �1 –good
geodesic � and obtain the statement of the lemma.

Proof of Proposition 3.1 By Corollary 3.3, if S has at most one puncture then the
inclusion NC.S; 1/! CG is a quasi-isometry.

If the number of punctures is at least two then we show by induction on p the following.

(a) The graph A.p/ is hyperbolic.

(b) Level-p hierarchy paths are uniform quasigeodesics in A.p/.
(c) For every L > 1 there is a number �.L;p/ > 0 with the following property.

Let 
 be a simplicial path in A.p/ which is an L–quasigeodesic, and let z

be a canonical modification of 
 . If Y is a thick subsurface of S of Euler
characteristic �.Y / � �.S/C p , and if �Y .v/ 6D ∅ for every vertex v on z

then diam�Y .
 / < �.L;p/.
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The case p D 1 follows from Lemma 3.2, Proposition 3.7 and the definition of a
canonical modification of a simplicial path in A.S; 1/. Assume that the claim holds
true for p� 1� 1.

For a thick subsurface X of Euler characteristic �.X /D�.S/Cp�1 let as before HX

be the complete subgraph of A.p/ whose vertex set consists of all nonseparating simple
closed curves contained in X, and let H D fHX j X g. By Lemma 3.4, A.p � 1/ is
2–quasi-isometric to the H–electrification of A.p/. Moreover by construction, level-p
hierarchy paths are enlargements of level-.p� 1/ hierarchy paths. Therefore by the
induction hypothesis, to establish properties (a), (b) above for p it suffices to show
that the family H is bounded and satisfies the assumptions (1), (3) in the statement of
Theorem 2.3.

Lemma 3.6 shows that the family HD fHX jX g is bounded.

By Lemma 3.5, HX is isometric to A.X; 1/ and hence by Lemma 3.2, HX is ı–
hyperbolic for a number ı > 0 not depending on X. The bounded penetration property
for H follows from property (c) above, applied to thick subsurfaces of Euler character-
istic �.S/Cp and quasigeodesics in A.p� 1/ (compare [4]). Thus by Theorem 2.3
and the induction hypothesis, A.p/ is hyperbolic, and level-p hierarchy paths are
uniform quasigeodesics in A.p/.

We are left with verifying property (c) above for A.p/. By Lemma 3.9, this property
holds true for level-p hierarchy paths with the number �p > 0 replacing �.L;p/. The
argument in the proof of [4, Lemma 6.5] then yields this property for an arbitrary
L–quasigeodesic in A.p/ for a suitable number �.L;p/ > 0.

Namely, by hyperbolicity, for every L> 1 there is a number n.L/ > 1 so that for every
L–quasigeodesic �W Œ0; k�! A.p/ of finite length, the Hausdorff distance between
the image of � and the image of a level-p hierarchy path 
 with the same endpoints
does not exceed n.L/.

Let Y �S be a thick subsurface of Euler characteristic �.Y /��.S/Cp . Assume that

(1) diam.�Y .�.0/[ �.k///� 2�pCL.4n.L/C 10/D �.L;p/:

By the properties of level-p hierarchy paths, if z
 denotes a canonical modification
of 
 then there is some u 2Z so that z
 .u/ 2A where A� CG is the set of all curves
which are disjoint from Y .

By the choice of n.L/, the quasigeodesic � passes through the n.L/–neighborhood
of Y . By this we mean that there is a vertex x on � and a simplicial path in A.p/
of length at most n.L/ which connects x to a nonseparating simple closed curve
contained in Y .
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Let s0C1� t0�1 be the smallest and biggest number, respectively, so that �.s0C1/,
�.t0 � 1/ are contained in the n.L/–neighborhood of Y in the sense defined in the
previous paragraph. The distance in A.p/ between �.s0/ and �.t0/ does not exceed
2n.L/C 3.

A level-p hierarchy path connecting �.0/ to �.s0/ is contained in the n.L/–neighbor-
hood of �Œ0; s0� and hence its canonical modifications do not pass through A. Similarly,
a canonical modification of a level-p hierarchy path connecting �.t0/ to �.k/ does
not pass through A. By the assumption (1), and the properties of hierarchy paths, this
implies that

diam.�Y .�.s0/[ �.t0///�L.4n.L/C 10/:

The distance in A.p/ between �.s0/, �.t0/ is at most 2n.L/C 3, and hence since �
is an L–quasigeodesic, the length of the segment �Œs0; t0� is at most L.2n.L/C 4/.
Then the length of a canonical modification z�Œs; t � of �Œs0; t0� is at most L.4n.L/C8/.
Now if c , d are disjoint simple closed curves which intersect Y then the diameter of
�Y .c [ d/ is at most one. Thus if z�.`/ intersects Y for all ` then

diam.�Y .z�.s/[ z�.t///D diam.�Y .�.s0/[ �.t0///�L.4n.L/C 8/;

which is a contradiction.

This completes the induction step and proves Proposition 3.1.

The arguments in [4] can now be used without modification to identify the Gromov
boundary of NC.S; 1/. To this end let L be the set of all geodesic laminations
on S equipped with the coarse Hausdorff topology. In this topology, a sequence .�i/

converges to � if any limit in the usual Hausdorff topology of a convergent subsequence
contains � as a sublamination.

For each thick subsurface X of S let L.X / � L be the set of all minimal geodesic
laminations which fill up X, equipped with the coarse Hausdorff topology. We have
the following corollary.

Corollary 3.10 The Gromov boundary of NC.S; 1/ equals
S
X

L.X / equipped with
the coarse Hausdorff topology.

4 Proof of the Theorem

In this section we consider an oriented surface S of genus g � 2 with m � 0 punc-
tures. In the introduction we defined for n� 1 the graph NC.S; n/ of nonseparating
multicurves in S with n components. Our goal is to show the following theorem.
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Theorem 4.1 For n< g=2C 1 the graph NC.S; n/ is hyperbolic.

The case nD 1 is just Proposition 3.1. For 2 � n < g=2C 1 we use induction on n

similar to the arguments in the proof of Proposition 3.1. There are no new tools needed,
however all the constructions have to be adjusted to the situation at hand.

We begin by describing an electrification of the graph NC.S; n/. First, for a nonsep-
arating .n� 1/–multicurve � 2 NC.S; n� 1/ let H� be the complete subgraph of
NC.S; n/ whose vertex set consists of all nonseparating n–multicurves containing � .
We have the following lemma.

Lemma 4.2 There is a natural graph isomorphism H�!NC.S � �; 1/.

Proof If ˇ 2 H� is any nonseparating n–multicurve containing � then ˇ � � is a
nonseparating simple closed curve in S � � . If ˇ; ˇ0 2H� are connected by an edge
then the nonseparating simple closed curves ˇ� � and ˇ0� � are disjoint and hence
they are connected in NC.S � �; 1/ by an edge.

Vice versa, the union with � of any nonseparating simple closed curve c in S � � is a
nonseparating multicurve in H� . If c0 � S � � is nonseparating and disjoint from c

then � [ c and � [ c0 are connected by an edge in H� .

This shows the lemma.

Let HD fH� j � 2NC.S; n� 1/g.

Lemma 4.3 We have that NC.S; n� 1/ is quasi-isometric to the H–electrification
of NC.S; n/.

Proof Let E be the H–electrification of NC.S; n/. Define a vertex embedding
ƒW NC.S; n� 1/! E by associating to a nonseparating .n� 1/–multicurve c any
nonseparating n–multicurve ƒ.c/ containing c . We claim that ƒ is coarsely 8–
Lipschitz.

To see this let c0 , c1 be connected by an edge in NC.S; n� 1/. Then c1 is obtained
from c0 by removing a component a from c0 and replacing it by a component b

disjoint from c0 .

The union c0[b is a multicurve with n components. If this multicurve is nonseparating
then we can view it as a vertex x 2 E . Since ƒ.c0/ is a nonseparating n–multicurve
containing c0 , the distance in E between ƒ.c0/ and x equals at most 2. Similarly,
the distance in E between ƒ.c1/ and x is at most 2 and hence the distance in E
between ƒ.c0/ and ƒ.c1/ is at most four.
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If c0[b is not nonseparating then a[b is a bounding pair in S�.c0�a/DS�.c1�b/.
Choose a nonseparating simple closed curve ! 2 S � .c0� a/ which is disjoint from
a[ b so that both c0 [ ! and c1 [ ! are nonseparating. Such a curve exists since
the genus g � nC 2 of S � .c0 � a/ is at least three. Apply the argument from the
previous paragraph to the nonseparating .n� 1/–multicurves c0 , .c0� a/[! and to
.c0� a/[! , c1 . We conclude that the distance in E between ƒ.c0/ and ƒ.c1/ is at
most eight.

On the other hand, a map which associates to a vertex x 2NC.S; n/� E an .n� 1/–
multicurve contained in x is a coarsely Lipschitz coarse inverse of ƒ. Thus indeed ƒ
is a quasi-isometry.

By Lemma 4.2, for each vertex � 2NC.S; n�1/ the complete connected subgraph H�

of NC.S; n/ is quasi-isometric to the hyperbolic graph NC.S � �; 1/. However, by
the results in Section 3, the graph NC.S � �; 1/ is in general not quasi-isometric to
the curve graph of S � � . Thus controlling distances in these subgraphs via subsurface
projection is not immediate. Moreover, for a subsurface X of S of genus g� nC 1

there are in general many different nonseparating .n� 1/–multicurves disjoint from X.

To resolve this problem we use exactly the strategy from Section 3. Namely, we
introduce intermediate graphs NC.S; n;p/ .p � 1/ which are defined as follows. The
vertices of NC.S; n;p/ are nonseparating n–multicurves. Two such multicurves �0 , �1

are connected by an edge of length one if y� D �0\ �1 is an .n� 1/–multicurve and if
the nonseparating simple closed curves aD �0�y� and b D �1�y� are connected by
an edge in the graph A.S �y�;p/.

The strategy is now to deduce hyperbolicity of NC.S; n; 1/ from hyperbolicity of
NC.S; n�1/, and for p�2 to deduce hyperbolicity of NC.S; n;p/ from hyperbolicity
of NC.S; n;p� 1/.

For a nonseparating .n� 1/–multicurve � 2NC.S; n� 1/ let H�.1/ be the complete
subgraph of NC.S; n; 1/ whose vertex set consists of all nonseparating n–multicurves
containing � . Define moreover

H.1/D fH�.1/ j �g:

The following is immediate from the reasoning in Lemmas 4.2 and 4.3.

Lemma 4.4 (i) There is a natural graph isomorphism H�.1/!A.S � �; 1/.

(ii) We have that NC.S; n � 1/ is quasi-isometric to the H.1/–electrification of
NC.S; n; 1/.
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Our goal is to apply Theorem 2.3 to the family H.1/ of subgraphs of NC.S; n; 1/ to
deduce hyperbolicity of NC.S; n; 1/ from hyperbolicity of NC.S; n� 1/. To this end
we have to check that the assumptions in the theorem are satisfied.

For � 6D � 2NC.S; n� 1/, the vertex set of the intersection H�.1/\H�.1/ is the set
of all nonseparating n–multicurves which contain both � and � and hence it consists
of at most one point. Thus H.1/ is bounded.

By the first part of Lemma 4.4 and by Lemma 3.2, for every � 2 NC.S; n� 1/ the
graph H�.1/ is ı–hyperbolic for a number ı > 0 which does not depend on � .

The final step is the verification of the bounded penetration property, which is more
involved.

Let E be the H.1/–electrification of NC.S; n; 1/. Let ˇW Œ0; k�! E be an efficient
simplicial quasigeodesic. If the integer i < k is such that ˇ.i/; ˇ.iC1/ 2NC.S; n; 1/
then ˇ.i/ and ˇ.i C 1/ are n–multicurves, and � D ˇ.i/\ ˇ.i C 1/ is an .n� 1/–
multicurve such that ˇ.i/; ˇ.i C 1/ 2H�.1/. If ˇ.i/D v� is a special vertex defined
by an .n� 1/–multicurve � then ˇ.i � 1/; ˇ.i C 1/ 2H�.1/.

As in Section 2, an enlargement of ˇ is a path y̌W Œ0;m�! NC.S; n; 1/ defined as
follows. For each i such that ˇ.i/D v� for some � 2NC.S; n� 1/, replace the arc
ˇŒi � 1; i C 1� by a path of the form j ! �[ �.j / where � is a simplicial geodesic in
A.S � �; 1/ connecting ˇ.i � 1/� � to ˇ.i C 1/� � .

By induction, we now assume that for every L> 1 there is a number �0.L/ > 0 with
the following property. Let X � S be a connected subsurface of genus g=2 < h �

g� nC 1< g . If ˛W Œ0; `�!NC.S; n� 1/ is an L–quasigeodesic with the property
that �X .˛.i// 6D ∅ for all i then the diameter of �X

�S
i ˛.i/

�
in the curve graph

of X does not exceed �0.L/. Note that the case n D 2 holds true by the results in
Section 3.

Lemma 4.3 then implies that for every L> 1 there is a number �.L/ > 3L with the
following property. Let ˇW Œ0; k�! E be an efficient L–quasigeodesic. If X � S

is a connected subsurface of genus g=2 < h � g � nC 1 such that the diameter of
�X .ˇ.0/[ˇ.k// in the curve graph of X is at least �.L/, then there is an .n� 1/–
multicurve � 2 NC.S; n � 1/ disjoint from X, and there is some i < k such that
ˇ.i/ 2H�.1/�NC.S; n; 1/.

As in Section 3, an enlargement y̌ of ˇ admits a canonical modification ž as follows.
If ˇ.i/ D � [ a, ˇ.i C 1/ D � [ b are such that the simple closed curves a, b are
not disjoint but contained in a thick subsurface X of S � � of Euler characteristic
�.X /D �.S/C1D �.S ��/C1, then replace the edge ˇŒi; iC1� in NC.S; n; 1/ by
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an edge-path �Œj�1; jC1� of length two in the space of (not necessarily nonseparating)
n–multicurves so that �.j � 1/ D ˇ.i/ D � [ a, �.j C 1/ D ˇ.i C 1/ D � [ b and
that �.j /D � [ c for a (perhaps separating) simple closed curve c � S � � which is
disjoint from a, b and X.

The following can now be derived from the results in Section 2 and Lemmas 4.2 and 4.3.

Proposition 4.5 (i) The graph NC.S; n; 1/ is hyperbolic.

(ii) For every L> 1 there are numbers L0> 1, �.L/> 0 with the following property.
Let y̌W Œ0; k�!NC.S; n; 1/ be an enlargement of an efficient L–quasigeodesic
in E .
(a) We have that y̌ is an L0–quasigeodesic in NC.S; n; 1/.
(b) Let X � S be a connected subsurface of genus h 2 .g=2;g� nC 1� and

Euler characteristic �.X /D �.S/C 1. If diam.�X .ˇ.0/[ˇ.k///� �.L/

then a canonical modification of y̌ passes through the complement of X.

Proof By the results in Section 2, by Lemmas 4.2 and 4.3, to show hyperbolicity
of NC.S; n; 1/ we only have to show the bounded penetration property for efficient
quasigeodesics in E and the family of subgraphs H.1/.

To this end let ˇW Œ0; k�! E be an efficient L–quasigeodesic in E with endpoints in
N .S; n; 1/ and let � be an element of NC.S; n� 1/. Assume that

diam.�S��.ˇ.0/[ˇ.k///� 3�.L/;

where �.L/ > 3L is the constant determined before the statement of the proposi-
tion. Then by the assumption on the properties of the space NC.S; n� 1/, ˇ passes
through H�.1/.

The diameter of H�.1/ in E equals two. Thus if 0 � i � j � k are the first and
last points, respectively, of the intersection of ˇ with H�.1/, then the length j � i

of ˇŒi; j � is at most 3L< �.L/.

Using again the assumption on NC.S; n� 1/, for ˇŒ0; i � and ˇŒj ; k� we find that

diam.�X .ˇ.0/[ˇ.i///� �.L/ and diam.�X .ˇ.j /[ˇ.k///� �.L/

and therefore diam.�X .ˇ.i/[ˇ.j ///� �.L/ > 3L.

Hence ˇŒi; j � passes through the special vertex v� . Moreover, the points ˇ.i/, ˇ.j / are
of the form �[a.i/, �[a.j / for nonseparating simple closed curves a.i/; a.j /�S��

such that diam.�S��.ˇ.0/[a.i///� �.L/ and diam.�X .ˇ.k/[a.j ///� �.L/. This
immediately implies the bounded penetration property for the regions H�.1/ and
completes the proof of hyperbolicity of NC.S; n; 1/.

Algebraic & Geometric Topology, Volume 14 (2014)



1776 Ursula Hamenstädt

The other statements are also immediate from the assumptions on NC.S; n� 1/ and
from Theorem 2.3.

Our aim now is to show that hyperbolicity of NC.S; n;p� 1/ implies hyperbolicity
of NC.S; n;p/. To this end we proceed as in Section 3. The proofs are completely
analogous to the proofs in Section 3.

Once more, our goal is to apply Theorem 2.3. For this denote, for a connected subsur-
face X of S of genus hD g� nC 1 and Euler characteristic �.X /D �.S/Cp� 1,
by BX the complete subgraph of NC.S; n;p�1/ whose vertices consist of all nonsep-
arating n–multicurves � which are disjoint from the boundary of X. By assumption
on the genus of X, every nonseparating n–multicurve � intersects X and therefore a
vertex � 2 BX has at least one component which is contained in X.

In the next lemma, the assumption n� 1< g=2 is used in an essential way.

Lemma 4.6 There is a number L0 > 1 not depending on X such that BX is L0 –
quasi-isometric to A.X; 1/.

Proof Let �0 � S � X be a nonseparating .n � 1/–multicurve. Then for every
simple closed nonseparating curve b �X, the union �0[b is a vertex in NC.S; n;p/.
Moreover, by Lemma 3.5, two such pairs �0[ a, �0[ b are connected by an edge in
NC.S; n;p/ if and only if a, b are connected by an edge in A.X; 1/.

Now let � 2 BX be arbitrary. Then the number k of components of � contained in X

is nonzero. Let c1; : : : ; ck be these components. Then c1[ � � � [ ck is a nonseparating
k–multicurve contained in X.

Choose a nonseparating n–multicurve �0 � c1 [ � � � [ ck contained in X. Such a
multicurve exists since n< h. By the definition of BX , the distance in BX between �
and �0 equals n� k . Moreover, the distance in BX between �0 and a nonseparating
n–multicurve containing �0 equals n � 1. But this just means that the subspace
of BX of nonseparating n–multicurves containing �0 is coarsely dense. Consequently,
associating to a vertex � 2 BX a component of � contained in X defines a Lipschitz
map BX !A.X; 1/.

That this map coarsely does not decrease distances follows from the fact that any
vertex � 2 BX contains at least one component which is contained in X, and adjacent
vertices contain components which either are disjoint or contained in a common thick
subsurface of X of Euler characteristic �.X /C 1.
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Define a family of subgraphs

B.p/D fBX jX g

of NC.S; n;p/ where X runs through the subsurfaces of S of genus g� nC 1 and
Euler characteristic �.X / D �.S/C p � 1. By Lemmas 4.6 and 3.2, each of the
graphs BX is quasi-isometric to the curve graph of X, in particular it is ı–hyperbolic
for a number ı > 0 not depending on X .

We claim that the family B.p/ is bounded. To this end let X, Y be two subsurfaces
of S of the same genus g�nC1 and the same Euler characteristic �.S/Cp�1. Let
� 2BX \BY ; then � is a nonseparating n–multicurve disjoint from the boundaries of
both X, Y . Since the genus of X, Y equals g� nC 1, at least one component of � is
contained in X \Y . However, since X 6D Y , X \Y is a proper subsurface of X. By
Lemmas 4.6 and 3.2, BX is quasi-isometric to the curve graph of X and hence the
diameter of BX \BY is uniformly bounded.

Lemma 4.6 shows that each of the graphs BX is ı–hyperbolic for a number ı > 0 not
depending on X. Moreover, by the definition of the graphs NC.S; n;p/, the graph
NC.S; n;p� 1/ is quasi-isometric to the B–electrification of NC.S; n;p� 1/. Thus
for an application of Theorem 2.3, we are left with showing the bounded penetration
property.

However, this property follows by the induction assumption on subsurface projection
and Lemma 4.6.

Example The following example was independently observed by Tarik Aougab and
Saul Schleimer and shows that the bound n< g=2C 1 in the Theorem is sharp.

Namely, let S be a closed surface of genus 4 and let d be a separating simple closed
curve which decomposes S into two surfaces X1 , X2 of genus 2 with one boundary
component. Let �i be a pseudo-Anosov element in the mapping class group of Xi and
let ai be a nonseparating simple closed curve in Xi .i D 1; 2/. Let moreover c be a
nonseparating simple closed curve which is disjoint from ai and intersects d in two
points so that a1; a2; c defines a nonseparating 3–multicurve � .

For all k; ` 2Z the pair .�k
1
; �`

2
/ defines a reducible mapping class for S, moreover it

is easy to see that the distance in NC.S; 3/ between � and .�k
1
; �`

2
/ � is comparable

to kC`. The reason is that the subsurface projection of any nonseparating 3–multicurve
in S into each of the subsurfaces X1 , X2 does not vanish and therefore the distance in
NC.S; 3/ between � and .�k1

1
; �k2

2
/� is bounded from below by a constant multiple

of the distance in the curve graph of Xi between ai and �ki
i ai .i D 1; 2/. But this

just means that NC.S; 3/ contains a quasi-isometrically embedded R2 .

Algebraic & Geometric Topology, Volume 14 (2014)



1778 Ursula Hamenstädt

Define a subsurface Y of S to be n–heavy if the genus of Y is at least g � nC 1.
Let L.Y / be the set of all minimal geodesic laminations which fill up Y . Similarly to
Corollary 3.10 we have the following.

Corollary 4.7 The Gromov boundary of NC.S; n/ equals
S

Y L.Y / equipped with
the coarse Hausdorff topology, where Y passes through the n–heavy subsurfaces of S.

Remark It seems that the main result in this note can also be obtained with the tools
developed in [8]. To the best of our knowledge, these tools do not have any obvious
advantage over the tools we used.
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