
msp
Algebraic & Geometric Topology 14 (2014) 135–156

On the multiplicity of isometry-invariant
geodesics on product manifolds

MARCO MAZZUCCHELLI

We prove that on any closed Riemannian manifold .M1�M2;g/ , with dim.M2/� 2

and rank H1.M1/ ¤ 0 , every isometry homotopic to the identity admits infinitely
many isometry-invariant geodesics.

58E10; 53C22

1 Introduction

On a closed Riemannian manifold .M;g/ equipped with an isometry I, a natural
problem consists of searching for 1–dimensional submanifolds ` # M that are
complete geodesics invariant by I . More precisely, ` is an I –invariant geodesic
when it can be parametrized by a geodesic 
 W R! ` of constant positive speed and
there exists � > 0 such that I.
 .t//D 
 .t C �/ for all t 2 R. A special instance of
this is when I is the identity, in which case invariant geodesics are precisely closed
geodesics. The study of isometry-invariant geodesics was initiated by Grove [8; 9],
who established several existence and multiplicity results. Further investigations are
due to, among others, Grove and Tanaka [10; 11], Tanaka [21], Hingston [12] and
Rademacher [20].

While any closed Riemannian manifold possesses closed geodesics, it is not always the
case that it possesses isometry-invariant geodesics. The easiest example is probably
the flat torus T2 D Œ0; 1�2=f0; 1g2 , on which the rotation I.x;y/ D .1� y;x/ is an
isometry without invariant geodesics. Moreover, even if we require an isometry to
be isotopic to the identity (eg the time-1 map of a Killing vector field), it may still
have only finitely many invariant geodesics. For instance, on the standard Riemannian
sphere S2, any rotation of an angle � around the axis joining the north and south
poles has only the equator as invariant geodesic unless � is a multiple of � . This is
in contrast with the case of closed geodesics: celebrated results due to Bangert [2],
Franks [6] and Hingston [13] imply that any Riemannian S2 has infinitely many closed
geodesics. It is a long standing conjecture in Riemannian geometry that any closed
Riemannian manifold (of dimension at least 2) has infinitely many closed geodesics.
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In [21], Tanaka extended a celebrated result by Gromoll and Meyer [7] to the setting
of isometry-invariant geodesics, asserting that any isometry I of a closed simply
connected Riemannian manifold .M;g/ possesses infinitely many closed geodesics
provided the homology of a suitable space of I–invariant curves is sufficiently rich.
By a result of Vigué-Poirrier and Sullivan [22], this latter assumption is verified if I

is homotopic to the identity and the cohomology of M is not a truncated polynomial
ring in one variable.

In this paper we shall prove the following result that complements the one of Tanaka,
and extends another important closed geodesics result due to Bangert and Klingen-
berg [4, Corollary 3].

Theorem 1.1 Let .M;g/ be a Riemannian manifold such that M is homeomorphic
to a product M1 �M2 of closed manifolds with rank H1.M1/¤ 0 and dim.M2/� 2.
Then every isometry I of .M;g/ that is homotopic to the identity admits infinitely
many I–invariant geodesics.

The starting point in the study of this kind of result is the crucial observation due to
Grove [9, Theorem 2.4] that any isometry with only finitely many invariant geodesics
does not have nonclosed ones. In view of this fact, the main issue in the proof of
multiplicity results consists of identifying several iterations of a same closed isometry-
invariant geodesic detected as distinct critical points of an energy function. The
classical tools for dealing with this problem, the iteration theory for Morse indices
(see Bott [5] and Long [15]) and local homology groups [7] of closed geodesics, have
been ingeniously extended to the setting of isometry-invariant geodesics by Grove
and Tanaka [10; 11; 21]. In order to prove our main theorem, we will combine this
machinery together with an extension to the isometry-invariant setting of a homological
technique of Bangert and Klingenberg [4].

Further generalizations of closed geodesics results may be possible. Specifically,
remarkable results due to Bangert and Hingston [3] show that every closed Riemannian
manifold with infinite abelian fundamental group must have infinitely many closed
geodesics. To the best of the author’s knowledge, a generalization of such results
to the isometry-invariant case has not been investigated yet. Indeed, even when the
fundamental group has rank larger than 1, it is not clear how to conclude that there are
infinitely many geodesics invariant by a general isometry homotopic to the identity.
We plan to study this problem further in the future.

1.1 Organization of the paper

In Section 2 we review the variational principle, Morse indices and local homology of
isometry-invariant geodesics. In Section 3, after recalling Grove and Tanaka’s results
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on the local homology of iterated geodesics, we prove an isometry-invariant version
of the homological vanishing result of Bangert and Klingenberg, and we derive an
application to the multiplicity of isometry-invariant geodesics. Finally, in Section 4 we
prove Theorem 1.1.

Acknowledgements I wish to thank the anonymous referee for his or her careful
reading of the manuscript, and for providing useful comments. This research was
supported by ANR-12-BLAN-WKBHJ: Weak KAM beyond Hamilton-Jacobi.

2 Preliminaries

2.1 The variational setting

Throughout this paper, .M;g/ will be a closed Riemannian manifold equipped with an
isometry I . Isometry-invariant geodesics can be detected by the following well-known
variational principle. Consider the path space ƒ.M I I/ of all W

1;2
loc curves �W R!M

such that I.�.t// D �.t C 1/ for all t 2 R. We recall that a curve � has W
1;2

loc –
regularity when it is absolutely continuous, weakly differentiable, and the function
t 7! g. P�.t/; P�.t// is locally integrable. The space ƒ.M I I/ is a Hilbert manifold, and
the tangent space T�ƒ.M I I/ is given by all the W

1;2
loc vector fields X along � such

that I�.X.t// D X.t C 1/ for all t 2 R. We can equip ƒ.M I I/ with a complete
Riemannian metric G given by

G.X;Y /D

Z 1

0

Œg.X.t/;Y .t//Cg. PX .t/; PY .t//� dt; 8X;Y 2 T�ƒ.M I I/;

where the dots in this expression denote the covariant derivative along � . The energy
function EW ƒ.M I I/!R is given by

E.�/D

Z 1

0

g. P�.t/; P�.t// dt:

This function is C1 and also satisfies the Palais–Smale condition: any sequence
f�ng �ƒ.M I I/ such that E.�n/ is uniformly bounded and G.rE.�n/;rE.�n//! 0

admits a subsequence converging toward a critical point of E . The critical points of E

are precisely the g–geodesics 
 W R!M parametrized with constant speed g. P
 ; P
 /

and such that I.
 .t// D 
 .t C 1/. We refer to reader to Grove [8] for more details
about the variational principle associated to isometry-invariant geodesics.

Strictly speaking, any fixed point of the isometry I would be a stationary I–invariant
geodesic. However, in this paper, we will only consider geodesics with positive energy.
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If 
 is a critical point of E , for each t0 2R the translated curve t 7! 
 .t C t0/ is also
a critical point of E corresponding to the same geometric curve. If E.
 / > 0, the
family orb.
 / of translated curves associated to 
 forms a critical orbit of E . Notice
that orb.
 /Š S1 if 
 is a periodic curve, otherwise orb.
 /ŠR.

2.2 Indices of the critical orbits of the energy

Counting the critical orbits of E with positive critical value by means of topological
methods does not provide a count for the number of I–invariant geodesics: a closed
I–invariant geodesic `Š S1 gives rise to infinitely many critical orbits of E . Indeed,
let 
 W R! ` be a parametrization of ` with constant speed, basic period p � 1, and
such that I.
 .0//D 
 .1/. For every real number k ¤ 0 we define 
 k W R!M to be
the curve 
 k.t/D 
 .kt/. All the parametrized curves 
mpC1 , where m 2N , belong
to ƒ.M I I/ and are critical points of E corresponding to the same oriented geodesic `:
the curve 
mpC1jŒ0;1� joins 
 .0/ with 
 .1/ after winding around ` for m times. An
essential observation due to Grove [9, Theorem 2.4] claims that if I has a nonclosed
invariant geodesic, then it admits uncountably many invariant geodesics. This implies
that, in order to study the multiplicity of I–invariant geodesics, we can assume that all
of these geodesics are closed.

A way to identify critical orbits of E corresponding to the same geometric curve is to
look at their Morse index, a strategy that was first introduced by Bott [5] in the study
of closed geodesics. If 
 is a critical point of E , its Morse index ind.
 / and nullity
nul.
 / are defined respectively as the dimension of the negative eigenspace and the
dimension reduced by 1 of the kernel of the Hessian of E at 
 . All the curves in the
critical orbit of 
 share the same index and nullity. In [11; 21], Grove and Tanaka
developed an analogue of Bott’s theory in the much harder setting of isometry invariant
geodesics. For our applications, we will need the following statement.

Proposition 2.1 (Grove and Tanaka [11; 21]) Let 
 be a critical point of E that
is a periodic curve of basic period p > 0. Then m�1 ind.
mpC1/ converges to a
nonnegative number ind.
 / as m!1. Moreover, if ind.
 /D0 then ind.
mpC1/D0

for all m 2N .

Another important index of homological nature is the local homology of E at orb.
 /,
defined as the relative homology group

C�.E; orb.
 // WD H�.fE < cg[ orb.
 /; fE < cg/;

where c DE.
 /, and H� denotes the singular homology functor with rational coeffi-
cients. The interplay between the local homology and the Morse indices of a critical
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orbit can be summarized by saying that the graded group C�.E; orb.
 // is always
trivial in degree less than ind.
 / or greater than ind.
 /Cnul.
 /C1. Local homology
groups are the “building blocks” for the homology of the path space ƒ.M I I/. More
precisely, for all b > c DE.
 / such that the interval .c; b/ does not contain critical
values of E , the inclusion induces an injective homomorphism

C�.E; orb.
 // ,! H�.fE < bg; fE < cg/:

Here, we also allow b to be equal to C1, in which case fE < bg Dƒ.M I I/. For a
general interval Œa; b�� .0;C1� and any homological degree d , we have the Morse
inequality

rank Hd .fE < bg; fE < ag/�
X

orb.
 /

rank Cd .E; orb.
 //;

where the sum on the right hand side runs over all the critical orbits orb.
 / such that
a�E.
 / < b .

3 Bangert–Klingenberg lemmas for isometry-invariant geo-
desics

In their seminal paper [4], Bangert and Klingenberg showed that any sufficiently iterated
closed geodesic with average Morse index 0, and that is not a global minimum of
the energy in his free homotopy class, cannot arise as a minimax point generated by
a (relative) homology class of the free loop space. The important consequence of
this result is that, whenever there is a closed geodesic with these properties that is
homologically visible, the Riemannian manifold must contain infinitely many closed
geodesics. The proof of this result is based on a homotopic technique introduced earlier
by Bangert [1], and further employed in different settings by Bangert and Hingston [3],
Hingston [13], Bangert [2], Long [14], Lu [16] and the author [17; 18]. In this section we
apply results due to Grove and Tanaka [10; 11; 21] in order to establish the analogue of
Bangert and Klingenberg’s result in the context of closed isometry-invariant geodesics.

3.1 Local homology of iterated orbits

In the setting of Section 2, let 
 be a critical point of E that is a periodic curve of basic
period p � 1 and average index ind.
 /D 0. Since in this paper we are looking for
infinitely many I–invariant geodesics, we can assume that each orb.
mpC1/, where
m 2 N , is isolated in the set of critical points of E . In [11; 21], Grove and Tanaka
showed that, up to isomorphism, there are only finitely many different groups in the
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family fC�.E; 
pmC1/ j m 2 Ng, a statement established earlier by Gromoll and
Meyer [7] in case I D id. For later purposes, we need to rephrase their results, and we
refer to the reader to their papers for a detailed proof.

For syntactic convenience, for every � > 0 let us consider the Hilbert manifold

ƒ� .M I I/D f
 2W
1;2

loc .RIM / j I.
 .t//D 
 .t C �/ 8t 2Rg;

and the energy function E� W ƒ� .M I I/!R defined by

E� .�/D
1

�

Z �

0

g. P�.t/; P�.t// dt:

There is an obvious diffeomorphism of Hilbert manifolds ‰� W ƒ� .M I I/!ƒ.M I I/

given by ‰� .�/ D �� , where �� .t/ D �.� t/. Moreover E ı‰� D �2E� . With this
notation, for each m 2N , the curve 
 is the critical point of EmpC1 corresponding to
the critical point 
mpC1 of E . If c DEmpC1.
 /, we denote the local homology of
EmpC1 at orb.
 / by

C�.EmpC1; orb.
 // WD H�.fEmpC1 < cg[ orb.
 /; fEmpC1 < cg/:

The diffeomorphism ‰mpC1 induces a homology isomorphism of this group with the
local homology C�.E; orb.
mpC1//.

We first consider the case in which the period p of 
 is irrational, treated in [21, Sec-
tion 3]. For all � 2N , we define the Hilbert manifold

ƒm;�
WDƒmpC1.M I I/\ƒ�p.M I id/

D f� 2W
1;2

loc .RIM / j I.�.t �mp� 1//D �.t/D �.t C�p/ 8t 2Rg:

It readily follows from the definition that ƒm;� Dƒn;� if m� n mod �. Moreover,
for all � 2 ƒm;� \ C1.RIM /, the function t 7! g. P�.t/; P�.t// is constant, being
both �p–periodic and .mp C 1/–periodic with .�p/�1.mp C 1/ irrational. Since
smooth curves are dense in ƒm;� , if we denote by1 �m;�W ƒm;� ,! ƒmpC1.M I I/

the inclusion of the corresponding spaces, we have that EmpC1 ı �m;� DE�pjƒm;� .
According to the following lemma, which is a variation of [21, Lemma 3.2], some of
the maps �m;� induce an isomorphism of the corresponding local homology groups
of orb.
 /.

Lemma 3.1 There exists a bounded function �W N!N such that, for all but finitely
many m 2N , the inclusion �m;�.m/ induces a homology isomorphism

�
m;�.m/
� W C�.E�.m/p

jƒm;�.m/ ; orb.
 //
Š
�! C�.EmpC1; orb.
 //:

1In some sense, the map �m;� , as well as the map j�;�;˛;� introduced below before Lemma 3.2, plays
the same role as the iteration map in the theory of closed geodesics.
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Proof Throughout this proof, we adopt the extensive notation ind.F;x/ and nul.F;x/
to denote Morse index and nullity of a function F at a critical point x . Recall
that our curve 
 is supposed to have average Morse index 0. By Proposition 2.1,
ind.EmpC1; 
 / D 0 for all m 2 N . Since ind.E�pjƒm;� ; 
 / � ind.EmpC1; 
 /, we
infer

ind.E�p
jƒm;� ; 
 /D ind.EmpC1; 
 /D 0; 8�;m 2N:

In the proof of [21, Lemma 3.2], Tanaka showed that there exists a bounded function
�W N!N such that, for all m 2N large enough, the null spaces of the Hessians of
E�.m/pjƒm;� and EmpC1 at 
 are the same. In particular, there exists m0 2N such
that

nul.E�.m/p
jƒm;� ; 
 /D nul.EmpC1; 
 /; 8m�m0:

Now, let us equip the Hilbert manifold ƒmpC1.M I I/ with the Riemannian metric

(1) GmpC1.X;Y /D

Z mpC1

0

Œg.X.t/;Y .t//Cg. PX .t/; PY .t//� dt;

8X;Y 2 T�ƒ
mpC1.M I I/:

We denote by rEmpC1 the gradient of the energy EmpC1 with respect to this Rie-
mannian metric. A standard computation shows that, if � 2ƒmpC1.M I I/ is periodic
with period q , then rEmpC1.�/ is a q–periodic vector field along � . In particular
rEmpC1.�/ belongs to the tangent space T�ƒm;� for all � 2ƒm;� .

Summing up, for all m�m0 , the submanifold ƒm;�.m/ of ƒmpC1.M I I/ is invariant
under the gradient flow of ƒmpC1.M I I/, and the Morse index and nullity of EmpC1

at 
 do not change when we restrict the function to the submanifold ƒm;�.m/ . By
a standard argument in Morse theory (see eg the author [19, Theorem 5.1.1]), our
statement follows.

Let us now consider the case in which the period p is rational, for which the reference
is [11, Sections 2–3]. Let a and b be relatively prime positive integers such that
pD a=b . Notice that Ia.
 .t//D 
 .t/ for all t 2R, namely the geometric curve 
 .R/
is contained in fix.Ia/. We recall that the fixed points set of an isometry is a collection
of closed totally geodesic submanifolds of .M;g/. For a fixed value of m, consider
three positive integers � , ˛ and � with the following properties:

� ��1.mpC 1/ is a positive integer.
� a divides ˛ , in particular I˛.
 .t//D 
 .t/ for all t 2R.
� I� .
 .t//D 
 .t C �/ for all t 2R.
� ��1�.mpC 1/� 1 mod ˛ .
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These properties readily imply that 
 2 ƒ� .fix.I˛/I I� / and there is an inclusion
j m;�;˛;� W ƒ� .fix.I˛/I I� / ,! ƒmpC1.M I I/ that is a smooth embedding of Hilbert
manifolds. Moreover EmpC1 ı j m;�;˛;� DE� jƒ� .fix.I˛/II� / . The following lemma is
a variation of [11, Lemma 2.9] together with [11, Proposition 3.6].

Lemma 3.2 There exist bounded functions � W N!N , ˛W N!N and � W N!N
such that, for all m 2N , the inclusion j m;�.m/;˛.m/;�.m/ induces a homology isomor-
phism

j
m;�.m/;˛.m/;�.m/
� W C�.E�.m/

jƒ�.m/.fix.I˛.m//II�.m//; orb.
 //
Š
�!C�.EmpC1; orb.
 //:

Proof We proceed as in the proof of Lemma 3.1. For any given m 2N , if � , ˛ and �
are integers as above, our assumption on the average Morse index of 
 implies that

ind.E�
jƒ� .fix.I˛/II� /; 
 /D ind.EmpC1; 
 /D 0:

By [11, Lemma 2.9], there exist bounded functions � W N ! N , ˛W N ! N and
� W N!N such that, for all m 2N , we have

nul.E�.m/
jƒ�.m/.fix.I˛.m//II�.m//; 
 /D nul.EmpC1; 
 /D 0; 8m 2N:

Let GmpC1 be the standard Riemannian metric on ƒmpC1.M I I/, already intro-
duced in (1), and rEmpC1 the gradient of the energy EmpC1 with respect to this
Riemannian metric. Since fix.I˛.m// is a collection of totally geodesic submani-
folds of M , the proof of [11, Proposition 3.5] shows that rEmpC1.�/ is tangent
to ƒmpC1.fix.I˛.m//I I/ for all � 2ƒmpC1.fix.I˛.m//I I/. Moreover, we have that
a standard computation shows rEmpC1.�/ is tangent to ƒ�.m/.M I I�.m// for all
� 2ƒ�.m/.M I I�.m//\ƒmpC1.M I I/. Since

ƒ�.m/.fix.I˛.m//I I�.m//DƒmpC1.fix.I˛.m//I I/\ƒ�.m/.M I I�.m//;

we conclude that ƒ�.m/.fix.I˛.m//I I�.m// is a submanifold of ƒmpC1.M I I/ that is
invariant by the gradient flow of EmpC1 , and the Morse index and nullity of 
 do not
change when we restrict EmpC1 to this submanifold. As in the proof of Lemma 3.1, a
standard argument in Morse theory implies our statement.

3.2 Bangert’s construction

In the proof of the main results of this section (Lemmas 3.3–3.4 and Proposition 3.5)
we will need a homotopy constructed by Bangert in [1], that we shall now review with
our notation. Fix a period p 2N , and consider a smooth path

�W Œa; b� �!ƒp.M I id/;
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ie each curve t 7! �.s/.t/ is p–periodic. For each m 2N , we define an associated
continuous path

(2) �hmiW Œa; b� �!ƒmp.M I id/

in the following way. For the sake of simplicity, let us assume that Œa; b�D Œ0; 1�. For
each s 2 Œ0; 1�, we set

�hmi.
s
m
/.t/D �.s/. 2t

2�s
/; 8t 2 Œ0; .1� s

2
/p�;

�hmi.
s
m
/.t/D �.4� s� 4

p
t/.p/; 8t 2 Œ.1� s

2
/p; .1� s

4
/p�;.?/

�hmi.
s
m
/.t/D �.0/.t C s

4
p/; 8t 2 Œ.1� s

4
/p; .m� s

4
/p�;

�hmi.
s
m
/.t/D �. 4

p
t C s� 4m/.mp/; 8t 2 Œ.m� s

4
/p;mp�I.?/

see Figure 1(b). For each s 2 Œ0; 1� and k 2 f1; : : : ;m� 2g, we set

�hmi.
kCs

m
/.t/D �.1/.2t/; 8t 2 Œ0; p

2
�;

�hmi.
kCs

m
/.t/D �.1/.t � p

2
/; 8t 2 Œp

2
; .k � 1

2
/p�;

�hmi.
kCs

m
/.t/D �.4k � 1� 4

p
t/.kp/; 8t 2 Œ.k � 1

2
/p; .k � 1Cs

4
/p�;.?/

�hmi.
kCs

m
/.t/D �.s/.t � 1Cs

4
p/; 8t 2 Œ.k � 1Cs

4
/p; .kC 3�s

4
/p�;

�hmi.
kCs

m
/.t/D �.4kC 3� 4

p
t/..kC 1/p/; 8t 2 Œ.kC 3�s

4
/p; .kC 3

4
/p�;.?/

�hmi.
kCs

m
/.t/D �.0/.t C 1

4
p/; 8t 2 Œ.kC 3

4
/p; .m� 1

4
/p�;

�hmi.
kCs

m
/.t/D �. 4

p
t � 4mC 1/.mp/; 8t 2 Œ.m� 1

4
/p;mp�I.?/

see Figure 1(c). Finally, for each s 2 Œ0; 1�, we set

�hmi.
m�1Cs

m
/.t/D �.1/. 2

1Cs
t/; 8t 2 Œ0; 1Cs

2
p�;

�hmi.
m�1Cs

m
/.t/D �.1/.t C 1�s

2
p/; 8t 2 Œ1Cs

2
p; .mC s�3

2
/p�;

�hmi.
m�1Cs

m
/.t/D �.2sC 4m� 5� 4

p
t/..m� 1/p/;.?/

8t 2 Œ.mC s�3
2
/p; .mC s�5

4
/p�;

�hmi.
m�1Cs

m
/.t/D �.s/.t C 1�s

4
p/; 8t 2 Œ.mC s�5

4
/p; .mC s�1

4
/p�;

�hmi.
m�1Cs

m
/.t/D �. 4

p
t C 1� 4m/.mp/; 8t 2 Œ.mC s�1

4
/p;mp�I.?/

see Figure 1(d).

Algebraic & Geometric Topology, Volume 14 (2014)



144 Marco Mazzucchelli

s

�.0/ �.s/ �.1/

�.s/.0/

�.s/.p/

�.s/.mp/

�.0/.p/

�.0/.mp/

�.1/.0/

�.1/.kp/

�.1/.mp/
�.0/.mp/

(a)

�.1/.p/

�.s/..kC 1/p/

�.s/.kp/

�.0/..kC 1/p/

�.1/.0/

�.1/..m� 1/p/

�.1/.mp/

�.1/.p/

�.s/.mp/

�.s/..m� 1/p/

(b)

(c)

(d)

Figure 1: (a) Path �W Œ0; 1� ! ƒp.M I id/; the shaded square contains
the portion of each curve t 7! �.s/.t/ for t 2 Œ0;mp� . (b)–(d) Curve
t 7! �hmi.s

0/.t/ for t 2 Œ0;mp� and suitable values of s0 ; the little horizontal
arrows show the direction in which the curve is pulled as s0 grows.
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If the original path � is only continuous, the curves s 7! �.s/.t/ are continuous as
well, but not W

1;2
loc . However, we can still define a continuous path �hmiW Œa; b�!

ƒmp.M I id/ in a similar way. All we have to do is modify the equations marked with
.?/ in the construction. Each of those equations is of the form

(3) �hmi.s
0/.t/D �

�
.�1/i

4

p
t C s00

�
.t 0/; 8t 2 Œt0; t1�;

for suitable values i 2f1; 2g, s0; s002 Œ0; 1�, t 02 Œ0;mp�, and an interval Œt0; t1�� Œ0;mp�.
Let ıD ı.�/ > 0 be such that, for all r 2R and r0; r1 2 Œ0; 1� with jr0� r1j �

4
p
ı , the

distance between the points �.r0/.r/ and �.r1/.r/ is less than the injectivity radius
of .M;g/. We set �W Œt0; t1�!M to be the piecewise smooth curve such that

� t 7! g.P�.t/; P�.t// is constant,

� for each nonnegative integer k such that .k C 1/ı < jt1 � t0j, the curve
�jŒt0Ckı;t0C.kC1/ı� is the (unique) length-minimizing geodesic joining the points
�..�1/i 4

p
.t0C kı/C s00/.t 0/ and �..�1/i 4

p
.t0C .kC 1/ı/C s00/.t 0/,

� if k is the largest integer so that kı< jt1�t0j, the curve �jŒt0Ckı;t1� is the (unique)
length-minimizing geodesic joining the points �..�1/i 4

p
.t0Ckı/Cs00/.t 0/ and

�..�1/i 4
p

t1C s00/.t 0/.

In the definition of �hmi , we replace Equation (3) with

�hmi.s
0/.t/D �.t/; 8t 2 Œt0; t1�:

In this way, � 7! �hmi defines a continuous map of the form

C 0.Œa; b�Iƒp.M I id//! C 0.Œa; b�Iƒmp.M I id//:

Notice that, if we view the path � as a path in ƒmp.M I id/ via the inclusion
ƒp.M I id/ ,! ƒmp.M I id/, then � is homotopic to �hmi with fixed endpoints. A
possible homotopy h� W Œ0; 1�� Œa; b�!ƒmp.M I id/ can be defined by setting

(4) h�.r; s/D

�
�.s/ if s 2 Œr; 1�;

.�jŒ0;r �/hmi.s/ if s 2 Œ0; r �:

The main property of this construction is that, by taking m large, the energy of each mp–
periodic curve �hmi.s/ can be made almost as small as the energy of �.0/ and �.1/.

Algebraic & Geometric Topology, Volume 14 (2014)



146 Marco Mazzucchelli

More precisely,

(5) Emp.�hmi.s//D
1

mp

Z mp

0

g

�
d
dt
�hmi.s/.t/;

d
dt
�hmi.s/.t/

�
dt

�
1

mp

�
.m� 2/ max

s02f0;1g

�Z p

0

g

�
d
dt
�.s0/.t/;

d
dt
�.s0/.t/

�
dt

�
CC�

�
<maxfEp.�.0//;Ep.�.1//gC

C�

mp
;

where C� > 0 is a constant depending continuously on � , but not on m.

3.3 Bangert–Klingenberg lemmas

Let K�N be an infinite subset, p;p0 2N , and � a Hilbert manifold contained in

ƒp0.M I id/\
\

m2K

ƒmpC1.M I I/

as a Hilbert submanifold of each space involved in the intersection. Assume also that
the energy functions Ep0 and EmpC1 , for all m 2K, coincide on �, ie

Ep0.�/D
1

p0

Z p0

0

g. P�.t/; P�.t// dt D
1

mpC 1

Z mpC1

0

g. P�.t/; P�.t// dt DEmpC1.�/;

8� 2�;m 2K:

Examples of such � are the manifolds ƒm0;�0 and ƒ�0.fix.I˛0/I I�0/ for suitable
value of the integer parameters and for suitable K; see Section 3.1.

The next statements in this section were originally established by Bangert and Klingen-
berg [4] in the special case I D id.

Lemma 3.3 Consider c > 0, and let �0 be the union of the connected components
of � having nonempty intersection with the sublevel fEp0 j� < cg. For each m 2K,
consider the homomorphism

�m� W H�.�0; fEp0 j� < cg/ �! H�.ƒmpC1.M I I/; fEmpC1 < cg/

induced by the inclusion. Then, for each h 2H�.�0; fEp0 j� < cg/ we have �m� .h/D 0

provided m is large enough.
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Proof The statement is straightforward in homological degree zero, since the group
H0.�

0; fEp0 j� < cg/ is trivial. Now, consider a nonzero h 2 Hd .�
0; fEp0 j� < cg/

for some d � 1 (if it exists). Let � be a relative cycle representing h. We denote
by †j .�/ the set of singular simplexes that are j–dimensional faces of the simplexes
in the chain �.

By modifying � within the same homology class h if necessary, we can assume that
all the 0–simplexes in †0.�/ are already contained in the sublevel fEp0 j� < cg. We
set m0 WD 1 and, for all � 2 †0.�/, we define the maps h0� ; h

00
� W Œ0; 1���

0!� as
h0�.t; z/ D h00�.t; z/ WD �.z/. Here, �0 is the 0–dimensional standard simplex, ie a
point.

For each degree j 2 f1; : : : ; dg we will find mj 2N and, for each � 2 †j .�/, two
homotopies

h0� W Œ0; 1���
j
�!ƒmjp0.M I id/;(6)

h00� W Œ0; 1���
j
�!�;(7)

with the following properties:

(i) mj�1 divides mj .

(ii) h0� .0; � /D h00� .0; � /D � .

(iii) h0� .s; z/.0/D h00� .s; z/.0/ for all .s; z/ 2 Œ0; 1���j .

(iv) Emjp0.h0� .1; z// < c for all z 2�j .

(v) h0�.s;fk.z//D h0
�ıfk

.s;z/ and h00�.s;fk.z//D h00
�ıfk

.s; z/ for all k 2 f0; : : : ; j g,

where fk W �
j�1!�j is the standard affine map onto the k th face of �j .

Let us assume that we have such a family of homotopies. Let m00 2 K be a (large)
integer that we will fix later, and let m0 be the maximal multiple of md such that m0p0

is less than of equal to m00pC 1. For each j � 1 and singular simplex � 2†j .�/ we
define the homotopy

(8)
h� W Œ0; 1���

j
!ƒm00pC1.M I I/;

h� .s; z/.t/D

�
h0� .s; z/.t/ t 2 Œ0;m0p0�;

h00� .s; z/.t/ t 2 Œm0p0;m
00pC 1�:

Notice that h� .s; z/ is a well-defined curve in ƒm00pC1.M I I/. Indeed

h0� .s; z/.m
0p0/D h0� .s; z/.0/D h00� .s; z/.0/D h00� .s; z/.m

0p0/;
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and thus h� .s; z/jŒ0;m00pC1� is a continuous curve obtained by joining the W 1;2 curves
h0� .s; z/jŒ0;m0p0� and h00� .s; z/jŒm0p0;m00pC1� . Moreover, since h00� .s; z/ 2�, we have
I.h00� .s; z/.0//D h00� .s; z/.m

00pC 1/, and therefore

I.h0� .s; z/.0//D I.h00� .s; z/.0//D h00� .s; z/.m
00pC 1/;

which proves that h� .s; z/ is an I–invariant curve with time-shift m00pC 1.

The energy of h� .1; z/ can be estimated as follows:

Em00pC1.h� .1; z//D
1

m00pC 1

�Z m0p0

0

g
� d

dt
h0� .1; z/.t/;

d
dt

h0� .1; z/.t/
�

dt

C

Z m00pC1

m0p0

g
� d

dt
h00� .1; z/.t/;

d
dt

h00� .1; z/.t/
�

dt

�
�

1

m00pC 1
.m0p0Em0p0.h0� .1; z//Cmdp0Emd p0.h00� .1; z///

D
1

m00pC 1
.m0p0 Emjp0.h0� .1; z//„ ƒ‚ …

�c���

Cmdp0 Emd p0.h00� .1; z//„ ƒ‚ …
�c�

/

� c � �� C
mdp0c�

m00pC 1
;

where �� > 0 is a quantity given by condition (iv), and

c� WD max
z2�j

Emd p0.h00� .1; z//:

Therefore, if we choose m00 2K large enough, for each j � 1 and singular simplex
� 2†j .�/, we have

Em00pC1.h� .1; z// < c:

By the homotopy invariance property for representatives of relative homology classes
(see [4, Lemma 1] or [19, page 146]), the existence of the family of homotopies defined
in (8) implies that �, seen as a relative chain in .ƒm00pC1.M I I/; fEm00pC1 < cg/, is
homologous to a relative chain contained in the sublevel fEm00pC1 < cg. In particular
Œ��D 0 in Hd .ƒ

m00pC1.M I I/; fEm00pC1 < cg/.

In order to complete the proof we only have to find suitable integers mj and construct
the homotopies (6) and (7) satisfying properties (i)–(v). We do this inductively on the
homological degree of the involved singular simplexes, starting in degree 1 and going
up with the dimension.
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Let � 2†1.�/. Notice that �1D Œ0; 1� and ��ƒp0.M I id/. Thus, let us consider �
as a continuous path of the form

� W Œ0; 1� �!ƒp0.M I id/:

By our assumptions on the elements of †0.�/, we have Ep0.�.z// < c for z D 0 and
zD1. Let m be a positive integer that we will fix later, and consider the continuous path

�hmiW Œ0; 1� �!ƒmp0.M I id/

obtained by applying Bangert’s construction of Section 3.2 to � . We define the map
h0� W Œ0; 1���

1!ƒmp0.M I id/ to be a homotopy as in Equation (4), ie

h0� .s; z/D

�
.� jŒ0;s�/hmi.z/ if z 2 Œ0; s�;

�.z/ if z 2 Œs; 1�:

In particular h0� .0; � /D � , h0� .1; � /D �hmi , and h0� .s; z/D �.z/ for all s 2 Œ0; 1� and
z 2 @�1 D f0; 1g. We define h00� W Œ0; 1���

1!� to be the unique map such that

h00� .s; z/jŒ0;p0� D h0� .s; z/jŒ0;p0�; 8s 2 Œ0; 1�; z 2�1:

By an estimate as in (5), if we fix m 2N large enough, for all � 2†1.�/ and z 2�1

we obtain Emp0.�hmi.z// < c . Thus, we set m1 WDm. Notice that h0� , h00� and m1

satisfy assumptions (i)–(v) listed above when j D 1.

Now, let us proceed iteratively with the construction: assuming we are done up to
degree j � 1, we show how to make the next step for j –simplexes in †j .�/. We
consider m 2 N that is a (large) multiple of mj�1 , and we will fix it later. Up to a
minor modification in the previous steps, we can assume that, for each i < j , � 2†i.�/

and s 2 Œ1
2
; 1�, we have h0�.s; � /D h0�.1; � / and h00�.s; � /D h00�.1; � /. Let � 2†j .�/.

We begin by putting together the homotopies of the faces of � , in such a way that we
obtain a continuous map

h0@� W Œ0; 1�� @�
j
�!ƒmp0.M I id/:

Notice that Emp0.h0
@�
.s; z// < c for all s 2 Œ0; 1� and z 2 @�j . Moreover, we have

h0
@�
.s; � /D h0

@�
.1; � / for all s 2 Œ1

2
; 1�. Now consider a retraction

r W Œ0; 1
2
���j

�! .Œ0; 1
2
�� @�j /[ .f0g ��j /:

We define
h0� W Œ0;

1
2
���j

�!ƒmj�1p0.M I id/�ƒmp0.M I id/

by h0� WD h0
@�
ı r . Set z� WD h0� .

1
2
; � /, and see it as a map of the form

z� W �j
�!ƒmj�1p0.M I id/:
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As in [14, page 461], let L � Rj be the 1–dimensional vector subspace generated
by the vector pointing to the barycenter of standard j –simplex �j � Rj . For each
s 2 Œ0; 1� we denote by s�j the rescaled j –simplex given by fsz j z 2 �j g. For
each z 2 s�j , we define Œa.s; z/; b.s; z/� to be the maximum segment inside s�j that
contains z and is parallel to L. Notice that a and b are continuous functions on their
domains. We define the other piece of homotopy

h0� W Œ
1
2
; 1���j

�!ƒmp0.M I id/;

h0� .s; z/D

�
.z� jŒa.2s�1;z/;b.2s�1;z/�/hmi.z/ if z 2 .2s� 1/�j ;

z�.z/ if z 62 .2s� 1/�j :

Basically here we are piecing together Bangert’s homotopies (which were described
in Section 3.2) of each path z� jŒa.1;z/;b.1;z/�W Œa.1; z/; b.1; z/�!ƒmj�1p0.M I id/. We
define h00� W Œ0; 1���

1!� to be the unique map such that

h00� .s; z/jŒ0;p0� D h0� .s; z/jŒ0;p0�; 8s 2 Œ0; 1�; z 2�j :

If we fix m 2 N to be a sufficiently large multiple of mj�1 , an estimate as in (5)
implies that Emp0.h0� .1; z// < c for all � 2†j .�/ and z 2�j . We set mj WDm. As
for the case in degree 1, we have that h0� , h00� and mj satisfy assumptions (i)–(v) listed
above.

From Lemma 3.3 we can infer an analogous statement concerning the local homology
of periodic I–invariant geodesics.

Lemma 3.4 Let 
 be a critical point of E that is periodic of basic period p � 1.
Assume that there exist a degree d � 2 and an infinite set K � N such that, for
all m 2 K, the local homology Cd .E; orb.
mpC1// is nontrivial. Then, there are
arbitrarily large m 2K such that the homomorphisms

j m
� W Cd .E; orb.
mpC1// �! Hd .ƒ.M I I/; fE <E.
mpC1/g/

induced by the inclusion are not injective.

Proof Since the local homology Cd .E; orb.
mpC1// is nontrivial, we infer that
ind.
mpC1/�d for all m2K, and therefore ind.
 /D0. Thus we can apply the results
of Section 3.1. Let us employ the (equivalent) variational setting introduced there. Our
assumption on the local homology can be rephrased by saying that Cd .E

mpC1; orb.
 //
is nontrivial for all m 2K. Let us consider separately the cases in which the period p

of 
 is irrational or rational.

If p is irrational, let us consider the bounded function �W N!N of Lemma 3.1. By
the pigeonhole principle we can find m0; �0 2N and an infinite subset K0 �K such
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that m�m0 mod �0 and �.m/D �0 for all m 2K0 . As we remarked right before
Lemma 3.1, we have that ƒm;�0 Dƒm0;�0 �ƒmpC1.M I I/, and E�0p DEmpC1

on this space. Lemma 3.1 implies that the inclusion induces an isomorphism

C�.E�0p; orb.
 //
Š
�! C�.EmpC1; orb.
 //; 8m 2K0:

We set p0 WD �0p , and recall that every � 2ƒm0;�0 is a p0 –periodic curve. We also
set � WDƒm0;�0 .

In the other case, when p is rational, we apply the pigeonhole principle to the bounded
functions �; ˛; � W N ! N of Lemma 3.2. We find �0; ˛0; �0 2 N and an infinite
subset K0 �K such that �.m/D �0 , ˛.m/D ˛0 and �.m/D �0 for all m 2K0 . We
recall that, for all m 2K0 , we have that ƒ�0.fix.I˛0/I I�0/�ƒmpC1.M I I/, and the
functions E�0 and EmpC1 coincide on ƒ�0.fix.I˛0/I I�0/. Lemma 3.2 implies that
the inclusion induces an isomorphism

C�.E�0 jƒ�0 .fix.I˛0 /II�0 /; orb.
 //
Š
�! C�.EmpC1; orb.
 //; 8m 2K0:

We set p0 WD �0˛0 . As before, every � 2ƒ�0.fix.I˛0/I I�0/ is a p0 –periodic curve,
and we set � WDƒ�0.fix.I˛0/I I�0/.

In either case (p rational or irrational), � satisfies the assumptions required in
Lemma 3.3. Let �0 be the union of the connected components of � that intersect
the sublevel fEp0 < cg, where c DEp0.
 /. Notice that the orbit of 
 is not a local
minimum of the energy Ep0 j� , otherwise we would have

Cd .E
p0 j�; orb.
 //D Hd .orb.
 //' Hd .S

1/D 0;

whereas Cd .E
p0 j�; orb.
 // is nontrivial by our assumptions. Therefore orb.
 / is

contained in �0 , and we have the following commutative diagram where all the
homomorphisms are induced by inclusions:

Cd .E
p0 j�; orb.
 // Š //

��

Cd .E
mpC1; orb.
 //

z|m
�

��
Hd .�

0; fEp0 j� < cg/
�m� // Hd .ƒ

mpC1.M I I/; fEmpC1 < cg/

Our statement follows from Lemma 3.3.

After these preliminaries, we can now state and prove the main result of this section.
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Proposition 3.5 Let 
 be a critical point of E that is periodic of basic period p � 1.
If there exists a degree d � 2 such that, for infinitely many m 2N , the local homology
Cd .E; orb.
mpC1// is nontrivial, then the Riemannian manifold .M;g/ contains
infinitely many I–invariant geodesics.

Proof We prove the proposition by contradiction, assuming that there are only finitely
many I–invariant geodesics `1; : : : ; `r . By [9, Theorem 2.4], all these geodesics must
be closed. Let 
i W R!M be a parametrization of `i with constant speed, period
pi � 1, and such that I.
i.t//D 
i.t C 1/ for all t 2R. Thus the critical orbits of the
energy E corresponding to `i are all the orb.
mpiC1

i /, for m 2N . We set

DiDfd 2N jCd .E; orb.
mpiC1
i //¤0 for infinitely many m 2N g; 8iD1; : : : ; r:

Up to renaming the I–invariant geodesics, we can assume that Di¤¿ for i D 1; : : : ; s ,
whereas Di D¿ for all i > s . Notice that, by the assumptions of the theorem, s � 1.
We also set

di Dmax Di ; 8i D 1; : : : ; s:

Notice that di is finite. Indeed, the fact that the local homology C�.E; orb.
mpiC1
i /

is nontrivial in a fixed degree for arbitrarily large m implies that ind.
i/D 0. There-
fore, by Proposition 2.1, ind.
mpiC1

i / D 0 for all m 2 N , and we conclude that
di � nul.
mpiC1

i /C 1� 2 dim.M /.

Let i be such that di D maxfd1; : : : ; dsg. In particular di � d � 2, where d is the
integer in the statement of the proposition. We reset 
 WD 
i , p WD pi and d WD di .
Notice that this new 
 still satisfies the assumptions of the proposition (with respect to
the new p and d ). Fix xm 2 N sufficiently large so that, for all j > s , we have the
following:

� If ind.
j /D 0 then C�.E; orb.
mpjC1

j // is trivial for all integers m� xm.

� If ind.
j / > 0 then ind.
mpjC1

j / > d C 2 for all integers m� xm.

We set
xe WDmaxfE.
 xmpjC1

j / j s < j � rg:

For all j > s , the inequality E.

mpjC1

j / > xe implies that m > xm. Choose another
large enough xm0 � xm such that E.
mpC1/ > xe for all integers m� xm0 .

Now, fix an integer m � xm0 , and set c D c.m/ WD E.
mpC1/. Take � D �.m/ > 0

small enough so that the interval .c; cC �� does not contain critical points of E . In
particular, the inclusion induces an injective homomorphism

(9) C�.E; orb.
mpC1// ,! H�.fE < cC �g; fE < cg/:
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Moreover, since E does not have any critical orbit with critical value larger than xe and
nonzero local homology in degree d C 1, the Morse inequalities imply

HdC1.fE < cC �g; fE < cg/D 0;(10)

HdC1.ƒ.M I I/; fE < cC �g/D 0:(11)

By (9), (10) and the long exact sequence of the triple

fE < cg � fE < cg[ orb.
mpC1/� fE < cC �g

we infer that HdC1.fE < c C �g; fE < cg [ orb.
mpC1// is trivial. This, together
with (11) and the long exact sequence of the triple

fE < cg[ orb.
mpC1/� fE < cC �g �ƒ.M I I/;

implies that HdC1.ƒ.M I I/; fE < cg[ orb.
mpC1// is trivial. Finally this, together
with the long exact sequence of the triple

fE < cg � fE < cg[ orb.
mpC1/�ƒ.M I I/;

implies that the inclusion induces an injective homomorphism

Cd .E; orb.
mpC1// ,! Hd .ƒ.M I I/; fE <E.
mpC1/g/:

Since this is true for any integer m� xm0 , it contradicts the assertion of Lemma 3.4.

4 Proof of Theorem 1.1

The proof of Theorem 1.1 goes along the following lines. By applying Morse theory
to the energy function E , we find infinitely many critical points that correspond to
either infinitely many (geometrically distinct) I–invariant geodesics, or to a single
I–invariant geodesic satisfying the assumptions of Proposition 3.5. However, this latter
proposition implies that there are infinitely many I–invariant geodesics. We go over
this argument in the following.

Since rank H1.M1/¤ 0, we can find a smooth 1–cycle s such that

(12) sm
¤ 0 in H1.M1/; 8m 2N:

Let � W R!M1 be a 1–periodic smooth curve such that � jŒ0;1� is a parametrization of s .
For m2N , we define a smooth map †mW M2!ƒ.M I id/ by †m.q/.t/D .�

m.t/; q/.
We denote by Cm the connected component of the free loop space ƒ.M I id/ containing
†m.M2/. By (12) we have that Cm\Cn D¿ if m¤ n.
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Consider a smooth homotopy It W M !M , where t 2 Œ0; 1�, such that I0 D id and
I1 D I . This homotopy induces a continuous map �W ƒ.M I id/! ƒ.M I I/ in the
following way. For all � 2ƒ.M I id/ and t 2 Œ0; 1� we set

�.�/.t/D

�
�.2t/ if t 2 Œ0; 1=2�;

I2t�1.�.0// if t 2 Œ1=2; 1�;

and we extend �.�/ to the whole real line in such a way that

I.�.�/.t//D �.�/.t C 1/; 8t 2R:

It is easy to see � is a homotopy equivalence (see [8, Lemma 3.6]). If we denote by Dm

the connected component of ƒ.M I I/ containing �.Cm/, we have Dm\Dn D¿.

Let evW Dm !M2 be the evaluation map given by ev.�/ D �2.0/ for all � 2 Dm ,
where �2 denotes the M2 –factor of the curve �W R!M1�M2 . Notice that ev ı�ı†m

is the identity on M2 . Therefore ev is a left inverse for � ı†m , and this latter map
induces an injective homomorphism

.� ı†m/�W H�.M2/ ,! H�.Dm/:

We can assume that M2 is an orientable manifold. If this is not true, we proceed as
follows. We replace M2 by its orientable 2–fold covering �M2 . Our manifold M

admits a 2–fold covering �M that is homeomorphic to the 2–fold covering M1 �
�M2

of M1�M2 . It suffices to lift the Riemannian metric g and the isometry I to �M , and
carry over the proof of Theorem 1.1 for . �M ; zg/. Indeed, infinitely many zI–invariant
geodesics on �M project down to infinitely many I–invariant geodesics on M .

By our orientability assumption on M2 , we have that Hd .M2/ is nontrivial for
d D dim.M2/. Thus Hd .Dm/ is nontrivial as well. Since we are looking for infinitely
many I–invariant geodesics, we can assume that all the critical orbits of E are isolated
(otherwise we are already done). By the Morse inequalities, there exists a critical
point 
m contained in the connected component Dm and such that the local homology
Cd .E; orb.
m// is nontrivial.

Summing up, we have found infinitely many critical orbits orb.
m/, where m 2 N ,
whose local homology is nontrivial in the fixed degree d D dim.M2/ � 2. If these
critical orbits correspond to only finitely many (geometrically distinct) I–invariant
geodesics, then there must be a critical point 
 of E which is periodic with period
p � 1 and such that, for infinitely many m 2 N , the critical orbit orb.
m/ is the
critical orbit orb.
�pC1/ for some �D �.m/. In particular, we have that 
 satisfies
the assumptions of Proposition 3.5, and therefore .M;g/ must have infinitely many
I–invariant geodesics.
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