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Cosimplicial models for the limit of the Goodwillie tower

ROSONA ELDRED

We call attention to the intermediate constructions TnF in Goodwillie’s Calculus
of homotopy functors, giving a new model which naturally gives rise to a family
of towers filtering the Taylor tower of a functor. We also establish a surprising
equivalence between the homotopy inverse limits of these towers and the homotopy
inverse limits of certain cosimplicial resolutions. This equivalence gives a greatly
simplified construction for the homotopy inverse limit of the Taylor tower of a functor
F under general assumptions.

55P65, 55P60; 55P10

1 Introduction

Let �n be the n–simplex and sk0�
n be its 0–skeleton, that is, nC 1 points. We use

� to denote the topological join. For a space X , sk0�
0 �X � CX and sk0�

n �X �W
n†X . Thus, we have the cosimplicial space

.sk0�
�
�X /� CX

//
// †Xoo

//
//
// †X _†X

oo
oo

//::: // � � �

Hopkins [16; 17] and later Goerss [10], analyzed the spectral sequence associated to
this cosimplicial space and showed that when X is connected, it converges to Z1X ,
the Bousfield Z–nilpotent completion of a space (for details of the construction and
applications, see Bousfield–Kan [5]).

One result of this paper is a new conceptual proof of this theorem. We assume for the
moment that X is a connected space. P1I.X / is the inverse limit of the Goodwillie
Taylor tower of the identity functor, applied to X . We show the following weak
equivalence, where I is the identity functor of spaces:

holim sk0�
�
�X � P1I.X /:

By work of Arone–Kankaanrinta [1], P1I.X / � Z1.X /. This gives the result of
Goerss and of Hopkins.

Indeed, we show that for all k � 0 and X connected, holim skk �
� �X � P1I.X /.
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1162 Rosona Eldred

More generally, if F is �–analytic (see Section 2 for a definition) and we denote by
conn.X / the connectivity of X , then we have weak equivalences,

P1F.X /� holim� F.skk �
�
�X /;

for all k �max.�� conn.X /� 1; 0/.

This arises as a natural corollary of our main results (specifically Corollary 1.4, following
from Theorems 1.2 and 1.1 described below).

In order to precisely state our main results, we require some additional definitions and
notation.

Let F be a functor from spaces to spaces (or to spectra) which preserves weak equiv-
alences. We will also assume that F commutes with filtered colimits. Goodwillie,
in [12; 13; 14], constructs for such F a tower of functors which approximate F.X /

under mild conditions on F and its input, X . Each finite stage of the tower is denoted
PnF , in analogy with the nth partial sums of a Taylor series of a function, which are
degree n polynomials. A full definition of a degree n polynomial functor is given in
Section 2. The homotopy inverse limit of the Taylor tower is denoted P1F .

In general, to build each of the PnF ’s requires taking the homotopy colimit over a
directed system. Each finite stage of this system is the iteration of a homotopy inverse
limit construction, called TnF .

Let P.Œn�/ be the power set on Œn� 2 �, a poset. Posets may be viewed naturally as
categories with maps given by the partial order, that is, inclusion of subsets. We denote
by P0.Œn�/ the full subcategory omitting the empty set.

We then define TnF.X / WDholimU2P0.Œn�/ F.U �X / and observe that this construction
gives us a natural transformation tnW F.X / ! TnF.X /, since F.X / D F.∅ � X /

and the inclusion of the empty set into each U (viewed as an element of P.Œn�/) is
compatible with the other maps in the diagram. The tn ’s give rise to the maps in the
directed system used to construct PnF.X /:

PnF.X / WD hocolimk

�
TnF.X /

tn
�! T2

nF.X /
tn
�! � � �

tn
�! Tk

nF.X /
tn
�! � � �

�
We first establish a new model for each iterated approximation, Tk

nF . Using this
model, we obtain maps �k W Tk

nC1
F.X /! Tk

nF.X /, and therefore a tower of partial
approximations for each k :

� � � �! Tk
nF.X /

�k

�! Tk
n�1F.X /

�k

�! � � � �! Tk
1F.X /

We will need a few definitions, and then may give our model for the Tk
nF ’s, which

will be used in the proof of our main theorem.
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Let � be the category of finite ordered sets and monotone maps, with objects denoted
Œj � D f0; : : : ; j g with the usual order. Let ��n be the full subcategory of � with
objects Œj � such that j � n. We use diag to denote the diagonal of a k –cosimplicial
space.

The n–coskeleton of X � , denoted coskn X � , is constructed by precomposing with the
inclusion ��n ,!� and then taking the right Kan extension along the inclusion of
the subcategory. We let coskEn.X

E�/ denote the k –cosimplicial analog, n–coskeleton
taken in every dimension.

Theorem 1.1 For all k; n� 0, we have the following weak equivalence

Tk
nF.X /� holim��nk diag.coskEn F..sk0�

�/�k �X //

In particular, as n!1, we have as an immediate consequence the equivalence

holimn Tk
nF.X /� holim� diagF..sk0�

�/�k �X //:

We also show the following:

Theorem 1.2 For all k � 0, the functors skk �
� and .sk0�

�/�.kC1/ are both ho-
motopy left cofinal as functors from � to .k�1/–connected spaces of CW type; in
particular, for all spaces X and homotopy endofunctors F , we have weak equivalences

holim� F.skk �
�
�X /� holim� F

�
.sk0�

�/�.kC1/
�X

�
:

Furthermore, with Theorem 1.1, we have weak equivalences for all k � 0:

holim�F.skk �
�
�X /�holimn

�
� � �!TkC1

n F.X /!TkC1
n�1

F.X /!� � �!TkC1
1

F.X /
�

The weak equivalences in Theorems 1.1 and 1.2 are natural in k . We discuss the
definition and main property of left cofinal functors in Section 2.

Notice that the tower in Theorem 1.2 is over the maps �kC1W TkC1
n F! TkC1

n�1
F , along

the same stage of iteration of different TnF ’s. This is markedly different than the
directed system used to construct the PnF ’s, which is over the maps tnW Tj

nF!TjC1
n F ,

that is, along iterations of the same Tn construction. We depict both collections of
maps in Figure 1. PnF is then the homotopy colimit along the nth column of Figure 1,
whereas the partial approximation towers in Theorem 1.2 are the rows.

Theorem 1.2 provides an equivalence between the homotopy limit over the k th row of
the diagram in Figure 1 and the homotopy limit of F applied to .skk �

� �X /. We
will discuss the maps involved in these towers in Section 2.

We now present several consequences of Theorem 1.2.
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1164 Rosona Eldred

P1F WD holim .� � � �! PnF �! Pn�1F �! � � � �! P1F /

D
hocolim �

D
hocolim �

D
hocolim �

" " "

:::
:::

:::

" " " row:
� � � �! T2

nF �! T2
n�1

F �! � � � �! T2
1
F 1

" " "

� � � �! TnF� �! Tn�1�F �! � � � �! T1F� 0

column: n .n� 1/ 1

Figure 1: Partial approximations

Corollary 1.3 For a given j , there are weak equivalences for all k � 0

Pj F.X /� holim� Pj F.skk �
�
�X /

In particular, this also implies that P1F.X /� holim� P1F.skk �
� �X /.1

A functor F is said to be �–analytic if its failure to be polynomial of any degree is
bounded in a way that depends on � . One important consequence of �–analyticity
is that for X at least �–connected, F.X / � P1F.X /. This is the consequence of
analyticity which we need for our purposes; for a thorough definition of analyticity and
discussion of its implications, see Goodwillie [13].

We will use this fact and the preceding corollary to establish the following:

Corollary 1.4 Let F be a �–analytic functor. Then we have weak equivalences for
all k > � ,

P1F.X /� holimn

�
� � � �! TkC1

n F.X /
�kC1

�! TkC1
n�1

F.X /
�kC1

�! � � �
�kC1

�! TkC1
1

F.X /
�

� holim� F.skk �
�
�X /

If we raise the connectivity of X (denoted conn.X /), we may improve this to all
k �max.�� conn.X /� 1; 0/.

1This can be seen as the unstable extension of a stable pro-result in Bauer–Eldred–Johnson–
McCarthy [2, Prop 4.2].
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Proof For two spaces, X and Y , the connectivity of their join, X � Y , is equal to
conn.X /C conn.Y /C 2. For each m, skk �

m is .k�1/–connected, which yields
conn.skk �

m �X / D .k C 1/C conn.X /. We conclude that the connectivity of the
cosimplicial space skk �

� �X is the same. In particular, X arbitrary (of connectivity
� �2), skk �

� �X has connectivity at least .k � 1/ and for F of analyticity � such
that �� 1� k , F.skk �

� �X /� P1F.skk �
� �X /.

We apply holim to this equality, and also recall that by Corollary 1.3, we have
P1F.X / � holim� P1F.skk �

� � X /. The resulting equivalence is P1F.X / �

holim� F.skk �
� � X /. We follow with Theorem 1.2 and obtain the other stated

equivalence.

We note that this corollary yields P1F.X / via a construction which no longer makes
use of any infinite colimits, and that each Tk

n commutes with holim and hofiber.

If F is �–analytic, and X is in its radius of convergence (that is, at least �–connected),
then Corollary 1.4 implies

F.X /� P1F.X /� holim� F.sk0�
�
�X /:

This result may be rephrased as saying that for F an analytic functor, and a space X

in its ”radius of convergence”, F.X / is well approximated by F.� �X / applied to
finite nonempty sets.

By a similar proof to that showing that the identity is 1–analytic,2 it follows that
if a functor F commutes with realizations and preserves filtered colimits, then it is
1–analytic. Corollary 1.4 then gives us the following:

Corollary 1.5 If F commutes with realizations and preserves filtered colimits, the
equivalence

P1F.X /� holimn

�
� � � �! TkC1

n F.X /
�kC1

�! TkC1
n�1

F.X /
�kC1

�! � � � �! TkC1
1

F.X /
�
:

holds for all k > 1.

Proposition 1.6 For the identity I from spaces to spaces, X a connected space, and
Z1X the Bousfield Z–nilpotent completion of X , we have that for all k � 0, the
following weak equivalence

holim�.skk �
�
�X /� P1.I/.X /� Z1X;

and when X is already nilpotent, holim�.skk �
� �X /�X .

2For the identity functor, this may be found in Goodwillie [13, Example 4.3, Theorem 2.3]
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Proof Since I is 1–analytic, Corollary 1.4 allows us to conclude that for any space
X , holim�.skk �

� � X / � P1.I/.X / for all k � 2. Restricting to X which are
0–connected, that is, raising the minimum connectivity from �2 to 0, changes this
equivalence to hold for all k � 0. Then, by Arone–Kankaanrinta [1, Section 3], we have
that for X connected, P1.I/.X /� Z1X , and for X nilpotent, P1.I/.X /�X .

If, instead of combining our result with that of Arone–Kankaanrinta, we combine with
the result of Goerss and Hopkins, one can view our main result as justification for why
the spectral sequences associated to the Taylor tower of the identity of spaces and that
associated to the Z–nilpotent completion of a space abut to the same thing.3

Remark 1.7 In highlighting these partial approximation towers, we also raise the
question of what being weakly equivalent to P1F.X / off of the radius of convergence
is telling us.

This should in general provide conditions that give the “true” radius of convergence
of a functor. That is, given F a �–analytic functor, it will also converge for spaces
X such that F.X /� holim� F.skk �

� �X / for all k �min.��m� 1; 0/, where X

is at least m–connected. The example we would like to use is slightly outside of the
scope of this paper as written, but follows from the appropriately general versions of
the same theorems stated in the dissertation of the author [9].

Given a map f W A! B of commutative “rings” (simplicial, or spectra), we can then
tensor (or smash) B over A with a set, and by prolongation, with a cosimplicial simpli-
cial set by tensoring levelwise. That is, we can consider cosimplicial rings skq �

�˝AB .
We then either work with augmented A–algebras or with the unbased calculus of Bauer–
Johnson–McCarthy [3] with f as our relevant map that we are factoring. In both settings,
the identity functor is 1–analytic, and we have that P1I.B/ � holim sk1�

�˝A B .
If the map f is flat and étale, then holim sk1�

�˝A B ' B , with no connectedness
assumptions on the map f , and B ' P1I.B/. That is, we have the extension of the
radius of convergence then to such B .

We also suspect that the k th partial approximation tower, holim� F.skk �
� �X /, is

in general a sort of k –analytic approximation of a �–analytic functor, where k is
less than � . Evidence for this can be seen in the case of the identity functor, which
is 1–analytic. For X 0–connected, the 0th partial approximation tower is equivalent
to Z1.X /, and thanks to Arone–Kankaanrinta [1, page 31], we know that Z1.X / is
0–analytic.

3The spectral sequence associated to the Taylor tower of I.X / takes as input the collection of DnI.X / ,
which were computed by Brenda Johnson [18].
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Note on translating between the language of Goerss [10] and our current termi-
nology Goerss defines a cosimplicial construction C.X;X / for a nonempty space X

which sends Œn� to
W

n†X (taking the empty wedge here as CX ). As mentioned earlier,
this is equivalent to .sk0�

��X /. [10, Theorem 1.1] implies that when X is connected,
holim� C.X;X /� Z1X , that is, holimn TnI.X / WD holim�.sk0�

� �X /� Z1X .

Note on translating between the language of Hopkins and our current terminol-
ogy This is from Hopkins [16, Section 3, pages 221–222]. He lets Cn be what we
call P0.Œn�/. He defines, for a given space X , a functor Fn , as the homotopy inverse
limit of a (punctured) cube. For A 2 P0.Œn�/DW Cn , the A–indexed position of this
.nC1/–cube is the homotopy colimit of X mapping to jAj different copies of a point,
which we will explain shortly. He denotes this by FnA. Regarding A as a finite
ordered set, we can view FnA as the homotopy pushout of the following:

X

}} �� ))
f0g f1g � � � fjAj � 1g

We replace these maps by cofibrations (since we are taking a homotopy colimit), giving
us that we are pushing out over the following diagram:

X

yy �� **
f0g �X f1g �X � � � fjAj � 1g �X

That is, the A–indexed position of this .nC 1/ cube is A�X .

Then Fn WD holimA2P0.Œn�/ FnA� holimU P0.Œn�/ U �X . That is, we have shown that
his Fn ’s exactly the TnI.X /’s. He constructs a tower of these Fn ’s:�

� � � �! holim Fn
�! holim Fn�1

�! � � � �! holim F1
�

which is therefore our TnI tower,�
� � � �! TnI.X / �! Tn�1I.X / �! � � � �! T1I.X /

�
:

Hopkins [17, Theorem 3.2.2] asserts that the homotopy inverse limit of a construction
that is equivalent to the tower of Fn ’s gives Z1X when X is connected, that is, that
holimn TnI.X /� Z1X .

Algebraic & Geometric Topology, Volume 13 (2013)
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1.1 Organization

The remainder of this paper is organized as follows. Section 2 gives background mainly
on the Calculus. Theorem 1.1 , the more geometric and cosimplicial interpretation of
TnF , is proven in Section 3. The proof of Theorem 1.2 is then given in Section 4.

1.2 Acknowledgements
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to discussions that led to the conjectural form of the main results of this paper. The
observations and work that led to that point would not have been possible without the
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feedback on earlier drafts of this work, including Bert Guillou, Kristine Bauer and
Brian Munson, and the helpful comments of the reviewer.

This work was partially supported by travel funds from the Midwest Topology Network
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2 Background

We will first discuss cofinality, and then review the required constructions of Goodwillie
Calculus. For this paper, we restrict our attention to functors F from spaces to spaces
(not necessarily based) which commute with filtered colimits. F is a homotopy functor
if it preserves weak equivalences.

2.1 Homotopy left cofinality

This is the definition of homotopy left cofinal which we will use. There are also
corresponding notions of non-homotopy cofinality (involving strict limits) and a dual
notion of right cofinality (involving colimits) which we will not discuss.

Definition 2.1 (Hirschhorn [15, Definition 19.6.1, page 418]) Let D be a small
category and for all A;B objects of D, we denote by MorD.A;B/ the set of morphisms
in D between them. Let GW �! D. The functor G is homotopy left cofinal if for
every object ˛ of D, the simplicial set n 7!MorD.G.n/; ˛/ is contractible.

Algebraic & Geometric Topology, Volume 13 (2013)
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The following consequence of being homotopy left cofinal is what we use to establish
our equivalences:

Lemma 2.2 (Hirschhorn [15, Theorems 19.6.7 and 16.6.23]) Let M be a simplicial
model category, let C;D be small categories, and let GW C! D be a functor. If G

is homotopy left cofinal, then for every object-wise fibrant D–diagram F in M , we
have that the following natural map of homotopy limits is a weak equivalence:

holimD F ! holimC F ıG

We will be working only with a simplicial model category M where the objects are all
fibrant, namely, the category of spaces with cofibrations the cellular inclusions of CW
complexes, so object-wise fibrancy comes for free.

Next, we will review the Calculus.

2.2 Excisive functors

In [12], Goodwillie establishes the following condition for a functor, which is in analogy
with a function being polynomial of degree 1:

Definition 2.3 A functor is 1–excisive if F takes homotopy pushout (called cocarte-
sian) squares to homotopy pullback (called cartesian) squares.

This may not be the most familiar statement of excision, compared to its usual statement
as one of the axioms of a (generalized) homology theory (as in Eilenberg–Steenrod [8]).
There is a nice discussion in the dissertation of Mauer-Oates [19, page 22] of how to
get from excision as usually stated in the Eilenberg–Steenrod axioms to this definition.

2.3 Excisive approximation

The following is a pushout of finite sets. It is also a diagrammatic representation of the
category P.Œ1�/.

∅ //

��

f0g

��
f1g // f0; 1g

We make the following definition:

T1F.X / WD holimU2P0.Œ1�/ F.U �X /

Algebraic & Geometric Topology, Volume 13 (2013)
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As a result, we have a natural transformation t1W F.X /! T1F.X /, induced by the
natural map:

F.X /D F.∅�X /! holim
U2P0.Œ1�/

.U 7! F.U �X //:

That is, the map from the initial object of the square, F.X / to the homotopy pullback of
the rest, T1F.X /. We can take T1 of T1F , and also have the same natural transforma-
tion from initial to homotopy pullback, now t1W T1F.X /! T1.T1F.X //DW T2

1
F.X /.

See Figure 2.

T2
1F.X / WD holim

0BBB@
T1F.f0g�X /

��
T1F.f1g�X / // T1F.f0; 1g�X /

1CCCA

� holim

0BBBBBBBB@

0BB@
F.f0g�f0g�X /

��
F.f0g�f1g�X / // F.f0g�f0; 1g�X /

1CCA
#0BB@

F.f1g�f0g�X /

��
F.f1g�f1g�X / // F.f1g�f0; 1g�X /

1CCA!
0BB@

F.f0; 1g�f0g�X /

��
F.f0; 1g�f1g�X / // F.f0; 1g�f0; 1g�X /

1CCA

1CCCCCCCCA
Figure 2: T2

1
F.X /

We define the 1–excisive approximation to F , P1F , as the following homotopy colimit
over iterations:

P1F.X / WD hocolim.T1F.X /
t1
�! T2

1F.X /
t1
�! � � � /

2.4 Higher degree functors

As in the 1–excisive case, we begin with a diagrammatical representation of the powerset
category, now P.Œn�/, which is an .nC1/–cube indexed by subsets of Œn�.

Definition 2.4 We say that a P.Œn�/–indexed diagram (that is, an .nC1/–cube) X is
strongly co-cartesian if every square (that is, 2–dimensional) sub-face is cocartesian.

Definition 2.5 We say that a functor F is n–excisive if it takes strongly co-cartesian
.nC1/–cubes to cartesian .nC1/ cubes.

Algebraic & Geometric Topology, Volume 13 (2013)
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Analogous to the 1–excisive case, we make the following definition:

TnF.X / WD holimU2P0.Œn�/ F.U �X /

This allows us to express tnW F.X /! TnF.X / as the natural map:

F.X /D F.∅�X /! holim
U2P0.Œn�/

.U 7! F.U �X //:

As before, we define the degree n polynomial approximation to F , PnF , as the
following homotopy colimit:

PnF.X / WD hocolim.TnF.X /
tn
�! T2

nF.X /
tn
�! � � � /

2.5 Taylor tower

The collection of polynomial approximations to a functor F; fPnFgn�0 , come with
natural maps PnF.X /! Pn�1F.X / for all n� 1. Using Goodwillie’s definition [14]

.Ti
nF /.X / WD holim

.U1;:::;Ui /2P0.ŒnC1�/i
F.X � .U1 � � � � �Ui//

we then have for all i; n� 1 a natural map Ti
nF

qn;i

�! Ti
n�1

F induced by the inclusion
of categories, P0.Œn�/

i ,!P0.ŒnC1�/i . Taking the colimit along i gives us the induced
map PnF

qn
�! Pn�1F . With these maps we form a tower, the Goodwillie–Taylor tower

of F.X /:

� � � �! PnF.X /
qn
�! Pn�1F.X /

qn�1
�! � � � �! P1F.X /

q1
�! P0F.X /

We denote by P1F.X / the homotopy inverse limit of this tower.

This defines P1F.X / as the homotopy inverse limit of a collection of constructions
which are themselves homotopy colimits (of finite homotopy inverse limits). That is, it
is not expected that this construction will commonly commute with either colimits or
limits; there are several special cases set out in [14].

2.6 Analyticity

Let � be an integer greater than or equal to zero. We say that a functor F is �–analytic
if its failure to be n–excisive is controlled by � as n increases. A precise definition of �–
analyticity may be found in Goodwillie [13]. We need only the following consequence
of being �–analytic.

For a �–analytic functor, F , and any �–connected space, X , the following natural
map is an equivalence F.X /

�
�!P1F.X /.
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Note Higher values of � mean that X is ‘closer’ to 0 (that is, �), since increasing
connectivity means that X has more vanishing homotopy groups. A lower value of �
means a larger “radius of convergence” of the functor F .

3 Proof of Theorem 1.1

In this section, we prove the following theorem:

Theorem 1.1 For all k; n� 0, we have the following weak equivalence

Tk
nF.X /� holim��nk diag.coskEn F..sk0�

�/�k �X //

In particular, as n!1, we have as an immediate consequence the following equiva-
lence:

holimn Tk
nF.X /� holim� diagF..sk0�

�/�k �X //:

The heart of this proof is establishing a finite-dimensional analog for the generalized
n–cosimplicial Eilenberg–Zilber Theorem (see Shipley [21, Proposition 8.1]).

First, we make use of a lemma to switch models for TnF .

Lemma 3.1 (Sinha [22, Theorem 6.7], or Hopkins [17, Section 3.1, Proposition 3.1.4])
Let cnW P∅.Œn�/!��n be the functor which sends a nonempty subset S to Œ#S � 1�

and which sends an inclusion S � S 0 to the composite Œ#S � 1�Š S � S 0 Š Œ#S 0� 1�.
cn is homotopy left cofinal.

The immediate consequence of this lemma (plus Lemma 2.2, which outlines the relevant
consequence of cofinality) is that we can move between the two models for each TnF ,
that is, the following are weakly equivalent:

holim��n
F.sk0�

�
�X /

�
 � holimU�P0.Œn�/ F.U �X /DW TnF.X /

For the next step of the proof, we will need to introduce some new notation. Consider
X an n–cosimplicial space and, for various i and j , coski

j X an n–cosimplicial
space with the j –coskeleton taken in the i th direction. This will be explained for
bicosimplicial objects, and the constructions generalize to the n–cosimplicial case.

Let X �;� be bicosimplicial, with directions 1 and 2. For each p and each q , we have
cosimplicial spaces X p;� and X �;q . For each p , we can consider (separately, not
necessarily for all p at once) the cosimplicial space coskj X p;� (and similarly for each
q ). Then, the bicosimplicial space X with j –coskeleton taken in the 1st direction,
denoted cosk1

j X , is the functor q 7! .p 7! coskj X p;�/q .
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We also note that these then give rise to partial holims taken in the various directions. Let
X be an n–cosimplicial space, then the homotopy limit taken only in the i th direction,
holimi

�X and the j th holim in the i th direction, holimi
��j

X , both produce .n�1/–
cosimplicial spaces.

Proposition 3.2 For any n–cosimplicial space, Y , we have that

holim1
��j1

holim2
��j2

: : : holimn
��jn

Y � holim��J diag coskj1;j2;:::;jn
Y;

Here, coskj1;j2;:::;jn
denotes the ji th coskeleton taken in the i th direction for all

i 2 f1; : : : ; ng.

In the special case that X be an n–cosimplicial space with the property that holimi
�X ,

is equivalent to holimi
��ji

X , for each i 2 f1; : : : ; ng and some ji � 1, this is Bauer–
Eldred–Johnson–McCarthy [2, Lemma 2.9], albeit stated in slightly different language
and using an alternate method of proof.

We first establish the bicosimplicial case, and then conclude n–cosimplicial by induction.
Bicosimplicial spaces can be assumed to be objectwise fibrant, so holim�X can be
written Hom.�;X /, which will simplify the proof.

Lemma 3.3 Let X be a bicosimplicial simplicial set. Then

holim1
p holim2

q X D holim.cosk1
p cosk2

q X /� holimpCq diag.cosk1
p cosk2

q X /

Let sSet be the category of simplicial sets, then sSet��� is the category of bicosim-
plicial simplicial sets.

Proof of Lemma 3.3 We will freely exchange holim.X / with its model

HomsSet���.�
s1

t ��
s2

t ;X
s1;s2

t /

(enriched Hom). Using Shipley [21, Proposition 8.1], this is also equivalent to
HomsSet�.�

s
t ;X

s;s
t /. Likewise,

(1) holim.cosk1
p cosk2

q X /Š HomsSet�.�
s
t ; .cosk1

p cosk2
q X /

s;s
t /:

By the Yoneda Lemma applied to X 2 sSet��� ,

a; b; c 7!X a;b
c Š a; b; c 7! HomSet���.��a ��

�
b ;X

�;�
c /

a; c 7!X a;a
c Š a; c 7! HomSet�.�

�
a; diag.X �;�/c/

Given this, and combined with the isomorphisms

holimn.X /Š Hom.skn�;X /Š Hom.�; coskn X /;
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we also have

a; b; c 7! .cosk1
p cosk2

q X /a;bc Š a; b; c 7! HomSet���..skp �
�/a�.skq �

�/b;X
�;�
c /:

We continue the proof, making use of this in the first of the following equivalences:

.1/Š HomsSet�.�
s
t ;HomSet���.skp �

�
s � skq �

�
s ;X

�;�
t //

Š HomsSet���.�s
t ˝� .skp �

�
s � skq �

�
s /;X

�;�
t /

.HomSet���.G;� / right adjoint to �˝�G/

Š HomsSet���.�s
t ˝� skpCq.skp �

�
s � skq �

�
s /;X

�;�
t /

..skp �
�
s � skq �

�
s /Š skpCq.skp �

�
s � skq �

�
s //

Š HomsSet���.skpCq �
s
t ˝� .skp �

�
s � skq �

�
s /;X

�;�
t /

.skn is a tensor, skn Y D�˝��n
Y /

Š HomsSet�.skpCq �
s
t ;HomSet���.skp �

�
s � skq �

�
s ;X

�;�
t /

.Hom;˝ adjunction again/

Š HomsSet�.skpCq �
s
t ; .cosk1

p cosk2
q X /

s;s
t /

(Definition/Yoneda)

Š holimpCq diag.cosk1
p cosk2

q X /

We made use of the fact that n–skeleton is a tensor, by means of the following yoga:

��˝ skn Y D��˝��˝��n
Y

D��˝��n
Y

D��˝��n
˝��˝� Y

D skn�
�
˝� Y

This completes the proof.

Proof of Proposition 3.2 Our inductive hypothesis is that

holimn�1
jn�1

: : : holim2
j2

holim1
j1

X � holimPn�1
iD1 ji

diagX:

The diagonal is taken in the directions we are totalizing in, which we will abusively
denote as diagX ; it should be clear from context what is meant.
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Now consider holimn
jn

holimn�1
jn�1

: : : holim2
j2

holim1
j1

X .

holimn
jn

holimn�1
jn�1

: : : holim2
j2

holim1
j1

X � holimjn
holimPn�1

iD1 ji
diagX

(Inductive Hypothesis)

� holimPn
iD1 ji

diag.diagX /

(Lemma 3.3)

� holimPn
iD1 ji

diagX

The last step is that taking the diagonal of the entire object is equivalent to taking the
diagonal in the first k dimensions and then the diagonal of that collapsed out part and
the rest.

Proof of Theorem 1.1 Now that we have Proposition 3.2, this is nearly immediate.

Tk
nF.X / WD Tn.Tn.� � � .TnF.X //

� holim��n
� � � holim��n

F..sk0�
�/�k �X / (Lemma 3.1)

� holim��n������n
F..sk0�

�/�k �X / (Fubini)

� holim��nk
diag coskEn F..sk0�

�/�k �X / (Proposition 3.2)

This completes the proof.

4 Proof of Theorem 1.2

In this section, we will prove the following theorem:

Theorem 1.2 For all k � 0, the functors skk �
� and .sk0�

�/�.kC1/ are both homo-
topy left cofinal as functors from � to .k�1/–connected spaces; in particular, for all
spaces X and homotopy endofunctors F , we have weak equivalences

holim� F.skk �
�
�X /� holim� F..sk0�

�/�.kC1/
�X /

Furthermore, with Theorem 1.1, we have weak equivalences for all k � 0

holim� F.skk �
�
�X /�holimn.� � �!TkC1

n F.X /!TkC1
n�1

F.X /!� � �!TkC1
1

F.X //
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We first make a few definitions. Let K be the category of .k�1/–connected spaces of
CW type. Define functors Xk ;Yk W �!K such that

Xk.p/D skk 4
p

Yk.p/D sk04
p
� � � � � sk04

p„ ƒ‚ …
.kC1/ copies

Clearly, when k D 0, these two functors are the same. Notice also that for k D 1, we
have X1.p/DKp (the complete graph on .pC 1/ vertices) and Y1.p/DKpC1;pC1

(the complete bipartite graph on two sets of .pC 1/ vertices). See Figure 3.

Y1.0/ Y1.1/ Y1.2/ X1.1/ X1.2/ X1.3/

Figure 3: Y1 of 0,1, and 2 and X1 of 1,2,and 3

Once we show that Xk and Yk are homotopy left cofinal as functors �!K , Lemma 2.2
implies that the maps below are weak equivalences:

holim� F.Xk �X /
�
 � holimU2K F.U �X /

�
�! holim� F.Yk �X /

That is, we obtain our desired weak equivalence via a zig-zag of weak equivalences.

To show left cofinality of the two functors, we show that for all Z 2 .k�1/–connected
spaces of CW type, the simplicial sets p 7!Topcts.Xk.p/;Z/ and p 7!Topcts.Yk.p/;Z/

are contractible.

Our proofs will make use of the following lemma, which establishes that for k D 0,
both simplicial sets are contractible:

Lemma 4.1 Let sk0�
� be the cosimplicial space sending Œn� to the 0 skeleton of

�n , the topological n–simplex. Then for any nonempty space Z , the simplicial set
p 7! Top.sk0�

p;Z/ is contractible by a contracting homotopy.

Proof For each p , sk0�
p is the discrete space with .pC 1/ points. This allows us

to write Top.sk0�
p;Z/ as

QpC1
Z . That is, our simplicial set is of the form

Z // Z �Z
oo
oo

//
// Z �Z �Z � � � �

oo
oo
oo
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The structure maps are8̂̂̂̂
<̂
ˆ̂̂:

di W ZnC1!Zn projection by deleting the i th coordinate W

di.z0; : : : ; zn/D .z0; : : : ; zi�1; ziC1; : : : ; zn/D xzyi
si W Zn!ZnC1 inclusion and diagonal applied to the i th coordinate W

si.z0; : : : ; zn�1/D .z0; : : : ; zi�1; zi ; zi ; ziC1; : : : ; zn�1/

Recall (from, for example, Dugger’s primer [6]) that for Y� a simplicial set augmented
by the map d0W Y0!� (that is, � DW Y�1 ), a (forward) contracting homotopy of Y�
is given by a collection of maps SW Yn! YnC1 for n��1 such that for each y 2 Yn ,
one has 8<: di.Sy/ D

�
S.diy/ if 0� i < n

y if i D n

S.siy/ D si.Sy/ for 0� i � n

First choose a point v 2Z . We set S.�/ (in our �1st dimension) to be v 2Z . For n–
simplices z for n>�1, we define S.z/ WD .z; v/. That is, if zD .z0; : : : ; zn/2

QnC1
Z ,

then S.z/D .z0; : : : ; zn; v/. This is our desired contracting homotopy

4.1 Contractibility of p 7! Top.Xk.p/; Z /.

The k –skeleton of a (co)simplicial object is adjoint to its k –coskeleton. With this, we
have, for every j , the following isomorphisms of sets:

Top.j skk �
j
j;Z/Š sSet.skk �

j ;Sing.Z//

Š sSet.�j ; coskkSing.Z//

WD coskk.Sing.Z//j

That is, p 7! Top.Xk.p/;Z/Š coskk.Sing.Z//.

For Y� a simplicial set, we have that the map Y� ! coskk Y� is 1–1 and onto for
dimensions � k , which implies that the homotopy groups of the two objects are the
same in dimensions < k (this is discussed in Dwyer–Kan [7, Section 1.2, part (vi)]).
We also have that the homotopy groups of coskk Y� are trivial in dimensions � k ,
when Y� is fibrant.

Singularization produces fibrant simplicial sets, so we know that Sing.Z/ is fibrant
and therefore �i coskk Sing.Z/Š 0 for all i � k . We assumed that Z was .k � 1/

connected, so for i � .k � 1/; �i coskk Sing.Z/ Š �i coskk Z Š 0. We have just
shown that all of its homotopy groups are trivial, that is, it is weakly contractible. Its
realization is a space of CW type, so by the Whitehead theorem, weakly contractible
implies contractible.
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4.2 Contractibility of p 7! Top.Yk.p/; Z /.

This proof will be by induction. Note that the base case k D 0 is Lemma 4.1. We then
assume that for all 0< k <K; Top.Yk.�/;Z/ is contractible.

For the general case, we will express Top.YK .�/;Z/ as the homotopy pullback of
contractible simplicial sets, and conclude that it is contractible.

A common model for the join of two spaces is the following pushout:

X �Y //

��

CX �Y

��
X // X �Y

Therefore, for all j � 0, YK .j / D sk0�
j �YK�1.j / is the following pushout of

spaces:

YK�1.j /� sk0�
j //

��

C YK�1.j /� sk0�
j

��
YK�1.j / // YK .j / WD YK�1.j /� sk0�

j

We then apply Top. ;Z/, the hom-set in topological spaces (of CW type), with Z

.k�1/–connected. This functor takes pushouts to pullbacks (strict), and we have that
the resultant square is, for each j , a pullback of sets:

Top.YK�1.j /� sk0�
j ;Z/ //

��

Top.C.YK�1.j //� sk0�
j ;Z/

��
Top.YK�1.j /;Z/ // Top.YK�1.j /� sk0�

j ;Z/

Figure 4: Levelwise pullback of sets

We will first show contractibility of the simplicial sets, then that the square is a homotopy
pullback of simplicial sets (when j is allowed to vary).

By the induction hypothesis, we have that Top.YK�1.�/;Z/ is a contractible simplicial
set. For the other two simplicial sets, if we allow our indices to vary independently, we
may view our square as one of bisimplicial sets, and make use of results of Bousfield
and Friedlander. Note that we consider Top.YK�1.�/;Z/ bisimplicial by making it
constant in one direction. See Figure 5.
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Top.YK�1.i/� sk0�
j ;Z/ //

��

Top.C.YK�1.i/� sk0�
j ;Z/

��
Top.YK�1.i/;Z/ // Top.YK�1.i/� sk0�

j ;Z/

Figure 5: Square of bisimplicial sets (the indices i; j � 0 vary independently)

Using the following result, we can show levelwise equivalence (that is, contractibility)
and conclude that the diagonal is also contractible:

Theorem 4.2 (Bousfield–Friedlander [4, page 119, Theorem B.2]) Let f W X ! Y

be a map of bisimplicial sets such that fm;�W Xm;�! Ym;� is a weak equivalence for
each m� 0. Then diag.f /W diagX ! diagY is a weak equivalence.

Note that we have for each m� 0 the following isomorphisms:

Top.C.YK�1.m//� sk0�
�;Z/Š Top.sk0�

�; homTop.C.YK�1.m//;Z//

Top.YK�1.m/� sk0�
�;Z/Š Top.sk0�

�; homTop.YK�1.m/;Z//

By Lemma 4.1 these are contractible, since we have expressed them as Top.sk0�
�;X /

for X a space. By Theorem 4.2, we may also conclude that Top.C.YK�1.�// �

sk0�
�;Z/ and Top.YK�1.�/� sk0�

�;Z/ are contractible, as we have shown level-
wise contractibility.

To show that Figure 4 is a homotopy pullback, we continue to regard our square as one
of bisimplicial sets, as in Figure 5, and use the following Theorem:

Theorem 4.3 (Bousfield–Friedlander [4, Theorem B.4]) Let

V //

��

X

��
W // Y

be a commutative square of bisimplicial sets such that the terms Vm;�;Wm;�;Xm;�

and Ym;� form a homotopy fiber square for each m � 0. If Xm;� and Ym;� are all
connected, then

diagV //

��

diagX

��
diagW // diagY
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is a homotopy fiber square.

First note that X and Y in our case have already been shown to be contractible, so
are therefore connected. We will show that our bisimplicial set diagram levelwise is
homotopy pullback squares of simplicial sets. That is, for all m� 0, the following is
not just a levelwise pullback of sets but a homotopy pullback of simplicial sets:

Top.YK�1.m/� sk0�
�;Z/ //

��

Top.C.YK�1.m//� sk0�
�;Z/

��
Top.YK�1.m/;Z/ // Top.YK�1.m/� sk0�

�;Z/

We then show that the righthand vertical map is a Kan fibration,4 and conclude that
our square is a homotopy pullback.

Simplicial sets are a simplicial model category, satisfying Quillen’s SM7 axiom, which
is as follows:5

Quillen’s SM7 axiom Let C be a simplicial model category, and HomC.X;Z/ denote
the simplicial set of morphisms between X and Z . If Y 2 C is fibrant and f W A! B

is a cofibration in C, then HomC.f;Y /W HomC.B;Y /! HomC.A;Y / is a fibration
of simplicial sets.

We apply several adjunctions to get the following isomorphisms. Note that sk0�
� is

equivalent to the levelwise simplicial set skeleton, that is, sk0�
�W n 7! sk0�

n , so it is
adjoint levelwise to the simplicial coskeleton (for discussions of skeleta/coskeleta, see
Goerss–Jardine [11, Chapter VII, mainly Section 1]).

Top.C YK�1.m/� sk0�
�;Z/Š sSet.C YK�1.m/� sk0�

�;Sing.Z//

Š sSet.C YK�1.m/;HomsSet.sk0�
�;Z//

Š sSet.C YK�1.m/;HomsSet.�
�; cosk0 Sing.Z///

Š sSet.C YK�1.m/��
�; cosk0 Sing.Z//

DW HomsSet.C YK�1.m/; cosk0 Sing.Z//

4We only need to show one map is a fibration due to right properness of the category of simplicial sets.
See the glueing lemma, for example, in Schwede [20, Lemma 1.19].

5 HomC . ; / is the simplicial set from the simplicial model structure, HomC .X;Y / WD C.X ���;Y /

where C.X;Y / is the hom-set of morphisms in C .
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and likewise,

Top.YK�1.m/� sk0�
�;Z/Š sSet.YK�1.m/� sk0�

�;Sing.Z//

Š sSet.YK�1.m/��
�; cosk0 Sing.Z//

DW HomsSet.YK�1.m/; cosk0 Sing.Z//

We may express our righthand vertical map as

HomsSet.C YK�1.m/; cosk0 Sing.Z//! HomsSet.YK�1.m/; cosk0 Sing.Z//

which is HomsSet.�; cosk0 Sing.Z// applied to the map YK�1.m/! C YK�1.m/.
This map is a cofibration of simplicial sets since it is a monomorphism. The singular-
ization of a topological space is a fibrant simplicial set, and as coskeleton is a right Kan
extension, it preserves fibrant objects. Therefore, we may apply SM7 and conclude
that our map is a fibration of simplicial sets, and our square is a homotopy pullback
square. Applying Theorem 4.3, we conclude that Figure 4 is a homotopy pullback of
simplicial sets which we have already shown to be contractible, so we conclude that
Top.YK�1.�/� sk0�

�Z/ is also a contractible simplicial set.
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