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On the construction of functorial factorizations
for model categories

TOBIAS BARTHEL

EMILY RIEHL

We present general techniques for constructing functorial factorizations appropriate
for model structures that are not known to be cofibrantly generated. Our methods
use “algebraic” characterizations of fibrations to produce factorizations that have
the desired lifting properties in a completely categorical fashion. We illustrate these
methods in the case of categories enriched, tensored and cotensored in spaces, proving
the existence of Hurewicz-type model structures, thereby correcting an error in earlier
attempts by others. Examples include the categories of (based) spaces, (based)
G –spaces and diagram spectra among others.

55U35, 55U40; 18A32, 18G55

1 Introduction

In the late 1960’s, Quillen introduced model categories, which axiomatize and thereby
vastly generalize a number of classical constructions in algebraic topology and homo-
logical algebra. Somewhat ironically, a model category of spaces whose “cofibrations”
were the classical, meaning Hurewicz, cofibrations and whose “fibrations” were the
Hurewicz fibrations, established by Strøm in [22], is somewhat difficult to obtain. The
source of difficulties is two-fold. One has to do with subtleties involving point-set
topology. The other obstacle is due to the fact that this model structure is not known to
be cofibrantly generated: while its fibrations are certainly defined by a lifting property,
this lifting property is against a proper class of maps, and not simply a set. In the
absence of this set-theoretical condition, there is no general procedure for constructing
factorizations whose left and right factors satisfy the desired lifting properties.

In particular, while there exist natural notions of Hurewicz cofibrations and fibrations,
Strøm’s ideas seem to be confined to the category of spaces. Only in the last decade has
there been progress toward Hurewicz-type model structures in one of their most natural
settings: categories enriched, tensored and cotensored over spaces (see Schwänzl and
Vogt [19] and Cole [5]. Natural examples include based and unbased spaces, G –spaces
and diagram spectra. In the presence of a Quillen-type model structure, a Hurewicz-type
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model structure gives rise to a mixed model structure by an observation of Cole [6].
May and Ponto have advertised mixed model structures on topological spaces and
categories of spectra [16] which combine Quillen- and Hurewicz-type model structures.
The weak equivalences and fibrations are the weak homotopy equivalences and the
Hurewicz fibrations; the cofibrant objects on spaces are the spaces of the homotopy
types of CW complexes. May and Ponto argue that this is the model structure in which
homotopy theory has always implicitly worked. For example, in the parametrized world
(see May and Sigurdsson [17]), actual cell complexes are subtle and working in the
mixed model structure promises a real simplification.

However, the difficulties inherent in this topic resurface in a mistake, recently noticed by
Richard Williamson, in a crucial proof in [5], throwing the existence of Hurewicz-type
model structures once more into doubt. The result claimed by Cole and proven here
allows this philosophy to be applied to topological categories satisfying a smallness
condition. In this paper, we present general techniques for producing factorizations for
noncofibrantly generated model categories that make use of the “algebraic” perspective
on fibrations, explained below. We impose algebraic structures in order to replace
point-set level arguments step-by-step with categorical ones, formulating a proof that
is not specific to the category at hand. An interesting feature of this perspective is that
it precisely identifies the flaw in Cole’s proof and simultaneously suggests its solution.

A test case, spelled out in Sections 3 and 4, illustrates how we might use the algebraic
perspective to circumvent certain point-set level arguments in the construction of
factorizations. Malraison and May [13; 15] observed that the Moore path space allows
for an algebraic characterization of Hurewicz fibrations. Based on their results, we
present a new factorization for the Strøm model structure on topological spaces, which
in particular avoids Strøm’s work on Hurewicz cofibrations [20; 21]. In fact, the
construction of this factorization generalizes to any topologically bicomplete category,
and we suspect that our arguments could also be used to establish the existence of
Hurewicz-type model structures there. However, we prefer an alternative approach
which can be more easily adapted to other (nontopological) contexts. This construction,
outlined below, takes the ordinary path space as its point of departure but requires more
elaborate algebraic machinery.

We explain our methods in analogy with the cofibrantly generated case. The starting
point is an observation about Quillen’s small object argument, due to Garner [7; 8]. In
a cofibrantly generated model category, a map is a fibration if and only if it has the right
lifting property against a particular set of arrows; this is the case just when one can
choose a solution to each such lifting problem. These chosen solutions are encoded as
a solution to a single lifting problem involving the “step-one” factorization of Quillen’s
small object argument, which factors a map as a trivial cofibration followed by a map
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that is not typically a fibration. Put another way, a map is a fibration if and only if
it admits the structure of an algebra for the (pointed) endofunctor that sends a map
to its step-one right factor. In this way, Quillen’s step-one factorization gives rise to
an “algebraic” characterization of the fibrations in any cofibrantly generated model
category.

By contrast, the Hurewicz fibrations in a topologically bicomplete category are not
characterized by a lifting property against a set of maps. Nonetheless, we show
that the “step-one” factorization produced by Cole, while not factoring a map into
a trivial cofibration followed by a fibration, nonetheless provides a precise algebraic
characterization of the fibrations. As above, the right factor of this factorization is a
pointed endofunctor whose algebras are precisely the fibrations. A general categorical
construction replaces this functorial factorization with another whose right functor is a
monad whose algebras are again precisely the fibrations. In particular, the right factor
is itself a free algebra and thus a fibration for entirely formal reasons: no point-set
topology is necessary for this proof.

It remains to show that the left factor is a trivial cofibration for the model structure;
again, on account of the algebraic perspective, no point-set topology is required. Instead,
we use a composition criterion to show that the left functor so-constructed is a comonad.
In particular, the left factor is a coalgebra for said comonad. For easy formal reasons,
such coalgebras lift (canonically) against algebras for the right functor, which proves
that the left factor is a trivial cofibration. This yields our main theorem.

Theorem On any category C enriched, tensored and cotensored over spaces and
satisfying a mild set-theoretical condition there exists a model structure whose fibrations,
cofibrations and weak equivalences are the h–fibrations, strong h–cofibrations and
homotopy equivalences respectively.

Abstractly our approach can be described as follows. Suppose we are given a category
with two distinguished classes of morphisms: a class of “fibrations” that are character-
ized as algebras for a pointed endofunctor and a class of “trivial cofibrations” that are
determined by a lifting property against the fibrations. In practice, the former often
arise as maps admitting solutions for a certain functorially constructed “generic lifting
problem”; the pointed endofunctor is obtained by pushing out this square. If the pointed
endofunctor obtained in this manner satisfies a certain “smallness” condition, we can
then construct a candidate functorial factorization by freely replacing it by a monad. If
either of the following hold, then these functors factor a map as a trivial cofibration
followed by a fibration.
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(1) The category of algebras for the pointed endofunctor admits a vertical composi-
tion law, defined in Section 4 below.

(2) The left factor in the factorization associated to the pointed endofunctor is a
comonad.

By work of Garner [8], both (1) and (2) hold automatically in the cofibrantly generated
case, which is thereby subsumed.

In fact, the methods of this paper generalize effortlessly to produce algebraic factoriza-
tions for any enriched bicomplete category equipped with an interval, ie, a bipointed
object, which satisfies a certain smallness condition. This can be used, for instance, to
construct model structures on categories enriched in chain complexes. More details
will appear in a forthcoming paper with Peter May.

Let us briefly compare this with previous work extending the small object argument to
noncofibrantly generated model categories. The main theorem of Chorny [3] states that
if

(i) there is a cardinal � such that the domains of the arrows in the generating class
of trivial cofibrations are �–small,

(ii) there exists a functorial construction of a “generic lifting problem” in the sense
of Remark 5.11,

then an analogue of Quillen’s small object argument can be used to construct appropriate
functorial factorizations. In spaces, the Hurewicz fibrations are generated by the class
fA!A�Ig of cylinder inclusions. There are examples of spaces that are �–small only
if � exceeds the cardinality of their underlying set. Hence, for topological categories,
the condition (i) is unreasonable. By contrast, our conditions (1) and (2) provide
sufficient control over the left factor to allow us to weaken the smallness condition.

The structure of this paper parallels the gradual removal of point-set topology; in
particular, we introduce categorical notions and results along the way as needed. In
Section 2, we review Strøm’s construction of a functorial factorization for the Hurewicz-
type model structure on spaces and indicate why it is not suitable for generalization. In
Sections 3 and 4, we introduce the algebraic perspective on fibrations by considering
the Moore path functorial factorization. In Section 5, we discuss Hurewicz type model
structures on any complete and cocomplete category that is tensored, cotensored and
enriched in topological spaces, and prove our main theorem. Finally, in the Appendix,
we explain the problem with Cole’s factorization and present a few more details about
our construction.
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2 Strøm’s model structure on spaces

In this short section, we review a few select details of Strøm’s construction of a
model structure on the category of topological spaces and continuous maps whose
weak equivalences are homotopy equivalences, fibrations are Hurewicz fibrations and
cofibrations are closed Hurewicz cofibrations.

Remark 2.1 Even though Strøm works in the category of all topological spaces, we
restrict ourselves to a convenient category of spaces, denoted Top, which in particular
should be cartesian closed. The two most prominent examples are k –spaces and
compactly generated weak Hausdorff spaces. For a detailed discussion of these point-
set issues, we refer the interested reader to [17, Chapter 1].

Write I for the unit interval, topologized in the standard way with endpoints 0; 1.
Recall that Hurewicz fibrations are those maps in Top that have the homotopy lifting
property, ie, the right lifting property with respect to all inclusions i0W A! A� I .
Dually, the Hurewicz cofibrations are those maps with the homotopy extension property,
ie, the left lifting property against all projections p0W Y

I ! Y .

There is a subtle, but important point here: In order to organize the aforementioned
classes of maps into a model structure on Top, we need the (model structure) cofibra-
tions and trivial cofibrations, ie, those cofibrations that are also homotopy equivalences,
to be precisely the maps that lift against the (model structure) trivial fibrations and
fibrations, respectively. In general, however, the Hurewicz cofibrations and fibrations
do not have this property, but this can be fixed by requiring the (model structure)
cofibrations to be closed Hurewicz cofibrations.
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Remark 2.2 Cofibrations in the category of compactly generated spaces are auto-
matically closed, but this is not the case in the category of k –spaces; cf [17, 1.6.4].
Compare with the notion of strong cofibrations, introduced by [19], which we discuss
in Section 5.

The factorization axiom (CM5) is the most difficult one to establish for this model
structure, and here it suffices to construct the trivial cofibration – fibration factorization.
The main point-set level input to demonstrate this factorization is the following result
of Strøm [20, Theorem 3].

Proposition 2.3 If i W A!X is an inclusion of a strong deformation retract such that
there exists a map qW X ! I with q�1.0/DA, then i is a closed Hurewicz cofibration
as well as a homotopy equivalence.

This enables Strøm to prove the following.

Proposition 2.4 Every continuous map f W X ! Y can be factored as a homotopy
equivalence and closed Hurewicz cofibration i followed by a Hurewicz fibration p .

The proof can be found in [22, Proposition 2], building on earlier work [21]. Here, we
merely describe the construction so as to highlight the difficulties of naïvely extending it
to topologically enriched categories. Strøm’s factorization makes use of the following.

Definition 2.5 The mapping path space Nf of f W X ! Y is defined to be the
pullback:

Nf
�f
//

�f
��

_� Y I

p0

��

X
f

// Y

Strøm’s construction 2.6 Any map f can be factored as f D�ıj , with j W X!Nf

the map that sends a point of X to the constant path at its image under f and
� W Nf ! Y evaluation of paths at their endpoint. This map j is not necessarily a
cofibration, so Strøm factors it through the space E formed by gluing

E DX � I[X�.0;1�Nf � .0; 1�
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along j and the inclusion of the half open interval. The map j factors as i W x 7! .x; 0/

followed by the natural projection � 0 obtained by including E into Nf � I and
projecting to the mapping space. The result is a commutative diagram:

X
f
//

i

��

j

!!

Y

E
� 0
// Nf

�

OO

Using Proposition 2.3 and [21, Theorems 8 and 9], Strøm checks that i is a trivial
cofibration and p WD � ı� 0 is a fibration.

This construction generalizes without problems to any category C enriched, tensored
and cotensored in spaces. In particular, we might define E to be the pushout

X ˝ .0; 1�
X˝i0

//

j˝.0;1�

��

X ˝ I

��

Nf ˝ .0; 1� // E

_�

with i 0 being the map induced by the inclusion .0; 1�! I . However, Strøm’s charac-
terization of trivial cofibrations is not available in the enriched context, so one needs to
check directly that, among other things, the following lifting problem can be solved for
any A:

A //

i0

��

E

p

��

A˝ I //

<<x
x

x
x

Y

But E being defined as a colimit, it seems very difficult if not impossible to check that
a lift exists and thus that p is indeed a fibration.

We will come back to this point in Section 5.1.

3 The Moore paths factorization I

We now present a second construction of the trivial cofibration – fibration factorization
for the h–model structure on Top in order to illustrate some of the key ideas involved
in the “algebraic” perspective on homotopy theory. Following [15], we introduce a
functorial factorization based on the Moore path space to characterize the Hurewicz
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fibrations as algebras for a pointed endofunctor. We use this characterization to prove
that the right factor is a Hurewicz fibration and then apply Proposition 2.3 to show that
the left factor is a closed Hurewicz cofibration and homotopy equivalence.

Interestingly, because this functorial factorization is particularly nice, the point-set
topology input provided by Proposition 2.3 is not necessary to show that the left factor
is a trivial cofibration. We will explain how this works in Section 4, introducing ideas
that will be essential for our construction of a suitable functorial factorization for a
general topologically bicomplete category in Section 5.

3.1 The Moore path space

Let Y be a space and let RC D Œ0;1/. The space …Y of Moore paths is defined to
be the pullback:

(3-1)

…Y
_�

�end

��

//
Y RC �RC

shift
��

Y const
//
Y RC

The map “shift” is adjunct to the map given by precomposing with the addition map
CW RC�RC!RC . It has the effect of reindexing a path so that it starts at the indicated
time. Unpacking this definition, …Y can be identified with the set of pairs .p; t/,
where t 2RC and pW Œ0; t �! Y is a path in Y of length t , topologized as a subspace
of Y RC �RC . The map �end sends .p; t/ to p.t/.

Following [15], we have the following.

Definition 3.2 The Moore path space �f of f W X ! Y is defined to be the pullback

(3-3)

�f //

��

_� …Y

�0

��

X
f

// Y

where �0W .p; t/ 7! p.0/ is the evaluation of paths at 0. In other words, �f is the
set of triples .p; t;x/ where .p; t/ is a Moore path in Y and x is a point in the fiber
over p.0/.
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As with Nf above, we use the space �f to define a factorization:

(3-4)
X

f
//

If   

Y

�f

Mf

>>

The left factor If W X ! �f sends a point x 2X to the length-zero path at f .x/. The
right factor Mf W �f ! Y is the endpoint-evaluation map, obtained by composing the
top map of (3-3) with �endW …Y ! Y .

Unlike the case for the factorization constructed using the ordinary mapping space Nf ,
the Moore path space factors a map into a trivial cofibration If followed by a fibra-
tion Mf . The proofs of these facts make use of the algebraic perspective on homotopy
theory. To proceed, we need a few definitions.

3.2 Functorial factorizations

For the reader’s convenience, we briefly review the notion of a functorial factorization.
Let C be any category. Denote by C2 the arrow category of C ; its objects are arrows
of C , drawn vertically, and its morphisms are commutative squares which compose
“horizontally”. Write dom; codW C2 � C for the evident forgetful functors, defined
respectively by precomposing with the domain and codomain inclusions 1� 2 of the
terminal category into the category �! �.

Definition 3.5 A functorial factorization consists of a pair of functors L;RW C2! C2

such that
domLD dom; codRD cod; codLD domR;

and with the property that for any f 2 C2 , the composite (in C ) of Lf followed by Rf

is f .

It is convenient to assign a name, say E , to the common functor codLDdomRW C2!C
that sends an arrow to the object through which it factors. A functorial factorization
factors a commutative square

(3-6)

X
u
//

f

��

W

g

��

Y v
// Z

as:

X
u
//

Lf
��

f

��

W

Lg
��

g

��

Ef
E.u;v/

//

Rf

��

Eg

Rg

��

Y v
// Z
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The functors L and R are equipped with canonical natural transformations to and
from the identity on C2 respectively, which we denote by E�W L! id and E�W id!R.
The components of these natural transformations at f 2 C2 are the squares:

X

Lf

��

X

f

��

X

f

��

Lf
// Ef

Rf

��

Ef
Rf

// Y Y Y

In other words, L and R are pointed endofunctors of C2 , where we let context indicate
in which direction the functors are pointed. An algebra for the pointed endofunctor R

is defined analogously to the notion of an algebra for a monad, except of course there is
no associativity condition in the absence of a multiplication map E�W R2!R. Similarly,
a coalgebra for the pointed endofunctor L is defined analogously to the notation of a
coalgebra for a comonad. Unpacking these definitions we observe the following.

Lemma 3.7 f 2 C2 is an R–algebra just when there exists a lift:

(3-8)

X

Lf
��

X

f

��

Ef
Rf

//

t
>>|

|
|

|
Y

Furthermore any choice of lift uniquely determines an R–algebra structure for f .
Dually, i 2 C2 is an L–coalgebra just when there exists a lift:

A

i

��

Li
// Ef

Ri

��

B

s

>>|
|

|
|

B

Furthermore any choice of lift uniquely determines an L–coalgebra structure for i .

A key point, which we will make use of later, is expressed in the following lemma.

Lemma 3.9 Any L–coalgebra .i; s/ lifts canonically against any R–algebra .f; t/.

Proof Given a lifting problem, ie, a commutative square .u; v/W i! f , the functorial
factorization together with the coalgebra and algebra structures define a solution, namely
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the composite of the dashed arrows:

A
u
//

Li

��

X

Lf
��

Ei
E.u;v/

//___

Ri

��

Ef

Rf

��

t

OO�
�
�

B

s

OO�
�
�

v
// Y

This completes the proof.

3.3 The Moore paths functorial factorization

The construction (3-4) above defines a functorial factorization I;M W Top2
! Top2

through the Moore path space. Furthermore, a classical result of May [15, 3.4] can be
stated as follows.

Proposition 3.10 A map is a Hurewicz fibration if and only if it admits the structure
of an M –algebra.

Furthermore, as is noted in [13; 15], the pointed endofunctor .M; E�/ extends to a monad
MD .M; E�; E�/. This is the point at which Moore paths make their key contribution:
composition of paths of variable lengths is strictly associative. In particular, the
arrows Mf are themselves (free) M –algebras, and are hence fibrations.

Lemma 3.11 The Moore paths functorial factorization extends to a monad
MD .M; E�; E�/ over cod on the arrow category Top2 .

Proof We need only define �W �Mf !�f , the domain component of the multiplica-
tion natural transformation M 2!M . A point in �Mf is a Moore path .p; t/ in Y

together with a point in �f —this being itself a Moore path .p0; t 0/ in Y together with
a point x in the fiber of p0.0/—such that p.0/D p0.t 0/. The map � sends this data
to the concatenated path pp0 of length t C t 0 together with the chosen point x in the
fiber over pp0.0/D p0.0/. The remaining details are left to the reader.

These results allow for an easy proof of Proposition 2.4.

Corollary 3.12 The factorization (3-4) factors f into a trivial cofibration If and a
fibration Mf .
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Proof By Proposition 3.10 and Lemma 3.11, Mf is a (free) M –algebra and hence a
Hurewicz fibration, so the only thing to check is that If is a trivial cofibration. But
this follows immediately from Proposition 2.3, using the map qW �f ! Œ0; 1� given by
sending a Moore path .p; t;x/ of length t to min.t; 1/.

An alternate proof that If is a trivial cofibration, which avoids Strøm’s characterization
(Proposition 2.3), was suggested by the referee. By Proposition 3.10 and Lemma 3.9,
it suffices to show that If is an I –coalgebra. Lemma 3.7 says that a map i W A! B

is an I –coalgebra if and only if there is a lift:

A

i
��

Ii
// � i

Mi
��

B

>>}
}

}
}

B

This is the case, by the universal property of � i , if and only if i extends to a Moore
strong deformation retract: a retraction p of i together with a Moore homotopy h

from ip to 1B whose components have length zero when restricted along i .

A

i ��

const

##

B

p

��

h
// …B

�0

��

�end
// B

A
i
// B

Taking i to be If , it is easy to check that the maps in the pullback (3-3) define a Moore
strong deformation retract, making If an I –coalgebra and hence a trivial cofibration.

Remark 3.13 Note, in general the notions of M–algebras (algebras for the full monad)
and M –algebras (algebras for the pointed endofunctor) are distinct; the former is more
restrictive. We will always take care to use a blackboard bold letter to distinguish
algebras for the monad from algebras for the pointed endofunctor of the same name.
But in fact, because these functors arise in functorial factorizations, every M –algebra
is a retract of an M–algebra, namely, its right factor. In particular, a map has the left
lifting property with respect to the M –algebras if and only if it has the left lifting
property with respect to the M–algebras.

For the Moore paths factorization, M–algebras are those Hurewicz fibrations that admit
a “transitive path lifting function” in the terminology of [15]. The free algebras Mf

are both M–algebras and M –algebras.
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4 The Moore paths factorization II

In fact, the Moore paths functorial factorization is an example of an algebraic weak
factorization system, defined below. This structure provides tighter algebraic control
over the trivial cofibrations and fibrations, which in particular can be used to show that
the left factor of a map always lifts against any algebra for the right factor.

Our proof that the Moore paths functorial factorization defines an algebraic weak
factorization system uses a simple characterization, due to Richard Garner, that allows
us to identify categories of algebras for the monad of an algebraic weak factorization
system existing “in the wild.”

In Section 5, by extending the methods introduced here, we will be able to construct
functorial factorizations appropriate for categories that are enriched, tensored and
cotensored over topological spaces, but where point-set level characterizations of
classes of maps in the ambient category are not generally available.

4.1 Composition of algebras

Let L;RW C2! C2 define a functorial factorization. To simplify the following discus-
sion, we consider only algebras for the right factor R; dual results apply to the case of
coalgebras for the left factor L.

Definition 4.1 A morphism .u; v/W f ! f 0 in C2 , ie, a commutative square (3-6) is
a map of R–algebras if the square of lifts displayed in the interior of the cube

(4-2)

X

Lf

��

u
// X 0

Lf 0

��

X
u
//

f

��

W

f 0

��

Ef

Rf !!

E.u;v/
//

s
==|

|
|

Ef 0
s0

<<z
z

z

Rf 0 ""

Y v
// Y 0

commutes, ie, if u � s D s0 �E.u; v/.

Example 4.3 The identity arrow at any object is always an R–algebra with a unique
R–algebra structure given by its right factor. Furthermore, for any R–algebra .f; s/,
the map .f; 1Y /W .f; s/! .1X ;R1X / is an R–algebra map. The proof is a one line
diagram chase:

R1X �E.f; 1Y /D 1Y �Rf DRf D f � s;

by (3-6) and (3-8).
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Write AlgR for the category of R–algebras and R–algebra maps. Via the forgetful
functor AlgR! C2 , R–algebras can be viewed as objects in C2 . Using composition
in C , objects and morphisms in C2 can be composed “vertically”. We say the cate-
gory AlgR admits a vertical composition law if this composition operation can be lifted
along the forgetful functor.

Definition 4.4 The category AlgR admits a vertical composition law if

(i) whenever .f; s/ and .g; t/ are R–algebras such that codf D domg , we can
specify an R–algebra structure t � s for gf , in such a way that this composition
operation is associative;

(ii) furthermore, for any maps .u; v/W .f; s/! .f 0; s0/ and .v; w/W .g; t/! .g0; t 0/

of R–algebras between composable pairs .f; s/; .g; t/ and .f 0; s0/, .g0; t 0/,
then .u; w/W .gf; t � s/! .g0f 0; t 0 � s0/ is a map of R–algebras.

In other words, AlgR admits a vertical composition law if both R–algebras and R–
algebra maps can be composed vertically. This latter condition says that the vertical
composite of the squares underlying R–algebra maps must again be an R–algebra
maps with respect to the composite R–algebras.

Remark 4.5 Concisely, a vertical composition law equips the category AlgR with
the structure of a double category.

Example 4.6 For example, suppose L;R are defined by pushing out from a particular
coproduct of a set of generating trivial cofibrations J as in step one of Quillen’s small
object argument:

(4-7)

�`
j2J

`
Sq.j ;f /

j

��

//

p

�

Lf

��

�

f

��
� // �

Rf

// �

By the universal property of the defining pushout, an R–algebra structure for f is
precisely a lifting function f̂ , ie, a choice of solution to all lifting problems against
any j 2 J (see the second author [18, 2.25]):

�`
j2J

`
Sq.j ;f /

j

��

//

p

�

Lf

��

�

f

��
� // �

Rf

//
ˆf

??�
�

�
�

�

!
�`

j2J

`
Sq.j ;f /

j

��

// �

f

��
� //

ˆf

??�
�

�
�

�
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Furthermore, a map of R–algebras .f; s/! .f 0; s0/ is precisely a commutative square
from f to f 0 that respects the chosen lifts.

The category AlgR admits a vertical composition law. The R–algebra structure
assigned to the composite of .f; f̂ /; .g; ˆg/ 2AlgR is the lifting function that solves

(4-8)

A

j

��

a
// X

f

��

Y

g

��

B
b

//

>>

GG�
�

�
�

�
�

�
�

Z

by first constructing the dotted lift according to ˆg , thereby obtaining a new lifting
problem against f whose dashed solution is chosen according to f̂ . It is easy to
check that this composition law respects morphisms of R–algebras and is associative.

The category AlgR of Example 4.6 is isomorphic to a category of the following
form. For a class of morphisms J � C2 , define a category J � in which an ob-
ject is an arrow f of C equipped with a lifting function f̂ and whose morphisms
.u; v/W .f; f̂ /! .f 0; f̂ 0/ are commutative squares so that the triangle of lifts dis-
played below commutes.

(4-9)

A

j

��

a
// X

f
��

u
// X 0

f 0

��

B

??~
~

~
~

b

//

77nnnnnnnn
Y v

// Y 0

This definition can be extended to the case where J ,! C2 is a (typically nonfull)
subcategory of the arrow category. In this case, the lifts specified by a lifting function f̂

must be natural with respect to morphisms j 0! j 2 J in the sense that the following
diagram of lifts commutes.

A0 //

j 0

��

A
j

��

// X

f

��

B0 //

77nnnnnnnn
B

??~
~

~
~

// Y

Note there is a natural forgetful functor J �! C2 . The following proposition is easy
to verify [18, 2.32].
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Proposition 4.10 The category J � is equipped with a natural vertical composition
law as displayed in (4-8).

Remark 4.11 For a generic functorial factorization, there is no reason for there to be
a composition law for algebras of the right factor. However, we will see shortly that
the existence of such a composition law is characteristic for functorial factorizations
with good lifting properties.

4.2 Algebraic weak factorization systems

The following definition is originally due to Grandis and Tholen [10], with a small
modification by Garner [8].

Definition 4.12 An algebraic weak factorization system on a category C is pair .L;R/
with LD .L; E�; Eı/ a comonad on C2 and RD .R; E�; E�/ a monad on C2 such that

(i) .L; E�/; .R; E�/ give a functorial factorization on C ;

(ii) the natural transformation �W LR!RL with components given by the com-
mutative squares

�
ıf
//

LRf

��

�

RLf

��
�
�f
// �

is a distributive law, ie, satisfies ı ı�D �L ıE.ı; �/ ı ıR .

It follows from (i) that codR D cod and that the codomain components of both E�
and E� are the identity; dually, domLD dom and the domain components of Eı and E�
are identities. In other words, R is a monad over the functor cod, and dually for L.

Definition 4.13 The left class of an algebraic weak factorization system .L;R/ is the
class of maps that admit an L–coalgebra structure while the right class is the class of
maps that admit an R–algebra structure.

Equivalently, the left class is the retract closure of the class of L–coalgebras and the
right class is the retract closure of the class of R–algebras. Note by Lemma 3.9, each
map in the left class lifts against every map in the right class.

Lemma 4.14 (Garner) If .L;R/ is an algebraic weak factorization system, then AlgR

has a canonical vertical composition law.

A proof is given in [8]. We are particularly interested in the converse.
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Theorem 4.15 (Garner) If R is a monad on C2 over cod such that its category of
algebras AlgR admits a vertical composition law, then there is a canonical algebraic
weak factorization system .L;R/, with the functor LW C2! C2 defined by the unit.
Furthermore, the vertical composition law on AlgR determined by the algebraic weak
factorization system .L;R/ coincides with the hypothesized one.

Partial proofs can be found in Garner [9] and [18], but we felt that a more fleshed-out
treatment was merited.

Proof We make frequent use of the monadic adjunction C2� AlgR . The (nontrivial
component of the comultiplication) Eıf W Lf !L2f is the domain component of the
adjunct to the map:

X

f

��

L2f
// ELf

RLf

��

Ef

Rf

��

Y Y

Explicitly, ı is the composite of E.L2f; 1/ with the algebra structure assigned the
composite of the free algebras RLf and Rf . Because arbitrary maps .u; v/W f ! g

give rise to maps .E.u; v/; v/W Rf !Rg of free R–algebras, ıW E!EL is a natural
transformation.

It remains to show that Eı gives L the structure of a comonad in such a way that .L;R/
is an algebraic weak factorization system. We will check coassociativity and leave the
unit and distributivity axioms to the reader.

To this end, note that the following rectangles are maps of R–algebras:

Ef

Rf

��

ıf
// ELf

RLf

��

E.1;ıf /
// EL2f

RL2f

��

Ef
ıf
//

Rf

��

ELf

Rf �RLf

��

Y Y Y

Ef

Rf

��

ıf
// ELf

ıLf
//

RLf

��

EL2f

RLf �RL2f

��

Ef

Rf

��

Ef

Rf

��
Y

We will show that the domain components agree by transposing both maps across the
monadic adjunction. The domain component of the transpose of the left-hand map is
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E.1; ı/ �L2 DL3 D ıL �L
2 , which is the domain component of the transpose of the

right-hand map. Hence ı is coassociative.

Finally, we verify that the vertical composition law arising from the algebraic weak
factorization system by Lemma 4.14 agrees with the vertical composition we started
with. The key observation is that for any composable pair of R–algebras .f; s/
and .g; t/ we have the following map of R–algebras:

ELgf

RLgf

��

E.1;E.f;1//
// E.Lg �f /

R.Lg�f /

��

E.1;t/
// Ef

s
//

Rf

��

X

f

��

Egf

Rgf

��

E.f;1/
// Eg

Rg

��

t
// Y

g

��

Y

g

��

Z Z Z Z

Recall ıgf was defined to be �gf ��Lgf �E.L
2gf ; 1/, where � is the given vertical

composition law. By contrast, we write �0 for the vertical composition given by the
algebraic weak factorization system; by [18, 2.21], t �0 s is defined to be the composite:

�
E.L2gf;1/

// �
�gf ��Lgf

// �
E.1;E.f;1//

// �
E.1;t/

// �
s

// �

Because the above pasted rectangle is a map of R–algebras, the composite of the last
four arrows is t � s �E.s �E.1; t/ �E.1;E.f; 1//; 1/. Precomposing with E.L2gf; 1/,
we have a commutative diagram:

�

E.L2gf;1/
��

E.L.Lg�f /;1/

((

E.Lf;1/

))�
E.E.1;E.f;1//;1/

// �
E.E.1;t/;1/

// �
E.s;1/

// �
t�s

// �

Hence t �0 s D t � s .

4.3 The Moore paths algebraic weak factorization system

We now use these results to show that the functorial factorization (3-4) is in fact an
algebraic weak factorization system. This was noticed independently by Garner.

To this end, we must explain how define a vertical composition law for the category of
M–algebras. An M –algebra structure is classically called a path lifting function. The
function �W �f !X specifying an M –algebra structure for f W X!Y maps a Moore
path .pW Œ0; t �! Y;x 2 Xp.0// to a point �.p; t;x/ 2 Xp.t/ . If � is an M–algebra
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structure, then this assignment must satisfy an additional “transitivity” condition; see
Remark 4.18 below.

We might hope to use a procedure similar to the one outlined in Example 4.6. Suppose
gW Y !Z , �W �g! Y is a second M –algebra. We can use � to lift the endpoint of
a Moore path .pW Œ0; t �!Z;x 2Xp.0// to Y , but we have lost too much information
to proceed any further.

The key idea is that an M –algebra structure determines a lift, displayed in the lemma
below, that might be called a parametrized path lifting function.

Lemma 4.16 There is an isomorphism, over C2 , between the category AlgM and the
category of arrows f equipped with lifts:

(4-17)

�f

i0

��

// X

f

��

�f �RC //

44iiiiiiiiiii
…Y �RC ev

// Y

Proof Clearly a parametrized path lifting function determines a path lifting function.
For the converse, first note that for any space A, the map i0W A! A�RC admits
the structure of an I –coalgebra: The required lift A � RC ! � i0 sends a point
.a; t/ 2A�RC to the path r 7! .a; r/ of length t with fiber point a. Using this, we
define the parametrized path lifting function to be the canonical lift of the I –coalgebra i0
against the M –algebra f obtained from the functorial factorization .I;M /, as in
Lemma 3.9.

More explicitly, the diagonal arrow maps a pair which consists of a Moore path
.pW Œ0; t �! Y;x 2Xp.0// together with a parameter s to the value of � on the Moore
path .pW Œ0; s�! Y;x 2Xp.0//.1

Remark 4.18 As detailed in [15, 3.2], if � is an M–algebra, then the associated
map (4-17) is a transitive parametrized path lifting function, which means that the
lifted paths respect concatenation of paths in the following sense. If p and p0 are
composable paths of length t and t 0 , and x is in the fiber over p.0/, then the lift of
the concatenated path agrees with the concatenation of the lift of the first path followed
by the lift of the second path starting at �.p; t;x/. In this way, there is an isomorphism
between AlgM and the category of arrows equipped with transitive parametrized path
lifting functions.

1If s � t , this new p is the restriction of the old one; if s > t , the new p extends the old by remaining
constant at p.t/ for the necessary duration.
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Proposition 4.19 The category AlgM admits a vertical composition law.

Proof We explain how to compose the transitive path lifting functions associated to
M–algebras .f; �/ and .g; �/ using the construction of Lemma 4.16, ie, we define a
composite lift:

�.gf /

i0

��

// X

f

��

Y

g

��

�.gf /�RC ev
//

���

BB�
�

�
�

�
�

�
�

�

99

Z

The dotted lift sends a pair consisting of a Moore path .pW Œ0; t �!Z;x 2Xp.0// and
a parameter s to the value of � on the Moore path .pW Œ0; s�!Z; f .x/ 2 Yp.0//. This
dotted map now allows us to define a new Moore path in Y :

r 7! �.p; r; f .x//W Œ0; s�! Y:

Call this path �.p/. The point x lies in the fiber over �.p/.0/. Hence, .�.p/;x/2�f .
We define the dashed lift to be the map that sends our original Moore path .p; t;x/
and parameter s to the point �.�.p/; s;x/. The remaining details are straightforward
diagram chases, left to the reader.

Remark 4.20 One can wonder whether this proof applies to produce model structures
in more general situations, ie, for a category equipped with some kind of Moore path
object. An indication that this is indeed possible is given by van den Berg and Garner [1],
who construct factorizations on so-called path categories, and by Williamson [23].

Remark 4.21 Note that the only nonformal ingredient in the argument given here
is the existence of a well-behaved Moore path object in topological spaces. Work
in progress by Bill Richter is aimed at showing that the obvious analogue of (3-3)
in a general category enriched, tensored and cotensored over topological spaces has
the same good properties. Our proof would then apply verbatim to yield a trivial
cofibration—fibration factorization for a Hurewicz-type model structure.

Our motivation for presenting a different, more abstract approach in the following
sections stems mainly from its flexibility. Our algebraic methods apply to many
contexts in which the fibrations are characterized by some generic lifting problem, but
in which there exists no obvious analogue of Moore paths. For instance, this is the
case for categories enriched, tensored and cotensored over a category with an interval
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object. Examples include various model structures on dg-modules over a commutative
differential graded algebra, as investigated by Peter May.

5 Hurewicz model structures on topological categories

Let C be a topologically bicomplete category, ie, a bicomplete category enriched,
tensored and cotensored over some convenient category of spaces Top. We will require
one additional condition, akin to the “smallness” condition for Quillen’s small object
argument, which we will describe when we explain its purpose below. The tensor
and cotensor structure suffices to abstract the definitions of homotopy equivalence,
Hurewicz cofibration and Hurewicz fibration from Section 2.

5.1 Topological categories and Cole’s construction

In this section and the next we describe the heart of the construction in [5], set up the
notation for the rest of the chapter and state some lemmata that will turn out to be
useful in the proof of our main theorem.

Definition 5.1 A homotopy between two maps f0 and f1W X � Y in C is a map
hW X ˝ I ! Y , or equivalently, a map yhW X ! Y I (its adjunct) such that

X

i0

��

f0

""

X ˝ I
h
// Y

X

i1

OO

f1

<< or equivalently

Y

X
yh
//

f0

>>

f1   

Y I

p0

OO

p1

��

Y

commutes, i0; i1W X �X ˝I and p0;p1W Y
I � Y being the morphisms induced by

the two endpoint inclusions �� I .

In particular, we have a notion of homotopy equivalence in C .

Definition 5.2 A map f in C is an h–cofibration if it has the left lifting property with
respect to p0W Z

I !Z for all objects Z 2 C . Dually, f is an h–fibration if it has the
right lifting property with respect to all cylinder inclusions of the form i0W Z!Z˝I .

Here the “h” stands for Hurewicz and also for homotopy. We would ideally like to
construct a model structure on C whose cofibrations are the h–cofibrations, whose
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fibrations are the h–fibrations, and whose weak equivalences are the homotopy equiva-
lences. However, similarly to Section 2, this is not possible because only some of the
h–cofibrations lift against the class of h–fibrations that are also homotopy equivalences.

This motivates the following definition.

Definition 5.3 The class of strong cofibrations is the class of maps that have the left
lifting property with respect to the h–fibrations that are also homotopy equivalences.

Because the maps p0W Z
I !Z are homotopy equivalences and h–fibrations, cf [19],

strong cofibrations are in particular h–cofibrations. An immediate corollary of our main
theorem, Theorem 5.22 below, establishes a so-called h–model structure, whose weak
equivalences are homotopy equivalences, fibrations are h–fibrations, and cofibrations
are the strong cofibrations. Henceforth, we use “cofibrations” and “fibrations” in the
model structure sense, in particular dropping the “h”.

It is possible to describe these right and left lifting classes using relative lifting proper-
ties [17, 4.2.2], but all we need is the following result.

Lemma 5.4 (i) The natural map i0W A ! A˝ I is a trivial cofibration for all
objects A 2 C .

(ii) The class of (trivial) cofibrations is closed under retracts, pushouts and sequential
colimits.

Proof The proofs can be found in [19; 17]. Part (ii) is immediate from the closure
properties of any collection of arrows defined by a lifting property.

Cole’s construction 5.5 Cole’s construction attempts to factor an arbitrary map
f W X ! Y in C into a trivial cofibration followed by a fibration. To this end, start by
forming the mapping path object Nf of f , in precise analogy with Definition 2.5. A
new object Ef is constructed by pushing out one of the projections from the pullback
�f W Nf ! X along the natural map i0W Nf ! Nf ˝ I . Using the morphisms f
and y�f , the adjoint to the other projection �f , we obtain an induced map Rf W Ef !Y

Algebraic & Geometric Topology, Volume 13 (2013)



On the construction of functorial factorizations 1111

as shown in the following diagram.

(5-6)

Y I
p0

// Y

Nf
�f

//

i0

��

�f

OO

�_

X

f

OO

Lf

��
f

��

Nf ˝ I
 f
//

y�f
))

Ef

Rf

  

_�

Y

In this way, we have factored f as Rf ıLf and furthermore, by Lemma 5.4, the
map Lf W X ! Ef is a trivial cofibration. If the map Rf were a fibration, then
we would be done. However, this fails in general, so Cole proposes to iterate this
construction, replacing f by Rf , and applying the functorial factorization .L;R/ to
the right factor. The eventual right factor of f is defined by passing to the colimit
R!f D colim.Rf !R2f !R3f !� � � /. The left factor of f is then the composite

X
Lf
��!Ef

LRf
���!ERf

LR2f
����!ER2f ! � � � !ER!f:

Because each map in the image of L is a trivial cofibration, the left factor is a trivial
cofibration. It remains to show that R!f is a fibration, which by [5, 5.2] is equivalent
to finding a lift in the following.

N R!f
�R!f

//

i0

��

ER!f

R!f

��

N R!f ˝ I
y�f

//

88q
q

q
q

q
Y

To this end, [5] asserts that the required lift is given by  R!f ; however, the maps  Rnf

do not glue to induce a map N R!f ˝ I !ER!f , cf Section 6.1.

We will see that there is a natural modification of the iterative part of Cole’s construction
that produces an algebraic weak factorization system with the appropriate homotopical
properties.
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5.2 Algebraic characterization of fibrations

The first key observation is that, even though the right factor Rf fails to be an h–
fibration, algebras for the pointed endofunctor R are precisely h–fibrations. The proof
follows easily once we understand the universal property of the mapping space Nf .

Fix a morphism f W X ! Y and let Sqf W Cop ! Set be the functor that maps an
object A to the set of commutative squares of the form:

A //

i0

��

X

f

��

A˝ I // Y

These squares correspond to lifting problems that test whether f is an h–fibration.

Lemma 5.7 The functor Sqf is represented by the mapping path object Nf .

Proof By the defining universal property of Nf , a map ˛W A! Nf classifies a
commutative square:

(5-8)

A

i0

��

u
// X

f

��

A˝ I
v
// Y

!

A
˛

  

yv

##

u

��

Nf
�f
//

�f

��

_� Y I

p0

��

X
f

// Y

This completes the proof.

In particular, the identity map at Nf classifies the right hand square in

(5-9)

A

u

**

i0

��

˛
// Nf

i0

��

�f

// X

f

��

A˝ I
˛˝I

//

v

44Nf ˝ I
y�f
// Y

which features prominently in the construction of the factorization (5-6). By the Yoneda
lemma, or alternatively by adjointness, a square (5-8) factors uniquely as the above
diagram (5-9), where ˛W A!Nf is the classifying map.
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It is now easy to prove that the h–fibrations are precisely those objects in the image
of the forgetful functor AlgR! C2 ; in fact, any h–fibration lifts naturally against the
maps i0 .

Proposition 5.10 The category AlgR is isomorphic to the category I� over C2 ,
where I is the category whose objects are the maps fi0W A! A˝ I j A 2 Cg and
whose morphisms correspond to maps A0!A in C .

Proof Suppose .f; s/ 2 AlgR . To solve a lifting problem

A

i0

��

u
// X

f

��

A˝ I
v
// Y

we first factor it as displayed in (5-9) and then factor the right hand square in (5-9)
through the pushout of (5-6). This yields:

A //

i0

��

u

**
Nf

i0

��

�f

// X

Lf

��

X

f

��

A˝ I //

v

88Nf ˝ I
 f
//

y�f

44Ef

_�
Rf

//

s
>>}

}
}

}
Y

The map s defines an evident solution to the original lifting problem. Furthermore, the
naturality of the isomorphism of Lemma 5.7 implies that the lifting functions defined
in this manner are natural with respect to the morphisms in the category I .

Conversely, if .f; f̂ /2 I� , then the solution, specified by f̂ , to the canonical lifting
problem against the map i0W Nf !Nf ˝ I displayed in the left two squares above
defines the map s by the universal property of the pushout. The pair .f; s/ is then
an R–algebra. Uniqueness of the universal property of the pushout implies that these
procedures define a bijection between the objects of the categories AlgR and I� .

The fact that maps in AlgR agree with maps in I� follows easily from comparing the
definitions (4-2) and (4-9) with the diagram above.

Algebraic & Geometric Topology, Volume 13 (2013)



1114 Tobias Barthel and Emily Riehl

Remark 5.11 This argument shows that f is an h–fibration if and only if there is a
lift

Nf
�f

//

i0

��

X

f

��

Nf ˝ I

;;w
w

w
w

w

y�f

// Y

as observed in [5, 5.2]. We think of this square as presenting a “generic lifting problem”
which detects fibrations. This is analogous to the lifting problem given by (4-7) in the
cofibrantly generated case.

At this point we are confronted with a problem: the algebras for the functor R are
precisely the fibrations, but because R is not a monad, the maps Rf are not themselves
R–algebras. One idea is to try and replace the functor R by its “free monad” F , which
is characterized by the property that the category of F –algebras is isomorphic over C2

to the category of R–algebras (so in particular F –algebras are precisely fibrations).
There are two obstacles to implementing this idea. The first is set-theoretical. By an
easy application of the monadicity theorem, the free monad F is equivalently specified
by a left adjoint to the forgetful functor AlgR! C2 . However, it is not quite enough to
simply know that an adjoint exists: the resulting monad on C2 might not be a monad
over cod and thus not define the right factor in a functorial factorization. A theorem of
Kelly, described in the next section, exhibits a certain smallness condition on R under
which the free monad “exists constructively”; in this case, a functorial factorization is
produced.

A second obstacle remains. Supposing that the free monad F exists constructively,
it is not clear a priori that the left factor will still be a trivial cofibration because
this construction involves quotienting. However, we can show that the factorization
produced by this procedure has the structure of an algebraic weak factorization system;
in particular, the left factor is a free C–coalgebra, therefore lifts against the F –algebras
and is hence a trivial cofibration.

5.3 The free monad on a pointed endofunctor

We now explain what precisely we mean by “free monad” and state Kelly’s abstract
existence result. In the next section, we then verify that the functor R satisfies his
conditions under certain set-theoretical assumptions on the underlying category C .

Let R be a pointed endofunctor on a category C . The algebraically free monad on R

is a monad F together with an isomorphism AlgF Š AlgR over C . When C is locally
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small and complete, algebraically free monads coincide with so-called free monads,
which are defined by Kelly in [11, 22.2-4]. We use the terminology “free monad”
because it is shorter.

Furthermore, under good conditions, there is a canonical construction that produces
the free monad on R, in which case we say the free monad exists constructively. The
construction is via a colimit defined using transfinite induction; the “good conditions”
guarantee that this construction converges.2

Remark 5.12 A naïve approach might be to try and define F to be the colimit of

id!R!R2
!R3

! � � � :

This works in the case where R is well-pointed, meaning �RDR�W R!R2 , but not
otherwise. Interestingly, the failure of Cole’s functor R to be well-pointed precisely
highlights the subtle point at which his argument breaks down. We will say more about
this in the Appendix, cf Section 6.2.

The correct construction is due to Kelly, and we will describe explicitly the first few
stages in the Appendix. We make use of only a special case of his theorem [11, 22.3].

In order to state it, we need to introduce a little bit of terminology. An orthogonal
factorization system .E ;M/ on a category C is a weak factorization system for which
both the factorizations and the liftings are unique. It is called well-copowered if every
object in C has a mere set of E –quotients, up to isomorphism. When C is cocomplete
it follows that the maps in E are epimorphisms [11, 1.3].

Remark 5.13 Note that any category that is cocomplete and so that each object has
only a sets worth of epimorphism-quotients—a condition satisfied by all categories one
meets in practice—has a functorial factorization where the left factor is an epimorphism
and the right factor is a strong monomorphism, see Borceux [2, 4.4.3]. The dual
hypotheses are equally common in our setting. In practice this means that there are
always at least two choices for .E ;M/: (epimorphisms, strong monomorphisms) and
(strong epimorphisms, monomorphisms).

A cocone in C all of whose legs are elements of M is called an M–cocone or an
M-colimit in the case it is a colimit cocone. It follows from the right cancellation
property of M that the morphisms in the diagram also lie in M, but our condition

2Compare with Quillen’s small object argument, which never converges, but must be terminated
artificially.
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is stronger. In what follows, we will implicitly identify a regular cardinal ˛ with its
initial ordinal, such that ˛ indexes a (transfinite) sequence whose objects are ˇ < ˛ .

We are now ready to state Kelly’s theorem.

Theorem 5.14 (Kelly) Suppose C is complete, cocomplete and locally small. If a
pointed endofunctor R on C satisfies the “smallness” condition that

(|) there is a well-copowered orthogonal factorization system .E ;M/ on C and a
regular cardinal ˛ so that R sends ˛–indexed M–colimits to colimits,

then the free monad F on R exists constructively.

If R is a pointed endofunctor on C2 over cod, then each functor and natural trans-
formation in the free monad construction is constant on its codomain component. It
follows that F is a monad over cod and hence gives rise to a functorial factorization.
Furthermore, this observation allows us to weaken the smallness condition for such R:
It suffices to show that R preserves M–colimits of the form; see [7, page 31].

(5-15)

X0

f0
((

m0
// X1

f1

  

m1
// � � �

mˇ�1
// Xˇ

mˇ
//

fˇ

~~

� � � // X˛

colimˇ<˛ fˇDf˛tt
Y

5.4 Smallness

The functor R of (5-6) is constructed by means of various topologically enriched limits
and colimits in C . In this section, we will show that if C satisfies a set-theoretical
condition, then Cole’s functor R satisfies the necessary smallness condition to guarantee
convergence of the free monad sequence. This condition is very similar to Cole’s
“cofibration hypothesis” [5, 4.1]. Indeed, as explained there, work of Lewis [12] shows
that many topologically bicomplete categories of interest satisfy our condition.

Definition 5.16 Suppose .E ;M/ is a well-copowered orthogonal factorization system
on a topologically bicomplete category C . We say C satisfies the monomorphism
hypothesis if there is some regular cardinal ˛ so that the mapping path space functor
N W C2! C preserves M–colimits of diagrams of the form (5-15), in the sense that
the natural map

colimˇ<˛ Nfˇ!N.colimˇ<˛ fˇ/DNf˛

is an isomorphism.
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Lemma 5.17 If C is a topologically bicomplete category satisfying the monomor-
phism hypothesis, then the functor R constructed in Cole’s construction 5.5 satisfies
condition .|/ of Theorem 5.14. Therefore, the free monad F on R exists constructively.

Proof By the remarks made at the end of Section 5.3, we need to check that R sends
an M–colimit diagram of the form (5-15) to a colimit cone in C2 . Clearly, it is enough
to verify this for dom ıRW f 7!Ef . By the monomorphism hypothesis and the fact
that �˝ I is a left adjoint, the colimits of the top and left corners of the diagram

Nf1
//

��

??

X1

��

??

Nf0

��

//

??

X0

??

��

Nf1˝ I //

??

Ef1

_�
??

Nf0˝ I

??

// Ef0

_�
??

are Nf˛ , X˛ and Nf˛ ˝ I . The pushout of these objects is, by definition, Ef˛ .
Because colimits commute with colimits, the canonical map

colimˇ<˛ Efˇ!E.colimˇ<˛ fˇ/DEf˛

is thus an isomorphism, and we conclude that R preserves M–colimits, as desired.

Example 5.18 The category Top satisfies the monomorphism hypothesis for the
orthogonal factorization system in which E is the surjections and M is the subspace
inclusions. This is a consequence of an observation made by Lewis [12], summarized
in [5, Section 4], about pullbacks of countable sequential M–colimits. The orthogonal
factorization system .E ;M/ lifts to Top� . Because pullbacks, sequential colimits
and mapping path objects coincide with those of spaces, this category also satisfies
the monomorphism hypothesis. Similarly, .E ;M/ lifts to G–spaces, where G is
a topologically group, or indeed to any space-valued diagram category. Limits and
colimits in such categories are computed pointwise, so again the monomorphism
hypothesis is satisfied.

Example 5.19 Other interesting examples are given by various categories of topo-
logical spectra. To illustrate how the condition of Definition 5.16 might be checked,
we include a sketch in the case of diagram spectra; see Mandell, May, Schwede and
Shipley [14].
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To this end, let D be a small based topological category. Let R be a monoid in
the closed symmetric monoidal category of continuous functors from D to Top� .
Following [14, 1.10], the category of D–spectra over R is isomorphic to the category
of R–modules. The orthogonal factorization system .E ;M/ on Top� defines an
orthogonal factorization system on the functor category TopD

� with the classes and
factorizations defined pointwise. In any category with an orthogonal factorization sys-
tem .E ;M/ and monad T , if T preserves the class E then the orthogonal factorization
system lifts to the category of T –algebras; see Cockett [4, 2.3.7].

In our situation, the monad R^� is defined via a colimit, which is ultimately computed
pointwise in Top� . Because smash products preserve surjections in Top� and the
left class of any orthogonal factorization system is stable under colimits in the arrow
category, this orthogonal factorization system lifts to the category of R–modules. The
forgetful functor from R–modules to TopD

� preserves both limits and colimits; hence
this category satisfies the monomorphism hypothesis.

Remark 5.20 We should remark that any locally presentable topologically bicomplete
category C also satisfies our hypothesis. Even though local presentability does not seem
to be a reasonable assumption in the topological context, it might be in adaptations of
our methods to other situations, eg, categories enriched, tensored and cotensored in
appropriate categories other than Top. Furthermore, this observation highlights the
set-theoretical nature of the monomorphism hypothesis. To prove the claim, note that
in a locally ˛–presentable category C there exists a set of generators g so that the
associated representable functors C.g;�/ detect isomorphisms and preserve ˛–filtered
colimits. This, together with the fact that filtered colimits and finite limits commute
in Set, can be used to prove that any locally ˛–presentable category satisfies the
monomorphism hypothesis for the (strong epimorphism, monomorphism) orthogonal
factorization system and for the cardinal ˛ . We leave the remaining details to the
reader.

5.5 The main theorem

Our main result is the following theorem, which asserts that for a very general class of
topologically bicomplete categories, applying the free monad construction to Cole’s
step-one right functor R yields an algebraic weak factorization system.

Theorem 5.21 If C is topologically bicomplete category satisfying the monomorphism
hypothesis, the functor R of (5-6) satisfies the condition (|) and furthermore the
functorial factorization .C;F / constructed by the free monad sequence is an algebraic
weak factorization system.
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In particular, the right factor Ff is a (free) F –algebra and hence an R–algebra, and
hence a fibration. The left factor Cf is a (free) C–coalgebra, and in particular lifts
against all F –algebras by Lemma 3.9. It follows that Cf is a trivial cofibration. Thus,
we have the following theorem.

Theorem 5.22 On any topologically bicomplete category C satisfying the monomor-
phism hypothesis there exists an algebraic weak factorization system .C;F/ whose
right class consists precisely of the h–fibrations, while the left class is the class of
strong h–cofibrations that are homotopy equivalences.

By work of [19], nicely summarized in [17, 4.3.1 and 4.3.3], we have an immediate
corollary.

Corollary 5.23 Any topologically bicomplete category C satisfying the monomor-
phism hypothesis admits an h–model structure.

Proof of Theorem 5.21 Using Lemma 5.17, Cole’s step-one right functor R satisfies
the smallness condition .|/ required to construct the free monad F . By Proposi-
tions 5.10 and 4.10, AlgF Š AlgR Š I� admits a vertical composition law. We
conclude that the resulting free monad is part of an algebraic weak factorization system
by applying Theorem 4.15.

Remark 5.24 An alternative proof of the main theorem avoids Theorem 4.15. Instead,
one can show that the pointed endofunctor L carries a natural comonad structure,
where the comultiplication ı is constructed as follows: First note that, by Lemma 5.7,
the commutative square

Nf
�f

//

i0

��

X

Lf

��

Nf ˝ I
 f

// Ef

is classified by a map zıf W Nf !N Lf . Pushing out, we obtain a map ıf W Ef !ELf .
This defines (the codomain component of) a natural transformation EıW L!L2 mak-
ing L into a comonad.

Garner shows [8, 4.21-22] that the free monad can be constructed in the category of
functorial factorizations whose left factors is a comonad. Hence, this extra structure
is enough to guarantee the existence of an appropriate algebraic weak factorization
system, thereby providing another proof of Theorem 5.21.
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These arguments emphasize the versatility of the theory of algebraic weak factorization
systems. While Garner shows that cofibrantly generated algebraic weak factorization
systems are produced by Kelly’s free monad construction, we demonstrate that these
techniques also work in noncofibrantly generated cases.

6 Appendix

6.1 Cole’s construction, explicitly

In the light of Remark 5.12, Cole’s construction does not produce the free monad on
the pointed endofunctor R because R is not well-pointed. In this Appendix we explain
in detail why the maps  Rnf do not glue to give a lift in the diagram

(6-1)

NR!f
�R!f

//

i0

��

Z

R!f

��

NR!f ˝ I
y�R!f

//

::t
t

t
t

t
Y

the existence of which is equivalent to R!f being a fibration by Remark 5.11. To
this end, we will explicitly describe the underlying sets of the objects of the first two
iterations of Cole’s construction [5, Chapter 5] applied in the case of topological spaces.

Let f W X!Y be a morphism of topological spaces. The points of Nf are pairs .x;p/
with x 2 X and pW I ! Y a path in Y starting at f .x/. The map �f W Nf ! X

simply forgets the path, ie, .x;p/ 7! x , from which we deduce that, as a set, the
pushout3 Ef consists of two kinds of elements:

(i) .x; cf .x/; 0/ 2Ef , with x 2X and cf .x/ being the constant path at f .x/;

(ii) .x;p; t/ 2Ef with .p;x/ 2Nf , t 2 .0; 1�.

The induced map Rf W Ef ! Y sends an element .x;p; t/ 2Ef to the point p.t/.

Similarly, we can describe the space ERf as a set. Points in NRf are pairs consisting
of .x;p; t/ 2Ef together with a path p0W I! Y starting at p.t/. Points in ERf are
of the general form .x;p; t;p0; t 0/ with x 2 X , t; t 0 2 I , pW I ! Y a path starting
at f .x/, and p0W I ! Y a path starting at p.t/. There are four types:

3denoted by Z1 in [5]
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(1) .x; cf .x/; 0; cf .x/; 0/;

(2) .x;p; t; cp.t/; 0/ with t 2 .0; 1�;

(3) .x; cf .x/; 0;p
0; t 0/ with t 0 2 .0; 1�;

(4) .x;p; t;p0; t 0/, with t; t 0 2 .0; 1�.

Recall that the object Z in Cole’s proposed factorization,

X
j
�!Z

R!f
���! Y;

is defined to be the colimit of the ZnC1 D ERnf with respect to the maps LRnf .
Since all the LRnf are closed embeddings, in order for the maps  Rnf to glue, the
square

(6-2)

N Rnf ˝ I
 Rnf

//

N.LRnf;id/˝I
��

ERnf

LRnC1f
��

N RnC1f ˝ I
 

RnC1f

// ERnC1f

has to commute, the left vertical map being the one with respect to which the colimit
object NR!f is formed. Observe that, by construction, this square commutes if the
right vertical map LRnC1f is replaced by E.LRnf; id/. Using the notation .R; E�/
for the pointed endofunctor, the map LRnC1f is the domain component of E�RnC1f

while E.LRnf; id/ is the domain component of RE�Rnf .

But specializing to n D 0, we see that the LRf sends points in Ef of type (ii) to
points of type (2) in ERf , while E.Lf; id/ maps those points to elements of type (3).
Therefore, the diagram (6-2) does not commute and the maps  Rnf do not glue to
give a lift in (6-1).

Remark 6.3 We should note that this argument can not rule out the possibility that
the map R!f is a fibration; however, this seems very difficult to check, as the crafted
candidate fails to provide a lift in the colimit.

6.2 Our construction, explicitly

The free monad construction is described in [8, 4.16]. For the reader’s convenience, we
describe the first few stages of the construction of the functorial factorization whose
right factor is the free monad on the pointed endofunctor of .L;R/.
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Let C 1 DL and let F1 DR. Define C 2 and F2 using the coequalizer !2
f

:

X

Lf
��

X

LRf �Lf
��

X

C 2f
��
�
�
�

Ef
LRf
//

E.Lf;id/
//

Rf

��

ERf
!2
f

//___

R2f

��

E2f

F 2f

��
�
�
�

Y Y Y

Specializing to the category of topological spaces, in the notation of the previous
section, the quotient map !2

f
identifies points of types (2) and (3) in the obvious way.

Continuing, define C 3 and F3 using the coequalizer !3
f

,

X

LRf �Lf
��

X

LF 2f �C 2f
��

X

C 3f
��
�
�
�

ERf
//
//

R2f

��

EF2f

RF 2f

��

!3
f
//___ E3f

F 3f

��
�
�
�

Y Y Y

of the following parallel pair of morphisms:

X

LRf �Lf
��

X

C 2f
��

X

LF 2f �C 2f
��

ERf

R2f

��

!2
f
// E2f

F 2f

��

LF 2f
// EF2f

RF 2f

��

Y Y Y

X

LRf �Lf
��

X

LR2f �LRf �Lf
��

X

LF 2f �C 2f
��

ERf
E.LR;id/

//

R2f

��

ER3f

R3f

��

E.!2f;id/
// EF2f

RF 2f

��

Y Y Y

The remaining details are left as an exercise.
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