
msp
Algebraic & Geometric Topology 13 (2013) 1071–1087

On the geometric realization and
subdivisions of dihedral sets

SHO SAITO

We extend to dihedral sets Drinfeld’s filtered-colimit expressions of the geometric
realization of simplicial and cyclic sets. We prove that the group of homeomorphisms
of the circle continuously act on the geometric realization of a dihedral set. We also
see how these expressions of geometric realization clarify subdivision operations on
simplicial, cyclic and dihedral sets defined by Bökstedt, Hsiang and Madsen, and
Spaliński.

18G30; 55U10

1 Introduction

By expressing the geometric realization of simplicial sets and cyclic sets as filtered
colimits, Drinfeld [2] proved in a substantially simplified way the fundamental facts that
geometric realization preserves finite limits, and that the group of orientation-preserving
homeomorphisms of the interval Œ0; 1� (resp. the circle R=Z) acts on the realization of
a simplicial (resp. cyclic) set. In this paper, we extend his result to dihedral sets. We
also see how these expressions lead to a clarified description of subdivision operations,
which were introduced by Bökstedt, Hsiang and Madsen [1] for simplicial and cyclic
sets, and by Spaliński [6] for dihedral sets. In Spaliński’s definition, the subdivisions of
dihedral sets are merely simplicial sets. We prove that they in fact have richer structures.
We have strived to make the exposition self-contained and to give complete proofs of
the stated results.

1.1 Terminology and results

Firstly, we review here the results of Drinfeld [2] on geometric realization. Let � be the
simplicial index category of the finite linearly ordered sets Œn�D f0< � � �< ng, n� 0,
and order-preserving maps. By definition, a simplicial set is a contravariant functor
X Œ � � from � to the category Sets of sets. We write �Œn�Œ � � for the standard simplicial
n–simplex Hom�.Œ � �; Œn�/ and set �Œn� D

˚
.z0; : : : ; zn/ 2 Œ0; 1�

nC1
ˇ̌ Pn

iD0 zi D 1
	

,
with the standard Euclidean topology.
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Definition 1.1 (Milnor [4]) The geometric realization jX Œ � �j of the simplicial set
X Œ � � is the colimit

colim�Œn�Œ � �!X Œ � ��Œn�;

where the index category is formed by simplicial maps from standard simplicial sim-
plices to X Œ � � and natural transformations.

We can construct jX Œ � �j explicitly by

jX Œ � �j D
a
n�0

X Œn���Œn�=�;

where X Œn� is given the discrete topology and where � is the equivalence relation
generated by the relation that identifies .x; ��z/ with .��x; z/ for every pair .x; z/ 2
X Œn���Œm� and for every map � W Œm�! Œn� in �. However, we interchangeably adopt
any other space having the universal property of the colimit as a definition of jX Œ � �j,
since there are canonical isomorphisms between such spaces.

Drinfeld [2] re-defined the geometric realization as a filtered colimit, showing that
his definition is equivalent to Milnor’s. To introduce his expression, we first need
to extend the simplicial set X Œ � � to a contravariant functor zX Œ � � from the category
�big of all non-empty finite linearly ordered sets. We denote by F the set of all
finite subsets of Œ0; 1�, viewed as a category with morphisms being inclusions. For
each F 2 F , we order the set of connected components �0.Œ0; 1� nF / by declaring
that Œx� � Œy� if x � y 2 Œ0; 1� n F . If F � G there is an order-preserving map
�0.Œ0; 1� nG/! �0.Œ0; 1� nF /.

Theorem 1.1 (Drinfeld [2]) The geometric realization jX Œ � �j of the simplicial set
X Œ � � is given by the colimit

colimF2F zX Œ�0.Œ0; 1� nF /�:

The point is that the index category F is filtering, so it results as an immediate
consequence that geometric realization, at least as a functor from the category of
simplicial sets to Sets, preserves finite limits. This expression also makes it obvious
that the group Homeo.Œ0; 1�; @Œ0; 1�/ of order-preserving homeomorphisms of Œ0; 1�
acts on the set jX Œ � �j.

In fact, these statements still hold when the geometric realization is considered to
take values in the category of k –spaces. Drinfeld [2] proved that the topology on
jX Œ � �j given in Definition 1.1 can be described by the metric d on the above colimit,
defined as follows. For every F 2 F , we write �F for the measure on �0.Œ0; 1� nF /
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defined by �F .A/D
P

c2A l.c/. Here A is a subset of �0.Œ0; 1�nF / and l.c/ denotes
the length of the path-connected component of Œ0; 1� n F corresponding to c 2 A,
ie, if c is the interval between x 2 F and y 2 F then l.c/ D jx � yj. Take two
elements of colimF2F zX Œ�0.Œ0; 1�nF /�. Since F is filtering, we may assume these to
be represented by elements u and v of zX Œ�0.Œ0; 1� nF /� with some common F 2 F .
We define the distance of the two elements to be the minimum of �F .�0.Œ0; 1�nF /nA/

with respect to subsets A of �0.Œ0; 1�nF / such that the map zX Œ�0.Œ0; 1�nF /�! zX ŒA�

takes u and v to an identical element. (If there does not exist such an A, we set the
distance to be 1.) See [2] for details.

A similar argument applies to cyclic sets introduced by Connes. Let �C be the
category that makes the family fCnC1gn�0 of cyclic groups of order nC 1 into a
crossed simplicial group in the sense of Fiedorowicz and Loday [3]. Recall:

Definition 1.2 (Fiedorowicz and Loday [3]) A crossed simplicial group is a family
of groups fGngn�0 together with a category �G that has one object Œn� for each n� 0,
containing � as a subcategory, and satisfies the following conditions:

(1) The group of automorphisms Aut�G Œn� on each Œn� is isomorphic to the group
G

op
n .

(2) Every morphism Œm�! Œn� can be uniquely written as a composite � ıg with
� 2 Hom�.Œm�; Œn�/ and g 2 Aut�G Œm�.

For a �G–set X Œ � � (ie, a contravariant functor from �G to Sets), we define its
geometric realization to be the realization of the underlying simplicial set

�op ,! .�G/op X Œ � �
���! Sets :

Cyclic sets are defined to be �C –sets. Drinfeld [2] constructed �C as the category of
the ZC–categories Œn�cyc , n� 0, and ZC–functors, as recalled in Section 2 below.

The cyclic set X Œ � �W .�C /op! Sets can be extended to a contravariant functor zX Œ � �
from the extended category �bigC of ZC–categories isomorphic to some Œn�cyc . Write
F 0 for the set of all finite subsets of R=Z, viewed as a filtered category.

Theorem 1.2 (Drinfeld [2]) The geometric realization jX Œ � �j of the cyclic set X Œ � �

is given by the filtered colimit

colimF2F 0 zX Œ�0.R=Z nF /�:

In particular, the group HomeoCR=Z of orientation-preserving homeomorphisms of
the circle R=Z acts continuously on jX Œ � �j.
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Our result on the realization of dihedral sets is analogous to the above theorem. A
dihedral set X Œ � � is a �D–set, where �D is the category that makes the family
fDnC1gn�0 of the dihedral groups of order 2.nC 1/ into a crossed simplicial group
(Fiedorowicz and Loday [3]). Fiedorowicz and Loday [3] constructed �D by giving a
presentation of it, ie, by specifying generators and relations. We show that �D can be
equivalently introduced as the category of Œn�cyc , n� 0, and covariant and contravariant
ZC–functors.

There is a similar extension of the dihedral set X Œ � �W .�D/op! Sets to a contravariant
functor zX Œ � � from the extended category �bigD of ZC–categories isomorphic to some
Œn�cyc and covariant and contravariant ZC–functors. It is known that the geometric
realization of a dihedral set admits a continuous action by the orthogonal group O.2/.
We prove the following new, stronger result:

Theorem 1.3 The geometric realization jX Œ � �j of the dihedral set X Œ � � is given by
the filtered colimit

colimF2F zX Œ�0.R=Z nF /�:

In particular, the group Homeo R=Z of all homeomorphisms of the circle R=Z acts
continuously on jX Œ � �j.

From these filtered-colimit expressions, we find a clearer description of subdivision
operations. For every positive integer r , Bökstedt, Hsiang and Madsen [1] defined
an operation called the r –fold edgewise subdivision of simplicial or cyclic sets. We
denote by sdr X Œ � � the r –fold edgewise subdivision of the simplicial or cyclic set
X Œ � �, whose definition is recalled in Section 3. Write Fr and F 0r for the set of finite
subsets of Œ0; r � and R=rZ, respectively. We introduce the following expression for
subdivisions, which gives a new natural proof of the result by Bökstedt, Hsiang and
Madsen [1] that jX Œ � �j and jsdr X Œ � �j are canonically homeomorphic.

Theorem 1.4 For the simplicial (resp. cyclic) set X Œ � �, the realization jsdr X Œ � �j is
given by the filtered colimit

colimF2Fr
zX Œ�0.Œ0; r � nF /� .resp. colimF2F 0

r
zX Œ�0.R=rZ nF /�/

and hence admits an action by

Gr D Homeo.Œ0; r �; @Œ0; r �/ .resp. Gr D HomeoCR=rZ/:

In particular, the bijection Œ0; r �! Œ0; 1� (resp. R=rZ!R=Z) given by x 7! x=r in-
duces isomorphisms Dr W jsdr X Œ � �j!jX Œ � �j and dr W Gr!GDHomeo.Œ0; 1�; @Œ0; 1�/
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(resp. dr W Gr !G D HomeoCR=rZ) such that the diagram

Gr � jsdr X Œ � �j ����! jsdr X Œ � �j??ydr�Dr

??yDr

G � jX Œ � �j ����! jX Œ � �j

commutes.

Bökstedt, Hsiang and Madsen [1] used the diagonal embedding �Œn�!�Œr.nC1/�1�,
u 7! .u=r; : : : ;u=r/, to give a homeomorphism jsdr X Œ � �j ! jX Œ � �j, but it required
some effort to construct its inverse and to prove that the homeomorphism is compatible
with the appropriate actions on both sides. In contrast, our homeomorphism induced
from x 7! x=r is clear to have an inverse and to make the diagram above commute.
(The same thing can be said to Theorem 1.5 below.)

For dihedral sets, Spaliński [6] defined two types of subdivision operations, sdr and
sde

r . In his definition, both operations assign to a dihedral set X Œ � � a simplicial set. We
re-define in Section 3 sdr X Œ � � and sde

r X Œ � � to have the richer structures of a �r D–set
and a �2r D–set, respectively. Here �r D is the category that makes fDr.nC1/gn�0

into a crossed simplicial group.

Theorem 1.5 For the dihedral set X Œ � �, jsdr X Œ � �j (resp. jsde
r X Œ � �j) is given by the

filtered colimit

colimF2F 0
r
zX Œ�0.R=rZ nF /� .resp. colimF2F2r

zX Œ�0.R=2rZ nF /�/

and hence admits an action by Gr D Homeo R=rZ (resp. Ge
r D Homeo R=2rZ). In

particular, the bijection R=rZ!R=Z (resp. R=2rZ!R=Z) given by x 7!x=r (resp.
x 7! x=.2r/) induces isomorphisms Dr W jsdr X Œ � �j! jX Œ � �j (resp. De

r W jsde
r X Œ � �j!

jX Œ � �j) and dr W Gr ! G D Homeo R=Z (resp. d e
r W G

e
r ! G D Homeo R=Z) such

that the diagram

Gr � jsdr X Œ � �j ����! jsdr X Œ � �j??yDr�dr

??yDr

G � jX Œ � �j ����! jX Œ � �j

resp.

Gr � jsde
r X Œ � �j ����! jsde

r X Œ � �j??yDe
r�d e

r

??yDe
r

G � jX Œ � �j ����! jX Œ � �j

commutes.

Finally, we will explain how sde
r X Œ � � admits simplicial actions by Dr and Cr , and

hence defines simplicial sets .sde
r X Œ � �/Dr and .sde

r X Œ � �/Cr , respectively, and see that
the latter one again has the structure of a dihedral set.
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2 The proof of Theorem 1.3

2.1 Geometric realization of dihedral sets

We first recall Drinfeld’s construction of �C as a category of ZC–categories [2]. Here
ZC is the additive monoid of non-negative integers, and a ZC–category is a category
C together with a nontrivial monoid map ZC! EndC idC . Ie, there is a non-identity
endomorphism 1c W c! c on every object c 2 ob C such that f ı 1c1

D 1c2
ı f for

every f W c1! c2 . A ZC–functor is a functor between ZC–categories that preserves
the structural endomorphisms.

The most basic example of a ZC–category is the circle R=Z. Morphisms from x to y

are homotopy classes of continuous maps f W Œ0; 1�!R!R=Z such that f .0/D x

and f .1/D y , with Œ0; 1�!R non-decreasing and R!R=Z the canonical projection.
The ZC–category structure is given by 1x D(class of degree 1 loops based at x ).
If F � R=Z is a finite subset, the set of connected components �0.R=Z n F / can
be considered as a ZC–category. The set of morphisms from c to d is defined by
choosing representatives xc 2 c and xd 2 d :

Hom�0.R=ZnF /.c; d/D HomR=Z.xc ;xd /

If F �G there is a ZC–functor �0.R=Z nG/! �0.R=Z nF /.

There is a way of constructing a ZC–category Acyc from a given small category A
[2, Example 4 of Section 2]. In the particular case where A D fa0 < � � � < ang is a
linearly ordered set, viewed as a category, then Acyc is the ZC–category that has the
same objects as A and that has morphisms generated by those in A together with one
new generator an! a0 . The structural endomorphisms are given by 1ai

W ai ! an!

a0! ai . If AD Œn� then Œn�cyc is identified with the full ZC–subcategory

fŒ0�; Œ1=.nC 1/�; : : : ; Œn=.nC 1/�g �R=Z;

where Œ � � denotes the class in R=Z. (For notational simplicity we will frequently
omit such brackets.) The cyclic index category �C (resp. �bigC ) is defined to be the
category of the ZC–categories Œn�cyc (resp. small ZC–categories isomorphic to some
Œn�cyc ) and ZC–functors.
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Analogously, we set �D to be the category whose set of objects is the same as that of
�C , and whose set of morphisms from Œm�cyc to Œn�cyc is the disjoint union of the sets
of covariant and contravariant ZC–functors from Œm�cyc to Œn�cyc .

Remarks (1) If C is a ZC–category, the ZC–category structure on the opposite
category C op is given by 1cD .1c/

op for c2ob C op . (2) Considering the disjoint union
means that a functor cannot be both covariant and contravariant. As a consequence,
eg, Hom�D.Œ0�cyc; Œ0�cyc/ has two elements: the identity idŒ0�cyc W Œ0�cyc ! Œ0�cyc as a
covariant functor, and idŒ0�cyc W Œ0�cyc! Œ0�

op
cyc as a contravariant functor.

The composition in �D is defined by usual composition of functors, under the rule
that the composite of two covariant or contravariant functors should be covariant, and
the composite of covariant and contravariant functors should be contravariant.

The following proposition shows that �D is the correct dihedral index category.

Proposition 2.1 The category �D makes the family fDnC1gn�0 into a crossed sim-
plicial group.

Proof We have to check Conditions (1) and (2) of Definition 1.2.

(1) For each n� 0, define ZC–functors

�nW Œn�cyc! Œn�cyc and !nW Œn�cyc! Œn�op
cyc

by �n.x/D 1=.nC 1/C x and !n.x/D�1=.nC 1/� x , respectively. Then �n and
!n are isomorphisms in �D on Œn�cyc of order nC 1 and 2, respectively, and satisfy
the relation �n!n D !n�

�1
n . In addition, any � 2 Aut�D Œn�cyc can be written as a

product of �n and !n . Indeed, if � is covariant, then � 2 Aut�C Œn�cyc D h�ni is a
power of �n . If � is contravariant, then � ı !n is covariant, and so a power of �n .
Hence Aut�D Œn�cyc is generated by �n and !n . This means that

Aut�D Œn�cyc D h�n; !n j �
nC1
n D !2

n D 1; �n!n D !n�
�1
n i

is the dihedral group of order 2.nC 1/.

(2) Let �W Œm�cyc ! Œn�cyc be a map in �D . If � is a covariant functor, then � 2
Hom�C .Œm�cyc; Œn�cyc/, so that it can be uniquely written as � D  ıg with  being
a map in � and g 2 Aut�C Œm�cyc � Aut�D Œm�cyc . If � is contravariant, then we can
uniquely write � ı!m 2Hom�C .Œm�cyc; Œn�cyc/ as a composite � ı!mD ıg with  
in � and g 2 Aut�C Œm�cyc . Multiplication by !m on the right yields � D  ıg ı!m

with g ı!m 2 Aut�D Œm�cyc .
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We extend the dihedral set X Œ � � to a functor zX Œ � �W .�bigD/op! Sets, by defining on
objects zX Œ�� D X Œm��cyc and on morphisms zX Œf � D X Œ zf �W X Œm��cyc! X Œm��cyc ,
where f W �! � is a map in �bigD and zf is the unique map in �D that makes the
following diagram commute:

�
i�
����! Œm��cyc

f

??y zf

??y
�

i�
����! Œm��cyc

Equivalently, zX Œ � � is the unique (up to unique isomorphism) map that is identical
to X Œ � � on �Dop . For example, if X Œ � � is the standard dihedral set ƒdihŒn�Œ � � D

Hom�D.Œ � �; Œn�cyc/, the extension BƒdihŒn� Œ � � is given by � 7! Hom�bigD.�; Œn�cyc/.

By definition, jX Œ � �j is the realization of the underlying cyclic set X j.�C /op Œ � �. Hence
we have

jX Œ � �j D jX j.�C /op Œ � �j D colimF2F 0 D.X j.�C /op/Œ�0.R=Z nF /�:

The extension D.X j.�C /op/Œ � � of X j.�C /op Œ � � to .�bigC /op is nothing but the restriction
zX j.�bigC /op Œ � � of zX Œ � � to .�bigC /op , so that we see:

jX Œ � �j D colimF2F 0 zX j.�bigC /op Œ�0.R=Z nF /�D colimF2F 0 zX Œ�0.R=Z nF /�

2.2 Dihedral simplex Simn
dih

Let Simn
cyc denote, as in [2], the set of points .x0; : : : ;xn/ 2 .R=Z/nC1 such that

x0; : : : ;xn are in the correct cyclic order. We also denote by Simn;op
cyc the set of points

.x0; : : : ;xn/ 2 .R=Z/nC1 such that xn; : : : ;x0 are in the correct cyclic order. The
geometric realization of the standard dihedral set ƒdihŒn�Œ � �D Hom�D.Œ � �; Œn�cyc/ is
identified with the disjoint union Simn

dih of Simn
cyc and Simn;op

cyc . This identification is
induced from the maps �W Hom�bigD.�0.R=Z nF /; Œn�cyc/! Simn

dih , F 2 F 0 , given
as follows. Let f W �0.R=Z nF /! Œn�cyc be a covariant ZC–functor. We associate to
f a point �.f /D .x0; : : : ;xn/ 2 Simn

cyc in the following way. Let i be the smallest
integer between 0 and n such that i=.n C 1/ 2 Œn�cyc � R=Z is in the image of
f . Suppose that an arc starting from x 2 F is sent to i=.nC 1/ 2 Œn�cyc , and the
preceding arc is not (remember that the arcs are oriented in the cyclic order). We set
x0 D x1 D � � � D xi D x . Next, suppose j be the second smallest in the image of f ,
and that an arc starting from y 2F is sent to j=.nC1/ 2 Œn�cyc (and the preceding arc
is not). We set xiC1 D � � � D xj D y . In this way we obtain x0 through xk , where k
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is the largest in the image of f . We finally set xkC1 D � � � D xnC1 D x0 , and thus get
.x0; : : : ;xn/ 2 Simn

cyc .

Similarly, we associate to a contravariant ZC–functor f W �0.R=Z n F /! Œn�cyc a
point �.f /D .x0; : : : ;xn/2 Simn;op

cyc as follows. Let i be the smallest integer between
0 and n such that i=.nC 1/ 2 Œn�cyc � R=Z is in the image of f . If an arc ending
at x 2 F is sent to i=.nC 1/ 2 Œn�cyc and the succeeding arc is not, then we set
x0 D � � � D xi D x . We next suppose j be the second smallest in the image of f , and
that an arc ending at y 2F is sent to j=.nC1/ 2 Œn�cyc (and the succeeding arc is not).
Then xiC1 D � � � D xj D y . We thus obtain x0 through xk , where k is the largest in
the image of f . Setting xkC1 D � � � D xnC1 D x0 , we get .x0; : : : ;xn/ 2 Simn;op

cyc .

Since Simn
cyc is homeomorphic to the product of R=Z and the standard simplicial

n–simplex �n (see [2]), and since Simn;op
cyc is homeomorphic to Simn

cyc by the order-
reversing map �W .x0; : : : ;xn/ 7! .xn; : : : ;x0/, we see that the dihedral simplex Simn

dih
is identified with the product of �n and the disjoint union of two copies of R=Z.

A homeomorphism ˛W R=Z ! R=Z induces a homeomorphism ˛ � � � � � ˛ on
.R=Z/nC1 . If ˛ is orientation-preserving, then ˛ � � � � � ˛ restricts to a homeo-
morphism on Simn

cyc . In this case we also get a homeomorphism on Simn;op
cyc via

conjugation by �. If ˛ is orientation-reversing, then ˛ � � � � � ˛ defines a homeo-
morphism between Simn

cyc and Simn;op
cyc . Hence ˛ gives rise to a homeomorphism

ˆ.˛/ on Simn
dih that sends a point .x0; : : : ;xn/ 2 Simn

cyc or Simn;op
cyc to the point

.˛.x0/; : : : ; ˛.xn// 2 Simn
cyc or Simn;op

cyc .

2.3 The Homeo R=Z–action

We are now going to complete the proof of Theorem 1.3, by constructing the desired
continuous action of Homeo R=Z on the realization of a general dihedral set X Œ � �.

A homeomorphism of R=Z gives rise to an isomorphism �˛W jX Œ � �j ! jX Œ � �j defined
by

�˛ ı inF D in˛.F / ı zX Œ˛
�1
F �;

where ˛F W �0.R=Z nF /! �0.R=Z n ˛.F // is the covariant or contravariant ZC–
isomorphism induced by ˛ . Thus Homeo R=Z acts on jX Œ � �j, and the proof of the
continuity is as follows, being analogous to the cyclic case (see [2]). First, we have

jX Œ � �j D colimƒdihŒn�Œ � �!X Œ � �jƒdihŒn�Œ � �j D colimƒdihŒn�Œ � �!X Œ � � Simn
dih;

and the action of ˛ on jX Œ � �j is the same as the one induced from the action ˆ.˛/ of
˛ on Simn

dih described above. Hence the continuity of the action is equivalent to the
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continuity of the map Homeo R=Z! HomK.Simn
dih;Simn

dih/, ˛ 7! ˆ.˛/. (Here K
denotes the category of k –spaces and the sets of maps are topologized by the standard
k –space topology.)

In the argument below, we use the distance on R=Z, given by

jx�yj Dmin.jx�yj; jx� 0jC j1�yj/;

where x and y 2R=Z in the left-hand side are represented by the unique elements in
Œ0; 1�, still denoted by x and y and assumed that x � y , in the right-hand side. We
get an induced distance on the product .R=Z/nC1 , its subsets Simn

cyc and Simn;op
cyc ,

and hence on their disjoint union Simn
dih . Remember that the sub-basis of the space

HomK.Simn
dih;Simn

dih/ is given by the subsets

N.h;U /D ff W Simn
dih! Simn

dih j f .h.K//� U g

where hW K! Simn
dih is a continuous map from a compact Hausdorff space K and

where U is an open set of Simn
dih . Hence it suffices to show that ��1

n N.h;U / is open in
Homeo R=Z. To this end, we fix an arbitrary ˛ 2��1

n N.h;U / and will show that there
is an open neighbourhood N.˛/ of ˛ in Homeo R=Z such that N.˛/���1

n N.h;U /.
Since U � Simn

dih is open, for every x 2 h.K/, there exists a positive real number
"x such that B00x D fy 2 Simn

dih j jy � �n.˛/.x/j < "xg is contained in U . We
take a smaller ball B0x D fy 2 Simn

dih j jy � �n.˛/.x/j < "x=ng in B00x , and put
Bx D �n.˛/

�1.B0x/\ h.K/. Then fBxgx2h.K / forms an open cover for h.K/. A
compactness argument tells us that we can choose finite x.1/; : : : ;x.l/ 2 h.K/ such
that h.K/D

Sl
jD1 Bx.j / . If Bx denotes the closure of Bx in h.K/, we also have

h.K/D
Sl

jC1 Bx.j / :

Note that Bx is compact (because it is a closed set in a compact set). We let �x W Bx!

h.K/! Simn
dih be the inclusion, and consider for every i D 1; : : : ; n and j D 1; : : : ; l ,

the set

N 0.pi ı �x.j / ;pi.B
0

x.j /
//D fˇ 2 Homeo R=Z j ˇ.pi.Bx.j ///� pi.B

0

x.j /
/g;

where pi W Simn
dih ! R=Z is the projection onto the i th component. Then N 0.pi ı

�x.j / ;pi.B
0

x.j /
// is an open set in Homeo R=Z containing ˛ . We also have\
1�i�n;1�j�l

N 0.pi ı �x.j / ;pi.B
0

x.j /
//� ��1

n .N.h;U //:
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Indeed, let ˇ be in the left-hand side and take x 2 h.K/ arbitrarily. Then there is some
j such that x D .x1; : : : ;xn/ 2 Bx.j / . For every 1� i � n, we have

ˇ.pi.x//D ˇ.xi/ 2 pi.B
0

x.j /
/� fyi 2 Œ0; 1� j jyi �pi.�n.˛/.x

.j///j< "x.j /=ng:

Hence,

j�n.ˇ/.x/��n.˛/.x
.j//j2D

nX
iC1

jˇ.xi/�˛.x
.j/
i /j2�

nX
iD1

"2
x.j /

=n2
D "2

x.j /
=n<"2

x.j /
:

Therefore we see �n.ˇ/.x/ 2 B00
x.j /
� U . This implies ˇ 2 ��1

n .N.h;U //. Thus we
take N.˛/D

T
1�i�n;1�j�l N 0.piı�x.j / ;pi.B

0

x.j /
//, obtaining the desired conclusion.

The proof of Theorem 1.3 is now complete.

3 Subdivisions and proofs of Theorems 1.4 and 1.5

3.1 Subdivisions of simplicial and cyclic sets

Let X Œ � � be a simplicial set. For every positive integer r , let sdr W �! � be the
functor defined on objects by sdr Œn�D Œr.nC 1/� 1� and on morphisms by

sdr Œf �.a.mC 1/C b/D a.nC 1/Cf .b/;

where f W Œm�! Œn�, 0� a< r , and 0� b �m. The r –fold edgewise subdivision of
X Œ � � is defined to be the composite sdr X Œ � �DX Œ � �ı sdr , which is again a simplicial
set.

If X Œ � � is a cyclic set, its subdivisions are defined analogously, but they are not
cyclic sets but �r C –sets. The category �r C , for each r , is defined to make the
family fCr.nC1/gn�0 into a crossed simplicial group, by using the ZC–category
R=rZ instead of R=Z. Denote by Œn�r the subset (considered as a ZC–subcategory)
fŒ.k.nC1/C l/=.nC1/� j 0� k < r; 0� l � ng of R=rZ. We define �r C to have as
objects the ZC–categories Œn�r �R=rZ, n� 0, and to have as morphisms from Œm�r
to Œn�r , ZC–functors satisfying f .xC 1/D f .x/C 1. The simplicial index category
� is embedded into �r C via the functor that sends Œn� to Œn�r and f W Œm�! Œn� to
fr W Œm�r 3 .k.mC 1/C l/=.mC 1/ 7! .k.nC 1/Cf .l//=.nC 1/ 2 Œn�r .

Let sdr W �r C !�C be the functor that is defined on objects by

sdr Œn�r D Œr.nC 1/� 1�cyc

and on morphisms by

sdr Œf �D �
�1
n ıf ı �mW Œr.mC 1/� 1�cyc! Œr.nC 1/� 1�cyc;
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where f W Œm�r ! Œn�r is a map in �r C and �m and �n are the set bijections from
Œm�r to Œr.mC 1/� 1�cyc , and from Œn�r to Œr.nC 1/� 1�cyc , respectively, induced by
the isomorphism �W R=rZ! R=Z, x 7! x=r . This functor is an extension of the
subdivision functor for simplicial sets, in the sense that the diagram

�r C
sdr
����! �Cx?? x??

�
sdr
����! �

commutes. The r –fold edgewise subdivision sdr X Œ � � of the cyclic set X Œ � � is defined
to be the composite X Œ � � ı sdr .

3.2 Proof of Theorem 1.4

Case of simplicial sets By Drinfeld’s formula for simplicial sets, we have

jsdr X Œ � �j D colimF2F Asdr X Œ�0.Œ0; 1� nF /�:

For each F 2F , let Fr denote the finite set fnCx j 0� n< r;x 2F [f0; 1gg � Œ0; r �.
If n is the cardinality of �0.Œ0; 1� nF /, then that of �0.Œ0; r � nFr / is rn. In this case
we have Asdr X Œ�0.Œ0; 1� n F /� D sdr X Œn� 1� D X Œrn� 1� D zX Œ�0.Œ0; r � n Fr /� by
construction. Therefore the realization of the subdivision can be rewritten as

jsdr X Œ � �j D colimF2F zX Œ�0.Œ0; r � nFr /�:

Now we compare the index categories of the colimits colimF2F zX Œ�0.Œ0; r �nFr /� and
colimF2Fr

zX Œ�0.Œ0; r � nF /�. For every F 2 Fr there exists a set F 0 2 F such that
F � .F 0/r . Indeed, fx 2 Œ0; 1� j nCx 2 F for some 0� n< rg � Œ0; 1� is such a set.
This means that the subcategory of Fr consisting of subsets in Œ0; r � of the form Fr

with F 2 F is cofinal, whence we obtain the expression of the statement.

Case of cyclic sets In general, it can be likewise proved that the geometric realization
of a �r C –set Y Œ � � is given by

colimF
zY Œ�0.R=rZ nF /�;

where F runs through finite subsets of R=rZ such that card�0.R=rZ/D r.nC 1/,
n � 0, and where zY Œ � � is the extension of Y Œ � � to the category �r;bigC of ZC–
categories isomorphic to some Œn�r . Thus jsdr X Œ � �j is the colimit

colimF
Asdr X Œ�0.R=rZ nF /�;

which can be deformed into the desired form in a similar way to the previous case.
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3.3 Subdivisions of dihedral sets and proof of Theorem 1.5

Define the category �r D to have the same set of objects as �r C , and to have as
morphisms covariant ZC–functors f satisfying f .xC1/Df .x/C1 and contravariant
ZC–functors g satisfying g.xC 1/D g.x/� 1. This category contains �r C and, in
particular, � as subcategories. We notice that if we write

�r;nW Œn�r ! Œn�r !r;nW Œn�r ! Œn�r

for the isomorphisms in �r D given by �r;n.x/ D 1=.n C 1/ C x and !r;n.x/ D

�1=.nC 1/�x , respectively, for each n, then they satisfy the relations

�r.nC1/
r;n D !2

r;n D 1; �r;n!r;n D !r;n�
�1
r;n :

Moreover, an argument analogous to Proposition 2.1 shows that �r D is generated
by �r;n , !r;n , and fr with f in �. Therefore �r D makes fDr.nC1/gn�0 into a
crossed simplicial group. We also note that �r D has a presentation described as
follows. If d i W Œn� 1�! Œn� and si W ŒnC 1�! Œn�, 0 � i � n, denote the face and
degeneracy operators in �, then �r D is generated by d i

r , si
r , �r;n , and !r;n , subject

to the relations:

(S-1) d i
r d

j
r D d

j
r d i�1

r .j < i/

(S-2) si
r s

j
r D s

j�1
r si

r .i < j /

(S-3) si
r d

j
r D

8<:
d

j
r si�1

r .j < i/

1 .i D j ; j � 1/

d
j�1
r si

r .i < j � 1/

(D-1) !2
r;n D �

r.nC1/
r;n D 1

(D-2) �r;n!r;n D !r;n�
�1
r;n

(SD-1) !r;nd i
r D dn�i

r !r;n�1 .0� i � n/

(SD-2) !r;nsi
r D sn�i

r !r;nC1 .0� i � n/

(SD-3) �r;nd i
r D

�
d iC1

r �r;n�1 .i ¤ n/

d0
r .i D n/

(SD-4) �r;nsi
r D

�
siC1
r �r;nC1 .i ¤ n/

s0
r �

2
r;nC1

.i D n/

The extended category �r;bigD , and the extension of a �r D–set Y Œ � � to

zY Œ � �W .�r;bigD/op
! Sets
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are defined likewise. The geometric realization of the �r D–set Y Œ � � is given by

colimF
zY Œ�0.R=rZ nF /�;

where F runs through finite subsets of R=rZ such that card�0.R=rZ/D r.nC 1/,
n� 0.

Let X Œ � � be a dihedral set. For each r , the dihedral subdivision functor sdr W �r D!

�D is constructed in the same way as the cyclic subdivision functor.

Definition 3.1 We define sdr X Œ � � to be the �r D–set X Œ � � ı sdrW .�r D/op! Sets.

Remark Spaliński [6] defined sdr X Œ � � to be the r –fold edgewise subdivision of the
underlying simplicial set X j�op Œ � �. Our definition is compatible with Spaliński’s since
we have the following commutative diagram:

.�r D/op sdr
����! .�D/op X Œ � �

����! Setsx?? x?? 



�op sdr

����! �op X j�op Œ � �
������! Sets

3.3.1 Combination with Quillen and Segal’s edgewise subdivision Spaliński [6]
introduced another subdivision sde

r X Œ � � of the dihedral set X Œ � �, for each r � 1,
combining sdr with Quillen and Segal’s subdivision functor sde defined in [5]. The
functor sde

W �!� is given on objects by sdeŒn�D Œ2nC 1�, and on morphisms by
sdeŒf �D f e , where f W Œm�! Œn� is a map in � and f eW Œ2mC 1�! Œ2nC 1� is the
map defined by f e.k/Df .k/ and f e.2mC1�k/D 2nC1�f .k/ for 0�k �m. In
Spaliński’s definition, sde

r X Œ � � is the composite X j�op Œ � �ısdr ı sde of the underlying
simplicial set of X Œ � � with sdr and sde .

In fact, sde
r X Œ � � can be defined as a �2r D–set as follows. Let sde

r W �2r D!�r D

be the functor that is given on objects by sde
r Œn�2r D Œ2nC 1�r and on morphisms by

sde
r Œ�2r;n�D�r;2nC1 , sde

r Œ!2r;n�D!r;2nC1 , and sde
r Œf2r �Df

e
r , where f W Œm�! Œn� is a

map in � and f e
r W Œ2mC1�r! Œ2nC1�r is the map sending .2k.mC1/Cl/=.2.mC1//

to .2k.n C 1/f .l//=.2.n C 1// and .2k.m C 1/ C .2m C 1/ � 1/=.2.m C 1// to
.2k.nC 1/C .2nC 1/�f .l/=.2.nC 1// for 0� k < r , 0� l �m.

Definition 3.2 We define sde
r X Œ � � to be the �2r D–set

X Œ � � ı sdr ı sde
r W .�2r D/op

! Sets :
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Remark The diagram

�2r D
sde

r
����! �Drx?? x??

�
sde

����! �

commutes, and in view of this our definition of sde
r X Œ � � is compatible with that of

Spaliński [6].

The proof of Theorem 1.5 is similar to Theorem 1.4.

3.4 Remarks on simplicial actions on subdivisions

Consider the subgroup of Aut�2r D Œn�2r generated by �2.nC1/
2r;n

and !2r;n , which is
identified with the dihedral group Dr . Let f W Œm�! Œn� be a map in � and consider
the images

�
2.nC1/
r;2nC1

; !r;2nC1; and f e
r of �

2.nC1/
2r;n

; !2r;n; and f2r ;

respectively, under the functor sde
r . Then the diagram

Œ2mC 1�r
�

2.mC1/

r;2mC1
or !r;2mC1

�������������! Œ2mC 1�r

f e
r

??y f e
r

??y
Œ2nC 1�r

�
2.nC1/

r;2nC1
or !r;2nC1

�������������! Œ2nC 1�r

commutes. Indeed, for 0� l �m, we have for instance

f e
r .!r;2mC1.l=.2.mC 1////D f e

r .�1=.2.mC 1//� l=.2.mC 1///

D�1=.2.nC 1//�f .l/=.2.nC 1//;

and
!r;2nC1.f

e
r .l=.2.mC 1///D !r;2nC1.f .l/=.2.nC 1///

D�1=.2.nC 1//�f .l/=.2.nC 1//:

This means that Dr � Aut�2r
Œn�2r acts on sde

r X Œ � � simplicially, so that it is possible
to define a simplicial set by Œn� 7! .sde

r X Œn�/Dr . We also note that the action of
Dr � Aut�2r

Œn�2r on jsde
r X Œ � �j is nothing but the action obtained by using the

action of Homeo R=2rZ in Theorem 1.5 and by identifying Dr with the subgroup of
Homeo R=2rZ generated by � W x 7! xC 2 and !W x 7! �x .

We give a new proof to the following result of Spaliński [6]:

Algebraic & Geometric Topology, Volume 13 (2013)



1086 Sho Saito

Proposition 3.1 There is a canonical homeomorphism from j.sde
r X Œ � �/Dr j to

.jX Œ � �j/Dr .

Proof The left-hand-side is given by the colimit colimF2F .Asde
r X Œ�0.Œ0; 1� nF /�/Dr .

If x 2 jsde
r X Œ � �j D colimF2F Asde

r X Œ�0.Œ0; 1� nF /� is represented by an element of
.Asde

r X Œ�0.Œ0; 1� n F /�/Dr with some F 2 F , then x is fixed by the Dr –action on
jsde

r X Œ � �j. The converse also holds. Indeed, suppose x 2 jsde
r X Œ � �j to be represented

by y 2 Asde
r X Œ�0.Œ0; 1� nF /� and to be fixed by the Dr –action. Then for any ı 2Dr ,

there is a larger subset G � Œ0; 1� containing F such that the images of y and ı � y
in Asde

r X Œ�0.Œ0; 1� nG/� coincides. Then, x is represented by this common element
z 2 Asde

r X Œ�0.Œ0; 1�nG/�, and z is fixed by the action of Dr , ie, z 2 .Asde
r X Œ�0.Œ0; 1�n

G/�/Dr . Therefore:

j.sde
r X Œ � �/Dr j D colimF2F .Asde

r X Œ�0.Œ0; 1� nF /�/Dr

D .colimF2F Asde
r X Œ�0.Œ0; 1� nF /�/Dr D .jsde

r X Œ � �j/Dr

Finally, the canonical homeomorphism from jsde
r X Œ � �j to jX Œ � �j, which preserves the

appropriate actions on both sides, concludes the proof.

We can also consider a simplicial action by the cyclic group h�2.nC1/
2r;n

i D Cr �

Aut�2r
Œn�2r by restricting the action by Dr . It is proved likewise that the realization

of .sde
r X Œ � �/Cr is canonically homeomorphic to jX Œ � �jCr . Moreover, in this case the

simplicial set .sde
r X Œ � �/Cr has an extra structure. Indeed, �2

2r;n
and !2r;n satisfy

.�2
2r;n/

nC1
D !2

2r;n D 1 and �2
2r;n!2r;n D !2r;n.�

2
2r;n/

�1

on .sde
r X Œn�/Cr . Hence, .sde

r X Œ � �/Cr is again a dihedral set.
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