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Unstable Adams operations on p–local compact groups
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A p–local compact group is an algebraic object modelled on the p–local homotopy
theory of classifying spaces of compact Lie groups and p–compact groups. In the
study of these objects unstable Adams operations are of fundamental importance.
In this paper we define unstable Adams operations within the theory of p–local
compact groups and show that such operations exist under rather mild conditions.
More precisely, we prove that for a given p–local compact group G and a sufficiently
large positive integer m , there exists an injective group homomorphism from the
group of p–adic units which are congruent to 1 modulo pm to the group of unstable
Adams operations on G .

55R35; 55R40, 20D20

Let p be a prime number. Broto, the second author and Oliver [9] developed the theory
of p–local compact groups. The theory is modelled on the p–local homotopy theory
of classifying spaces of compact Lie groups and p–compact groups and generalises
the earlier concept of p–local finite groups, also due to Broto, the second author and
Oliver [8]. It provides a coherent context in which classifying spaces of compact Lie
groups and p–compact groups (see Dwyer and Wilkerson [12]) can be studied and
also gives rise to many exotic examples. Roughly speaking, a p–local compact group
is a triple G D .S;F ;L/, where S is a discrete p–toral group, F is a saturated fusion
system over S , and L is a centric linking system associated to F . More specifically,
the group S is an extension of a finite p–group by a group of the form .Z=p1/r ,
where Z=p1 D

S
k Z=pk . One can think of S as a Sylow p–subgroup of G in an

appropriate sense. The saturated fusion system F is a category whose set of objects
consists of all subgroups of S , and whose morphisms model conjugacy relations
among subgroups of S . The centric linking system L is again a category which is an
enrichment of F with just about enough structure to allow one to associated with F a
homotopy theoretically meaningful “classifying space” given by the space jLj^p which
we shall denote by BG . Here .�/^p denotes the Bousfield–Kan [5] p–completion
functor, and j�j stands for the functor which associates with a small category its nerve.
Compact Lie groups and p–compact groups give rise to p–local compact groups,
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whose classifying spaces coincide up to homotopy with the p–completed classifying
space of the object from which they originate.

Unstable Adams operations are certain self-equivalences of classifying spaces of com-
pact Lie groups, which were also defined and studied for p–compact groups (see for
instance Jackowski, McClure and Oliver [13] and Andersen et al [2]). For a compact
connected Lie group G , one defines an unstable Adams operation of degree k on G ,
for some integer k , to be any self-map of the classifying space BG which induces
multiplication by ki on H 2i.BG;Q/. There is an analogous definition for connected
p–compact groups, where the degree is allowed to be any p–adic unit and rational
cohomology is replaced by H�Qp

.�/DH�.�;Z^p/˝Q.

Unstable Adams operations are of fundamental importance in the study of classifying
spaces of compact Lie and p–compact groups, which motivates the study undertaken
in this paper, the aim of which is to prove the existence of unstable Adams operations
on p–local compact groups.

For a compact Lie group G , the rational cohomology H�.BG;Q/ is given by the
invariants of the action of the Weyl group of G on H�.BT;Q/, where T � G is a
maximal torus by Borel [4]. Thus it is not hard to see, as we will observe in Section 2,
that the definition of an unstable Adams operation of degree k on BG is equivalent
to the existence of a self-map of BG , which extends the map induced by the k –th
power map on BT . The analogous description of cohomology holds for connected
p–compact groups by Dwyer and Wilkerson [12, Theorem 9.7], and so here as well
one can define an unstable Adams operation as a self-map extending the map induced
by the appropriate power map on the maximal torus.

A precise algebraic definition of what unstable Adams operations actually mean for
p–local compact groups will be given in Section 3. Roughly and more geometrically
speaking, given a p–local compact group G and a p–adic unit � , an unstable Adams
operation of G of degree � is a self-equivalence of BG , which restricts up to homotopy
to the map induced by the � power map on the classifying space of the maximal torus
of G (see Definition 1.1). A comparison of this notion with the algebraic concept in
Definition 3.3 will be carried out in Section 3 as well. The collection of all (“algebraic”)
unstable Adams operation on G forms a group under composition called the group of
unstable Adams operations on G , which we denote by Ad.G/.

For a positive integer k , let �k.p/ denote the subgroup of all p–adic units � 2 Z�p
such that ��1 is divisible by pk . Thus �0.p/DZ�p , and for each k > 0, elements of
�k.p/ have the form 1C akpk C � � � . We are now ready to state our main theorem.
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Theorem A Let G be a p–local compact group. Then for a sufficiently large positive
integer k there exists a group homomorphism

aG W �k.p/!Ad.G/;

such that for any � 2 �k.p/, aG.�/ is an unstable Adams operation of G of degree � .

The theorem will be restated as Theorem 4.1 in terms both more precise and more
suitable to the theory of p–local compact groups. Several remarks are in place. Adams
operations of degree � as defined in this paper induce the �i –power map on H 2i

Qp
.BG/,

where H�Qp
is the functor H�.�;Zp/˝Q. The proof requires a result of Broto, Levi

and Oliver [7], which describes H�Qp
.BG/ as the invariants of the action of the Weyl

group on H�Qp
.BT /, where T is the maximal torus of G , in analogy with the classical

result for compact Lie groups and p–compact groups. A discussion of the precise
relationship between unstable Adams operations as defined here, and the cohomological
concept will be discussed in [7].

As we make no assumption at all on the p–local compact group in Theorem A, one can
not expect the degree of an unstable Adams operation to determine the operation, even
up to homotopy. Also, in general, not every degree � 2 Z�p can occur as the degree of
an unstable Adams operation. See Example 3.6 and Example 3.7.

Given a p–local compact group G , we do not have a way to determine which degrees
can be realised by an unstable Adams operation. However, the Adams operations
constructed in this paper satisfy a certain strong condition. We do not know whether or
not this condition is satisfied by an arbitrary unstable Adams operation. In a subsequent
paper by the second and third authors, operations which do satisfy this extra condition
will be studied. We show there in particular that for such operations the possible degrees
are exactly the subring �k.p/ where k is determined in terms of certain cohomology
groups.

We point out that in our construction no connectivity assumption has to be made,
although one would expect that some conditions, analogous to connectivity in compact
Lie groups, will have to be assumed in dealing with uniqueness questions.

This paper is an elaboration of the PhD dissertation of the first author. It is organised as
follows. Section 1 collects some basic facts on p–local compact groups. In Section 2
we define and study Adams automorphisms of p–toral groups, and in Section 3 we
define and discuss unstable Adams operations on p–local compact groups. Finally,
in Section 4 we prove Theorem A. More precisely, for a p–local compact group G ,
we construct in Theorem 4.1 families of subgroups of the group Ad.G/ of unstable
Adams operations of G .
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The authors are grateful to Alex Gonzalez for reading several versions of their manu-
script and making useful suggestions.

1 Preliminaries on p–local compact groups

We recall the definition and some basic properties of p–local compact groups. The
reader is referred to [9] for a comprehensive account of these objects.

The fundamental objects in this theory are discrete p–toral groups. By Z=p1 we
mean the union of all Z=pr with respect to the natural inclusions.

Definition 1.1 A group of the form .Z=p1/r for some positive integer r will be
referred to as a discrete p–torus. A discrete p–toral group is an extension S of a finite
p–group � by a discrete p–torus S0 . The normal subgroup S0 will be referred to as
the maximal torus or the identity component of S , and the quotient group � Š S=S0

will be called the group of components of S .

The identity component P0 of a discrete p–toral group P can be characterised as the
subset of all infinitely p–divisible elements in P , and also as the minimal subgroup of
finite index in P . Thus, P0 is a characteristic subgroup. The rank of P is the number
r D rk.P / such that P0 Š .Z=p

1/r .

Recall that given P;Q � S the elements g 2 S such that gPg�1 � Q form the
transporter set NS .P;Q/. The set HomS .P;Q/ of all homomorphisms cgW P !Q,
which are restrictions of an inner automorphism of S is obtained by identifying two
elements in NS .P;Q/ if they differ by an element of the centraliser CS .P /. Let
Inj.P;Q/ denote the set of all the injective homomorphisms P ! Q. We are now
ready to recall the definition of fusion systems over discrete p–toral groups.

Definition 1.2 A fusion system F over a discrete p–toral group S is a category whose
objects are the subgroups of S , and whose morphism sets HomF .P;Q/ satisfy the
following conditions:

(i) HomS .P;Q/� HomF .P;Q/� Inj.P;Q/ for all P;Q� S .

(ii) Every morphism in F factors as an isomorphism in F followed by an inclusion.

Two subgroups P;P 0 � S are called F –conjugate if IsoF .P;P 0/¤∅. A subgroup
P � S is said to be F –centric if for every subgroup P 0 � S which is F –conjugate
to P , CS .P

0/DZ.P 0/.
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The theory of p–local compact groups makes a very essential use of an extra set
of axioms one requires fusion systems to satisfy. Fusion systems that satisfy these
axioms are called saturated. In this paper we do not directly need to use the saturation
axioms, and we will therefore not spell them out. It should be emphasised, however,
that throughout the paper only saturated fusion systems will be considered and we
will heavily rely upon some of their properties. The interested reader is referred to [9,
Definition 2.2].

The next fundamental concept in the theory is that of a centric linking system.

Definition 1.3 Let F be a fusion system over a discrete p–toral group S . A centric
linking system associated to F is a category L whose objects are the F –centric
subgroups of S , together with a functor

� W L! Fc

and “distinguished” monomorphisms ıP W P! AutL.P / for each F –centric subgroup
P � S , which satisfy the following conditions.

(A) � is the identity on objects and surjective on morphisms. More precisely, for
each pair of objects P;Q2L, Z.P / acts freely on MorL.P;Q/ by composition
(upon identifying Z.P / with ıP .Z.P //�AutL.P /), and � induces a bijection

MorL.P;Q/=Z.P /
Š
�! HomF .P;Q/:

(B) For each F –centric subgroup P �S and each g2P , � sends ıP .g/2AutL.P /
to cg 2 AutF .P /.

(C) For each f 2 MorL.P;Q/ and each g 2 P , the following square commutes
in L:

P
f //

ıP .g/

��

Q

ıQ.�.f /.g//

��
P

f // Q:

Next we recall the definition of our fundamental object.

Definition 1.4 A p–local compact group is a triple G D .S;F ;L/, where S is a
discrete p–toral group, F is a saturated fusion system over S , and L is a centric linking
system associated to F . The classifying space of G is the p–completed nerve jLj^p ,
which we will generally denote by BG .
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In [9] the authors show that compact Lie groups and p–compact groups give rise to
particular examples of p–local compact groups. Another large family of examples
arises from linear torsion groups. In all cases the respective classifying space coincides
up to homotopy (after p–completion in the case of genuine groups) with the classifying
space of the p–local compact group it gives rise to.

Before moving on, we will need to record several key properties of linking systems
that will be used later.

Proposition 1.5 There is a choice of functions ıP;QW NS .P;Q/!MorL.P;Q/ for
all F –centric P;Q� S such that the following holds.

� For all x 2NS .P;Q/, �.ıP;Q.x//D cx .

� The restriction of ıP;P W NS .P /! AutL.P / to P is equal to the distinguished
monomorphism ıP W P ! AutL.P /.

� ıQ;R.x/ ı ıP;Q.y/D ıP;R.xy/ for all x 2NS .Q;R/ and all y 2NS .P;Q/.

Proof For every P 2Fc choose once and for all morphisms �P 2MorL.P;S/ which
project to the inclusion P � S in F . In particular let �S be the identity on S . The
proof is identical to that in [8, Proposition 1.11]. One uses [9, Lemma 4.3(a)] instead
of [8, Proposition 1.10(a)].

Remark 1.6 We will write Œ'� for the image in F of a morphism ' 2 L under the
projection � . Throughout this paper we will always assume that p–local compact
groups are equipped with a choice of functions ıP;Q as in Proposition 1.5. The image
of g 2NS .P;Q/ under ıP;Q will be denoted yg , and with this notation yg ı yhDcgh.
For P �Q, the image of the identity element e 2NS .P;Q/ will be denoted �Q

P
. Note

that �P
P
D IdP , and that Œyg�D cg .

Lemma 1.7 Let .S;F ;L/ be a p–local compact group.

(i) Let P
a
!Q

b
!R be morphisms in Fc . If ˇ2MorL.Q;R/ and 
 2MorL.P;R/

satisfy Œˇ�D b and Œ
 �D b ı a then there exists a unique ˛ 2MorL.P;Q/ such
that Œ˛�D a and ˇ ı˛ D 
 .

(ii) If P;Q;R and a; b and 
 as above and if ˛ 2MorL.P;Q/ satisfies Œ˛� D a

then there exists a unique ˇ 2MorL.Q;R/ such that ˇ ı ˛ D 
 , (but ˇ is not
generally a lift of b ).

(iii) For any ' 2MorL.P;Q/ there exists a unique isomorphism '0 2 IsoL.P;P 0/
such that ' D �Q

P 0
ı'0 .
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Proof Point (i) is proven in [9, Proposition 4.3(a)], and point (iii) is an immediate
consequence of (i), since one has a factorization Œ'� D inclQ

P 0
ı f , for some f 2

IsoF .P;P 0/.

It remains to prove point (ii). We may assume, in light of point (iii), that P � Q

and ˛ D �Q
P

. Choose an arbitrary ˇ0 2MorL.Q;R/ such that Œˇ0�D b . Then Œ
 �D
b ı aD Œˇ0 ı �

Q
P
�. By axiom (A) in Definition 1.3 there is some z 2 Z.P / such that


 D ˇ0 ı �
Q
P
ı yz D ˇ0 ı yz ı �

Q
P

. Note that z 2 Z.P / �Q and therefore ˇ WD ˇ0 ı yz 2
MorL.Q;R/ satisfies 
 D ˇ ı �Q

P
.

To prove uniqueness, assume that ˇ1 ı �
Q
P
D ˇ2 ı �

Q
P

for some ˇ1; ˇ2 2MorL.Q;R/.
In particular Œˇ1�jP D Œˇ2�jP , and [9, Proposition 2.8] implies that there exists g 2

Z.P / such that Œˇ2� D Œˇ1� ı cg . By axioms (A) and (B) of Definition 1.3 and by
Remark 1.6, there is some z 2 Z.Q/ such that ˇ2 D ˇ1 ıcgz . Note that Z.Q/ D

CS .Q/� CS .P /DZ.P / so gz 2Z.P /. By the hypothesis on ˇ1 and ˇ2 we now
get ˇ1 ı �

Q
P
D ˇ2 ı �

Q
P
D ˇ1 ıcgz ı �

Q
P
D ˇ1 ı �

Q
P
ıcgz . Since Z.P / acts freely on

MorL.P;R/ we deduce that gz D 1 and therefore ˇ1 D ˇ2 , whence the morphism ˇ

is unique.

Corollary 1.8 (cf [6, Proposition 3.10]) All morphisms in a centric linking system L
associated to a saturated fusion system are both monomorphisms and epimorphisms in
the categorical sense.

Proof If ˇ ı ˛1 D ˇ ı ˛2 in L then Œ˛1�D Œ˛2�, since Œˇ� is group monomorphism.
Therefore ˛1 D ˛2 , by point (i) of Lemma 1.7. Hence all the morphisms in L are
monomorphisms. Similarly, by point (ii) of the same Lemma, if ˇ1 ı˛ D ˇ2 ı˛ in L,
then ˇ1 D ˇ2 , hence every morphism in L is an epimorphism.

An important tool in the study of p–local compact groups, which will be useful in this
paper as well, is the reduction of the object set of F to a subset of subgroups of S

which contains only a finite number of S conjugacy classes. The precise details of this
construction are only relevant in the proof of Proposition 1.13 and are recalled there.
It suffices to say that with any P � S one associates a subgroup P� containing P .
The family of objects which results from this construction has some remarkably useful
properties, as we state below. Set

H�.F/D fP� jP � Sg;

and let F� � F be the full subcategory with object set H�.F/.

The following is a summary of some important properties of this construction. The state-
ments and proofs are contained in [9, Lemma 3.2, Proposition 3.3, Corollaries 3.4–3.5].
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Proposition 1.9 The following hold for every saturated fusion system F over a
discrete p–toral group S .

(i) The set H�.F/ contains finitely many S –conjugacy classes of subgroups of S .

(ii) For subgroups P;Q� S , any morphism f 2 HomF .P;Q/ extends to a unique
morphism f � 2 HomF .P

�;Q�/. Thus .�/�W F ! F� is a functor, which
is left adjoint to the natural inclusion F� � F and whose unit of adjunction
is the inclusion P � P� . Moreover, .�/� is an idempotent functor, namely
.P�/� D P� , and it carries inclusions to inclusions, ie, if P �Q then P� �Q� .

Definition 1.10 Let F be a fusion system over S . An automorphism �W S ! S

is called fusion preserving if for every morphism f 2 HomF .P;Q/ there exists a
morphism f 0 2 HomF .�.P /; �.Q// such that � ıf D f 0 ı� .

If F is a fusion system over S , and � is a fusion preserving automorphism of S ,
then � induces an automorphism ��W F ! F where ��.P /D �.P / for all P � S

and ��.f /D � ı f ı��1 for all morphisms f 2 F . Such automorphisms of F are
referred to in the literature as “isotypical”.

Definition 1.11 Let G D .S;F ;L/ be a p–local compact group. Let �W S! S be a
fusion preserving automorphism. We say that a functor ˆW L0! L00 where L0 and L00
are subcategories of L, covers � if:

(i) �jL00 ıˆD �� ı�jL0 where � W L! F is the projection functor, and �� is the
isotypical automorphism of F induced by � .

(ii) For each P;Q 2 L0 and g 2NS .P;Q/, ˆ.yg/D b�.g/ .

For a p–local compact group .S;F ;L/ let Fc� denote the full subcategory of F�
consisting of the F –centric objects P �S . Let L� be the full subcategory of L whose
objects are those of Fc� .

Proposition 1.12 There is a unique functor L .�/�

�! L� � L which lifts F .�/�

�! F� and
which satisfies �Q

�

Q
ı ' D '� ı �P

�

P
for every morphism ' 2MorL.P;Q/. Moreover,

.yg/� D yg for all g 2NS .P;Q/.

Proof On objects define L .�/�

�! L� by P 7! P� . Let ' 2 MorL.P;Q/ be any
morphism. By Proposition 1.9(ii), inclQ

�

Q
ı Œ'� D Œ'�� ı inclP

�

P , and Lemma 1.7(ii)
implies that there exists a unique morphism '� 2MorL.P�;Q�/ such that

(1) '� ı �P
�

P D �
Q�

Q
ı':
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Define .�/� on ' in this way. The fact that Œ'��D Œ'�� follows from the uniqueness
statement in Proposition 1.9(ii) and shows in particular that .�/� , as defined on L, lifts
.�/�W F ! F� , provided we show it is a functor. The uniqueness of '� solving (1)
easily implies that .1P /

�D 1P� , and that .�/� respects compositions. This shows that
.�/� is a functor on L. The uniqueness of '� in Equation (prop-lift-bullet-to-l:eq-def-
bullet) also shows that .�/� with these properties is unique.

To show that .yg/� D yg for all g 2 NS .P;Q/, first note that by Equation (1) .�/�

induces the identity on AutL.S/. Then apply .�/� to the equation �S
Q
ı yg D yg ı �S

P
,

where yg on the right hand side is the corresponding element of AutL.S/, and use the
fact that �S

Q�
is a monomorphism by Corollary 1.8.

Proposition 1.13 If �W S ! S is a fusion preserving automorphism then �.P�/D
�.P /� for any P � S .

Proof Recall the definition of P� [9, Definition 3.1], P� WD P � I.P Œm�/, where
P Œm�Dfgpm

jg2Pg�S0 , with pmDjS=S0j, and for any Q�S0 , I.Q/ WDS
CW .Q/
0

is again a subgroup of S0 . Clearly �.P Œm�/D�.P /Œm� for any P �S , and for Q�S0 ,

I.�.Q//D S
CW .�.Q//
0

D S
�CW .Q//��1

0
D �.S

CW .Q/
0

/D �.I.Q//:

Therefore, �.P /� D �.P / � I.�.P Œm�//D �.P � I.P Œm�//D �.P�/.

Proposition 1.14 Fix a p–local compact group .S;F ;L/ and let �W S ! S be a
fusion preserving isomorphism. Let ˆ0W L�! L� be a functor which covers � . Then
ˆ0 extends to a unique functor ˆW L! L which covers � .

Proof Define ˆ on objects by ˆ.P /D �.P /. To define ˆ on morphisms, observe
first that

Œˆ0.'�/�D ��.Œ'
��/D ��.Œ'�

�/ and Œ'�� ı inclP
�

P D inclQ
�

Q
ı Œ'�:

Applying �� to the second equation, and using the first, we obtain

Œˆ0.'�/� ı incl�.P
�/

�.P/
D incl�.Q

�/

�.Q/
ı��.Œ'�/:

Lemma 1.7(i) now implies that there is a unique morphism ˆ.'/2MorL.�.P /; �.Q//
such that

ˆ0.'�/ ı �
�.P�/

�.P/
D �

�.Q�/

�.Q/
ıˆ.'/ and Œˆ.'/�D ��.Œ'�/:

Functoriality of ˆ follows from the uniqueness statement of Lemma 1.7(i). By con-
struction, and since .�/� is the identity on L� , the functor ˆ extends ˆ0 . From
Remark 1.6 and the last statement of Proposition 1.12 one deduces that ˆ.yg/D b�.g/
for all g 2NS .P;Q/, and so ˆ covers � as well.
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2 Adams automorphisms of discrete p–toral groups

In this section we define a certain class of automorphisms of discrete p–toral groups,
which we call Adams automorphisms. These automorphisms are the starting point of
our study of unstable Adams operations on p–local compact groups.

Throughout this section, for any discrete group � , ZŒ��–modules will be referred to
as � –modules. For a group G which is an extension 0!M ! G! � ! 1, of a
group � by a � –module M , let ŒG� 2H 2.�;M / denote the corresponding extension
class (see eg [10, Chapter IV.3]).

Definition 2.1 Let G be a fixed extension of a group � by a � –module M . For
� 2 Aut.M / and ' 2 Aut.�/, let Aut.GI�; '/ denote the set of all automorphisms
 2 Aut.G/ which render the following diagram commutative.

(2) 0 // M

�
��

// G

 

��

// � //

'

��

1

0 // M // G // � // 1

For any group G and subgroups H;K � G , let AutH .K/ � Aut.K/ denote the
subgroup of all automorphisms of K which are induced by conjugation by elements
of H . In particular, if G D H one has AutG.K/ D NG.K/=CG.K/. On the other
hand, if G D K , then AutH .G/ is the image of H in Inn.G/. For an extension as
above, notice that AutM .G/� Aut.GI 1M ; 1�/.

Let M be a � –module, and let ' 2Aut.�/. Let '�M denote the � –module M where
the action of � is twisted by ' , namely x 2� and m2M , x �m WD'.x/ �m. Thus one
has an induced homomorphism '�W H�.�;M / �! H�.�; '�M /. If � 2 Aut.M /

is an automorphism, we say that � is compatible with ' if for each x 2 � and
m 2M , �.x �m/ D '.x/ � �.m/. In that case one has an induced homomorphism
��W H

�.�;M /!H�.�; '�M /.

Lemma 2.2 Let G be an extension of a group � by a � module M . Fix ' 2 Aut.�/
and � 2 Aut.M /.

(i) Aut.GI�; '/ is not empty if and only if � is compatible with ' , and '�.ŒG�/D
��.ŒG�/.

(ii) There is an isomorphism H 1.�;M / Š Aut.GI 1M ; 1�/=AutM .G/, and thus
the group H 1.�;M / acts freely and transitively on Aut.GI�; '/=AutM .G/.

(iii) Assume the action of � on M is faithful (ie, CG.M /DM ), and that � is central
in Aut.M /. Then a necessary condition for Aut.GI�; '/ to be nonempty is
' D 1� .
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Proof (i) The classes '�.ŒG�/ and ��.ŒG�/ correspond to the extensions described in
[3, Definitions 1.3 and 1.5], namely the “backward” and “forward” induced extensions.
The result follows from [3, Theorem 1.10].

(ii) Clearly Aut.GI 1M I 1�/ acts freely and transitively on Aut.GI�; '/ via compo-
sition. By [3, Theorem 1.10] there is an isomorphism Aut.GI 1M ; 1�/Š Der.�;M /

mapping AutM .G/ to PDer.�;M /. Finally, H 1.�;M /Š Der.�;M /=PDer.�;M /;
see eg [16, Theorem 6.4.5].

(iii) By point (i), Aut.GI�; '/¤∅ implies that � is compatible with ' , and since
� is assume to be a central automorphism of M , it commutes with the action of �:
Thus, for each x 2 � and m 2M ,

x ��.m/D �.x �m/D '.x/ ��.m/:

Since the action is assumed faithful, this implies at once that '.x/Dx for all x 2� .

In the remainder of this section S always denotes a discrete p–toral group with maximal
torus S0 and group of components � (Definition 1.1). Thus, S is an extension
of � by the � –module S0 . Note that the centre of Aut.S0/ Š GLr .Zp/, where
r D rk.S0/, is isomorphic to the group of the p–adic units Z�p which acts on S0 by
power maps, t 7! t� , where � 2 Z�p is a fixed unit, and t 2 S0 . Also note that S0 is a
characteristic subgroup of S , so we obtain homomorphisms resW Aut.S/ �! Aut.S0/

and qW Aut.S/ �! Aut.�/.

Definition 2.3 An Adams automorphism on S of degree � , where � 2 Z�p , is an
automorphism of S whose restriction to S0 is the �–power automorphism. Clearly
composition of Adams automorphisms of S is an Adams automorphism, where the
degree is given by the product of the two individual degrees. Thus the collection of all
Adams automorphisms of S forms a group which we denote by Ad.S/. Let Ad�.S/
denote the subset of all Adams automorphisms of degree � .

The obvious map degW Ad.S/ ! Z�p , which associates with an Adams automor-
phism its degree, is a group homomorphism. It is the restriction of the natural map
resW Aut.S/ �! Aut.S0/ to Ad.S/.

An Adams automorphism is called normal if it induces the identity on � . Let Ad.S I 1�/
denote the subgroup of the normal Adams automorphisms and Ad1.S I 1�/ the subgroup
of those of degree 1.

Remark 2.4 For any discrete p–toral group S , the following hold.

(i) Ad1.S/ D Ker.deg/, and Ad.S I 1�/ D Ker.Ad.S/! Aut.�//, so both sub-
groups are normal in Ad.S/.
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(ii) AutS0
.S/CAd1.S I 1�/. In fact AutS0

.S/C Aut.S/, because it is the maximal
torus, hence a characteristic subgroup of the p–toral group Inn.S/D S=Z.S/,
which in turn is normal in Aut.S/.

(iii) Ad.S/ is the union of Aut.S I �; 
 /, for all � 2 Z�p and all 
 2 Aut.�/. Here,
by abuse of notation, � means the � power map on S0 .

We will almost always restrict attention to normal Adams automorphisms. The next
lemma shows that this is in fact a reasonable restriction. For a discrete p–toral group S ,
the maximal torus S0 is not generally self-centralising, but in most important cases it
would be. For instance, if F is a saturated fusion system over S , and one assumes
that every s 2 S is F –conjugate to S0 (which can be taken as a concept analogous to
connectivity), then S0 is automatically self-centralising.

Lemma 2.5 If S0 is self-centralising in S , then every Adams automorphism of S is
normal, ie Ad.S/DAd.S I 1�/.

Proof This is immediate from Lemma 2.2(iii) and Remark 2.4(iii).

Our next goal is to examine which p–adic units � can appear as the degree of a normal
Adams automorphisms. For a discrete p–toral group S , we call any map of sets, which
is a right inverse to the projection � W S ! � , a section of S . Once a section of S

is fixed, any element s 2 S has a unique expression in the form s D t � �.x/, where
x D �.s/ and t D s � �.x/�1 .

Lemma 2.6 Let  be a normal Adams automorphism of S of degree � ¤ 1. Then
there exists a section � of S which is fixed by  , namely  ı � D � . In particular
 .t � �.x//D t� � �.x/ for all t 2 S0 and x 2 � .

Proof We need to find an element y in any coset S0 �x which is fixed by  , namely
 .y/D y . Since  is normal,  .s/s�1 2 S0 for all s 2 S . Fix some x 2 S . Since
S0 is divisible and �¤ 1, there exists t 2S0 such that  .x/x�1D t1�� . Set yD t �x .
Then y 2 S0 �x , and  .y/D  .tx/D  .t/ .x/D t� � t1��x D y as needed.

Definition 2.7 The p–adic valuation of z 2 Z�p , denoted �p.z/, is the largest integer
m � 0 such that z 2 pmZp . For any m � 0, let �m.p/ be the subgroup of Z�p
consisting of all � such that �p.��1/�m. Thus �0.p/DZ�p and for any m> 0 any
� 2 �m.p/ has the form � D 1C apmC � � � .

We note that since � is a finite p–group, and since S0Š .Z=p
1/r , a standard transfer

argument shows that H i.�;S0/ is a finite abelian p–group of exponent bounded above
by the order of � for all i > 0.
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Proposition 2.8 Let S be a discrete p–toral group, and assume that the order of its
extension class ŒS � 2H 2.�;S0/ is pm .

(i) If  is a normal Adams automorphism, then deg. / 2 �m.p/.

(ii) The homomorphism degW Ad.S I 1�/ �! �m.p/ is split surjective. Moreover,
there exists a section � of S , such that for any � 2�m.p/ the function  � which
takes any s D t � �.x/ 2 S to t� � �.x/ is a normal Adams automorphism of
degree � on S , and the map taking � 2 �m.p/ to  � is a right inverse to the
degree map.

(iii) The kernel of the degree homomorphism in (ii) is Ad1.S I 1�/ and there is an
isomorphism Ad1.S I 1�/=AutS0

.S/ŠH 1.�;S0/.

Proof (i) Set �D ŒS �. By Lemma 2.2(i), Aut.S; �; 1�/ is not empty if and only if
�D �� , namely ���1 D 0 2H 2.�;S0/. This happens if and only if � 2 1CpmZp ,
namely � 2 �m.p/. In addition this shows that the degree map in (ii) is surjective.

(ii) Fix some  2 Aut.S I 1C pmI 1�/ which is not empty by (i). By Lemma 2.6
there exists a section � of S fixed by  . We may assume that �.1/D 1. Note that
ıx;y WD�.x/�.y/�.xy/�1 is fixed by  for any x;y 2� . But  .ıx;y/D .ıx;y/1Cpm

because ıx;y 2 S0 . Thus, .ıx;y/p
m

D 1 for all x;y 2 � . Define for every � 2 �m.p/

a function  � W S ! S by

 �.t � �.x//D t� � �.x/; t 2 S0; x 2 �:

It is easy to check that  .1/ D 1 because �.1/ D 1, that  �.t1�.x/ � t2�.y// D
 �..t1�.x// � �.t2�.y// because .ıx;y/p

m

D 1, and that  � induces the identity on
� and restricts to the �–power map on S0 . In other words  � is a normal Adams
automorphism of degree � . Also  � ı �0 D ��0 by inspection. Hence the map which
takes � 2 �m.p/ to  � is a right inverse to the degree map.

(iii) Apply Lemma 2.2(ii) to Aut.S I 1S0
; 1�/.

3 Unstable Adams operations

In this section we revise the definition and some of the known results for unstable
Adams operations on compact Lie groups and p–compact groups, and suggest a suitable
definition for p–local compact groups.

For any compact Lie group G , a self-map f W BG!BG is called an unstable Adams
operation of degree k 2N , if f induces multiplication by ki on H 2i.BG;Q/. Notice
that for compact Lie groups this is not a p–local concept.
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In the seminal paper by Jackowski, McClure and Oliver [13], the authors prove the
following.

Theorem 3.1 [13, Theorems 1, 2] Let G be a compact connected Lie group.

(i) For each natural number k > 0 there is at most one unstable Adams operation
 k W BG! BG of degree k .

(ii) If G is in addition simple, then there is an isomorphism of monoids

ŒBG;BG�Š Rep.G;G/^ fk � 0 j k D 0 or .k; jW j/D 1g ;

where W DNG.T /=T , and T is the maximal torus of G .

For p–compact groups .X;BX / [12], one defines an unstable Adams operation of
degree � , where � 2Zp is a p–adic unit, to be any self-map f of BX which induces
multiplication by �i on H 2i

Qp
.BX / WDH 2i.BX;Zp/˝Q. In light of [12, Theorem 9.7],

this is equivalent to the requirement that the restriction of f to the maximal torus T

of X is an Adams automorphism of degree � .

Theorem 3.2 [1; 2] For any connected p–compact group there exists exactly one
unstable Adams operation of degree � for every p–adic unit � .

Proof This is immediate from [1, Theorem 1.2] which shows Out.BX /D�0 Aut.BX /

is isomorphic to Out.DX /DAut.DX /=WX where DX D .WX ;LX ; fZpb�g/ is a root
datum associated to a p–compact group X . The Adams automorphisms form the centre
of Aut.DX / which is also the centre of Aut.LX / Š GLr .Zp/ where r is the rank
of X . We remark that for odd primes the result can be deduced from [2, Theorem 1.1];
for BDI.4/ defined in [11] it is contained in [14, Theorem 3.5].

While it is possible to define unstable Adams operations of p–local compact groups by
referring to their classifying spaces or their rational cohomology, we choose to make
the definition using the combinatorial structure of a p–local compact group, in order to
enable us to use all the power of the theory in our analysis. It might turn out of course
that the definition below is in fact equivalent to the obvious cohomological definition,
but this question will not be addressed in this paper.

Definition 3.3 Let G D .S;F ;L/ be a p–local compact group. An Adams operation
of degree � 2 Z�p on G is a pair . ;‰/ where  is a fusion preserving Adams
automorphism of S of degree � , (see Definitions 2.3 and 1.10), and ‰W L! L is an
automorphism which covers  (see Definition 1.11).
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At this stage it is worth pointing out the reason for including condition (ii) in Definition
1.11. Consider the example of the trivial fusion and linking systems over a discrete
torus T . Then LD B.T /, while in F the only morphisms are inclusions. Thus any
power map on T induces the identity functor on F , and therefore the pair .�; IdL/
satisfies condition (i) of the definition. However the realization of the identity functor
clearly induces the identity on BT . The authors are grateful to Alex Gonzalez for this
observation.

Let Ad.G/ denote the group of all the Adams operations of G . Let Ad.F/ denote
the group of all the fusion preserving Adams automorphism of S . The assignment
.‰; / 7!  gives rise to a homomorphism ˛W Ad.G/ ! Ad.F/ � Ad.S/. Let
Ad.F I 1�/ � Ad.F/ be the subgroup of fusion preserving normal Adams automor-
phisms of S . Let Ad.GI 1�/ denote the group of “normal” operations (cf Definition 2.3).
Then ˛ restricts to a homomorphism ˛W Ad.GI 1�/!Ad.F ; 1�/. Finally, let Ad1.G/
be the subgroup of operations of degree 1.

We end this section by introducing a more geometric definition of an unstable Adams
operation, and prove that the two definitions are equivalent. For a p–local compact
group G D .S;F ;L/, let �W BS ! BG be the canonical inclusion induced by the
distinguished monomorphism ıS W S!AutL.S/. Recall [9, Theorem 6.3] that for any
discrete p–toral group Q there is a bijection

ŒBQ;BG�Š Rep.Q;L/ WD Hom.Q;S/=�;

where for any �; �0 2 Hom.Q;S/, � � �0 if there is some � 2 HomF .�.Q/; �.Q
0//

such that �0 D � ı � . In particular Rep.S;L/D End.S/=AutF .S/.

Definition 3.4 Let G D .S;F ;L/ be a p–local compact group. A geometric unstable
Adams operation on G is a self-equivalence f of BG such that the homotopy class of
the composite

BS
�
�! BG

f
�! BG

represents the class of an Adams automorphism in End.S/ under the identification
above. Equivalently f is a geometric Adams operation on G if there exists an Adams
automorphism � 2Ad.S/ such that � ıB� ' f ı �.

Geometric unstable Adams operations on a p–local compact group G clearly form a
topological monoid, which we denote by Adg.G/, under composition, where the topol-
ogy is induced from that of the topological monoid of all self–homotopy equivalences
of BG .
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Proposition 3.5 For any p–local compact group G , there is an epimorphism of
groups 
 W Ad.G/! �0.Ad

g.G// whose kernel is the subgroup of all unstable Adams
operations . ;‰/ such that j‰j^p ' IdBG . In this case  2 AutF .S/ and deg. / is a
root of unity, whence �p�1 D 1 if p ¤ 2, and � D˙1 if p D 2 (cf [15, Section 6.7,
Proposition 1,2]).

Proof Fix a p–local compact group GD .S;F ;L/. Define 
 W Ad.G/!�0.Ad
g.G//

by

 . ;‰/D Œj‰j^p �

for each unstable Adams operation . ;‰/2Ad.G/. By Condition (ii) of Definition 1.11,
the following square commutes

BS
B //

�

��

BS

�

��
BG

j‰j^p // BG:

Thus j‰j^p is a geometric unstable Adams operation on G , and so 
 is well defined,
sends .1S ; IdL/ to the identity element and it clearly respects compositions.

Suppose that 
 . ;‰/ D 1 2 �0.Ad
g.G//. Then � ı B � �, and so by [9, The-

orem 6.3(a)],  2 AutF .S/. Since OutF .S/ WD AutF .S/= Inn.S/ is finite by [9,
Definition 2.2, (I)] and since all the elements of S have finite order, this is also the
case for all the elements of AutF .S/. Therefore  k D Id for some k > 0. But  k

induces the �k –power map on the maximal torus S0 and therefore �k D 1, namely �
is a root of unity.

It remains to show that 
 is surjective. We shall use [9, Theorem 7.1] and various
points in its proof. Recall first that a self-equivalence ˆ of L is said to be isotypical
if for each P 2 L, the isomorphism ˆP;P W AutL.P /! AutL.ˆ.P // sends ıP .P / to
ıˆ.P/.ˆ.P //.

Let f 2Adg.G/ be a geometric unstable Adams operation. By [9, Theorem 7.1] there
is a group isomorphism

Outtyp.L/Š Out.BG/;
where Outtyp.L/D �0.Auttyp.L// is the group of equivalence classes (under natural
isomorphisms) of isotypical self-equivalences of L, and Out.BG/ is the group of
homotopy classes of self-equivalences of BG . Let ˆ0 2 Auttyp.L/ be a representative
of the homotopy class of f under this isomorphism, so jˆ0j^p ' f . Let �0 2 Aut.S/
denote the restriction of ˆ0 to S Š ıS .S/� AutL.S/. Without loss of generality we
may assume that ˆ0 sends inclusions to inclusions and that ˆ0.P /D �0.P / for every
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P 2 L (cf [9, page 368]). This implies that ˆ0.yg/ D 1�0.g/ for all g 2 NS .P;Q/

because by applying ˆ0 to the equality �S
Q
ı yg D yg ı �S

P
we obtain

�S�0.Q/ ıˆ
0.yg/D1�0.g/ ı �S�0.P/;

while from axiom (C) we get

�S�0.Q/ ı
1�0.g/ D1�0.g/ ı �S�0.P/;

so Corollary 1.8 implies that ˆ0.yg/D1�0.g/ .

The commutative diagram (18) in [9, page 370] shows that �0 is fusion preserving
and that � ıB�0 ' f ı �. Furthermore, if ˛ 2 IsoL.P;Q/, and g 2 P , then by the
functoriality of ˆ0 , and Axiom (C),

4�0.Œ˛�.g// Dˆ0.˛ ı yg ı˛�1/Dˆ0.˛/ ıˆ0.yg/ ıˆ0.˛/�1
D 6Œˆ0.˛/�.�0.g//:

In other words, �0�.Œ˛�/D �
0 ı Œ˛� ı .�0/�1 D Œˆ0.˛/�. It follows that ˆ0 covers �0 .

The pair .ˆ0; �0/ constructed above satisfies all the requirements from an unstable
Adams operation on G , except, �0 need not be an Adams automorphism of S . By
the assumption on f and the commutative diagram (18) in [9, page 370], there is
some ˛ 2 AutF .S/, such that �0 D � ı ˛�1 , where � is an Adams automorphism
of S , as in Definition 3.4. Choose z̨ 2 AutL.S/ lifting ˛ . By Lemma 1.7(i) the
morphism ˛jP 2HomF .P; ˛.P // has a unique lift to z̨jP 2MorL.P; ˛.P // such that
�S
˛.P/
ı z̨jP D z̨ı�

S
P

. Define ‚W L!L by ‚.P /D˛.P /, and define ‚ on morphisms
by

‚.P
'
�!Q/D z̨jQ ı' ı z̨j

�1
P :

Then ‚ is clearly well defined and covers ˛ – condition (i) of Definition 1.11 is
immediate and condition (ii) follows from axiom (C). In addition the morphisms z̨jP
give rise to a natural isomorphism IdL!‚, hence j‚j ' Id. Set ˆDˆ0 ı‚. Then
jˆ0j^p ' jˆ

0j^p ' f , and ˆjıS .S/ D � . Hence .�;ˆ/ is an unstable Adams operation
of G such that 
 .�;ˆ/D Œf �.

We end this section with two examples. We note that any p–toral group S gives rise
to the “trivial” p–local compact group G on S whose fusion system is FS .S/ and
whose linking system is the transporter system on the F –centric subgroups of S . In
this case, Ad.G/ is merely a subgroup of Aut.S/.

Example 3.6 Set T D Z=p1 and � D Z=p and S D � �T . By Lemma 2.2(ii), the
remark above, and since S is abelian, we deduce that Ad1.G/ � Aut.S I 1� ; 1T / Š

H 1.�;T /Š Z=p . This shows that degree does not determine the Adams operation in
general; not even up to homotopy (ie, its image in Adg.G/).
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Example 3.7 Set pD 3 and let � DZ=3 act on S0DZ=31˚Z=31 via the matrix

� D

�
1 �3

1 �2

�
:

A direct calculation using the standard periodic ZŒ��–projective resolution of Z shows
that H 2.�;S0/ Š Z=3. Let S be a nonsplit extension of � by S0 (ie, one which
corresponds to a nontrivial class). Clearly, S0 is self-centralising in S , so by Lemma 2.5
and Proposition 2.8(i), the degree of any Adams operation on the p–local compact
group G associated to S must be in �1.3/. In particular not every � 2 Z�

3
is a degree

of an Adams operation on G .

4 A construction of Adams operations

We are now ready to construct unstable Adams operations on p–local compact groups.
Recall (Definition 2.7) our notation �m.p/ for the group of p–adic units � such that
�p.��1/�m. Throughout this section let G D .S;F ;L/ be a fixed p–local compact
group. Fix a set P of representatives of the S –conjugacy classes of the subgroups
in H�.F/. Then P is a finite set by Proposition 1.9(i). Let Pc � P be the subset
consisting of those subgroups which are F –centric.

Theorem 4.1 Let G D .S;F ;L/ be a p–local compact group, let S0 � S be the
maximal torus, and let � D S=S0 .

(i) For a sufficiently large integer kF there exists a group homomorphism

aF W �kF .p/!Ad.F I 1�/

such that aF .�/ is a fusion preserving normal Adams automorphism of degree � .

(ii) For a sufficiently large integer kG there exits a group homomorphism

aG W �kG .p/!Ad.GI 1�/

whose composition with ˛W Ad.GI 1�/!Ad.F I 1�/ is equal to aF j�kG .p/
.

Proof Let pkS be the order of the extension class of S in H 2.�;S0/. By Proposition
2.8(ii), there exists a homomorphism

aS W �kS
.p/!Ad.S I 1�/

which is a right inverse of the degree map degW Ad.S I 1�/!�kS
.p/. Moreover, there

is a section � W � ! S such that aS .�/.t � �.x// D t� � �.x/ for all t 2 S0 and all
x 2 � .

Algebraic & Geometric Topology, Volume 12 (2012)



Unstable Adams operations on p–local compact groups 67

For each � 2 �kS
.p/ set aS .�/D  � . Define a function

� W S ! S0; �.x/D x � �.xx/�1;

where xx 2 � is the image of x 2 S . Observe that x D �.x/ � �.xx/ for any x 2 S and
therefore (see Definition 2.7)

(3)  �.x/D x if �p.� � 1/� logp.ord.�.x///.

For any subset X � S , let �.X /� S0 denote the image of X in S0 , and for Y � S0 ,
denote by ord.Y / the supremum of the orders of the elements of Y .

For every P 2 P let rP be a set of representatives for the cosets of P0 in P . Given
any P;Q 2 P the set HomF .P;Q/=Q is finite by [9, Lemma 2.5], and hence so is
the set HomF .P;Q/=NS .Q/. For P;Q 2 P , let MP;Q � F be a choice of a set
of representatives for HomF .P;Q/=NS .Q/. For convenience, if P � Q, we will
always choose inclQ

P
to represent its image in HomF .P;Q/=NS .Q/. In particular

IdP represents its image in AutF .P /=NS .P /.

Proof of Part (i) For any P;Q 2 P define the following subsets of S :

mP;Q D

[
f 2MP;Q

f .rP / and set mD
[

P;Q2P

mP;Q:

Note that rP �m for any P 2 P , since IdP 2MP;P . Define

kF WDmax f kS ; logp ord.�.m// g:

Let aF W �kF .p/!Ad.S I 1�/ be the restriction of aS to �kF .p/. We claim that its
image is contained in Ad.F I 1�/. This will complete the proof of (i).

Fix � 2 �kF .p/, and write  D  � for short. It is clear from Proposition 1.9(ii) that it
is enough to check that  is fusion preserving on F� . In other words, it suffices to
show that  ıf ı �1 2 F� for any P;Q 2 F� and any f 2 HomF .P;Q/.

Consider first any P;Q 2 P and any f 2MP;Q . Since P0 is a discrete p–torus,
P0 � S0 and also f .P0/ � Q0 � S0 . Since  jS0

is the �–power map, it follows
that  ı f ı �1.x/D f .x/ for any x 2 P0 . For any x 2 rP , the definition of kF
implies that logp.ord.�.f .x///�kF ��p.��1/ and therefore Equation (3) implies that
 .f .x//Df .x/. Since P is generated by P0 and rP , we deduce that  ıf ı �1Df

for any f 2MP;Q . Since 1P 2MP;P by construction, it follows that  .P /D P for
any P 2 P .

Let P;Q2H�.F/ be any subgroups, and let f 2F�.P;Q/ be a morphism. There are
P 0;Q02P , g2NS .P;P

0/, h2NS .Q
0;Q/ and f 02MP 0;Q0 , such that f Dchıf

0ıcg .
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Since  ıf 0 ı �1 D f 0 one has

 ıf ı �1
D c .h/ ıf

0
ı c .g/;

which is clearly a morphism in F . It remains to show only that if P 2H�.F/, then
so is  .P /. Let P 0 2 P be a representative of the S conjugacy class of P , and let
g 2NS .P

0;P / be any element. Then  .P /D c .g/.P
0/, and since conjugation by

an element of S is clearly a fusion preserving automorphism of S , the claim follows
from Proposition 1.13.

Proof of Part (ii) For any morphism ' in L, denote the corresponding homomorphism
in F by Œ'� as usual. Let L� denote the full subcategory of L whose object set is
H�.Fc/. For every P;Q 2 Pc fix a set �MP;Q of morphisms in MorL.P;Q/ which
are preimages of the homomorphisms in MP;Q under � W L! F . In particular take
�
Q
P

for the lift of inclQ
P

if P �Q, and note that because of this choice 1P 2
�MP;P for

all P 2 Pc .

Let P;Q 2 Pc and let ' 2 �MP;Q be any morphism. Since AutL.Q/ acts freely
on MorL.P;Q/ by Corollary 1.8, and since �MP;Q forms a set of representatives
for MorL.P;Q/=NS .Q/, for every g 2 NS .P / there exist unique '0 2 �MP;Q and
�'.g/ 2NS .Q/ such that

(4) ' ı yg D 1�'.g/ ı'0:
We thus obtain a function �' W NS .P /! NS .Q/, whose useful properties will be
exploited later.

Similarly, if P;Q;R 2 Pc and ' 2 �MP;Q and 
 2 �MQ;R , then there are unique
u
;' 2NS .R/, and " 2 �MP;R such that


 ı' D bu
;' ı ":
In particular, if QDR and 
 D 1Q , then ' D yx for some x 2NS .P;Q/ if and only
if " D yy for some y 2 NS .P;Q/. But �MP;Q contains only one morphism in each
left NS .Q/ class, and so x D y , and u1Q;yx D 1. Similarly, if P DQ, ' D 1P and
x 2NS .P;R/, then uyx;1P

D 1.

For any P 2 Pc let nP be a set of representatives for the cosets of P in NS .P /. We
choose 1 2NS .P / to represent the coset 1P . Consider the following subsets of S .

cD
[

P;Q2Pc

[
'2�MP;Q

�'.nP /; iD
[

P;Q2Pc

fx 2 S j yx 2 �MP;Qg

dD
[

P;Q;R2Pc

fu
;' j ' 2 �MP;Q; 
 2 �MQ;Rg:
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Clearly, all these sets are finite. Notice also that nP � c for all P 2 Pc , since
1P 2

�MP;P , and since 1P ı yg D yg ı 1P for all g 2NS .P /, so �1P
.g/D g . Define

kG DmaxfkF ; logp ord.�.c//; logp ord.�.i//; logp ord.�.d// g:

Fix some � 2 �kG .p/ and set  D aF .�/. Equation (3) now shows that

(5)  fixes every element in the sets c; i and d:

Our goal now is to construct ‰W L!L such that . ;‰/ 2Ad.G/. We will then show
that the resulting assignment � 7! . ;‰/ is a group homomorphism �kG .p/!Ad.G/.
The rest of the proof proceeds in five steps. We first study the properties of the
function �' essential to our analysis. In Steps 2 and 3 we define ‰ on L� and show
that it is a functor. Step 4 is the proof that ‰ covers  . Finally, in Step 5 we extend
the definition of ‰ to L, define the function aG and show that it is a homomorphism,
thus completing the proof of (ii).

Step 1: Properties of �' Fix P;Q 2 Pc and ' 2 �MP;Q .

(a) If g 2 P then �'.g/D Œ'�.g/.

(b) Fix some g 2 NS .P / and let '0 2 �MP;Q be the unique morphism such that
' ı yg D 1�'.g/ ı '0 . Then  .g/ 2NS .P / and ' ı1 .g/ D 3 .�'.g// ı '0 . In
particular �'. .g//D  .�'.g//.

Claim (a) follows immediately from axiom (C) of Definition 1.3 and the definition
of �' in (4).

To prove (b) write g D hg0 for some unique h 2 P and g0 2 nP . By Equation (4),
' ı bg0 D

c�'.g0/ ı'
0 for a unique '0 2 �MP;Q . By Axiom (C) in Definition 1.3,

' ı yg D ' ıbhg0 D ' ı yh ı bg0 D
1Œ'�.h/ ı' ı bg0 D

1Œ'�.h/ ı2�'.g0/ ı'
0:

In particular �'.g/D Œ'�.h/ � �'.g0/ by uniqueness. In Part (i) we have shown that
 .P / D P for all P 2 P . Thus in particular  .g/ 2 NS .P /, and  .h/ 2 P . Note
that  fixes g0 and �'.g0/ by (5), since nP � c. Also Œ'� 2MP;Q and by Part (i),
 ı Œ'� ı �1 D Œ'�. By applying Axiom (C) again, one has

' ı1 .g/D ' ı1 .h/ ı bg0

D 3Œ'�. .h// ı' ı bg0

D 3Œ'�. .h// ı2�'.g0/ ı'
0
D3 .Œ'�.h// ı4 .�'.g0// ı'

0
D 3 .�'.g// ı'0:

The last claim of (b) follows from Equation (4).

Algebraic & Geometric Topology, Volume 12 (2012)



70 Fabien Junod, Ran Levi and Assaf Libman

Step 2: Definition of ‰W L�! L� On objects define ‰.P / D  .P /. This makes
sense by Proposition 1.13 which states that  .P / belongs to H�.F/ if P does.

Let P;Q 2H�.Fc/ be any subgroups and let ' 2MorL.P;Q/ be a morphism. There
are unique P 0;Q0 2 Pc which are S –conjugate to P and Q respectively. Choose
g 2 NS .P

0;P / and h 2 NS .Q;Q
0/. In particular if P D P 0 , choose g D 1, and

similarly if QDQ0 . Then there are unique '0 2 �MP 0;Q0 and x 2NS .Q
0/ such that

(6) yh ı' ı yg D yx ı'0:

Define ‰.'/ to be the composite

‰.P /
1 .g�1/
�����! P 0

'0

�!Q0
b .x/
���!‰.Q0/

1 .h�1/
�����!‰.Q/:

In particular, if P;Q 2 Pc and ' 2 �MP;Q , then ‰.'/D ' .

We need to show that ‰.'/ does not depend on the choice of g and h. If u2NS .P
0;P /

and v 2NS .Q;Q
0/ are any other elements, then there are unique '00 2 �MP 0;Q0 and

y 2 NS .Q
0/ such that yv ı ' ı yu D yy ı '00 . For the two corresponding definitions of

‰.'/ to coincide it suffices to show that the diagram

‰.P /
1 .g�1/ // P 0

'0 //

2 .u�1g/
��

Q0
b .x/ //

5 .y�1vh�1x/
��

‰.Q0/
1 .h�1/ //

2 .vh�1/
��

‰.Q/

‰.P / 1 .u�1/

// P 0
'00

// Q0 b .y/
// ‰.Q0/ 1 .v�1/

// ‰.Q/

commutes. By Remark 1.6, the first, third and fourth squares commute. Therefore, the
only square whose commutativity is not obvious is the second, namely we must show
that

(7) '00 ı 3 .u�1g/ D 6 .y�1vh�1x/ ı'0:

Write s D u�1g and t D y�1vh�1x for short. Thus we must show that '00 ı b .s/D
b .t/ ı'0 . By the choices made, and the definition of �'00 we have

(8) yt ı'0 D '00 ı ys D2�'00.s/ ı'000:
Hence '0 D '000 , and t D �'00.s/. Note that  .s/ 2 NS .P

0/ because P 0 2 P so
 .P 0/D P 0 . Similarly  .t/ 2NS .Q

0/. By Step 1 (b), and since t D �'00.s/,

(9) '00 ı b .s/ D 4�'00. .s// ı'000 D 4 .�'00.s// ı'000 D b .t/ ı'000 ;
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for a unique '00
0
2 �MP 0;Q0 . Reducing this equation to F and recalling that  � fixes

MP 0;Q0 , we have

 ı Œ'00� ı cs ı 
�1
D Œ'00� ı c .s/ D c .t/ ı Œ'

00
0 �D  ı ct ı Œ'

00
0 � ı 

�1:

By applying  � to the reduction of Equation (8) to F , the same equation holds with
Œ'00

0
� replaced by Œ'0�. It follows that there exists a unique z 2 Z.P 0/, such that

'00
0
D '0 ı yz . But, '0 ı yz D 1Œ'0�.z/ ı'0 by Axiom (C), and so '00

0
D 1Œ'0�.z/ ı'0 . Since

both '00
0

and '0 are in �MP 0;Q0 are unique representatives of their class modulo the left
action of NS .Q

0/, we must have '00
0
D '0 and z D 1. Returning to Equation (9) we

deduce that '00 ı b .s/D b .t/ ı'0 which shows, in turn, that ‰ is well defined on L� .

Step 3: ‰W L� ! L� is a functor First notice that if P 2 L� is any object, and
P 0 2 Pc represents its S conjugacy class, then for any g 2NS .P

0;P /, the composite

 .P /
1 .g/�1

�����! P 0
1P 0

��! P 0
b .g/
���!  .P /

is the identity on  .P /. Hence ‰.1P /D 1‰.P/ .

It remains to prove that ‰ respects compositions. Fix P;Q;R 2 H�.Fc/ and let
P 0;Q0;R0 2 Pc be the unique representatives of their S –conjugacy class. Fix elements
x 2NS .P

0;P /, y 2NS .Q
0;Q/ and z 2NS .R

0;R/. Fix morphisms ˛ 2MorL.P;Q/
and ˇ 2 L.Q;R/. There are unique morphisms ˛0 2 �MP 0;Q0 and ˇ0 2 �MQ0;R0 and
elements u 2NS .Q

0/ and v 2NS .R
0/ such that

by�1 ı˛ ı yx D yu ı˛0 and bz�1 ıˇ ı yy D yv ıˇ0:

There is a unique morphism ˇ00 2 �MQ0;R0 such that ˇ0 ı yuD 1�ˇ0.u/ ıˇ00 . Also there
is a unique morphism 
 0 2 �MP 0;R0 and a unique element uˇ00;˛0 2NS .R

0/ such that
ˇ00 ı˛0 D 1uˇ00;˛0 ı 
 0 . Now,

bz�1 ıˇ ı˛ ı yx D yv ıˇ0 ı yu ı˛0 D yv ı 1�ˇ0.u/ ıˇ00 ı˛0 D yv ı 1�ˇ0.u/ ı 1uˇ00;˛0 ı 
 0:
Note that  fixes uˇ00;˛0 by (5). By definition of ‰ on morphisms in L� and Step 1(b),

‰.˛ ıˇ/D b .z/ ı b .v/ ı4 .�ˇ0.u// ı 3 .uˇ00;˛0/ ı 
 0 ı1 .x/�1

D b .z/ ı b .v/ ı4��ˇ0. .u// ı1uˇ00;˛0 ı 
 0 ı1 .x/�1

D b .z/ ı b .v/ ı4��ˇ0. .u// ıˇ00 ı˛0 ı1 .x/
�1

D b .z/ ı b .v/ ıˇ0 ı1 .u/ ı˛0 ı1 .x/�1

D b .z/ ı b .v/ ıˇ0 ı 2 .y/�1 ı1 .y/ ı1 .u/ ı˛0 ı1 .x/�1

D‰.ˇ/ ı‰.˛/:
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Step 4: ‰ covers  We show next that ‰W L� ! L� covers  2 AdF .S/ (see
Definition 1.11).

Fix P;Q 2 F�c . We show first that ‰.yx/ D 1 .x/ for any x 2 NS .P;Q/. Let
P 0;Q0 2 Pc represent the S conjugacy classes of P and Q respectively, and let g 2

NS .P
0;P / and h 2NS .Q;Q

0/ be any elements. Then there exist unique u 2NS .Q
0/

and ' 2 �MP 0;Q0 , such that
yh ı yx ı yg D yu ı':

By Remark 1.6, ' D yy where y D u�1hxg 2 NS .P
0;Q0/. Thus, y 2 i and by (5),

 .y/D y . Hence, by the definition of ‰ ,

‰.yx/D 2 .h�1u/ ı yy ı 2 .g�1/ D 6 .h�1uyg�1/ D1 .x/:
It remains to prove that � ı‰D �ı� , where � W L�!F�c is the projection. First, by
definition ‰.R/D .R/ for any R2F�c . Next, for any morphism ' 2MorL�.P;Q/,
we have to prove that  �.Œ'�/D Œ‰.'/�. Fix g; h;x and '0 such that yhı' ı ygD yx ı'0 ,
as in (6), so that by definition

‰.'/D 3 .h�1x/ ı'0 ı 2 .g�1/:

In particular Œ'�D ch�1x ı Œ'
0� ı cg�1 . Note also that Œ'0� 2MP 0;Q0 , as it is the reduc-

tion to F of '0 2 �MP 0;Q0 , and that by the proof of Part (i),  �.Œ'0�/D Œ'0�. Therefore

 �.Œ'�/D  ı .ch�1x ı Œ'
0� ı cg�1/ ı �1

D c .h�1x/ ı Œ'
0� ı c .g�1/

D Œ3 .h�1u/ ı'0 ı 2 .g�1/�D Œ‰.'/�:

Step 5: Extension to L and the homomorphism aG Proposition 1.14 and Step 3
above imply that the functor ‰W L�! L� constructed above extends uniquely to a
functor ‰W L!L which covers  . This defines a function aG W �kG .p/!Ad.GI 1�/
whose composition with Ad.G/!Ad.F/ is clearly the restriction of aF to �kG .p/.

It remains to check that aG is a homomorphism. First, if � D 1 then  D aF .�/D 1S ,
and it is easy to check that the definitions in Step 2 implies that the functor ‰ is the
identity on L� and therefore extends to the identity on L, by Proposition 1.14.

Next fix �1; �2 2 �kG .p/ and set

. �i
; ‰�i

/ WD aG.�i/; i D 1; 2; and . �1�2
; ‰�1�2

/ WD aG.�1�2/:

By Part (i),  �1
ı  �2

D  �1�2
, and it remains to prove that ‰�1

ı ‰�2
D ‰�1�2

.
Alternatively, we need to prove that ˆ WD ‰�1

ı‰�2
ı‰�1

�1�2
is the identity functor

on L. On objects P 2 L it is immediate that ˆ.P /D P , because ‰�.P /D  �.P /
for any � . Also, it follows from Step 4 applied to ‰�1

; ‰�2
and ‰�1�2

that ˆ.yg/D yg
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for all P;Q 2 L� and all g 2NS .P;Q/. By Proposition 1.14 it suffices to prove that
ˆ is the identity on L� . By the construction for any � for which it is defined ‰� fixes
all morphisms in �MP;Q for any P;Q 2 Pc , and therefore so does ˆ. Since every
morphism ' 2MorL�.P;Q/ has the form yhı'0ıyg for some '02 �MP 0;Q0 and some g2

NS .P;P
0/ and h2NS .Q

0;Q/, it follows at once that ˆ.'/Dˆ.yh/ıˆ.'0/ıˆ.yg/D' .
This completes the proof that aG is a homomorphism and with that the proof of the
theorem.

We end with a few corollaries of the proof of Theorem 4.1.

Corollary 4.2 Fix a p–local compact group G D .S;F ;L/, and let � 2 �kG .p/

be any element. Let . ;‰/ D aG.�/. Then there is a set P of representative of all
S –conjugacy classes in H�.F/, and

� for each P;Q 2 P there is a set MP;Q of morphism in HomF .P;Q/, which is
a complete set of representatives of HomF .P;Q/=NS .Q/, and

� for all F –centric subgroups P;Q in P , there are sets �MP;Q of morphisms in
MorL.P;Q/ which are representatives for the set MorL.P;Q/=NS .Q/,

such that the following hold.

(i)  .P /D P for all P 2 P .

(ii)  �.'/D  
�1 ı' ı D ' for each ' 2MP;Q .

(iii) ‰.'/D ' for any ' 2 �MP;Q .

Moreover, for any F –centric P;Q � S and any g 2 NS .P;Q/, ‰.yg/ D1 .g/. In
particular ‰ is isotypical.

Corollary 4.3 Let pm be the order of the extension class of S in H 2.�;S0/, and let
kF and kG be as in Theorem 4.1. Then kG � kF �m.
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