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Lusternik–Schnirelmann category and the connectivity of X

NICHOLAS A SCOVILLE

We define and study a homotopy invariant called the connectivity weight to compute
the weighted length between spaces X and Y . This is an invariant based on the
connectivity of Ai , where Ai is a space attached in a mapping cone sequence from
X to Y . We use the Lusternik–Schnirelmann category to prove a theorem concerning
the connectivity of all spaces attached in any decomposition from X to Y . This
theorem is used to prove that for any positive rational number q , there is a space X

such that q D cl!.X / , the connectivity weighted cone-length of X . We compute
cl!.X / and kl!.X / for many spaces and give several examples.

55M30, 55P05

1 Introduction

In [9], we introduced a weighted length between spaces which generalized the notion
of the cone-length. Let X and Y be well-pointed CW complexes and A a collection
of spaces. Then we may consider the smallest integer n such that

X �X0

j0 // X1

j2 //// � � �
jn�1 // Xn � Y

where each ji is part of a mapping cone sequence

Ai
// Xi

ji // XiC1

with Ai 2A. Furthermore, we assign a weight !.A/ to each A2A to obtain a weighted
length between X and Y (see Section 2.1). The idea of a weight is to measure the
complexity of a space so that !.A/ should be larger for “more complicated” spaces
and smaller for “less complicated” spaces.

What ! should be chosen? Recall that a CW complex A is contractible if and only if
�i.A/D 0 for all i . Hence A is “further from being contractible” when A has smaller
connectivity and A is “closer to being contractible” when it has larger connectivity.
Thus we choose !.A/ D !C .A/ D 1=.1C conn.A// where conn.A/ denotes the
connectivity of A. An important invariant that we use to study !C is the Lusternik–
Schnirelmann (LS) category. There is a wide variety of research in this area; see Cornea,
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436 Nicholas A Scoville

Lupton, Oprea and Tanré [3], Oprea and Strom [6] and Stanley and Rodríguez Or-
dóñez [11]. Let X n be a space with the homotopy type of the n–skeleton of X and
define cat.X n/ to be the category of X n in X (see Definition 2 and Proposition 3.) The
categorical sequence of a CW complex X is the sequence �X W N!N[f1g defined
by �X .k/D inffn j catX .X n/ � kg. For !C .A/D 1=.1C conn.A//, we are able to
utilize categorical sequences to compute the weighted cone length (see Definition 1)
for many spaces. This is seen in the following Corollary.

Corollary 12 Let X be a space with cat.X /Dn and let �X D .m1;m2;m3; : : : ;mn/.
If m1 > 1, then

nX
kD1

1

mk � 1
� cl!.X /:

If m1 D 1, then

2C

nX
kD2

1

mk � 1
� cl!.X /:

We use this Corollary to compute the weighted cone length of a finite product of
spheres in Example 13. Finally we use Egyptian fractions in Lemma 14 to show that
given a positive rational number q , one can choose a finite product of spheres whose
!C –weighted cone length sums to q . This yields our main result.

Theorem 15 Let a� 1 be an integer and q 2Q�0 a rational number such that q � 1
a

.
Then there exists a space X.q/ with conn.X.q//D a and cl!.X.q//D q .

In addition, we devote Section 4 to computing kl!.X /, the weighted killing length
of X (see Definition 1), for all X with abelian fundamental group, and we give
several examples and computations throughout Section 5. In particular, we compute
the weighted cone length of a sphere, real and complex projective spaces and Sp.3/.

Acknowledgements The author wishes to thank Martin Arkowitz and Jeff Strom for
all of their help and guidance as well as Paul Pollack for his help with the proof of
Lemma 14. The author also wishes to thank an anonymous referee for very helpful
comments, open problems and suggestions including one which significantly shortened
the proof of Theorem 11.

2 Preliminaries

In this section we establish the basic notation and concepts that will be used in the
paper. We use � to denote a contractible space.

Algebraic & Geometric Topology, Volume 12 (2012)
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2.1 Weighted length

We recall the definitions introduced in [9]. Let A be any collection of spaces. A weight
function !W A!R�0 is any function such that

(a) !.�/D 0.

(b) !.A1 _A2/� !.A1/C!.A2/ for all spaces A1;A2 .

(c) !.A1/D !.A2/ whenever A1 �A2 .

In addition, if ! satisfies !.†A/�!.A/ for all spaces A, we say that ! is a †–weight
function. If !.A/� C for some constant C , then we say that ! is a bounded weight
function. Let f W X ! Y . If f is a homotopy equivalence, set `!.f /D 0. Otherwise,
an A–decomposition of f of stepsize m<1 is a homotopy commutative diagram D

A0

��

A1

��

Am�1

��
X0

// X1
// � � � // Xm�1

// Xm

X
f // Y

where each Ai
//Xi

//XiC1 is a mapping cone sequence with Ai 2 A. Set
`!.f / D

Pm�1
iD0 !.Ai/. The !–length of f is the number z̀!.f / D infDf`!D.f /g

where the inf is taken over all such decompositions D of finite stepsize. If no such
diagram D exists, we say that z̀!.f /D1. The weighted length is then defined as
follows:

Definition 1 Let X and Y be spaces and ! a weight function. Define `!.X;Y /D
inff fz̀!.f /g. We define the !–weighted killing length by kl!.X / D `!.X;�/ and
!–weighted cone length by cl!.X /D `!.�;X /.

When ! is a bounded weight function, there is an alternative characterization of z̀!.f /.
We say that .i; j / is a homotopy equivalence from f to f 0 (and .r; s/ is a homotopy
equivalence from f 0 to f ) if there is a homotopy commutative diagram

X
i //

f

��

X 0
r //

f 0

��

X

f
��

Y
j // Y 0

s // Y;

where r i ' id; sj ' id; i r ' id and j s ' id and write f � f 0 .

Algebraic & Geometric Topology, Volume 12 (2012)
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Now let L! be a function such that for every f W X ! Y , L!.f / 2 Œ0;1� satisfies

(a) L!.f /D 0 whenever f is a homotopy equivalence.

(b) If A //X
f //Y is a mapping cone sequence, then L!.f /� !.A/.

(c) L!.fg/�L!.f /CL!.g/.

(d) If f � g , then L!.f /DL!.g/.

Define L!.f /D supfL!.f / jL! satisfies the above properties g. It was shown in [9]
that if ! is a bounded weight function, then z̀!.f /D L!.f /.

2.2 Lusternik–Schnirelmann category

Definition 2 The Lusternik–Schnirelmann category of a map f W X ! Y is the least
integer k for which X has a cover by open sets

X DX0[X1[ � � � [Xk

such that f jXi
'� for each i . When f D idX , we write cat.X /D cat.idX / and when

i W A ,!X is the inclusion, we write catX .A/D cat.i/. In light of Proposition 3, when
A has the homotopy type of the n–skeleton X n �X , we write catX .X n/D cat.X n/

since X is clear from the context.

Proposition 3 (Nendorf–Scoville–Strom [5]) Let n> conn.X / (see Definition 5) be
a fixed integer. Then cat.X n/ depends only on the homotopy type of X , and not on
the choice of n–skeleton.

We recall the notion of categorical sequences, first introduced and studied in [5].

Definition 4 The categorical sequence of a CW complex X is the sequence �X W N!
N [f1g defined by

�X .k/D inffn j catX .X n/� kg:

This is well-defined by Proposition 3.

The idea behind a categorical sequence of a space X is simply to keep track of the
dimensions in which the category increases by 1. For example, let X DCPn . Then
�X D .0; 2; 4; 6; : : : ; 2n�2; 2n;1;1; : : :/. For notational simplicity, we will suppress
the infinities unless it is of relevance.

Algebraic & Geometric Topology, Volume 12 (2012)
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2.3 Connectivity

It is well known that a CW complex A is contractible if and only if �i.A/ D 0 for
all i . This leads to the idea that we can measure the complexity of A by considering
the dimension of its first nontrivial homotopy group.

Definition 5 For a CW complex A, we define the connectivity of A, denoted conn.A/,
to be the largest integer n (or 1) such that �i.A/ D 0 for i < nC 1. If A is not
path-connected, we say that conn.A/D�1.

We will view conn.A/ as one less than the dimension of the first reduced homology
group. This follows from the Hurewicz Theorem; see Arkowitz [2, page 219].

We now define the connectivity weight, the main focus of this paper.

Definition 6 Let X;Y be path-connected CW complexes, and A the collection of all
CW complexes with abelian fundamental group. Define

!C .A/D

8̂<̂
:

0 if A� �;

2 if A is not path-connected,

1=.conn.A/C 1/ otherwise.

We say that !C is the connectivity weight and that `!C .X;Y / is the connectivity
weighted length between X and Y . Throughout the rest of this paper, let ! D !C .

Remark 7 A remark concerning our choice to define !C .A/ D 2 for A non-path-
connected is in order. Let Ai be a space with conn.Ai/D i , and write !C .A�1/D

1
x

.
Since !C .Ai/>!.Aj / whenever i < j , it should be the case that !C .A�1/>!C .Aj /

for all j ¤�1. Now : : : ; !C .A2/; !C .A1/; !C .A0/; !C .A�1/D : : : ;
1
3
; 1

2
; 1

1
; 1

x
, and

a choice of x D 1
2

provides a nice symmetry in the sequence. Since 1=.1=2/ D 2,
we choose !C .A/D 2 for X non-path-connected. Furthermore, while we will allow
attachments of spaces which are not necessarily path-connected, we will not consider
the lengths between non-path-connected spaces. Hence, it is always assumed that when
we consider `!.X;Y /, both X and Y are path-connected, but the Ai which we attach
are not necessarily path-connected. Again, each Ai has abelian fundamental group.

The following Proposition is easily verified.

Proposition 8 The function !C is a bounded †–weight function.
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3 Connectivity weight

This section is devoted to proving our main results. We first state a technical lemma
which is needed to ensure that given a mapping cone sequence of CW complexes, we
may pass to a mapping cone sequence on the skeleta. Let A! B be a map of CW
complexes and replace it with a cellular map. Then the cofiber C inherits a natural
CW structure.

Lemma 9 With the above setup, An�1! Bn! C n is a cofiber sequence.

Proof See Stanley [10, Lemma 7.3].

The decompositions below will be helpful in following the proofs of Lemma 10 and
Theorem 11. Let

A0

��

A1

��

An�1

��
Z �X0

// X1
// � � � // Xn�1

// Xn �X

be any !–decomposition of Z into X . We keep track of the m–skeleta in the above
diagram by considering the following diagram:

(1)

.A0/
m�1

��

.A1/
m�1

��

.An�1/
m�1

��
.X0/

m // .X1/
m // � � � // .Xn�1/

m // .Xn/
m

By Lemma 9, each sequence .Ai/
m�1! .Xi/

m! .XiC1/
m is also a mapping cone

sequence, 0� i � n� 1.

Lemma 10 Let X and Z be spaces and let m be the first dimension such that
cat.X m/� cat.Zm/D 1. Then there exists an attachment of a space with connectivity
at most m� 2 in any !–decomposition of Z into X .

Proof Suppose that cat.X m/� cat.Zm/ D 1 for the first time in dimension m. If
.Ai/

m�1D� for all i in (1), then X m�Zm , which is impossible since X and Z have
different categories in dimension m. Hence, there must be at least one .Ai/

m�1 ¤ �

which implies that conn.Ai/ is at most m� 2 for some space Ai .

We translate the preceding Lemma into the language of the connectivity weight to
obtain the following Theorem.

Algebraic & Geometric Topology, Volume 12 (2012)
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Theorem 11 Let X and Z be spaces with m1�m2�� � ��mN<1 the first dimension
of X such that cat.X mi /�cat.Zmi /D i > 0 for 1� i �N . If cat.X 1/�cat.Z1/D 1,
then

2C

NX
iD2

1

mi � 1
� `!.Z;X /:

Otherwise,
NX

iD1

1

mi � 1
� `!.Z;X /:

Proof Let D be any !–decomposition of Z into X . We will apply Lemma 10 for
each value of i , 1� i �N , to obtain a lower bound.

Consider the first case where cat.X 1/� cat.Z1/D 1Dm1 . For i D 1, by Lemma 10
there is 1 attachment in D with connectivity at most 1�2D�1 ie there is an attachment
of a non-path-connected space, say Aj0

. By definition of !C , this attachment con-
tributes a value of !.Aj0

/D 2 to the lower bound estimate for `!.Z;X /. If m2 does
not exist (and since category can increase by at most 1 per attachment, consequently
m3;m4; : : : also do not exist), we finish with an estimate of 2� `!.Z;X /.

We proceed by induction on the i of mi . If m2 exists, it is defined as the first dimension
such that cat.X m2/�cat.Zm2/D 2. Now cat.X m2/�cat.X m1/D 1, so by Lemma 10,
there is an attachment in D , say Aj1

, with connectivity at most m2� 2. Clearly Aj1

must be a different attachment than Aj0
since otherwise this would imply that a single

attachment can increase the category by 2 which is impossible. This yields the estimate
2C 1=.m2 � 1/ � 2C 1=.conn.Aj1

/C 1/ D !.Aj0
/C !.Aj1

/ � `!.Z;X /. If m3

does not exist, we are done.

Assume the inductive hypothesis that we have found Aj0
;Aj1

; : : : ;Ajk
satisfying

1=.mi�1/�!.Aji�1
/ for 1� i �k so that 2C

Pk
iD21=.mi�1/�`!.Z;X /. If mkC1

exists, mkC1 is by definition the first dimension such that cat.X mkC1/�cat.ZmkC1/D

k C 1. Now cat.X mkC1/ � cat.X mk / D 1 and so by Lemma 10, there are is an
attachment in D , say AjkC1

, such that conn.AjkC1
/�mkC1�2. For the same reason

as above, AjkC1
must be a different attachment than the other Aj0

;Aj1
; : : : ;Ajk

.
Therefore, 2C

PkC1
iD2 1=.mi � 1/� `!.Z;X /.

We thus obtain the estimate 2 C
PN

iD2 1=.mi � 1/ � `!.Z;X /. The case where
cat.X 1/� cat.Z1/¤ 1 is almost identical.

By taking Z D � in Theorem 11, we obtain the following useful lower bound for the
weighted cone length of any space.
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Corollary 12 Let X be a space with cat.X /Dn and let �X D .m1;m2;m3; : : : ;mn/.
If m1 > 1, then

nX
kD1

1

mk � 1
� cl!.X /:

If m1 D 1, then

2C

nX
kD2

1

mk � 1
� cl!.X /:

We will use this to compute the weighted cone length of a product of spheres.

Example 13 Let X D Sn1 � Sn2 � � � � � Snk with 1 � n1 � n2 � � � � � nk . The
standard cone decomposition of X is given by

A0

��

A1

��

A2

��

Ak�1

��
� // X.1/ // X.2/ // � � � // X.k � 1/ // X.k/

where X.i/Df.x1;x2; : : :/ j at most i entries are not �g�X , and each Ai is attached
via a higher order Whitehead product [7] with conn.Ai/D n1C n2C � � �C niC1� 2.
We thus obtain the upper bound of

cl!.Sn1 �Sn2 � � � � �Snk /�
1

n1� 1
C

1

n1C n2� 1
C � � �C

1

n1C n2C � � �C nk � 1

for n1 ¤ 1 and

cl!.Sn1 �Sn2 � � � � �Snk /� 2C
1

n1C n2� 1
C � � �C

1

n1C n2C � � �C nk � 1

for n1 D 1.

We now show the lower bound. By [5, Corollary 17], �X .r/D n1C n2C � � �C nr for
r � k and 1 otherwise. By Corollary 12 and the upper bound, we conclude that

cl!.Sn1 �Sn2 � � � � �Snk /

D

8̂̂<̂
:̂

1

n1� 1
C

1

n1C n2� 1
C � � �C

1

n1C n2C � � �C nk � 1
if n1 ¤ 1;

2C
1

n1C n2� 1
C � � �C

1

n1C n2C � � �C nk � 1
if n1 D 1:

The last step in proving Theorem 15 is to show that any rational number can be realized
as a finite sum of the above form.
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Lemma 14 Let a � 1 be an integer and r a rational number such that r � 1
a

. Then
there exists a finite sequence of positive integers a< a2 � a3 � � � � � an such that

1

a
C

1

aC a2

C
1

aC a2C a3

C � � �C
1

aC a2C � � �C an
D r:

Proof It suffices to show that any positive rational r can be written as r D 1=A1C

1=A2C� � �C 1=An where the difference Di DAiC1�Ai satisfies A1 <D1 �D2 �

D3 � � � � � Dn�1 . Let k be a positive integer such that r � 1=k . Find the value j

that satisfies

S0 WD
1

k
C

1

kC .kC1/
C

1

kC2.kC1/
C� � �C

1

.kC1/j �1
� r;

r <
1

k
C

1

kC .kC1/
C

1

kC2.kC1/
C� � �C

1

.kC1/j �1
C

1

.kC1/.j C1/�1
:

Consider r �S0 D r 0 . Clearly r 0 < 1=..kC 1/.j C 1/� 1/ and in particular, r 0 < 1.
If r 0 D 0, then we are done. Otherwise, write r 0 D 1=m1C 1=m2C� � �C 1=mt where
each miC1 Dm2

i �mi C �i , �i a positive integer [8, Theorems 1 and 2]. Then

r D
1

k
C

1

kC .kC 1/
C

1

kC 2.kC 1/
C� � �C

1

.kC 1/j � 1
C

1

m1

C
1

m2

C� � �C
1

mt

and k < k C 1 D D1 D D2 D � � � D Dj�1 . It remains to show that Di � DiC1 ,
for j � 1 � i � t � 1. We first show that Dj�1 � Dj . Observe that 1=m1 � r 0 <

1=..kC 1/.j C 1/� 1/ so that Dj �Dj�1 Dm1� .kC 1/.j C 1/C 1> 0. We now
show that Di �DiC1 for j � i � t � 1. We have

DiC1 DmiC1�mi

D .m2
i �mi C �i/�mi

Dm2
i � 2mi C �

� m2
i � 2mi

� mi � 2

� mi �mi�1

DDi ;

which completes the proof.

Our main result follows.

Theorem 15 Let a� 1 be an integer and q 2Q�0 such that q � 1
a

. Then there exists
a space X.q/ with conn.X.q//D a and cl!.X.q//D q .
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Proof Let q and a be as above. By Lemma 14, there exists positive integers a D

n1 < n2 � � � � � nk such that

1

n1

C
1

n1C n2

C � � �C
1

n1C n2C � � �C nk

D q:

Write X D Sn1C1 �Sn2 �Sn3 � � � � �Snk . By Example 13,

cl!.X /D
1

n1C 1� 1
C

1

n1C 1C n2� 1
C

1

n1C 1C n2C n3� 1

C � � �C
1

n1C n2C � � �C nk � 1
D q:

It is clear that conn.X.q//D a.

4 Killing and cone length

Lemma 16 If X
f //Y // � is a mapping cone sequence and X and Y are

simply connected CW complexes, then X � Y .

Proof This follows from Whitehead’s first and second Theorems [2, pages 53, 220].

We show that kl!.X / can easily be computed for all spaces X by first showing a lower
bound.

Proposition 17 Let X and Y be spaces with different homology groups in at least
one dimension and m � 1 the first dimension with Hm.X / 6Š Hm.Y /. If ! D !C ,
then 1

m
� `!.X;Y /.

Proof Take any !–decomposition

A0

��

A1

��

An�1

��
X �X0

// X1
// � � � // Xn�1

// Xn � Y

of X into Y . Assume by way of contradiction that conn.Ai/>m�1 for all 0� i�n�1.
Consider any of the mapping cone sequences Aj !Xj !XjC1 and the long exact
homology sequence which it induces:

� � � // Hm.Aj / // Hm.Xj / // Hm.XjC1/ // Hm�1.Aj / // � � �

Since conn.Aj />m�1, we see that Hm.Xj /ŠHm.XjC1/ for all j so that Hm.X /Š

Hm.Y /. Thus there is at least one Ai with conn.Ai/�m�1 so that 1
m
� `!.X;Y /.
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Corollary 18 Let X and Y be spaces and ! D !C . If conn.X / < conn.Y /, then
!.X /� `!.X;Y /.

Proof Let m� 1D conn.X /. Since conn.X / < conn.Y /, m is the first dimension
in which Hm.X / 6ŠHm.Y /. By Proposition 17, 1

m
D !.X /� `!.X;Y /.

We now compute kl!.X / for all spaces X .

Corollary 19 Let X be a space and !C D ! . Then kl!.X /D !.X /. If X is simply
connected, the decomposition is X //X // � : Furthermore, kl!.X /�`!.X;Y /
for all spaces Y .

Proof Clearly kl!.X / � !.X /. Let Y D � and apply Corollary 18 for the reverse
direction. For X simply connected, the only way to obtain this is with the decomposition
X //X // � by Lemma 16. The last inequality follows from Corollary 18.

Though we are not able to compute cl!.X / for all spaces, we can compute it for many
spaces. We first compute cl!.X / whenever X is a suspension. We then give examples
of classes of spaces whose weighted cone length may be computed.

Corollary 20 Let ! D !C and A a noncontractible space. If X D †A 6� �, then
cl!.X /D !.A/.

Proof Observe that the diagram

A

��
� // †A�X

shows that `!.�;X /� !.A/.

We apply Corollary 12. Since by definition m1 is the first dimension in which
cat.X m1/ � cat.�/ D cat.X m1/ D 1, it follows that m1 D conn.X /C 1. We have
!.A/D 1=.1C conn.A//D 1=.m1� 1/� cl!.X / by Corollary 12 which completes
the proof.

5 Computations and examples

Example 21 By Corollary 19 and Corollary 20, `!.�;Sn/D 1
n�1

and `!.Sn;�/D 1
n

for n� 2.

Algebraic & Geometric Topology, Volume 12 (2012)



446 Nicholas A Scoville

Example 22 The converse of Corollary 20 is not true. That is, if cl!.X / D !.A/
for some A, X is not necessarily a suspension. Indeed, Theorem 15 allows us to
construct many such examples. We will restrict our attention to products of only two
spheres. To do this, we seek positive integers a; b; c such that 1

a
C

1
b
D

1
c

if and only
if .aC b/jab . For example, if aD 5 and b D 20, we choose n1 D 6 and n2 D 15 so
that cl!.S6 �S15/D 1

6�1
C

1
6C15�1

D
1
4
D !.A/ for all 3–connected spaces A but

S6 �S15 6�†A for any A.

Example 23 Let X DCPn . As noted above, �CPn D .0; 2; 4; 6; : : : ; 2n�2; 2n/. By
Corollary 12,

Pn
iD1.1=.2i � 1//� cl!.X /. The standard CW decomposition of CPn

S1

��

S3

��

S2n�1

��
� // CP1 // � � � // CPn�1 // CPn

yields the estimate cl!.CPn/�
Pn

iD1.1=.2i �1// so cl!.CPn/D
Pn

iD1.1=.2i �1//.
The exact value of the sum can be computed using the digamma function [1, 6.3.4].

Example 24 Using the same technique as in Example 23, we can compute cl!.RPn/D

2C
Pn

iD1.1= i/, 2 plus the i –th partial sum of the harmonic series. In particular, this
shows that cl! can take on arbitrarily large values.

Example 25 Let X DSp.3/. The following cone decomposition was explicitly shown
in [4]:

S2

��

C6

��

C9

��

S17

��

S20

��
� // S3 // X2

// X3
// X4

// X5 � Sp.3/;

where Cn D Sn[�n
DnC4 (here �n is the generator of the 2–primary component of

�nC3.S
n/ [12]). This yields an upper bound. On the other hand, Sp.3/ has categorical

sequence .3; 7; 10; 18; 21/. By Corollary 12, we then obtain the same value as the
lower bound. Thus cl!.Sp.3//D 1

2
C

1
6
C

1
9
C

1
17
C

1
20
� :8866.

Example 26 We find spheres whose product has !–cone length 3:141, the first few
digits of � . The following decomposition can be found using an elementary number
theory computer program such as PARI:

3:141D 2C 1C
1

8
C

1

63
C

1

7875
:
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This yields the sequence 1; 1; 7; 56; 7813 so we choose X DS1�S1�S7�S56�S7875 ,
hence cl!.X /D 3:141.

6 Open questions

Question 27 In the examples we have seen, cl!.X / is realized using the “standard”
decomposition of X . In particular, if cl.X /D n, the classical cone-length of X , we
have found the connectivity weighted cone length of X in exactly n attachments. Is
there a space X such that cl.X /Dn but cl!.X / is realized in more than n attachments?

Question 28 Theorem 11 provides a good lower bound for `!.X;Y / whenever
cat.X n/ � cat.Y n/ for all n. However, this lower bound is clearly less helpful if
there are integers i such that cat.X i/ > cat.Y i/, and the theorem tells us nothing
when cat.X n/� cat.Y n/ for all n. In particular, let A! B! C be a mapping cone
sequence such that cat.B/C 1D cat.C /. Is there a good lower bound for `!.C;B/?
What about the special case of Sn!RPn!RPnC1 ?

Question 29 Suppose that cat.X /D n; dim.X /D d , and conn.X /D c ; what can be
said about cl!.X /?

Question 30 Is it possible to define ! so that for finite complexes, cl!.X /D cl!.Y /
if and only if X � Y ?
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