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Rational tangle surgery and Xer recombination on catenanes
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The protein recombinase can change the knot type of circular DNA. The action of
a recombinase converting one knot into another knot is normally mathematically
modeled by band surgery. Band surgeries on a 2–bridge knot N

�
4mn�1

2m

�
yielding a

.2; 2k/–torus link are characterized. We apply this and other rational tangle surgery
results to analyze Xer recombination on DNA catenanes using the tangle model for
protein-bound DNA.

57M25, 92C40

1 Introduction

A tangle consists of arcs properly embedded in a three dimensional ball. A protein-
DNA complex can be regarded as a tangle in which the protein complex is considered
as a three dimensional ball and the DNA within the complex as arcs (see Ernst and
Sumners [12] and Sumners, Ernst, Spengler and Cozzarelli [30]). In general it is very
hard to identify the arrangement of DNA within a protein-DNA complex. Electron
micrographs, AFM (Atomic Force Microscopy) images, and crystalline structures do
not give clear enough data to address this problem for large molecules. Thus the tangle
model is frequently used in analyzing the topology of protein-bound DNA (see Buck
and Verjovsky Marcotte [2], Darcy and Sumners [9], Ernst and Sumners [12; 13] and
Vazquez and Sumners [32]).

The proteins we are interested in are ones which are involved in recombination. Site-
specific recombination is a process in which specific target sequences on each of
two DNA segments are exchanged. These specific sites are called recombination
sites. Proteins that carry out these recombination reactions are called recombinases.
Site-specific recombination reactions are involved in a variety of biological processes
including transposition of DNA, integration into host chromosomes, and gene regulation.

During recombination, the topology of circular DNA can change forming knots and links.
The local action of a recombinase has been modeled by the mathematical operation
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of a band surgery or a rational tangle surgery. In this paper we will characterize such
surgeries on a 2–bridge knot N

�
4mn�1

2m

�
yielding a .2; 2k/–torus link. The class

of knots N
�

4mn�1
2m

�
includes the family of twist knots which frequently appear in

biological reactions. It also includes knots which are believed to be the products of
Xer recombination when Xer acts on .2; 2k/–torus links.

In Section 2, we give mathematical preliminaries. In Section 3, we state the main
result which we apply to Xer recombination in Section 4. We prove our main result in
Section 5. In Section 6 we consider non-band rational tangle surgery cases related to Xer
recombination. In Section 7 we summarize our results and briefly discuss the software
TopoIce-R [8] within Knotplot [26] which implements the results of Theorem 3.1.

2 Tangles and 2–bridge knots and links

Let T , T1 , and T2 be 2–string tangles. The knot (or link) obtained by connecting the
top two endpoints of T and the bottom two endpoints by simple curves, as shown in
Figure 1, is called the numerator closure and is denoted by N.T /. From two tangles
T1 and T2 a new tangle, called the sum of T1 and T2 and denoted by T1CT2 , can
be obtained by connecting two endpoints of T1 to two endpoints of T2 as shown
in Figure 1. For more on tangles see Conway [4], Goldman and Kauffman [14],
Murasugi [25] and Sumners, Ernst, Spengler and Cozzarelli [30].

T T1 T2

Figure 1. The numerator N.T / (left) and the tangle sum T1CT2 (right)

Let c1; : : : ; cn be a sequence of integers. The circle product of a tangle T and
.c1; : : : ; cn/ is defined as shown in Figure 2 and is denoted by T ı .c1; : : : ; cn/ (see
Darcy [7]). A rational tangle is the circle product of a zero crossing tangle and
.c1; : : : ; cn/. The zero crossing tangle contains two vertical strings if n is even or two
horizontal strings if n is odd. Rational tangles are classified up to ambient isotopy
fixing the boundary by their continued fraction

cnC
1

cn�1C
1

���C 1
c1

(see Conway [4]).

Algebraic & Geometric Topology, Volume 12 (2012)



Rational tangle surgery and Xer recombination on catenanes 1185

T T

c1

c2

cn

c1

c2
cn

n even n odd

Figure 2. Circle products T ı.c1; : : : ; cn/ of T and .c1; : : : ; cn/: The vertical
twists are left-handed if ci > 0 and right-handed if ci < 0 while the horizontal
twists are right-handed if ci > 0 and left-handed if ci < 0 .

The knot/link, N
�

a
b

�
can be formed from the rational tangle a

b
via numerator closure.

N
�

a
b

�
is a 2–bridge knot/link except when jaj D 1 in which case it is the unknot.

N
�

a
b

�
is a link if and only if a is even in which case it is a 2–component link. The

2–component link N.2k/ is called a .2; 2k/–torus link. Given a projection of a link,
the linking number of a 2–component link can be determined by calculating the sum
over all crossings involving both components of the signed crossing number.

Let P and R be rational tangles. The operation which transforms a knot (or link) by
replacing P with R is called a rational tangle surgery, and we will refer to this as a
.P;R/ move. See Figure 3. A .P;R/ move is said to be equivalent to a .P 0;R0/ move
if and only if for every pair of knots, K1 and K2 , there exists U satisfying the system
of tangle equations N.U CP /DK1 , N.U CR/DK2 if and only if there exists U 0

satisfying the system of tangle equations N.U 0CP 0/DK1 , N.U 0CR0/DK2 . The
following two theorems classify equivalent .P;R/ moves when P and R are rational
tangles.

U P U R

Figure 3. A rational tangle surgery: P and R are rational 2–string tangles.
U is a 2–string tangle.

Theorem 2.1 (Darcy [7]) A
�
0; t

w

�
move is equivalent to a

�
0; c

d

�
move if and only

if c
d
D

t
w�ht

for some h. Moreover, N
�
U C 0

1

�
DK1 and N

�
U C t

w

�
DK2 if and

only if N
�
ŒU ı .h; 0/�C 0

1

�
DK1 and N

�
ŒU ı .h; 0/�C t

w�ht

�
DK2 .
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Theorem 2.2 (Darcy [7]) An
�f1

g1
; f2

g2

�
move is equivalent to a

�
0; t

w

�
move if and

only if there exists e1 and i1 such that g1e1 � f1i1 D 1 and t
w
D

g1f2�g2f1

e1g2�i1f2
(or

equivalently, f2

g2
D

te1Cwf1

ti1Cwg1
).

As discussed in [7], any solution for U to N.U CP /DK1 , N.U CR/DK2 can
be translated into a solution for U 0 to N.U 0C 0/DK1 , N.U 0CR0/DK2 and vice
versa. Hence we will often focus on the P D 0 case.

Let L be a link in S3 . Let b W I � I ! S3 be a band satisfying b�1.L/ D I � @I ,
where I D Œ0; 1� is an interval. Let Lb denote a link obtained by replacing b.I � @I/

in L with b.@I �I/. For simplicity we denote b.I �I/ by b . We say Lb is obtained
from L by a band surgery along b . Note that band surgery is equivalent to rational
tangle surgery where P D 0 and R D 1

w
for some integer w . If L and Lb have

orientations which agree with each other except for the band b , the corresponding band
surgery is said to be coherent. A

�
0; 1

w

�
move can be considered as a band surgery.

See Figure 4. Note that by choosing the orientations of L and Lb , any band surgery
can be a coherent one with respect to those orientations.

.0;�1
4
/ move

Figure 4. A band surgery and a
�
0; 1

w

�
move

3 Statement of the main theorem: characterization of band
surgery

In this section we state a result characterizing band surgeries on a 2–bridge knot
N
�

4mn�1
2m

�
yielding a .2; 2k/–torus link N.2k/.

Theorem 3.1 Suppose

N.U C 0/DN
�

4mn�1
2m

�
and N

�
U C 1

w

�
D .2; 2k/–torus link(�)

and the rational tangle surgery corresponds to a coherent band surgery. If the .2; 2k/–
torus link has linking number k where jkj > 2, then (�) has no solution. If the
.2; 2k/–torus link has linking number �k , then one of the following holds (see Figure 5
below):

Algebraic & Geometric Topology, Volume 12 (2012)
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(1) k Dm and U D
�

4mn�1
�w.4mn�1/C2m

�
.

(2) k D n and U D
�

4mn�1
�w.4mn�1/C2n

�
.

(3) k DmC nC 1 and U D
�
�1

2mC1
C
�1

2nC1

�
ı .1;�.wC 1/; 0/.

or U D
�
�1

2nC1
C

�1
2mC1

�
ı .1;�.wC 1/; 0/.

(4) k DmC n� 1 and U D
�
�1

2m�1
C
�1

2n�1

�
ı .�1;�.w� 1/; 0/.

or U D
�
�1

2n�1
C
�1

2m�1

�
ı .�1;�.w� 1/; 0/.

Note if the .2;˙4/–torus link has linking number ˙2 where the ˙ signs agree, then
we do not know if (�) has a solution corresponding to a coherent band surgery. See
Section 4.4 for a case where the .2; 4/–torus link has linking number 2 and the product
is the trefoil knot. However, if the .2;˙4/–torus link has linking number �2, then
we can use Theorem 3.1 to determine all solutions (if any) to (�). The Hopf link =
the .2; 2/–torus link = the .2;�2/–torus link. Thus Theorem 3.1 applies to the Hopf
link no matter how it is oriented. When k D 0, N.2k/ D N.0/ D unlink of two
components. Hence Theorem 3.1 also applies to the two component unlink.

The case where mnD 0 (that is, N
�

4mn�1
2m

�
is an unknot) was proved by Hirasawa

and Shimokawa [17]. In Section 5, we prove Theorem 3.1 for the case where m; n 6D 0.

4 Results on Xer recombination on DNA catenanes

Recall that recombinases are proteins which bind to and break two segments of DNA,
exchange the ends of the broken DNA before resealing the breaks (Figure 6). Since
recombinases normally bind to asymmetric recombination sites, the DNA sequence of
the recombination sites can be used to orient these sites as shown in Figure 6. When the
two sites are on the same component, their orientations on the circular DNA molecule
can either agree (Figure 6A) or disagree (Figure 6B). In the former case, we say that
the two sites are directly repeated, while in the later case, we say that the two sites
are inversely repeated. Observe that recombination on directly repeated sites normally
results in a change in the number of components while for inversely repeated sites the
number of components is normally preserved.

When a site-specific recombinase binds to two segments of circular DNA, the DNA can
be partitioned in different ways. Sometimes one partitions the DNA into two tangles
where one tangle represents the DNA bound by the protein while the other tangle
represents the free DNA not bound by protein. In other cases, we are interested in the
local action of the DNA. In this case, one tangle represents the two very short segments
of DNA upon which the recombinase acts, breaking, exchanging and rejoining the
DNA segments. This local recombination reaction is modeled by replacing the tangle

Algebraic & Geometric Topology, Volume 12 (2012)
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Figure 5. Rational tangle surgeries from N
�

4mn�1
2m

�
to N.2k/: A positive

(negative) number inside a box corresponds to right (left) handed twists. For
example, N

�
4mn�1

2m

�
D .�2m; 2n;�w; 0/ per left side of (1).
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= =

(A) Direct repeats (B) Inverted repeats
Figure 6. (A) Recombination on directly repeated sites. (B) Recombination
on inversely repeated sites.

P with the tangle R (Figure 3). By taking a very small tangle ball around the DNA
segments which are broken by the recombinase, we can assume the tangle P does not
contain any crossings. Thus we can take the P to be the 0 tangle. The remaining DNA
configuration represented by the tangle U is unchanged by the recombinase action
(Figure 3).

Currently the local action of various recombinases have been modeled by
�
0; 1

w

�
moves where jwj D 0; 1; 2 (for example, see Crisona, Weinberg, Peter, Sumners and
Cozzarelli [5], Hodgman, Griffiths and Summers [18] and Sumners, Ernst, Spengler
and Cozzarelli [30]). Thus the local action of a recombinase is believed to be equivalent
to a band surgery. Moreover in some cases, the band surgery can be assumed to be
coherent. When the sites are inversely repeated, recombination normally results in the
inversion of one DNA segment with respect to the other one. Thus this case does not
correspond to a coherent band surgery. However, when the sites are directly repeated
or on different components, we can use these sites to orient the DNA. In this case, the
chemistry of the reaction normally requires that the recombination correspond to a
coherent band surgery.

4.1 Xer recombination

When acting on circular DNA, recombinases can invert a DNA segment, delete a DNA
segment or fuse together two DNA circles (Figure 6). When two identical DNA circles
fuse together into one larger DNA circle, the larger DNA circle contains two copies of
the same DNA sequence (one from each of the identical circles). The larger DNA circle
made up of two copies of the same DNA sequence is called a dimer (di = two, mer =
part). This can occur to the genome of the bacteria E. coli. When two circular genomes
of E. coli fuse to form one larger circle containing two copies of the E. coli genome,
the genome of the E. coli may not properly segregate when the host cell divides to form
two new daughter cells. Thus for proper segregation of its genome upon cell division,
E. coli needs a method to change the dimer into two monomers. This is the job of Xer
recombinase.

Algebraic & Geometric Topology, Volume 12 (2012)
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The biochemistry of Xer recombination is very similar to recombinases such as Flp and
Cre. However its topology is very different. Cre and Flp can produce a spectrum of
knots and links when acting on circular DNA. They can invert, delete, or fuse together
DNA. Xer on the other hand produces a unique product dependent only on the starting
configuration of the DNA (usually unknotted, but not always as seen below). Xer’s
function is to create two DNA circles from a larger DNA circle. In other words, its
function is to performs deletions. Xer recombinase does not need to invert a DNA
segment, and it should not accidently fuse two DNA circles into a dimer. But how does
a protein know when it is acting on two segments from the same or different molecules
or whether it is deleting or inverting a DNA segment? Xer uses a topological filter to
ensure that it only performs deletions when acting on unknotted circular DNA (see
Colloms, Bath and Sherratt [3]). The term topological filter is used by biologists to
describe the mechanism in which a protein such as Xer sets up a specific protein-DNA
topology in order to select a particular reaction pathway – in this case deletion instead
of fusion or inversion.

When acting on unknotted circular DNA, Xer produces the .2; 4/–torus link with
linking number �2 (see [3]). It is believed that Xer uses the topological mechanism
shown in Figure 7. The local action of Xer recombination is modeled by the small
dashed circles: the P D 0 tangle is changed into the R D �1 tangle. The larger
black circles in Figure 7 denote the tangles modeling the entire protein-DNA complex.
We will use B and E to represent these larger tangles modeling the protein-bound
DNA before and after recombination, respectively. Xer uses accessory proteins to trap
three DNA crossings. Thus this protein-DNA complex includes the Xer proteins, the
accessory proteins and the three DNA crossings. It is modeled by the B D�1

3
tangle.

If the Xer binding sites are directly repeated, the three crossings brings the Xer sites
into proper conformation so that recombination can occur. Thus the protein bound
DNA configuration changes from the B D �1

3
tangle to the E D �4

3
tangle. We

would need to change the orientation of one of the arrows in Figure 7 if the DNA sites
were inversely repeated. Xer cannot act on such a conformation and thus inversion is
prevented. The B D�1

3
tangle conformation also makes fusion of two unlinked DNA

circles unlikely as it is biologically difficult to form the three crossings in the B D�1
3

tangle if the DNA comes from two unlinked circular DNA molecules. Thus deletion is
normally preferred over both inversion and fusion.

4.2 Xer recombination from .2 ; 2k/–torus link to 2kC1 crossing knot

In [1] Bath, Sherratt and Colloms studied Xer site-specific recombination on DNA
catenanes whose link types were .2; 2k/–torus links, .k � 2/. Xer binding sites
were placed on each component of these links, and these sites were used to orient the
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Figure 7. Xer recombination on the unknot results in the .2; 4/–torus link

.2; 2k/–torus link substrates. If these .2; 2k/–torus links had linking number �k and
if k � 3, then Xer recombination can occur relatively efficiently and yields DNA knots
with 2kC1 crossings. That is, Xer recombination can result in the fusion of two DNA
molecules. For example, Figure 8 shows possible configurations of DNA before and
after recombination in the case where k D 3. Xer did not act efficiently when the
.2; 2k/–torus links had linking number k , nor did it act efficiently on N.4/ regardless
of the orientation of the Xer binding sites. Recall that the topological filter used by
Xer is suppose to prevent fusion from occurring. Thus in order to understand why
Xer can perform fusion on some substrates but not others, we need to understand the
topology of these reactions. According to Theorem 3.1, assuming Xer’s local action
corresponds to a coherent band surgery, it is not mathematically possible for Xer to act
on a .2; 2k/–torus links with linking number k � 3 and produce the knot N

�
4mn�1

2m

�
.

This corresponds nicely with Xer’s inability to act when the .2; 2k/–torus links had
linking number k , k � 2. Theorem 4.1 only applies when the product is N

�
4mn�1

2m

�
and does not give us any information about other types of knots, but it is a good first
step. That Xer can act on .2; 2k/–torus links with linking number �k when k � 3,
but not on the .2; 4/ torus link is more intriguing.

To better understand Xer recombination, we will first focus on its local action. By
Theorem 2.1, a

�
0; 1

w

�
–move and

�
0; 1

w0

�
–move are equivalent to each other for any

integers w and w0 . The local action of Xer recombination has been modeled by
replacing the P D 0–tangle with the R D �1–tangle. Thus we fix the integer w :
w D �1 in Theorem 4.1 and corollaries. Recall that the chemistry of the reaction
normally requires that the local action correspond to a coherent band surgery.

Theorem 4.1 Suppose N.U C0/DN.2k/ and N.U C .�1//DN
�

4mn�1
2m

�
, where

k � 1 and N
�

4mn�1
2m

�
has 2k C 1 crossings. Then mn > 0, jmC nj D k C 1, and

U D
�
�1

2m�1
C
�1

2n�1

�
or
�
�1

2n�1
C
�1

2m�1

�
(see Figure 10).

Proof First we determine the crossing number of the knot N
�

4mn�1
2m

�
. N

�
4mn�1

2m

�
D

N
�
2nC 1

�2m

�
. Thus if mn<0, the crossing number of the knot N

�
4mn�1

2m

�
is 2jmCnj

since a reduced alternating diagram gives the crossing number of the corresponding
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.2; 6/–torus link 74

Figure 8. Xer recombination from the .2; 6/–torus link to the 74 knot

2
m
�

1

2
n
�

1

2
m
C

1

2
n
C

1

m; n> 0, mC nD k � 1 m; n< 0, mC nD�.k � 1/

Figure 9. Knots with 2kC 1 crossings

knot. Hence mn> 0. Note that

N
�
�1

2m�1
C
�1

2n�1
C.�1/

�
DN

�
�1

2m�1
C
�2n

2n�1

�
DN

�
�.2n�1/�2n.2m�1/

�2m

�
DN

�
4mn�1

2m

�
:

Also

N
�
�1

2mC1
C
�1

2nC1
C1

�
DN

�
�1

2mC1
C

2n
2nC1

�
DN

�
�.2nC1/C2n.2mC1/

2m

�
DN

�
4mn�1

2m

�
:

Thus the knot N
�

4mn�1
2m

�
is ambient isotopic to the pretzel knots P .2m�1; 2n�1; 1/

and P .2m C 1; 2n C 1;�1/. Thus the crossing number of a knot N
�

4mn�1
2m

�
is

2jmC nj � 1 if mn> 0. Hence the crossing number of N
�

4mn�1
2m

�
is 2kC 1 if and

only if mn> 0 and jmC nj D kC 1, see Figure 9.

Applying Theorem 3.1 for

N..U C .�1//C 0/DN.U C .�1//DN
�

4mn�1
2m

�
and N..U C .�1//C 1/DN.U C 0/DN.2k/
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together with an assumption mn > 0; jmC nj D k C 1 � 4; w D 1, we obtain from
case (4) k DmC n� 1, that

.U C .�1//D

(�
�1

2m�1
C
�1

2n�1

�
ı .�1/D

�
�1

2m�1
C
�1

2n�1

�
C .�1/ or�

�1
2n�1

C
�1

2m�1

�
ı .�1/D

�
�1

2n�1
C
�1

2m�1

�
C .�1/;

and so

U D

(�
�1

2m�1
C
�1

2n�1

�
or�

�1
2n�1

C
�1

2m�1

�
;

see Figure 10. When mn> 0 and jmC nj D kC 1, case (3) does not occur and cases
(1) and (2) are included in case (4).

2
m
�

1

2
n
�

1

2
m
�

1

2
n
�

1

N.2k/ P .2m�1; 2n�1; 1/

Figure 10. Xer recombination from N.2k/ to P .2m�1; 2n�1; 1/

By Theorem 2.1, a .0;�1/–move is equivalent to a
�
0; 1

w

�
–move, because 1

w
D

1
�1�h

for an integer h (hD�w�1). Then we obtain Corollary 4.2 below from Theorem 4.1.

Corollary 4.2 Suppose N.U C 0/D N.2k/ and N
�
U C 1

w

�
D N

�
4mn�1

2m

�
, where

k � 1 and N
�

4mn�1
2m

�
has 2k C 1 crossings. Then mn > 0, jmC nj D k C 1, and

U D
�
�1

2m�1
C
�1

2n�1

�
ı .�w� 1; 0/ or

�
�1

2n�1
C
�1

2m�1

�
ı .�w� 1; 0/.

In the following corollaries, we apply Theorem 4.1 to the cases involving .2; 2k/–torus
links with linking number �k where k D 3; 4; 5.

Corollary 4.3 Suppose N.U C 0/DN.6/.

(1) If N.UC.�1//D72DN
�
˙

11
2

�
, then UD

�
�

6
5

�
, so N.UC.�1//DN

�
11
2

�
.

(2) If N.UC.�1//D74DN
�
˙

15
4

�
, then UD

�
�1
3
C
�1
3

�
, so N.UC.�1//DN

�
15
4

�
.

Corollary 4.4 Suppose N.U C 0/DN.8/.

(1) If N.UC.�1//D 92DN
�
˙

15
2

�
, then U D

�
�

8
7

�
, so N.UC.�1//DN

�
15
2

�
.
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(2) If N.UC.�1//D 95DN
�
˙

23
4

�
, then U D

�
�1
3
C
�1
5

�
or U D

�
�1
5
C
�1
3

�
, so

N.UC.�1//DN
�

23
4

�
.

Corollary 4.5 Suppose N.U C 0/DN.10/.

(1) If N.UC.�1//D11a247DN
�
˙

19
2

�
, then UD

�
�

10
9

�
, so N.UC.�1//DN

�
19
2

�
.

(2) If N.UC.�1//D 11a343DN
�
˙

31
4

�
, then U D

�
�1
3
C
�1
7

�
or U D

�
�1
7
C
�1
3

�
,

so N.UC.�1//DN
�

31
4

�
.

(3) If N.UC.�1//D11a363DN
�
˙

35
6

�
, then U D

�
�1
5
C
�1
5

�
, so N.UC.�1//D

N
�

35
6

�
.

4.3 Xer recombination from trefoil knot to Hopf link

Our original description of Xer recombination was a simple one. So far we have only
described one type of Xer action. The action of proteins depends on reaction conditions.
For Xer, its action will be affected by both accessory proteins and the sequence to
which it binds. Xer is a site-specific recombinase (meaning it acts on specific DNA
sequences). But there are several different specific sequences upon which it can act.
Previously we described the experiment in which .2; 2k/ torus links were converted
into knots with 2k C 1 crossings. This case involved the proteins XerC, XerD, and
PepA acting on the DNA sequence psi. In this case in order for Xer to act, these
proteins trapped three DNA crossings (Figure 7).

We will now describe a second set-up for Xer recombination. The proteins XerC,
XerD, and FtsK can also act on the E. coli dif sequence. To distinguish this second
type of action we will refer to this as XerCD-dif-FtsK recombination. This system
can resolve dimers. It can also unlink DNA links in vitro, that is, in a test tube (see
Ip, Bregu, Barre and Sherratt [19]), and in vivo, that is, in the cell (see Grainge,
Bregu, Vazquez, Sivanathan, Ip and Sherratt [15]). For XerCD-dif-FtsK recombination,
the topology of the protein-bound DNA is much simpler. It is believed that FtsK is
responsible for setting up a much simpler protein-bound DNA topology in which there
is a projection where no DNA crossings are trapped. For a movie of a proposed model,
see supplementary data in [19].

XerCD-dif-FtsK can unlink the .2; 2k/–torus link with linking number ˙k . When
the linking number is �k , the observed products were the unknot and the unlink
of two componts and the proposed pathway is believed to be .2; 2k/–torus link !
unknot ! unlink [19]. The related tangle equations are easily solved using Hirasawa
and Shimokawa [17] and TopoIce-R [8]. When the linking number is k , a stepwise
unlinking model was proposed [19] in which each round of recombination reduces the
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crossing number by one: the pathway is the .2; 2k/–torus link, the .2; 2k � 1/–torus
knot, the .2; 2k � 2/–torus link, . . . , the .2; 4/–torus link, the trefoil knot, the Hopf
link, the trivial knot, the trivial link. See Shimokawa, Ishihara and Vazquez [29] for a
mathematical study. If we assume each recombination is modeled by a coherent band
surgery, the following corollary of Theorem 3.1 characterizes the band surgery between
the trefoil knot and the Hopf link. The band surgery between the Hopf link and the
trivial knot is characterized by Thompson [31] and Hirasawa and Shimokawa [17]
and the band surgery between the trivial knot and the trivial link is characterized by
Scharlemann [27].

Corollary 4.6 If N.U C 0/ D N.3/ (trefoil knot) and N
�
U C 1

w

�
D N.2/ (Hopf

link), then U D
�

3
�3w�2

�
. If N.U C 0/ D N.3/ and N.U C .�1// D N.2/, then

U D .3/ (see Figure 11).

Proof We apply Theorem 3.1 by putting mD nD k D w D�1. Then we obtained
the solutions (1), (2) and (3). Each of them shows U D .3/.

trefoil knot Hopf link

Figure 11. Xer recombination from the trefoil knot to the Hopf link

4.4 A comment on converting N.4/ into the trefoil knot

In the remark below, we look at one solution for converting N.4/ into N.3/.

Remark 4.7 If U D .4/, then N.U C 0/D N.4/ where N.4/ has linking number
+2 and N.U C .�1//DN.3/.

If N.4/ has linking number C2, we cannot apply Theorem 3.1. In this case the
coherent band corresponding to the rational tangle surgery can be isotoped to lie in
the genus one Seifert surface of N.4/, but not in the minimal Seifert surface of N.3/

(See Theorem 5.2).
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5 Proof of Theorem 3.1

In this section we prove Theorem 3.1 when m; n 6D 0. Thus we wish to solve the system
of equations N.U C 0/DN

�
4mn�1

2m

�
and N

�
U C 1

w

�
D .2; 2k/–torus link. We will

use that this rational tangle surgery corresponds to a band surgery. We assume the band
surgery is coherent. For a coherent band surgery, the relation between the signatures of
L and Lb is known.

Theorem 5.1 (Murasugi [24, Lemma 7.1]) If Lb is obtained from L by a coherent
band surgery, then j�.L/� �.Lb/j � 1.

We consider the case where L is a 2–bridge knot N
�

4mn�1
2m

�
and Lb is N.2k/.

Suppose N.2k/ has linking number k where jkj> 2. Then the absolute value of its
signature is 2jkj � 1 while

ˇ̌
�
�
N
�

4mn�1
2m

��ˇ̌
D 0 or 2. Thus when jkj> 2, the system

of equations, N.U C 0/D N
�

4mn�1
2m

�
and N

�
U C 1

w

�
D N.2k/ where N.2k/ has

linking number k has no solution when the rational tangle surgery corresponds to a
coherent band surgery. Since N.2/DN.�2/ as unoriented links, we can assume that
the Hopf link, N.2k/ has linking number �k where k D˙1. Hence from here on,
we will assume N.2k/ has linking number �k .

2k 2k

Figure 12. .2; 2k/–torus links: the left diagram has linking number �k

while the right diagram has linking number k .

Theorem 5.2 (Deruelle, Miyazaki and Motegi [10], Hirasawa and Shimokawa [17],
Scharlemann and Thompson [28]) Suppose that b is a band of a coherent band surgery
from L to Lb . Then �.L/ � �.Lb/� 1 if and only if L has a taut Seifert surface
containing b .

Since the Seifert surface for L is connected, it is taut if and only if it is of minimal
genus.

In our case �.L/ D �1, �.Lb/ D 2 if Lb is the unlink of two components, and
�.Lb/D 0 otherwise. The link L is a genus one 2–bridge knot and genus one Seifert
surfaces of L are characterized by Hatcher and Thurston [16]; there are only two Seifert
surfaces of L up to equivalence as shown in Figure 13. Here two Seifert surfaces for
an oriented link are said to be equivalent if there exists an ambient isotopy such that
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one Seifert surface is moved to the other by the isotopy and the link is fixed as a set
throughout the isotopy. The surfaces S1 and S2 in Figure 13 are genus one Seifert
surfaces of L which are obtained by plumbing of two annuli with m and n full twists.
Moreover, by Kobayashi [20] it is known that S1 is equivalent to S2 if and only if
mD˙1 or nD˙1. Let S be a minimal Seifert surface of L which contains b (that
is, S D S1 or S2 ). The Seifert surface S1 can be isotoped to S2 via a � rotation
which moves L, but we will prove results for the stronger definition of equivalence
given above.

2m

2n

S1

2m

2n

S2

Figure 13. Minimal genus Seifert surfaces for N
�

4mn�1
2m

�

We will give a parametrization of bands attached to L which are contained in S . If
S � b is not connected, then the core of the band is boundary parallel. Thus Lb is
a split link with L and the unknot. This does not satisfy our hypothesis since L is
not the unknot and Lb D N.2k/. If b is contained in S and if S � b is connected,
then Cl(S �b ) is an annulus in S3 . Let b denote a core of the annulus. Note that the
boundary of this annulus is exactly Lb , so Lb DN.2k/ if and only if b is a trivial
knot. A band b determines a unique knot b (up to isotopy in S ). Conversely, given
a knot in S , there exists a unique band in S (up to isotopy in S ) which is disjoint
from that knot. Thus there exists a one to one correspondence between ambient isotopy
classes of bands b in S and ambient isotopy classes of unoriented knots b in S . In
order to parametrize a band b in S , we will parametrize such a knot b in S . Recall
that S is a plumbing of two annuli with m and n full twists. Let cM (resp. cN ) be
the oriented unknot shown in Figure 14 which spans a disk that transversely meets
the annulus with m (resp. n) full twists in an arc. For parametrization, we give an
orientation of b . Let p D lk.b; cM / and q D lk.b; cN /. Then b is parametrized
by ˙.p; q/.
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cM

cN

cM

cN
cM

cN

Figure 14. .�m/–twist along cM

We consider a .�m/–twist along cM . Then after the twist, S lies on a standard torus in
S3 as shown in Figure 14. Hence b becomes a torus knot after the twist. Motegi [23]
characterized twists on an unknot which yield torus knots.

Theorem 5.3 (Motegi [23, Theorem 3.8]) Suppose a knot K�m , which is obtained
from a trivial knot K by a .�m/–twist along a trivial knot C , is a torus knot. Then,
except for trivial examples, mD˙1.

Trivial examples are shown in Figure 15. In trivial examples, C is ambient isotopic (in
S3�K ) to the core loop of a solid torus whose boundary torus contains K and K�m .

C C

.1;p/–torus knot .1�mp;p/–torus knot
Figure 15. Trivial example: A .1�mp;p/–torus knot is obtained from a
.1;p/–torus knot, which is a trivial knot, by .�m/–twist along a trivial knot
C .

By applying Theorem 5.3 for C D cM and K D b , we obtain the following lemma.

Lemma 5.4 If b is a trivial knot, then one of the following holds.

(1) jpj � 1 and jqj � 1. Namely .p; q/D˙.1; 0/, ˙.0; 1/, ˙.1; 1/ or ˙.1;�1/.

(2) nD 1 and .p; q/D˙.1;�2/.

(3) nD�1 and .p; q/D˙.1; 2/.
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(4) mD˙1.

Remark 5.5 If .1/ of Lemma 5.4 holds, then for any m and n, b is trivial. If .2/
or .3/ holds, then for any m, b is trivial.

Proof of Lemma 5.4 Let  0
b

be a knot which is obtained from b by .�m/–twist
along cM . The standard torus on which  0

b
lies divides S3 into the union of two solid

tori. The loop cN maps to the core knot for one of these tori. Let c be the core knot
for the other torus as in Figure 16.

cM

cN

c

Figure 16

Then linking numbers can be calculated as follows.

lk. 0b; cM /D lk.b; cM /D p;

lk. 0b; cN /D lk.b; cN /D q;

lk. 0b; c/D pC nq:

By applying Theorem 5.3 for C D cM ;K D b;K�m D 
0
b

, except trivial examples,
we have the conclusion (4) of Lemma 5.4. Thus it is enough to consider the trivial
examples. Since a .�m/–twist along CM represents a trivial example, we have

(1)  0b D .˙1�mp;p/-torus knot:

On the other hand, from the linking numbers of  0
b

with cN and with c above, we
have

(2)  0b D .q;pC nq/-torus knot:

Suppose  0
b

is the trivial knot. From equation (1), jpj D 1 or j˙ 1�mpj D 1. From
equation (2), jqj D 1 or jpC nqj D 1. If jpj D jqj D 1, then the conclusion (1) of
Lemma 5.4 holds. If jpj D jpC nqj D 1, then jnqj D 1˙ jpj D 0 or 2, so one of
the conclusions (1), (2) and (3) of Lemma 5.4 holds. If jpj ¤ 1 and j˙ 1�mpj D 1,
then jmpj � 2, so .p; q/D˙.0; 1/ or mD˙1, that is, the conclusion (1) or (4) of
Lemma 5.4 holds.
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Suppose  0
b

is a non-trivial torus knot. From equation (1), jpj � 2. From equation
(2), jqj � 2. The integers p and q are relatively prime, so jpj ¤ jqj. By contrasting
equations (1) and (2), .˙1�mp;p/D˙.q;pC nq/. Since nq ¤ 0,

˙1�mp D�q;(3)

and p D�.pC nq/:(4)

If jqj< jpj, by equation (3), jqj< jpj � jmpj D jq˙1j � jqjC1. then jpj D jmpj, so
the conclusion (4) of Lemma 5.4 holds. If jqj> jpj, by equation (4), 2jpjD jnqj> jnpj,
then jnj D 1 and 2jpj D jqj. Since integers p and q are relatively prime and jpj � 2,
it does not happen.

Next we state a well known lemma of a braid presentation for a trivial knot (see, for
example, Morton and Hadji [22]).

Lemma 5.6 If a trivial knot has a positive or negative n–braid presentation with m

crossings, then mD n� 1.

We say that two bands attached to a link L are equivalent with respect to L if there
exists an ambient isotopy of S in S3 such that one band is moved to the other by the
isotopy and L is fixed as a set throughout the isotopy. Now we state the main theorem
of this section.

Theorem 5.7 Let L be a 2–bridge knot N
�

4mn�1
2m

�
in S3 with m; n¤ 0. Suppose

that b is a band of a coherent band surgery from L to Lb , and Lb is a 2–bridge link
N.2k/ with linking number �k . Then the band b is equivalent to one of the six bands
b1; b2; b3; b4; b5 and b6 in Figure 17 with respect to L.

2m

2n

b1

k Dm

2m

2n

b2

k D n

2m

2n

b3

k DmCnC1

2m

2n
b4

k DmCnC1

2m

2n
b5

k DmCn�1

2m

2n
b6

k DmCn�1

Figure 17

Remark 5.8 (1) The band for .p; q/D˙.1; 0/ and S D S1 or S2 corresponds to
b1 .

(2) The band for .p; q/D˙.0; 1/ and S D S1 or S2 corresponds to b2 .
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(3) The band for .p; q/D˙.1; 1/ and S D S1 (resp. S2/ corresponds to b3 (resp.
b4/.

(4) The band for .p; q/D˙.1;�1/ and S DS1 (resp. S2/ corresponds to b5 (resp.
b6/.

Remark 5.9 Suppose that mD˙1 or nD˙1. Then two Seifert surfaces S1 and
S2 are equivalent (fixing L). By the ambient isotopy of this equivalence, we have the
following: If mD 1 (resp. mD�1/, then the three bands b2; b5; b6 (resp. b2; b3; b4/

are equivalent to each other with respect to L. If n D 1 (resp. n D �1/, then the
three bands b1; b5; b6 (resp. b1; b3; b4/ are equivalent to each other with respect to
L. If m D n D 1 (resp. m D n D �1/ (that is, L is the trefoil knot), then the four
bands b1; b2; b5; b6 (resp. b1; b2; b3; b4/ are equivalent to each other with respect
to L, and the two bands b3; b4 (resp. b5; b6/ are equivalent with respect to L. If
mD 1; nD �1 (resp. mD �1; nD 1/ (that is, L is the figure eight knot), then the
three bands b1; b3; b4 (resp. b1; b5; b6/ are equivalent to each other with respect to
L, and the three bands b2; b5; b6 (resp. b2; b3; b4/ are equivalent to each other with
respect to L.

Proof of Theorem 5.7 Let L be a 2–bridge knot N
�

4mn�1
2m

�
in S3 with m; n ¤

0. Since L is symmetric for m and n, that is, N
�

4mn�1
2n

�
is ambient isotopic to

N
�

4mn�1
2m

�
, without loss of generality, we may assume that jmj � jnj � 1. Suppose,

for a band b , Lb is a 2–bridge link N.2k/ with linking number �k . We may assume
that b � S where S is a minimal Seifert surface of L, and so S D S1 or S2 in
Figure 13.

Suppose the conclusion (1) of Lemma 5.4 holds. Then the band is equivalent to one of
b1; b2; b3; b4; b5 and b6 with respect to L, see Remark 5.8.

Suppose the conclusion (2) of Lemma 5.4 holds. In this case S1 and S2 are equivalent.
By the ambient isotopy of this equivalence, the band for .p; q/D˙.1;�2/ and S DS1

(resp. S D S2 ) is equivalent to b4 (resp. b3 ) with respect to L.

Suppose the conclusion (3) of Lemma 5.4 holds. Similarly to above, the band for
.p; q/ D ˙.1; 2/ and S D S1 (resp. S D S2 ) is equivalent to b6 (resp. b5 ) with
respect to L.

From now on we will consider the remaining case where jmj D jnj D 1. There are
symmetries of b : that is, the parameters .m; n;p; q/ D .a; b; c; d/; .b; a; d; c/ and
.�a;�b; c;�d/ determine the same knot type of b up to mirror image. Thus it is
enough to consider the case where p > q > 0. Then we obtain a p–string braid
presentation for b by moving S as shown in Figure 18. Using this braid presentations
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2m

2n

2m

2nC2

Figure 18. Recall that a positive (negative) number inside a box corresponds
to right (left) handed half twists. For the figure on the left, the box containing
2m represents m horizontal twists. The remaining three boxes contain
vertical twists.

p

2

4

q p�q

p

2

q p�q

Figure 19. Left: mD nD 1; Right: mD 1 , nD�1

p

�2

q p�q

�2 �2

q p�q

Figure 20. mD nD�1;p> q > 0: The p–string braid on the left simplifies
via two right-handed half-twists to the negative braid on the right. Note that
the right braid has p�1 crossings (and hence its closure is the unknot) if and
only if p D 2 and q D 1 .

for b and Lemma 5.6, we will decide whether or not the knot b is trivial. There
are three cases for m and n: the first is where m D 1 and n D ˙1; the second
is where m D �1 and n D 1; and the third is where m D n D �1. In the first
case, b has a positive braid presentation as shown in Figure 19, and hence b is a
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p�q

�2

q p�2q
p

�2

4

q p�q

�2 2

q p�q

p�q � q

p�q < q

q

2

4

2q�p p�q

Figure 21. m D �1; n D 1;p > q > 0: The braid on the left simplifies to
one of the braids on the right. If p � q � q , then a .p�q/–string negative
braid is obtained (top right). This .p�q/–string braid closes to the unknot
if and only if p� q D q D 1 If p� q < q , then a q–string braid is obtained
which can be further simplified (bottom right). This q–string braid closes to
the unknot if and only if .p; q/D .FiC1;Fi/ where Fi is the i th Fibonacci
number.

non-trivial knot. In the second case, by simplifying a braid presentation, b has a
negative braid presentation as shown in Figure 20. Hence b is a non-trivial knot
except when .p; q/D .2; 1/. In the third case, we can simplify a braid presentation
inductively if necessary as shown in Figure 21. Then b is a trivial knot if and only
if .p; q/ D .FiC1;Fi/, where i is any positive integer and Fi is the i th Fibonacci
number; F0 D 0;F1 D 1;F2 D 1;F3 D 2;F4 D 3;F5 D 5; : : :. By reconsidering the
symmetries of b , we can summarise a necessary and sufficient condition for a pair
.p; q/ to determine a trivial knot b for mD nD 1 and for mD 1; nD�1 as follows.

Suppose that mD nD 1, that is, L is the trefoil knot. A knot b is trivial if and only
if .p; q/D˙.0; 1/,˙.1; 0/, ˙.1; 1/, ˙.1;�1/, ˙.2;�1/, or ˙.1;�2/. Now L is a
fibered knot and S is a fibered surface. Let � W S ! S be the monodromy map and let
�� WH1.S/!H1.S/ be the homomorphism induced by �. We regard .p; q/ as an
element of H1.S/ and define two elements of H1.S/ to be equivalent if �k

� maps one
to the other for an integer k . Then ˙.1; 0/;˙.0; 1/˙.1;�1/ belong to an equivalence
class, and ˙.1; 1/;˙.2;�1/;˙.1;�2/ belong to another one. This implies that the
band is equivalent to b1 or b3 with respect to L, see Remark 5.8.
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Suppose that m D 1 and n D �1, that is, L is the figure eight knot. A knot b is
trivial if and only if .p; q/ D ˙.Fi ;FiC1/ or ˙.FiC1;�Fi/ for any non-negative
integer i . Now L is a fibered knot and S is a fibered surface. Let � W S ! S be
the monodromy map and let �� W H1.S/! H1.S/ be the homomorphism induced
by �. We regard .p; q/ as an element of H1.S/ and define two elements of H1.S/

to be equivalent if �k
� maps one to the other for an integer k . Then a set A D

f.F2i�1;�F2i�2/ j i 2Ng[ f.F2i�1;F2i/ j i 2Ng is an equivalence class and a set
B D f.�F2i ;F2i�1/ j i 2 Ng [ f.F2i�2;F2i�1/ j i 2 Ng is another one. Note that
the set A contains .1; 0/ and the set B contains .0; 1/. This implies that the band is
equivalent to b1 or b2 with respect to L, see Remark 5.8. This completes the proof of
Theorem 5.7.

In Figure 17, the two unions L[ b3 and L[ b4 (resp. L[ b5 and L[ b6 ) of a knot
L and bands are ambient isotopic to each other, and they are ambient isotopic to the
third (resp. the fourth) of Figure 22. Then we obtain the following theorem.

2m 2n

k Dm

2n 2m

k D n

2
m
C

1

2
n
C

1

k DmCnC1

2
m
�

1

2
n
�

1

k DmCn�1

Figure 22

Theorem 5.10 Let L be a 2–bridge knot N
�

4mn�1
2m

�
in S3 with m; n¤ 0. Suppose

that b is a band of a coherent band surgery from L to Lb , and Lb is a 2–bridge link
N.2k/ with linking number �k . Then the union L[ b of a knot L and a band b is
ambient isotopic to one of four in Figure 22.

Proof of Theorem 3.1 We consider a
�
0; 1

w

�
move as a band surgery as shown in

Figure 4. Then we obtain Theorem 3.1 from Theorem 5.10 immediately.

6 Non-band rational tangle surgery case

Let c.K/ be the crossing number of the knot K . In this section we will characterize all
non-band rational tangle surgeries on N.2k/ yielding N

�
4mn�1

2m

�
, where c.N.2k//D

2k and c
�
N
�

4mn�1
2m

��
D 2kC 1, for k D 3; 4 or 5.

Suppose N.U C 0/DN.2k/ (D .2; 2k/–torus link), and N
�
U C t

w

�
D a 2–bridge

knot N
�

z
v

�
. Per below the solutions to this system of equations are of the form
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t
w
D

z�2kv0

v0�.z�2kv0/h
and U D

�
2k

2khC1

�
, where h is any integer and v0 is an integer

which satisfies v0 � v˙1 mod z , and so N
�

z
v0

�
DN

�
z
v

�
. We show that there are no

other solutions of the non-band rational tangle surgery for the cases where z
v
D

4mn�1
2m

,
mn > 0, jmC nj D kC 1 (which is the condition for c

�
N
�

4mn�1
2m

��
D 2kC 1, and

k D 3; 4 or 5.

Theorem 6.1 Suppose N.U C 0/DN.6/ and t ¤˙1.

(1) If N
�
U C t

w

�
D 72 . z

v
D ˙

11
2
/, then t

w
D

11�6v0

v0�.11�6v0/h
and U D

�
6

6hC1

�
,

where h is any integer and v0 is an integer which satisfies v0 �˙2˙1 mod 11.

(2) If N
�
U C t

w

�
D 74 . z

v
D ˙

15
4
/, then t

w
D

15�6v0

v0�.15�6v0/h
and U D

�
6

6hC1

�
,

where h is any integer and v0 is an integer which satisfies v0 �˙4˙1 mod 15.

Theorem 6.2 Suppose N.U C 0/DN.8/ and t ¤˙1.

(1) If N
�
U C t

w

�
D 92 . z

v
D ˙

15
2
/, then t

w
D

15�8v0

v0�.15�8v0/h
and U D

�
8

8hC1

�
,

where h is any integer and v0 is an integer which satisfies v0 �˙2˙1 mod 15.

(2) If N.UC t
w
/D 95 .

z
v
D˙

23
4
/, then t

w
D

23�8v0

v0�.23�8v0/h
and U D

�
8

8hC1

�
, where

h is any integer and v0 is an integer which satisfies v0 �˙4˙1 mod 23.

Theorem 6.3 Suppose N.U C 0/DN.10/ and t ¤˙1.

(1) If N
�
U C t

w

�
D11a247 . z

v
D˙

19
2
/, then t

w
D

19�10v0

v0�.19�10v0/h
and U D

�
10

10hC1

�
,

where h is any integer and v0 is an integer which satisfies v0 �˙2˙1 mod 19.

(2) If N
�
U C t

w

�
D11a343 . z

v
D˙

31
4
/, then t

w
D

31�10v0

v0�.31�10v0/h
and U D

�
10

10hC1

�
,

where h is any integer and v0 is an integer which satisfies v0 �˙4˙1 mod 31.

(3) If N
�
U C t

w

�
D11a363 . z

v
D˙

35
6
/, then t

w
D

35�10v0

v0�.35�10v0/h
and U D

�
10

10hC1

�
,

where h is any integer and v0 is an integer which satisfies v0 �˙6˙1 mod 35.

A tangle is a generalized M –tangle if it is ambient isotopic to a sum of rational tangles,
or equivalently, it is obtained from a finite sum of rational tangles by a circle product
with a finite sequence of integers. The above results can also be obtained by using the
software TopoIce-R [8] within Knotplot [26]. This software implements the following
theorems.

Theorem 6.4 (Ernst [11]) If N.N C 0/ D N
�

a
b

�
and N

�
U C t

w

�
D N

�
z
v

�
and if

jt j> 1, then U is a generalized M –tangle.
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Theorem 6.5 (Darcy [7, Theorem 3]) N.U C0/DN
�

a
b

�
and N

�
U C t

w

�
DN

�
z
v

�
where U is a generalized M –tangle if and only if the following hold.

(a) If w 6� ˙1 mod t , then there exists an integer, b0 such that b0b˙1 D 1 mod a,
and for any integers x and y such that b0x� ay D 1,

N
�

z
v

�
DN

�
tb0Cwa
tyCwx

�
:

In this case, U D a
b0 for all b0 satisfying the above.

(b) If w � "D˙1 mod t .w D ht C "/, then there exists relatively prime integers,
p and q , where p may be chosen to be positive, such that,

N
�

z
v

�
DN

� tp.pb�qa/C"a
tq.pb�qa/C"b

�
:

In this case, the solutions for U are
�da�jp

pb�qa
C

j
p

�
ı.h; 0/ and

� j
p
C

da�jp
pb�qa

�
ı.h; 0/,

for all p; q satisfying the above, d and j are integers such that pd � qj D 1

(note, the choice of j and d such that pd � qj D 1 has no effect on U ).

Corollary 6.6 (Darcy [7, Corollary 2]) Suppose bx� ay D 1, N
�
U C 0

1

�
DN

�
a
b

�
and N

�
U C t

w

�
D N

�
z
v

�
where N

�
a
b

�
and N

�
z
v

�
are unoriented 2–bridge knots

or links. If w 6� ˙1 or if U is rational, then t
w
D

xz�av0

bv0�yz�ht
and U D a

bCha
, or

t
w
D

bz�av0

xv0�yz�ht
and U D a

xCha
, where v0 is any integer such that v0v˙1 D 1 mod z .

If w �˙1 mod t , then t divides z� a.

If w 6� ˙1 or if U is rational and if N
�

a
b

�
D N.2k/, then t

w
D

z�2kv0

v0�.z�2kv0/h
and

U D 2k
1C2kh

. If w� "D˙1 mod t , then t , p , and pb�qa in part (b) of Theorem 6.5
are all factors of z�a. Note that if U is not rational in Theorem 6.5, then both jpj> 1

and jpb� qaj > 1. We will use this to show that the conclusion (b) of Theorem 6.5
does not occur under the assumptions of Theorem 6.1, 6.2 or 6.3.

Proof of Theorem 6.1 Suppose k D 3 and z
v
D

4mn�1
2m

D ˙
11
2

or ˙15
4

. If U is
rational, then Theorem 6.1 holds by Corollary 6.6. Suppose U is not rational. Then
jtp.p � 6q/j D jz � 6"j D 5; 9; 17 or 21. But this is not possible since jt j, jpj, and
jp� 6qj are all greater than 1.

Proof of Theorem 6.2 Suppose k D 4 and z
v
D

4mn�1
2m

D ˙
15
2

or ˙23
4

. If U is
rational, then Theorem 6.2 holds by Corollary 6.6. Suppose U is not rational. Then
jtp.p� 8q/j D jz � 8"j D 7; 15; 23 or 31. But this is not possible since jt j, jpj, and
jp� 8qj are all greater than 1.
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Proof of Theorem 6.3 Suppose k D 5 and z
v
D

4mn�1
2m

D˙
19
2
;˙31

4
or ˙35

6
. If U

is rational, then Theorem 6.3 holds by Corollary 6.6. Suppose U is not rational. Then
jtp.p� 10q/j D jz� 10"j D 9; 21; 25; 29; 41 or 45. Since jt j, jpj, and jp� 10qj are
all greater than 1, the only possibility is that jz� 10"j D 45 and jp.p� 10q/j D 9 or
15. But there is no integer solution to jp.p�10q/j D 9 or 15 where jpj and jp�10qj

are both greater than one.

The action of Xer recombination is believed to correspond to a
�
�

1
3
;�4

3

�
move. By

Theorem 2.2, a
�
�

1
3
;�4

3

�
move is equivalent to a

�
0; 9

9lC5

�
move for any integer l .

Moreover, N.U C 0/DK1 and N
�
U C 9

5

�
DK2 if and only if N

�
ŒU ı .1; 2; 0/�C�

�
1
3

��
DK1 and N

�
ŒU ı.1; 2; 0/�C

�
�

4
3

��
DK2 , since N.UC0/DN.ŒU ı.1; 2; 0/ı

.�2;�1/�C 0/DN.ŒU ı .1; 2; 0/�C Œ.0/ ı .�1;�2; 0/�/DN
�
ŒU ı .1; 2; 0/�C

�
�

1
3

��
and N

�
U C 9

5

�
DN

�
U C

�
�

4
3

�
ı.2; 1/

�
DN

�
ŒU ı.1; 2; 0/�C

�
�

4
3

��
. Then we obtain

following corollaries from Theorem 6.1, 6.2 and 6.3.

Corollary 6.7 Suppose N
�
U C

�
�

1
3

��
DN.6/.

(1) If N
�
U C

�
�

4
3

��
D 72 .

z
v
D˙

11
2
/, then it has no solution.

(2) If N
�
U C

�
�

4
3

��
D 74 .

z
v
D˙

15
4
/, then U D

�
�

1
3

�
.

Corollary 6.8 Suppose N
�
U C

�
�

1
3

��
DN.8/.

(1) If N
�
U C

�
�

4
3

��
D 92 .

z
v
D˙

15
2
/, it has no solution.

(2) If N
�
U C

�
�

4
3

��
D 95 .

z
v
D˙

23
4
/, then U D

�
�

1
5

�
.

Corollary 6.9 Suppose N
�
U C

�
�

1
3

��
DN.10/.

(1) If N
�
U C

�
�

4
3

��
D 11a247 . z

v
D˙

19
2
/, then it has no solution.

(2) If N
�
U C

�
�

4
3

��
D 11a343 . z

v
D˙

31
4
/, then U D

�
�

1
7

�
.

(3) If N
�
U C

�
�

4
3

��
D 11a363 . z

v
D˙

35
6
/, then it has no solution.

7 Summary or conclusion or software

Per theorems of Ernst [11] and Darcy [7], the system of tangle equations N.U C

B/ D N
�

a
b

�
, N.U CE/ D N

�
z
v

�
is easily solved when the .B;E/ move is equiv-

alent to a
�
0; t

w

�
move where jt j > 1. The case when jt j D 1 is much more dif-

ficult. A few special subcases when jt j D 1 can be handled using results of Hira-
sawa and Shimokawa [17] and Kronheimer, Mrowka, Ozsváth and Szabó [21]. Our
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Theorem 3.1 handles the subcase when the move corresponds to a coherent banding
and N

�
a
b

�
;N

�
z
v

�
2
˚
N.2k/;N

�
4mn�1

2m

�	
. This subcase is particularly biologically

relevant since N
�

4mn�1
2m

�
includes the family of twist knots, and we also applied it to

analyze the experimental results of Xer recombination acting on .2; 2k/–torus links
(see Bath, Sherratt and Colloms [1]).

The software TopoIce-R [8] within Knotplot [26] solves the system of tangle equations
N.U CB/DN

�
a
b

�
, N.U CE/DN

�
z
v

�
when U is a generalized M –tangle (that

is, ambient isotopic to a sum of rational tangles) and B and E are rational tangles.
When the .B;E/ move is equivalent to a

�
0; t

w

�
move where jt j > 1, then U must

be a generalized M –tangle by Theorem 6.4. However, other types of tangles can
be solutions for U when jt j D 1 (see Darcy [6]). These solutions are not currently
found by TopoICE-R. Note that the solutions for U in Theorem 3.1 in which jt j D 1

are generalized M –tangles. Hence for the cases in Theorem 3.1, TopoIce-R finds
all solutions to this system of tangle equations. The solutions found by TopoICE-R
correspond to performing surgery on a .p; q/ torus knot in the double branch cover of
N
�

a
b

�
.
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